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Abstract 

The Cu(0)-mediated reversible deactivation radical polymerisation of N,N’-

dimethylaminoethyl acrylate in DMSO and IPA at ambient temperature using Cu(0) wire is 

investigated. Tetra-functional and octa-functional initiators were utilised to facilitate the 

synthesis of well-defined PDMAEA star homo and block copolymers with a range of molecular 

weights (Mn ~ 5000-41000 g mol-1). Both solvents demonstrated to be excellent media for the 

controlled polymerisation of DMAEA yielding narrow molecular weight distributions (Ð ~ 

1.1) when the reactions were ceased at ~ 40% conversion. Interestingly, at high conversions 

(typically > 55%) high and low molecular weight shoulders were evident by SEC when DMSO 

and IPA were used respectively, suggesting large extent of termination and/or side reactions at 

prolonged reaction times. Nevertheless, high end group fidelity could be maintained when 

immediate precipitation of the polymers (at lower conversion) was performed yielding low 

dispersed P(DMAEA-b-MA) star block copolymers (Ð < 1.19, Mn ~ 20000 g mol-1). 



Importantly, guidelines on how to prevent hydrolysis, termination and side reactions of 

PDMAEA as well as how to purify and store such materials are also provided and discussed.  

Introduction 

Polyamines have attracted considerable interest due to the presence of cationic nitrogen 

atoms that allow for pH tuning and the formation of pH responsive nanoparticles structures that 

self-assemble in aqueous solution.1-3 These properties render polyamines a good candidate for 

a wide range of applications such as gene delivery4, waste water treatment5, paper making6 and 

cosmetics7. In comparison to the analogous methacrylate, poly(dimethylaminoethyl 

methacrylate) (PDMAEMA),  poly(dimethylaminoethyl acrylate) (PDMAEA) has attracted 

further interest due to its ability to provide a timed release mechanism facilitated by its self-

catalysed hydrolysis in water to polyacrylic acid and N,N’-dimethylaminoethanol.8,9  

Several reversible-deactivation radical polymerisation (RDRP) methods have been 

employed in an attempt to provide PDMAEA) with high end group fidelity and narrow 

molecular weight distributions (MWDs). Cunningham and co-workers10 utilised nitroxide 

mediated polymerisation (NMP)11 at 100°C to control the polymerisation of DMAEA, resulting 

in relatively low molecular weight polymers (Mn ~ 8800 g mol-1, Ð ~ 1.29) and broad MWDs 

when a higher molecular weight was targeted (Mn ~ 13000 g mol-1, Ð ~ 1.47). Importantly, the 

chain extension of the homopolymers/macroinitiator with butyl acrylate gave high dispersities 

(Ð >1.4) and a significant low molecular weight shoulder, indicative of intense termination 

events and/or side reactions. High temperatures were used for all the experiments.10 Reversible 

addition-fragmentation chain-transfer polymerisation (RAFT)12 has also been employed for the 

controlled polymerisation of DMAEA. Monteiro and co-workers reported narrow MWDs (Ð 

~ 1.17-1.26) for low molecular weight PDMAEA (Mn ~3000-8600 g mol-1). However, no chain 

extensions or block copolymerisations were reported.13 Perrier and co-workers also used RAFT 



to polymerise DMAEA employing a PDMS macro chain transfer agent at 70 °C. Although 

narrow MWDS were reported (Ð ~ 1.20), again chain extensions were not studied.14 Additional 

reports15 on RAFT, also show a preference to incorporate PDMAEA as the second or third 

block, instead of using it as a macroinitiator.16,17 

The polymerisation of DMAEA by copper-mediated RDRP techniques is somewhat 

problematic compared to other acrylates monomers.18,19 This is attributed to the nucleophilic 

nature of the tertiary amine on the pendant groups that can react with the secondary halide on 

the polymer chain end. Thus, nucleophilic reactions can occur via intramolecular and/or 

intermolecular interactions.20 Zhu and co-workers utilised atom transfer radical polymerisation 

(ATRP)21,22 at 70 °C to synthesise PDMAEA homopolymers up to Mn ~10000 with relatively 

broad MWDs (Ð ~ 1.43). Chain extension of PDMAEA macroinitiator was not reported.20 

Further ATRP reports utilised PDMAEA as the third block to yield well-defined materials.23 

High temperatures have been employed in all cases which could cause additional side reactions. 

The use of Cu(0) in copper-mediated RDRP was reported by Matyjaszewski and co-

workers in 199724 (and was later named as supplemental activator and reducing agent ATRP) 

and became popular in 200225 and 200626 by Percec and co-workers (named as single electron 

transfer living radical polymerisation and abbreviated SET-LRP), and has been successfully 

applied to the controlled polymerisation of acrylates18,27-29 methacrylates30,31 and 

acrylamides32-34 at ambient temperatures or below with a broad range of architectures, 

including stars, combs, brushes and multiblock copolymers.35-37 Although the role of Cu(0) has 

been the centre of a scientific debate, it is however outside of the scope of this current study.38-

42 Monteiro and co-workers utilised Cu (0) powder to successfully polymerise DMAEA, with 

narrow molecular weight distributions, although only for relatively low molecular weights. (Mn 

~ 9000, Ð ~ 1.29).43 However, Cu(0) wire would perhaps be a better alternative as it offers 

many advantages as opposed to Cu(0) powder, including facile tuning of the reaction rate, 



predictability, easy catalyst preparation and recyclability.44,45 In addition, none of the 

aforementioned reports, including Cu(0)-mediated RDRP have been employed for the 

synthesis of PDMAEA star homo and block copolymers. 

Star polymers are of particular interest both in academia and industry due to their 

potential applications as viscosity modifiers, catalyst supports, polymer therapeutics, drug 

carriers and additives.46-50 In comparison to their linear counterparts, star polymers possess 

additional properties thanks to their compact structures and high arm density.47,51 The major 

challenge in the synthesis of well-defined star polymers is bimolecular termination due to star-

star coupling.52 The high end group fidelity of  Cu(0)-mediated RDRP suggests that it could 

potentially be an efficient tool for the synthesis of star polymers with narrow MWDs and low 

coupling.53-54  Indeed, Cu(0)-mediated RDRP has already been employed to yield well-defined 

stars,55 including the synthesis of stars homopolymers in a biphasic system, which was shown 

to suppress star-star coupling.56 However, non-functional monomers have been employed 

(typically methyl acrylate) in all cases, thus limiting the applications of the resultant 

materials.57 

Herein, we present the Cu(0)-mediated RDRP in dimethyl sulfoxide (DMSO) and 

isopropanol (IPA) solvents at ambient temperature to afford the synthesis of well-defined 4 and 

8 arm PDMAEA stars. Polymerisation of DMAEA in either solvent using Cu(0) wire proceeds 

with controlled/living characteristics up to ~ 40% conversion, after which significant 

termination and/or side reactions start to occur as evidenced by SEC. This is highlighted in 

DMSO with a high molecular weight shoulder that increases throughout the polymerisation 

while in IPA a low molecular weight shoulder gradually forms suggesting loss of end group 

fidelity when longer reaction times are targeted. However, high end group fidelity can be 

maintained when the polymerisation is stopped at moderate conversions (35-50%) and the 

purified macroinitiator can subsequently facilitate the synthesis of well-defined block 



copolymers. In addition, a range of molecular weights can be synthesised (Mn ~ 5000- 41000 

g mol-1), exhibiting narrow MWDs (Ð ~ 1.1) in all cases. Due to the high reactivity of the 

tertiary amine of PDMAEA, the first instructions on how to efficiently terminate these 

polymerisations and subsequently purify and store the PDMAEA stars are also presented. 

Experimental part 

Materials 

All materials were purchased from Sigma Aldrich or Fischer Scientific and used as received 

unless otherwise stated. DMAEA was used as it is. Distillation of DMAEA or passing the 

monomer through a column of alumina had no effect on the subsequent polymerisation (data 

not shown). HPLC IPA (99.9%) was used for all the experiments, including the chain 

extensions and the storage studies. Methyl acrylate was passed through a basic Al2O3 

chromatographic column prior to use to remove the inhibitor. Tris-(2-

(dimethylamino)ethyl)amine (Me6-Tren), octa-O-isobutyryl bromide lactose (8-arm initiator)58 

and 1,1,1,1-tetra(methyl-2-methyl-2-bromopropionate (4-arm initiator)59 were synthesised 

according to previously reported literature. Cu(0) (gauge 0.25 mm) wire was purchased from 

Comax Engineered wires and purified by immersion in conc. HCl for 15 minutes, subsequently 

rinsed with water and dried prior to use. NMR spectra were recorded on Bruker DPX-300 or 

DPX-400 spectrometers in CDCl3. Chemical shifts are given in ppm downfield from the 

internal standard tetramethylsilane. Monomer conversions were determined via 1H NMR 

spectroscopy by comparing the integrals of monomeric vinyl protons to polymer signals. Size 

exclusion chromatography (SEC) measurements were conducted using an Agilent 1260 GPC-

MDS fitted with a differential refractive index (DRI) detector equipped with 2 PLgel 5 mm 

mixed-D columns (300 7.5 mm), 1 PLgel 5 mm guard column (50 7.5 mm) and autosampler. 

Narrow linear poly(methyl methacrylate) standards ranging from 200 to 1.0 x106 g mol-1 were 



used as calibration standards. All samples were passed through a 0.45 mm PTFE filter prior to 

analysis. The mobile phase was chloroform with 2% triethylamine at a flow rate of 1.0 mL 

min-1. SEC data were analysed using Agilent GPC/SEC software (version 1.2). MALDI-TOF-

MS was conducted using a Bruker Daltonics Ultraflex II MALDI-TOF mass spectrometer, 

equipped with a nitrogen laser delivering 2 ns laser pulses at 337 nm with positive ion ToF 

detection performed using an accelerating voltage of 25 kV. Solutions in tetrahydrofuran (50 

μL) of trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propyldene] malonitrile (DCTB) as a matrix 

(saturated solution), sodium iodide as cationization agent (1.0 mg mL−1) and sample (1.0 mg 

mL−1) were mixed, and 0.7 μL of the mixture was applied to the target plate. Spectra were 

recorded in reflector mode calibrating PEG-Me 1900 kDa. ICP-MS samples were analysed on 

an Agilent 7500cx ICP mass spectrometer in no-gas mode, with an average of 3 replicates with 

RSD below 1%. Copper calibration standards were prepared from QMX SCP28 multi-element 

mix to cover a range from 1 ppb to 1 ppm. Polymer samples were solubilised in 4% nitric acid 

solutions. 

Methods 

General procedure for a typical Cu(0)-mediated RDRP of DMAEA using the 4-arm 

initiator 

DMAEA (2.65 mL or 2.50 grams, 140 equiv.), pre-activated copper wire (5 cm), 4-arm initiator 

(0.0915 grams, 1 equiv.), CuBr2 (0.0112 grams, 0.40 equiv. with respect to the 4-arm initiator 

or 0.10 equiv. with respect to each initiating site/arm) and IPA (2.65 mL) were added to a 

septum sealed vial. The copper wire was carefully wrapped around the stirrer bar and the 

mixture was subsequently degassed by purging with nitrogen for 15 min. Me6-Tren (0.024 mL, 

0.72 equiv. with respect to initiator or 0.18 equiv. with respect to each initiating site/arm) was 

then introduced in the vial via a gas-tight syringe and the polymerisation was allowed to 



commence at ambient temperature. Samples were taken periodically under a nitrogen blanket 

and passed through a short column of neutral alumina to remove dissolved copper salts prior 

to analysis by 1H NMR. The reaction was terminated by dilution in IPA (another 2.65 mL) and 

the product was isolated via precipitation in cold hexane before being further characterised by 

NMR and SEC. An analogous procedure was followed when the 8-arm initiator was employed. 

General procedure for a typical chain extension/block copolymerisation using the 4-arm 

initiator 

0.40 grams of the PDMAEA (Mn ~ 9100 g mol-1) macroinitiator was synthesised and isolated 

as described in the previous section and was subsequently dissolved in IPA (1.85 mL). 1.76 

grams of MA (targeting DP = 464), 0.0039 grams of CuBr2 (0.4 equiv. with respect to the 

macroinitiator), and 5 cm of copper wire (wrapped around a stirrer bar) were also included in 

the polymerisation mixture and the vial was sealed via a septum. The polymerisation mixture 

was then degassed by purging with nitrogen for 15 min and Me6-Tren (0.008 mL, 0.72 equiv. 

with respect to the macroinitiator) was subsequently introduced in the vial and the 

polymerisation was allowed to commence at ambient temperature under a nitrogen blanket. 

The diblock copolymer P(DMAEA-b-MA) was stopped at ~ 58% of conversion and was 

isolated via precipitation in heptane (3 times), followed by analysis by both 1H NMR and SEC. 

Results and discussion 

Synthesis of PDMAEA star homopolymers utilising an 4-arm initiator in DMSO 

 



Scheme 1: Schematic representation of PDMAEA synthesis from a 4-arm initiator via Cu(0)-mediated 

RDRP.  

Initially, the polymerisation of DMAEA was carried out in DMSO using Cu(0) wire, a 

tetra-functional initiator (1,1,1,1-tetra(methyl-2-methyl-2-bromopropionate), CuBr2 and Me6-

Tren at ambient temperature, under the following reaction conditions: 

[I]:[DMAEA]:[CuBr2]:[Me6-Tren]=[1]:[140]:[0.40]:[0.72] (Scheme 1). It should be noted that 

0.10 equiv. of CuBr2 and 0.18 equiv. of Me6-Tren were used relative to each initiating site as 

these ratios have been shown to maintain high end group fidelity.53, Kinetic experiments 

revealed that the polymerisation proceeded with a relatively slow rate, when compared with 

other acrylate analogues such as methyl acrylate60, 61 with 68% conversion achieved in 4 h and 

a final conversion of 86% even when the reaction was left to proceed overnight (Figures 1a & 

1b, Table S1). Interestingly, ln[M]t/[M]0  increases linearly with time up until ~49% conversion 

(~ 2 h, Ð ~ 1.13, Figures 1a & S1, Table S1) which is consistent with a constant concentration 

of propagating radicals suggesting a controlled/living polymerisation. SEC chromatograms (up 

to 2 h) indicate a monomodal distribution shifting to higher molecular weights with increasing 

conversion while the dispersities remain low ~ 1.10 (Figure 1c, Table S1).  Whilst there is some 

deviation between the theoretical and experimental values, it is well known that star polymers 

adopt different hydrodynamic volumes than their linear counterparts which are typically used 

for SEC calibration.62, 63 After 2 h a gradual broadening of the molecular weight distributions 

was observed with Ð ~ 1.31 (after 4 h) and a final dispersity of 2 (~ 86% conversion, Table 

S1). Importantly, SEC analysis revealed an obvious high molecular weight shoulder which is 

increasing throughout the reaction (Figure 1c). This was attributed to typical star-star coupling 

reactions commonly seen during the formation of star polymers, particularly at high 

conversions.64 No low molecular weight shoulders were detected. Interestingly, when a linear 

initiator was employed, broad molecular distributions were also observed at higher conversions 



(Figures S2-S10 and Tables S2-S4). This data suggest that the polymerization of this monomer 

using either a linear or a star initiator exhibit significant side reactions, although in the case of 

the star polymers additional coupling is observed. Although understanding the exact nature of 

the side reaction could be of interest, this is out of the scope of our contribution. In addition, 

MALDI-TOF MS was conducted where the main two polymer distribution correspond to 

PDMAEA terminated with a bromine end group (with either a sodium or hydrogen adduct) 

(Figures S11-S12). 

 

Figure 1: Kinetic data for the Cu(0)-mediated RDRP of DMAEA in DMSO utilising 4-arm initiator 

under the following reaction conditions [I]:[DMAEA]:[CuBr2]:[Me6-Tren]=[1]:[140]:[0.40]:[0.72].  

Thus it is apparent that to synthesise well-defined PDMAEA stars  with narrow 

molecular weight distributions the reactions should be quenched at moderate conversions (up 

to 40%) in order to maintain low dispersities and good control over the polymerisation (Mn ~ 

7300 g mol-1, Ð ~ 1.13. In order to probe the potential of Cu(0)-mediated RDRP in maintaining 

control for both lower and higher molecular weights a range of polymerisations were conducted 

a) b)

c)
c)



targeting degrees of polymerisation (DPn) from 35 to 560 (Mn,th.~ 5000-80000 g mol-1). The 

ratio of [I]:[DMAEA]:[CuBr2]:[Me6-Tren]=[1]:[DPn]:[0.40]:[0.72] was kept for each 

polymerisation and the reactions were stopped typically between 40-50% of conversion in 

order to suppress star-star coupling reactions. In all cases, well-defined PDMAEA in various 

molecular weights (Mn ~ 3000-26000 g mol-1) with dispersities as low as 1.10 (Table 1, Figure 

2) could be attained demonstrating the advantages of Cu(0) wire over Cu(0) powder, which has 

previously employed by Monteiro and co-workers.43 

Table 1: 1H NMR and SEC analysis of PDMAEA with various DP prepared via Cu(0)-mediated RDRP 

in DMSO.  

Target 

Molecular 

Weight 

(g mol-1) 

Conv. 

(%)* 

 

Mn,theory 

(g mol-1) 

Mn,SEC 

(g mol-1) 
Đ 

5000 50 2500 3200 1.10 

10000 56 5600 6600 1.09 

20000 49 9800 9700 1.10 

40000 43 17200 14600 1.14 

80000 44 35200 25500 1.20 

 

*as determined by 1H NMR 



 

Figure 2: SEC analysis of PDMAEA with various DP prepared via Cu(0)-mediated RDRP in DMSO. 

 Synthesis of PDMAEA star homopolymers utilising an 4-arm initiator in IPA 

As longer reaction times leads to the loss of the constant radical concentration and star-

star coupling, the polymerisation had to be ceased at ~ 40% followed by the purification of the 

macroinitiator in order to maintain the high end group fidelity required to facilitate the 

synthesis of block copolymers. However, purification of the polymers from DMSO was found 

to be challenging due to the low miscibility of this solvent with all the solvents employed for 

the precipitation of PDMAEA, including heptane, hexane and diethyl ether. In order to 

circumvent this issue IPA was utilised as an alternative reaction medium for the synthesis of 

PDMAEA as this solvent could be easily removed post polymerisation. In addition, due to the 

observed loss of control of the polymerisation, it was hypothesised that IPA may lead to slower 

polymerisation rates, either due to lower polarity of the solvent (in comparison to DMSO) or 

due to the lower amount of disproportionation of Cu(I)Br. We anticipated that the Cu(0)-

mediated RDRP of DMAEA in IPA could be realised with success either via retention of the 

polymer solubility throughout the polymerisation or the capacity of IPA to support a self-

generating biphasic system as previously reported.56 Furthermore IPA was reported as a polar 



solvent that has been used to reduce the dispersity of polymers synthesised by Cu(0)-mediated 

RDRP and does not undergo transesterification with DMAEA.65 

When the same conditions used for the polymerisation in DMSO were employed for 

the polymerisation in IPA, ([I]:[DMAEA]:[CuBr2]:[Me6-Tren]=[1]:[140]:[0.40]:[0.72]), the 

reaction proceeded with slower polymerisation rates achieving 32% conversion in 2 h (as 

opposed to 49% conversion for DMSO) and 49% conversion in 4 h with a dispersity of 1.15. 

This slower polymerisation rate can be further illustrated by the lower kp
app value in IPA, 

(kp
app=5.53x10-5 s-1) in comparison to DMSO (kp

app=9.20x10-5 s-1). Similarly to DMSO, when 

the polymerisation was sampled the following day broader MWDs (Ð ~ 1.60) were observed 

(Table S5). However, star-star coupling was significantly suppressed in the polymerisation 

with IPA and only a negligible high molecular weight shoulder could be observed on the SEC 

trace (Figure 3c). It is noted that the reaction mixture appears cloudy/heterogeneous post 

polymerisation, although the formation of two discrete phases was not observed. On the 

contrary, a low molecular weight shoulder was evident indicating a small extent of termination 

during the polymerisation which was further increased when the reaction was left to proceed 

overnight. Careful kinetic analysis of the polymerisation in IPA revealed a similar trend with 

the DMSO system, where a linear increase in Mn with conversion and a largely first order 

dependence on both monomer and propagating radical up to ~45% conversion (Figures 3a & 

b). The discrepancies between the theoretical and the experimental molecular weights are again 

attributed to the different hydrodynamic volumes of the star polymers.62, 63 A range of 

molecular weights were also targeted, demonstrating the capacity of IPA to support the 

synthesis of well-defined PDMAEA of various DPs given that the conversions were maintained 

at moderate levels (30-50%) (Figure 3d, Table S6). 

 



 

Figure 3a-c): Kinetic data for the Cu(0)-mediated RDRP of DMAEA in IPA utilising the tetra-

functional initiator under the following reaction conditions [I]:[DMAEA]:[CuBr2]:[Me6-

Tren]=[1]:[140]:[0.40]:[0.72] and d) SEC analysis of purified PDMAEA with various DP prepared via 

Cu(0)-mediated RDRP in IPA. 

Synthesis of P(DMAEA-b-MA) star copolymers utilising an 4-arm initiator 

Switching from DMSO to IPA allowed for the straightforward isolation of the 

PDMAEA by precipitation (see subsequent section for further details) at ~ 40% of conversion 

(Mn ~ 9100 g mol-1, Ð ~ 1.07) which was subsequently employed as the macroinitiator for the 

block polymerisation with methyl acrylate (MA). The PDMAEA homopolymer was 

successfully chain extended (chain extension was also performed in IPA) with SEC revealing 

a nearly complete shift of the molecular weight after 3 h whilst maintaining low dispersity (Ð 

~ 1.15) and a final Mn of ~ 23500 g mol-1 (Figures 4 & S13, Table S7). Thus, well-defined 

P(DMAEA-b-MA) star copolymers could be obtained for the first time and in a facile manner. 

Interestingly, the reduced star-star coupling observed in both the -homo and copolymerisation 

a)
b)

c) d)c)



further confirms the advantage of heterogeneous systems for the controlled polymerisation of 

star copolymers in comparison with homogeneous media.56 

 

Figure 4: SEC and NMR of the block copolymerisation from a PDMAEA macroinitiator in IPA via 

Cu(0)-RDRP utilising a 4-arm initiator. 

Synthesis of PDMAEA star homo and copolymers utilising an 8-arm initiator 

 In order to obtain stars with an increased number of arms, an 8-arm lactose initiator 

(octa-O-isobutyryl bromide lactose initiator) was utilised by adjusting the previously employed 

reaction conditions for 8 initiating sites ([I]:[DMAEA]:[CuBr2]:[Me6-

Tren]=[1]:[140]:[0.80]:[1.44]). The polymerisations were carried out in both DMSO and IPA, 

where a higher rate of polymerisation was evident for both solvents in comparison with the 4-

arm star analogues. It is noted that increased kp
app values are obtained for the 8-arm star 

polymers, which is due to the higher concentration of radicals generated in these systems. For 

example in DMSO kp
app for the 8-arm star polymer is 1.32x10-4 s-1, in comparison to 9.20x10-

 



5 s-1 for the 4-arm star and 3.04x10-5 s-1 for the linear polymer. This was attributed to the greater 

concentration of bromines which results in higher concentration of radicals during 

polymerisation. Specifically, in DMSO 53% conversion was attained within 1 h (Ð ~ 1.16) as 

opposed to 30% conversion when the 4-arm initiator was employed). Similarly, when IPA was 

utilised as the solvent slightly higher polymerisation rates were attained (19% conversion). 

Kinetic experiments were also performed, mirroring the results obtained for the 4-arm star 

initiator (Figures 5, S14 & S15 and Tables S8 & S9). When the synthesis of the 8-arm stars 

was performed in DMSO, a high molecular weight shoulder could be observed in the SEC 

which increased throughout the reaction yielding polymers with very broad molecular weight 

distributions when left to react for prolonged periods of time (90% Ð ~ 2.75, Figures 5a & 5c). 

However, when the reaction was stopped at 53% conversion, well-defined PDMAEA stars 

could be obtained with Mn ~ 7800 g mol-1 and a final dispersity of 1.16. In contrast to DMSO, 

IPA facilitates the synthesis of PDMAEA stars with less pronounced high molecular weight 

shoulders and lower final dispersities (Ð ~ 1.48 after 16 h of reaction, Figures 5b & 5d), further 

highlighting the capability of IPA to reduce star-star coupling when phase separation occurs 

during the polymerisation. It should however be noted that a small, yet reproducible, low 

molecular weight shoulder could be observed in this solvent suggesting premature termination 

events. Nevertheless, when the reaction was stopped at ~ 53% conversion, PDMAEA stars with 

low dispersities could be obtained (Ð ~ 1.08, Mn ~ 6800 g mol-1). Higher molecular weight 

polymers were subsequently obtained by targeting higher degrees of polymerisation, yielding 

well-defined polymers up to Mn ~ 41000 and Ð ~ 1.08 (Figures S16 & S17, Tables S10 & S11). 

Chain extension of PDMAEA (Ð ~ 1.16, Mn ~ 11100 g mol-1) with MA yielded well-defined 

P(DMAEA-b-MA) with Ð ~ 1.19 and Mn ~ 19000 g mol-1 (Figures S18 & S19, Table S12), 

demonstrating high end group fidelity of PDMAEA 8-arm macroinitiator. 



 

Figures 5 a-d): Kinetic data for the Cu(0)-mediated RDRP of DMAEA utilising an 8 arm initiator under 

the following reaction conditions [I]:[DMAEA]:[CuBr2]:[Me6-Tren]=[1]:[140]:[0.80]:[1.44]. DMSO is 

represented in the left hand column (a, c) and IPA in the right hand one (b, d). 

Guidelines for termination and purification of PDMAEA stars 

As these polymers present broader MWDs with increasing reaction time (especially in 

the case of DMSO), it is essential to terminate the reaction at an early stage. In order to identify 

the best way to terminate, 4 different samples were conducted after ~1.5 h of polymerisation 

of DMAEA in DMSO (Figures 6b, Table S13). The first sample was analysed instantly by 

a) b)

c) d)



NMR and SEC revealing ~42% of conversion and Ð ~ 1.05 respectively. The second sample 

was stored in a vial at ambient temperature for ~ 18 h prior to NMR and SEC analysis. Despite 

the exposure in oxygen and the absence of copper wire from the system, ~57% of conversion 

was confirmed by NMR while SEC presented a highly dispersed polymer with significant high 

molecular weight shoulder (Ð ~ 1.92). This could be attributed to the slow generation of 

radicals via light and the subsequent free radical polymerisation of DMAEA.66, 67 However, 

when the sample was kept in the dark the same phenomenon was observed suggesting 

continuation of the polymerisation even in the presence of oxygen. We managed to circumvent 

this by diluting the third and fourth sample with CHCl3 and IPA respectively, where analysis 

of the two samples the following day showed that the low dispersities (Ð ~ 1.05) and the 

conversion (~ 42%) were maintained in both cases. This suggests that a side reaction is 

occurring, probably either an intermolecular or intramolecular substitution, which is slowed 

down by dilution. ICP-MS analysis was also conducted revealing <1 % of the initial copper 

content (5.9 ppm) and thus suggesting that copper might be associated to the side reaction, 

although the mechanism is unknown and out of the scope of our current contribution. 

Alternatively, TEMPO can be used to end cap the polymer chain end which also resulted in 

maintaining narrow MWDs (Figure S20, Table S14).68 It is noted that for the case of IPA, no 

significant high molecular weight shoulder is observed and there is no further increase in the 

conversion despite the 4 different ways to store this material. (Table S15). 

As termination and purification of these materials can be rather challenging, we would 

like to provide some guidelines on how to remove the remaining monomer, as well as how to 

precipitate low molecular weight tailing when the polymerisation of DMAEA is performed in 

IPA. Once the desired conversion is reached (e.g. ~ 40%), the vial/flask should be frozen in 

liquid nitrogen to ensure the cessation of the polymerisation. The reaction mixture should be 

subsequently diluted with IPA (if started with 4 mL IPA/DMAEA (50% v/v) add another 4 mL 



of IPA) while still keeping the vial in liquid nitrogen. After allowing the polymerisation 

mixture to thaw, IPA should be removed via flushing with nitrogen (avoid using air instead as 

this induces hydrolysis, read subsequent section) until the polymer becomes viscous. 

Precipitation in cold hexane 3 times will ensure the removal of monomer and side-products as 

evident by the disappearance of all the monomer peaks in 1H NMR and the low molecular 

weight material in SEC, respectively (Table S16 & Figures S21-S23). Please note, the viscous 

polymer mixture should be added to hexane or vigorous shaking is required in the reverse 

scenario (addition of hexane to polymer) so to remove all monomer. During the precipitations 

a small amount of IPA can be used to collect the precipitated polymer which can then be 

removed by flushing with nitrogen prior to the next precipitation. 

 

Figure 6: a) Monitoring the reaction via SEC with increasing conversion, b) Diluting the reaction with 

either CHCl3 or IPA demonstrating the elimination of the star-star coupling and c) hydrolysis study in 

CHCl3, IPA, DMSO and H2O. d) Storage study of the purified polymer in IPA   

Hydrolysis and storage of PDMAEA stars 

a) b)

d)c)



 As PDMAEA is known to hydrolyse to polyacrylic acid and N,N’-

dimethylaminoethanol, (Scheme S1) the choice of the appropriate polymerisation solvent is 

crucial. In order to verify this, different solvents were screened to ascertain the degree of 

hydrolysis of PDMAEA including water, DMSO, IPA, and CHCl3. (Figure 6c, Table S17). A 

PDMAEA of Mn ~ 10500 g mol-1 was synthesised in IPA utilising a 4-arm initiator and isolated 

via purification (as described in previous section, reaction stopped at 48% conversion) with Ð 

~ 1.04. The purified polymer (24 mgs) was subsequently diluted with 0.6 mL of each solvent 

and the degree of hydrolysis was measured by 1H NMR. Water revealed a significant amount 

of hydrolysis after 1 day (~ 36%). A further increase in the extent of hydrolysis was observed 

in more prolonged times, albeit with a much slower rate, with 73% hydrolysis after 4 weeks 

for water. Thus, water is an unsuitable solvent for the polymerisation of DMAEA. On the 

contrary, DMSO, CHCl3 and IPA showed no hydrolysis, even after 30 days, which suggests 

that they are better candidates for the controlled polymerisation of DMAEA. However, CHCl3 

was not selected as the polymerisation solvent due to the potential of this molecule to act as an 

initiator, in addition to the multi-functional initiator. As such, IPA was chosen as the ideal 

polymerisation solvent. 

Another interesting observation is the challenge in storing such materials. Once 

precipitated, the purified PDMAEA (Mn ~ 10000 g mol-1, Ð ~ 1.08) was placed in a vial, and 

sealed with a cap. After 2 days, a small, yet visible, high molecular weight shoulder was evident 

in the SEC with an observed increase in the dispersity from 1.08 to 1.15. After one week the 

dispersity was further increased to 1.25 while after 1 month multimodality was dominant 

revealing broad molecular weight distributions (Ð ~ 3.57) (Figure 6a, Table S18). Hence, it is 

evident that PDMAEA 4-arm stars cannot be efficiently stored in a vial, even when they are 

kept under a nitrogen atmosphere. As shown earlier during the hydrolysis study, both CHCl3 

and IPA showed negligible, if any, hydrolysis which suggests that both of the solvents could 



facilitate the successful safe storage of these materials (Figures 6d & S24 and Tables S19 & 

S20). In addition to that, both solvents have already demonstrated to efficiently terminate the 

polymerisation (by dilution as shown in previous section) and eliminate star-star coupling. As 

such, the purified PDMAEA 4-arm star (Mn ~ 10600 g mol-1, Ð ~ 1.06) was stored separately 

in IPA and CHCl3 for one month, after which period both samples were analysed by both NMR 

and SEC. No sign of hydrolysis could be detected by NMR while neither low nor high 

molecular weight shoulders could be seen in the SEC chromatogram and the initially low 

dispersity (Ð ~ 1.06 ) was maintained. Therefore, it was shown that both IPA and CHCl3 can 

be used for the effective storage solvents for PDMAEA stars by preventing both termination 

and side reactions.  

Conclusions  

In summary, the synthesis of well-defined PDMAEA stars in a range of molecular 

weights (Mn ~ 5000-41000 g mol-1) was described. Cu(0)-mediated RDRP using Cu(0) wire 

was successfully employed to control the polymerisation of DMAEA at ambient temperature. 

DMSO and IPA were investigated as reaction media, showing slightly different findings. The 

polymerisation in DMSO proceeded under purely homogeneous conditions in a controlled 

manner up to ~ 40% conversion with narrow molecular weight distributions attained (Ð ~ 1.1). 

When the polymerisation was left to proceed for longer reaction times, high molecular weight 

shoulders were observed by SEC and the dispersity increased significantly (Ð ~ 2). On the 

contrary, under heterogeneous conditions (IPA) less star-star coupling is observed while a low 

molecular weight shoulder appears, indicating terminated polymer chains at the earlier stage 

of the polymerisation, when the conversion exceeds 55%. Nevertheless, when the 

macroinitiator is isolated up to ~ 40% conversion, well defined block copolymers can be 

obtained (Ð < 1.19, Mn ~ 20000 g mol-1), demonstrating that high end group fidelity can be 

maintained up when moderate conversions are targeted. Crucially, a detailed way of how to 



terminate and purify these materials is also presented by immediate dilution of the reaction 

mixture into either CHCl3 or IPA which effectively stops the polymerisation. In addition, the 

storage of PDMAEA stars in these solvents could was also demonstrated, eliminating 

hydrolysis and preventing star-star coupling.  
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