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ABSTRACT: Pure silica zeolites are potentially hydrophobic and have
therefore been considered to be interesting candidates for separating alcohols,
e.g., 1-butanol, from water. Zeolites are traditionally synthesized at high pH,
leading to the formation of intracrystalline defects in the form of silanol defects
in the framework. These silanol groups introduce polar adsorption sites into the
framework, potentially reducing the adsorption selectivity toward alcohols in
alcohol/water mixtures. In contrast, zeolites prepared at neutral pH using the
fluoride route contain significantly fewer defects. Such crystals should show a
much higher butanol/water selectivity than crystals prepared in traditional
hydroxide (OH−) media. Moreover, silanol groups are present at the external
surface of the zeolite crystals; therefore, minimizing the external surface of the
studied adsorbent is important. In this work, we determine adsorption
isotherms of 1-butanol and water in silicalite-1 films prepared in a fluoride (F−)
medium using in situ attenuated total reflectance−Fourier transform infrared
(ATR−FTIR) spectroscopy. This film was composed of well intergrown, plate-shaped b-oriented crystals, resulting in a low
external area. Single-component adsorption isotherms of 1-butanol and water were determined in the temperature range of 35−
80 °C. The 1-butanol isotherms were typical for an adsorbate showing a high affinity for a microporous material and a large
increase in the amount adsorbed at low partial pressures of 1-butanol. The Langmuir−Freundlich model was successfully fitted to
the 1-butanol isotherms, and the heat of adsorption was determined. Water showed a very low affinity for the adsorbent, and the
amounts adsorbed were very similar to previous reports for large silicalite-1 crystals prepared in a fluoride medium. The sample
also adsorbed much less water than did a reference silicalite-1(OH−) film containing a high density of internal defects.The results
show that silicalite-1 films prepared in a F− medium with a low density of defects and external area are very promising for the
selective recovery of 1-butanol from aqueous solutions.

■ INTRODUCTION

Microporous zeolite-type materials have already been used in
laboratory- to industrial-scale adsorptive separation processes.1

One of the key properties of zeolites that controls the
selectivity in adsorptive separation is the silicon to aluminum
(Si/Al) ratio of the framework, which can be adjusted during
the hydrothermal synthesis.2 The property of zeolites to
selectively adsorb nonpolar and low-polarity molecules in the
presence of water increases with increasing Si/Al ratio.
Consequently, zeolites with low aluminum content and their
aluminum-free analogs are known as potential adsorbents in
applications concerning the recovery of organic chemicals from
water.3 The separation of alcohols (including 1-butanol) from
low-concentration aqueous solutions is an important challenge
for bioalcohol production via fermentative processes, and over
the last few decades, the application of high-silica zeolites for
alcohol/water separation has made great progress, with
membrane-based separations gaining in interest lately.4−8 In

particular, high silica MFI-type zeolites and their pure silica
analog, silicalite-1, can selectively adsorb alcohols from dilute
aqueous solutions.9−13 Other promising materials for this
separation of recent interest include metal−organic frame-
works, e.g., ZIF-8, and activated carbons.14−16 These materials
all have their pros and cons regarding their properties
(saturation capacities, diffusivities of adsorbates, regeneration
temperature, long-term stability, etc.) for applications in
separating butanol from dilute aqueous mixtures, and the
findings reported in the literature are often conflicting.14−21

Several research groups have studied the recovery of 1-
butanol (hereinafter referred to as butanol) from dilute aqueous
solutions or real fermentation broths by high-silica MFI
membranes or adsorbents.6,9−11,17,21−24 An efficient mem-
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brane-separation process should demonstrate high flux as well
as sufficient selectivity. However, many papers have reported
high separation factors but a low flux for alcohol/water
separation.25,26 Ultrathin MFI membranes have been used in
our group for alcohol/water separation with very high fluxes
and reasonably high separation factors.27,28 For example, Yu et
al.6 studied the recovery of butanol from aqueous mixtures
using ultrathin MFI membranes and reported fluxes signifi-
cantly higher than previously reported, up to 40 kg m−2 h−1 and
with a separation factor of 16.
Recently, DeJaco et al.29 used Monte Carlo simulation to

investigate the adsorption properties of all-silica MFI zeolites
for the separation of butanol from an acetone−butanol−
ethanol (ABE) fermentation broth and estimated adsorption
selectivities of more than 30 000 for butanol over water. Faisal
et al.17 investigated the recovery of butanol from model
fermentation broth using high-silica MFI-type zeolites and
showed that the adsorbent was selective toward butanol and
that the other components present in the fermentation broth
had a very small effect on the amount of butanol adsorbed. In
our recent work,30 we investigated the adsorption of butanol
and water from the vapor phase in a silicalite-1 film synthesized
at high pH in a hydroxide medium (OH−) using in situ
attenuated total reflectance−Fourier transform infrared (ATR−
FTIR) spectroscopy. We successfully measured single-compo-
nent adsorption isotherms for butanol and water at different
temperatures. Moreover, a binary adsorption experiment
showed that the silicalite-1 film was highly butanol-selective.
Traditionally, high-silica MFI zeolites are synthesized at high

pH, implying the formation of intracrystalline defects in the
form of silanol groups,31 and several studies31−34 demonstrated
a direct relationship between the number of silanol groups and
the hydrophilic property of zeolites. As early as 1978, Flanigen
and Patton35 suggested a new synthesis method at nearly
neutral pH using fluoride ions as mineralizing agent to prepare
crystals with a low density of structural defects in the form of
internal silanol groups and consequently a higher degree of
hydrophobicity. More recently, several reports have emerged
on the preparation of zeolites using fluoride as a mineralizing
agent with a nearly defect-free structure.34,36−38 For example,
Qin et al.39 reported the seeded synthesis of nano-ZSM-5-type
zeolites in both OH− and F− media. Their IR and NMR
characterization of these zeolites proved that the fraction of
framework defects in the ZSM-5(F−) samples was significantly
smaller than the corresponding fraction in the reference ZSM-
5(OH−) samples. Recently, our group reported the preparation
of colloidal silicalite-1 single crystals34 prepared in a F− medium
at nearly neutral pH with an almost defect-free lattice structure.
These small crystals showed a much higher alcohol/water
adsorption selectivity than did silicalite-1 crystals prepared in an
OH− medium.
Therefore, aluminum-free MFI zeolites prepared with F− as a

mineralizing agent seem to be excellent candidates for the
separation of alcohols from aqueous mixtures. However,
literature data on the adsorption properties of silicalite-1(F−)
for alcohol/water separation is still scarce, but Zhang et al.33

published a comprehensive study of the adsorption of water
and ethanol in high-silica and pure-silica MFI-type zeolites and
showed that silicalite-1 synthesized via the fluoride medium was
the most promising candidate for the recovery of ethanol from
dilute aqueous solutions. They reported a maximum water
adsorption of 0.175 mmol/g for silicalite-1(F−), which was a
factor of 8 lower than the amount of water adsorbed in the

traditional silicalite-1(OH−). Zhou et al.40 investigated the
butanol/water separation performance of a thin MFI
membrane grown on an α-alumina support in the fluoride
medium and reported a high separation factor of 19. However,
they used OH−-synthesized crystals for the seeding of the
membrane, so the membrane could potentially contain some
defects that reduced the separation performance.
Albeit synthesis at neutral pH results in an almost defect-free

structure for silicalite-1, silanol groups will be present on the
external surface of the crystals.41 To reduce this influence on
the adsorption properties of a zeolite film, the external surface
of the film should be minimized by arranging crystals in a
uniformly oriented monolayer of large crystals to minimize
capillary condensation between crystals in grain boundaries.
The aim of the current work was to study the adsorption of

butanol and water from the vapor phase in a silicalite-1 film
synthesized solely, i.e., including crystals for the seeding of
membranes, in the fluoride medium, thus showing a low density
of structural defects.
This work is complementary to our previous work on the

adsorption of the same adsorbates in a silicalite-1(OH−) film
containing a higher density of defects. The present report is, to
the best of our knowledge, the first detailed report of the
adsorption of butanol and water vapor silicalite-1 prepared
using solely the fluoride route, and the results reported in this
work may be a valuable reference on alcohol/water separation
using highly hydrophobic zeolite membranes or adsorbents.

■ EXPERIMENTAL SECTION
Synthesis and Characterization. The synthesis mixtures for the

growth of silicalite-1(F−) seed crystals were prepared by first mixing
appropriate amounts of tetraethoxysilane (TEOS, >98%, Merck) and
tetrapropylammonium hydroxide (TPAOH, 40 wt %, Sigma). After
shaking the mixture at room temperature for 24 h, a fully hydrolyzed
clear synthesis solution was obtained. Subsequently, some of the water
and most of the ethanol were removed from the solution using a rotary
evaporator operated at 50 °C for about 1 h, and a thick, clear gel was
obtained. After that, distilled water was added to the gel, and the gel
was shaken for 24 h until a clear solution was obtained again.
Thereafter, hydrofluoric acid (38−40 wt %, Merck) in an equimolar
amount to TPAOH was quickly added to the synthesis mixtures at 4
°C under stirring, and after about 10 s, a very viscous, clear gel was
formed with a pH value of 6.3. Under the assumption that all ethanol
was removed from the mixture during evaporation, the resulting molar
ratio of the very viscous, clear gel was 1 SiO2:0.36 TPAOH:0.36
HF:11.64 H2O. Finally, the obtained gel was transferred to a
polypropylene bottle and kept at 60 °C for 2 months for the growth
of the seed crystals. The silicalite-1(F−) seed was washed four times by
centrifugation and redispersion in distilled water four times and then
freeze-dried before seeding.

Thin and b-oriented silicalite-1 films were grown on both sides of a
ZnS ATR crystal (with dimensions of 50 × 20 × 2 mm and 45° cut
edges, Crystran, Ltd.) by the following method. To facilitate the
attachment of the seeds to the ATR crystal, both sides of the ATR
crystal were coated with a thin layer of cellulosic polymer
[hydroxypropylcellulose (HPC), Sigma-Aldrich, 99%] using a spin
coater (2 wt % HPC dissolved in ethanol solution, and spin coating
was conducted at 3000 rpm for 15 s). After drying at 105 °C for 1 h, a
monolayer of silicalite-1(F−) seed crystals was assembled on the ATR
crystal by rubbing the powder of seeds onto both surfaces. The seeded
ATR crystal was calcined at 500 °C for 2 h with a heating and cooling
rate of 0.8 °C/min to remove the polymer layer between the silicalite-
1 seeds and the ATR crystal. Thereafter, the seeded ATR crystal was
kept for 6 h in a synthesis gel in an autoclave at 150 °C to grow the
seed crystals into a continuous silicalite-1(F−) film. The gel was
produced in two steps: first, the precursor solution, containing TEOS
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and TPAOH, was hydrolyzed for 12 h on a shaker, and then
hydrofluoric acid, in an equimolar amount to TPAOH, was quickly
added to the clear solution at 4 °C under stirring; after about 10 s, a
very viscous, clear gel formed. The resulting molar ratio of the very
viscous, clear gel was 1 TEOS:0.2 TPAF:20 H2O. After synthesis, the
film was thoroughly rinsed with a 0.1 M ammonia solution and dried
at 50 °C overnight. Subsequently, the film was calcined at 500 °C for 2
h with a heating and cooling rate of 0.8 °C/min in order to remove the
template molecules from the pores of the zeolite.
For the characterization of the film, X-ray diffraction (XRD) data

were recorded using a PANalytical Empyrean instrument equipped
with a PIXcel3D detector, and scanning electron microscopy (SEM)
images were recorded with a FEI Magellan 400 field emission
instrument.
In Situ ATR−FTIR Experiments. The ATR−FTIR quantitative

technique used in this work was developed in our group and has
previously been used for the adsorption of light gases and
hydrocarbons in MFI films.42−44 Spectral data were acquired with a
Bruker IFS 66v/S FTIR spectrometer equipped with a deuterated
triglycine sulfate (DTGS) detector and a vertical ATR accessory. The
spectra were recorded by averaging 256 scans at a resolution of 4 cm−1.
The silicalite-1-coated ATR crystal was mounted in a heatable flow cell
connected to a gas delivery system to perform the adsorption
experiments. Prior to the measurements, the zeolite-coated ATR
crystal was dried by heating the cell to 300 °C for 4 h with a heating
and cooling rate of 0.9 °C/min under a constant flow of helium (AGA,
99.999%). After the cell was dried, a background spectrum of the film
was recorded under a flow of helium. The adsorption measurements of
water (distilled water) and butanol (Sigma-Aldrich 99.9%) were
performed by the stepwise increase of the partial pressure of the
adsorbate in the helium flow with a total pressure of 1 atm. The
experimental setup and methodology used for the adsorption
measurements were described in detail previously.30,45 (For the
methods, see the Supporting Information (SI).)

29Si Solid-State NMR. Single-pulse 29Si magic-angle-spinning
(MAS) and cross-polarization (CP) MAS NMR (29Si CP/MAS
NMR) spectra were recorded with proton decoupling (with a nutation
frequency of protons of 58 kHz) on a Varian/Chemagnetics
InfinityPlus CMX-300 NMR spectrometer using a double-resonance
7.5 mm MAS probe. 1H and 29Si resonance frequencies were 300.103
and 59.616 MHz, respectively. The samples (63.9 mg of silicalite-
1(F−) and 53.6 mg of silicalite-1(OH−)) were spun at 5 kHz in
zirconia rotors of 7.5 mm outer diameter. 1732 (for silicalite-1(F−))
and 816 (for silicalite-1(OH−)) signal transients with a relaxation delay
of 5 s were accumulated for single-pulse 29Si MAS NMR experiments
with a 90°(29Si) excitation pulse length of 6.5 μs. Also, a control single-
pulse 29Si MAS NMR experiment with a short 30° excitation pulse of
2.2 μs, a relaxation delay of 60 s, and 784 accumulated signal transients
was performed for the sample of silicalite-1(F−) that revealed an
almost identical line shape (spectrum not shown) to that in the 90°-
single-pulse 29Si MAS NMR spectrum of the same sample. 4036 (for
silicalite-1(F−)) and 1272 (for silicalite-1(OH−)) signal transients with
a relaxation delay of 2 s were collected for 29Si CP/MAS NMR spectra.
Cross-polarization (cp) from protons to 29Si nuclei was performed
using a ramp-cp pulse sequence with a cp-pulse length of 2.5 ms and
the cp-amplitude in the X-channel (29Si) ramped by 20% in 10 steps.
The nutation frequency of protons during cross-polarization was 48
kHz. All parameters for the NMR experiments on silicalite-1 samples
(pulse lengths, cross-polarization conditions, etc.) and external
referencing of all 29Si NMR spectra were obtained using a sample of
a high-purity-grade kaolinite, in which 29Si MAS NMR spectra clearly
revealed two narrow (with line widths of ca. 35 Hz each) resonance
lines at −92.3 and −91.7 ppm with respect to TMS (0 ppm).
Therefore, the external reference was set at −92.0 ppm right at the
saddle point between these two lines.
Contact Angle Measurement. The contact angle measurements

were performed at 25 °C by using a FIBRO 1121/1122 DAT dynamic
absorption and contact angle tester. During the measurements, the
silicalite-1-coated ATR elements were placed horizontally in the
measuring compartment and monitored by a video system. For each

sample, a small volume of DI water (4 μdm3) was placed at least four
times at different locations on the surface of the silicalite-1 films. The
method and data evaluation are explained in detail elsewhere.46

Adsorption in Silicalite-1 Powders. Water and butanol uptake
in the silicalite-1(F−) crystals used as seeds for film growth were
determined for comparison to the adsorption behavior of the
synthesized film as determined with ATR−FTIR spectroscopy. The
adsorption experiments were conducted at 35 °C on an ASAP 2020
gas adsorption instrument (Micromeritics, Norcross, GA). Prior to the
adsorption measurements, the sample was dried at 300 °C for 4 h with
heating rate of 1 °C/min under dynamic vacuum conditions. The
temperature was controlled using a Dewar flask together with a heating
and cooling circulator.

■ RESULTS AND DISCUSSION
Characterization. Figure 1 shows XRD patterns for the

uncoated ZnS ATR crystal as well as for the ATR crystal after

being coated with silicalite-1(F−) seed crystals and after film
growth. For the uncoated ATR crystal, only a few reflections
originating from ZnS crystals are observed. For the ATR crystal
coated with a seed layer, additional reflections originating from
the MFI phase are observed. Actually, only (0 k 0) reflections
from the MFI phase are observed, which shows that the
silicalite-1(F−) seed crystals are b-oriented. For the sample with
a silicalite-1(F−) film, again only (0 k 0) reflections, but with
higher intensity, are observed from the MFI phase, which
shows that the film also is composed of b-oriented silicalite-1
crystals.
Observations by SEM support the observations by XRD. The

scanning electron micrographs of the seeded ATR crystal after
calcination (Figure 2a,b) show a relatively packed and uniform
b-oriented monolayer of silicalite-1(F−) crystals with widely
varying size. The largest seed crystals have a size of about 1.0 ×
0.5 × 0.1 μm3, and as expected after calcination, no polymer
layer is observed. The micrographs of the silicalite-1(F−) film
(Figure 2c,d) indicate that the seed crystals grew without
secondary nucleation and formed a dense layer of b-oriented
crystals with an average thickness of approximately 200 nm.
Some of the crystals, which have been growing on top of other
crystals embedded in the film, have developed a typical (for the
MFI zeolite) coffin shape. The length of these crystals is as
much as about 2 μm. However, most of the crystals are much

Figure 1. XRD patterns of an uncoated ZnS crystal (blue) together
with the patterns for a ZnS crystal coated with a monolayer of
silicalite-1(F−) crystals (red) and a synthesized silicalite-1(F−) film
(black) in the 2θ range of 5−50°. The indexed reflections emanate
from the film composed of b-oriented crystals.
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smaller and embedded in the film; consequently, these crystals
have not developed any typical morphology.
Solid-State 29Si NMR. Figure 3a,b shows single-pulse 29Si

MAS NMR spectra of silicalite-1(F−), processed without

(Figure 3a) and with exponential line-broadening (lb = 10
Hz, see Figure 3b). Both of these differently processed spectra
clearly reveal at least 9 relatively sharp (with line widths of
∼0.5−1.0 ppm) overlapping resonance lines, which could be
assigned to most of the 12 crystallographically distinct Q(4)

silicon sites in the orthorhombic structure of silicalite-1.47 A
single-pulse 29Si MAS NMR spectrum of the silicalite-1(OH−)

sample (Figure 3c) shows the same but considerably broader
and almost featureless resonance line shape centered at ca.
−114 ppm also corresponding to the same Si(OSi)4 type of
silicon sites in the structure of silicalite-1. In addition, a weak,
broad line at ca. −103 ppm assigned to Q(3) Si sites in defects
of the zeolite structure is also visible just above the noise level
(Figure 3c). Because the 29Si chemical shift is directly related to
the type of Si−O−Si bonding (Q(n) site notation, ca. 10 ppm
shift between Q(n) and Q(n‑1) sites, where n = 0, 1, 2, 3 and 4)
and to a lesser extent to the Si−O−Si bond angle (Δδ ≈ 5
ppm), it can be concluded that relatively well resolved 29Si
MAS NMR signals of silicalite-1(F−) represent a rather well-
ordered crystalline structure, which is almost free from defects
(no measurable single-pulse 29Si MAS NMR signals from Q(3)

Si sites, between −100 and −105 ppm, are detected above the
noise level for this sample; see Figure 3a,b). However, a poorly
resolved 29Si MAS NMR spectrum of silicalite-1(OH−) is an
indication of a less-crystalline structure for this sample, with
local distortions in the immediate vicinity of the silicon Q(4)

sites.48 Such distortions may be caused by the presence of a
certain number (a few % of all Si sites, estimated from the
relative integral intensities of resonance lines at −114 and −103
ppm) of Si−O− defects (Q(3) Si sites) detected in this sample
(Figure 3c) throughout the entire structure of silicalite-
1(OH−).49 Figure 4 represents the 29Si CP/MAS NMR spectra

of the same samples of silicalite-1(F−) (Figure 4a) and silicalite-
1(OH−) (Figure 4b), which additionally confirm the
aforementioned observation of excess Q(3) Si defects in
silicalite-1(OH−). These two 29Si CP/MAS NMR spectra are
scaled so that their intensities are mutually normalized to the
weights of samples and the number of signal transients (which
were different for the two samples). In the 29Si CP/MAS NMR
experiments, magnetization is first excited at protons and then
transferred to nearby 29Si sites. Therefore, 29Si CP/MAS NMR
signals from Si−OH or/and Si(OH)2 groups, in which OH
protons are only two bonds distant from silicon sites, will gain
the largest integral intensity, even though there are only a few
% of these silicon sites in the whole sample. Obviously, the
dominating signal in the 29Si CP/MAS NMR spectra of
silicalite-1 samples under study is at ca. −104 ppm, which was
previously assigned to Si−OH (Q(3)) groups in defects. Even a
weak NMR signal (just above noise level) at ca. −115 ppm
corresponding to (Q(4)) silicon sites, which are close to Si−OH

Figure 2. Top-view (a and c) and side-view (b and d) SEM images of
the silicalite-1(F−) seed layer (a and b) and synthesized film (c and d).

Figure 3. Single-pulse 29Si MAS NMR spectra of silicalite-1(F−) (a
and b) and silicalite-1(OH−) (c). The MAS frequency was 5 kHz.
Spectrum a was processed without line broadening, whereas spectra b
and c, with 10 Hz line broadening. There are 1732 signal transients in
spectra a and b and 816 in spectrum c.

Figure 4. 29Si CP/MAS NMR spectra of silicalite-1(F−) (a) and
silicalite-1(OH−) (b). The MAS frequency was 5 kHz. Spectra were
processed with 20 Hz line broadening. There are 4036 signal transients
in spectrum a and 1272 in spectrum b. Spectra are mutually
normalized to the weights of samples and the number of signal
transients.

Langmuir Article

DOI: 10.1021/acs.langmuir.6b03326
Langmuir 2016, 32, 11789−11798

11792

http://dx.doi.org/10.1021/acs.langmuir.6b03326


groups in the silicalite-1 structure, are also detectable. A simple
qualitative comparison of 29Si CP/MAS NMR spectra shown in
Figure 4a,b suggests that the intensity of the resonance line at
ca. −104 ppm was significantly larger for the silicalite-1(OH−)
sample than for the silicalite-1(F−) sample. Therefore, it can be
concluded that the latter sample has a significantly smaller
number of defects in total. For a quantitative analysis of the
defects in these samples, the resonance lines at ca. −104 ppm in
the direct excitation single-pulse 29Si MAS NMR spectra should
be integrated, which was difficult because these signals are close
to the noise level (Figure 3b,c). However, even defect-free
samples have hydroxyl groups on the external surface of the
crystals, which will be discussed further below. Consequently, it
is possible that the −104 ppm signal mostly or entirely
emanates from Si−OH (Q(3)) sites at the surface of the
silicalite-1(F−) crystals.
Contact Angle Measurement. The hydrophobicity of the

surface of the silicalite-1 films was investigated by measuring
the contact angle of water (Figure 5). Hydrophilic surfaces are

usually defined as having a contact angle with water of less than
90°.50 The measured contact angle is less than 90° for both
samples; consequently, the external surface of both samples are
per definition hydrophilic. The hydrophilic nature of the
external surface of the samples should be related to the external
hydroxyl groups that will be present at the surface even for
defect-free samples.41 The contact angle between water and the
silicalite-1(F−) surface was 85 ± 2°, whereas for the silicalite-
1(OH−) sample, which was investigated in our previous work,30

the contact angle was 63 ± 2°. The much lower contact angle
for the silicalite-1(OH−) sample indicates the presence of
additional hydroxyl groups on the surface, presumably from
defects in the lattice. It should be noted that the surface
roughness of the sample may affect the contact angle
measurements. For a hydrophilic material (defined as a material
where the contact angle with water is <90°), the surface
roughness decreases the measured contact angle.51 From the
SEM images of our samples, the silicalite-1(F−) sample seems
to have a rougher surface than the silicalite-1(OH−) sample;
however, the contact angle is still higher for the silicalite-1(F−)
sample. We therefore conclude that the surface roughness is not
responsible for the observed difference in contact angle
between the two samples.
ATR-FTIR Experiments. Figure 6 shows IR spectra of

butanol adsorbed in the silicalite-1(F−) film at 35 °C at three
different partial pressures. The spectra show the characteristic
CH3 and CH2 stretching vibrational bands at 3000−2800 cm−1

originating from butanol adsorbed in the film.30,52 The bands at

1465 and 1380 cm−1 were assigned to bending vibrational
modes of CH2 and CH3, respectively. The broad band in the
range of 3700−2700 cm−1 originates from the O−H stretching
vibration of hydrogen-bonded and non-hydrogen-bonded
butanol molecules adsorbed in the film. Obviously, the intensity
of the bands associated with butanol adsorbed in the silicalite-
1(F−) film increased with increasing partial pressure of butanol
in the feed as more butanol is adsorbed at higher partial
pressures. These spectra are very similar in appearance to those
reported previously for butanol adsorbed in a silicalite-1(OH−)
film.30

Butanol vapor adsorption isotherms for a silicalite-1(F−) film
were extracted from IR spectra (by using the area under the
absorption line in the range of 3000−2800 cm−1) and are
shown in Figure 7, with both linear (a) and logarithmic (b)
pressure scales. The fitted Sips (also called the Langmuir−
Freundlich) model53 (eq 1) is also shown in the figure, as well
as an adsorption isotherm determined for silicalite-1(F−)
crystals using the volumetric gas adsorption measurement.
The Langmuir model is probably the most common model
used to describe the adsorption of gases (or vapors) in
microporous adsorbents such as zeolites. However, the Sips
model, which is a combination of the Langmuir and Freundlich
isotherms for predicting heterogeneous adsorption systems,
resulted in a better fit to the experimental data than the
Langmuir model. (Langmuir and Sips models fitted to
experimental data for the adsorption of butanol in silicalite-
1(F−) as well as for adsorption in silicalite-1(OH−) obtained
from our previous work30 are presented in the SI.) The Sips
model is given by eq 1.

=
+

q q
bp

bp1

n

nsat

1/

1/
(1)

In this equation, qsat is the saturation loading (mmol/g), p is the
partial pressure of the adsorbate in the gas phase (kPa), b is the
Langmuir affinity parameter (kPan), and n is the Freundlich
exponent (heterogeneity factor) that is the additional
parameter in the Sips model compared to the Langmuir
model and is greater than unity. If the Freundlich exponent (n)
is unity, then the Langmuir equation, which is commonly
applicable to ideal surfaces, will be recovered.54 Thus, the larger
the Freundlich exponent, the greater the heterogeneity of the
system. The isotherm determined for the powder sample by
volumetric gas adsorption measurements at 35 °C was used for
calibrating the FTIR−ATR measurements. This isotherm is
typical for adsorption in microporous materials, with a sharp
increase in the amount adsorbed at low partial pressures. At
higher partial pressures above ca. 0.1 kPa, the amount of

Figure 5. Illustration of the measured contact angle on the external
surface of silicalite-1(F−) (a) and silicalite-1(OH−) (b) films.

Figure 6. IR spectra of butanol adsorbed in silicalite-1(F−) at 35 °C at
different partial pressures as indicated.
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butanol adsorbed leveled off and increased only slowly with
increasing partial pressure of butanol, probably as a result of
capillary condensation in the voids of the crystals powder.55 On
the contrary, the isotherm determined for the film at 35 °C is
nearly horizontal at partial pressures above ca. 0.1 kPa, probably
because of the much smaller amount of capillary condensation
in the film composed of a monolayer of relatively large crystals.
The saturation loading in the Sips model was therefore used as
the loading before the onset of capillary condensation, i.e., at a
butanol pressure of ca. 0.1 kPa. The corresponding saturation
loading was consequently set to 1.46 mmol/g (Figure 7). The
maximum loading of butanol measured in this work is within
the same range as in previous literature reports (1.3−2 mmol/
g).17,30,56

The adsorption isotherms determined using the film as an
adsorbent are also typical for adsorption in microporous
materials and are very similar to previously reported
data.21−23,30 However, an important difference is that our
isotherm determined at 35 °C is nearly horizontal at partial
pressures above ca. 0.1 kPa, which is not the case for isotherms
of powders.33,57 Furthermore, the Sips model fits the
experimental data well. The fitted Sips parameters are
presented in Table 1.

The Langmuir affinity parameter (b) and the van’t Hoff
equation were used to determine the isosteric heat of
adsorption at a fractional loading of 0.554

∂
∂

=
Δb

T
H
R

ln ads
(2)

where ΔHads is the isosteric heat of adsorption, R is the gas
constant, and T is the absolute temperature. On the basis of the
van’t Hoff equation (eq 2), the isosteric heat of adsorption was
determined to be −72 kJ/mol using the Langmuir affinity
parameter (b) from all four isotherms, with an R2 value of
0.995. Table 2 shows the values for the heat of adsorption of
butanol determined in the present work together with the data

previously reported in the literature. Literature data (such as
the heat of adsorption and Langmuir and Sips parameters) on
the adsorption of butanol vapor in similar adsorbents as in this
work is very scarce. However, the enthalpy value obtained in
this work is in concert with previous reports on similar
adsorbent/adsorbate systems where the values of the heat of
adsorption range from ca. −40 to −69 kJ/mol. The value
obtained in this work is similar to the value in our previous
report on the adsorption of butanol in silicalite-1(OH−) (−69
kJ/mol). (See the SI for more data on the heat of adsorption of
butanol in silicalite-1 films.30)
The IR spectra of water adsorbed in the silicalite-1(F−) film

at 35 °C and different partial pressures are shown in Figure 8.

The intensity of the bands increased with increasing partial
pressure of water in the feed, showing that more water is
adsorbed at higher partial pressures in the feed, as expected.
The band with a peak maximum at about 1620 cm−1 was
assigned to the bending vibration of water,59 and the broad
band in the 3700−2700 cm−1 range with a peak maximum at
about 3370 cm−1 originates from O−H stretching vibrational
modes (asymmetric and symmetric) of adsorbed water. The
broadness of the OH stretching band indicates different
strengths of hydrogen-bonding interactions experienced by
water molecules in the silicalite-1 structure or at the external

Figure 7. Adsorption isotherms on linear (a) and logarithmic (b) scales for butanol in a silicalite-1(F−) film at (■) 35, (□) 50, (▼) 65, and (△) 80
°C, obtained from FTIR experiments and in silicalite-1(F−) powder at 35 °C (×) obtained from volumetric measurements. Symbols and solid lines
represent experimental data and the Sips model fitted to the experimental data, respectively.

Table 1. Saturation Loadings (qsat, mmol/g) and Sips
Adsorption Parameters (b and n) for Butanol in Silicalite-
1(F−)

adsorbate temp (°C) qsat (mmol/g) b(kPan) n

butanol 35 1.46 172.22 1.61
50 1.46 57.03 1.34
65 1.46 13.17 1.42
80 1.46 5.17 1.46

Table 2. Heat of Adsorption of Butanol in This Work and
from Literature Data

adsorbent ΔHads(kJ/mol) reference

silicalite-1(F−) −72 this work
silicalite-1(OH−) −69 our previous work30

ZIF-8 −40 Zhang et al.33

Na-ZSM-5 −50 Einicke et al.58

(butanol in liquid phase)

Figure 8. IR spectra of water adsorbed in silicalite-1(F−) at 35 °C and
different partial pressures.
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surface. A lower wavenumber is expected for a stronger
hydrogen bond, whereas the opposite is true for the bending
vibration of water. Previously, we observed the peak originating
from water molecules in the pore structure of the silicalite-
1(OH−) film30 with a maximum at 1650 cm−1, which indicates
a stronger interaction between water molecules and the
silicalite-1(OH−) surface compared to that of silicalite-1(F−),
reflecting the strong interaction between water and the polar
silanol groups in the silicalite-1(OH−) film. The negative band
at ca. 3730 cm−1 was assigned to the O−H stretching vibration
of silanol groups at the external surface with water hydrogen
bonded to these silanol groups. Free silanol groups on the
external surface typically show an absorption band at ca. 3740
cm−1.60 As water adsorbs on these groups, the band is shifted to
lower wavenumbers, and in this case, the band merges with the
broad stretching vibrational band observed for hydrogen-
bonded water.42,59

The quantity of water adsorbed in the silicalite-1(F−) film
was extracted from the IR spectra by integrating the area of the
water deformation band at 1620 cm−1 using the method
presented in the SI. Figure 9 shows water vapor isotherms at

four different temperatures in the range 35−80 °C for
adsorption in the silicalite-1(F−) film as obtained from infrared
spectra. As expected, the amount of water adsorbed in the film
was much lower at higher temperatures and the adsorption
increased with increasing partial pressure of water vapor in the
feed.
Because of the low density of structural defects in the

silicalite-1(F−) as evidenced by 29Si MAS NMR measurements,
most of the silanol groups should be terminal ones on the
external surface of the crystals, and the film should therefore be
quite hydrophobic and certainly more so than for silicalite-
1(OH−) containing a much higher density of internal silanol
groups. Indeed, the amount of water adsorbed in the silicalite-
1(F−) film was significantly lower than the amount previously
reported for the silicalite-1(OH−) film at similar conditions.30

As an example, at 35 °C and a partial pressure of water of 0.87
kPa, the amount of water adsorbed in the silicalite-1(F−) film
was 0.03 mmol/g, whereas under the same conditions, the
amount of water adsorbed in the silicalite-1(OH−) film was
0.59 mmol/g, i.e., a 20-fold larger value (Figure 9). This clearly
demonstrated the lower affinity toward water for the silicalite-
1(F−) sample than for silicalite-1(OH−). Sorption of water in
high-silica MFI has been reported to occur via a mechanism
where the water molecules form clusters inside the pores.59

Such adsorption behavior is not expected to be captured well
by the Langmuir or Sips models; consequently, we did not

attempt to fit these models to the experimental data for water
adsorption in our silicalite-1(F−) film.
Adsorption isotherms of water vapor at 35 °C for the two

types of silicalite-1 powders (silicalite-1(F−) and silicalite-
1(OH−)) as well as for the corresponding films were
experimentally determined in our laboratory and are shown
in Figure 10 together with the data reported by Zhang et al.33

As expected, the amount of water adsorbed in silicalite-1(F−) is
significantly lower (∼7-fold) than that for silicalite-1(OH−),
which is again in very good agreement with 29Si MAS NMR
results indicating a lower density of polar silanol groups in
silicalite-1(F−). Both of the silicalite-1 powder samples used in
this work had slightly higher water uptake compare to those
reported by Zhang et al.33 This is probably due to the much
smaller crystal size of our samples (1.0 × 0.5 × 0.1 μm3)
compared to that of Zhang et al. (70 × 30 × 15 μm3);
consequently, our samples have a larger external/internal area
ratio and therefore a greater number of external silanol groups
per gram of sample compared to the powder samples studied
by Zhang et al. The observed difference is thus likely an effect
of the larger external area available for adsorption on our
powders of smaller crystals. However, the amount of water
adsorbed in the film was about 3 times smaller than that for
silicalite-1(F−) powder. The reason is most likely fewer external
silanol groups being exposed to water vapor for the well
intergrown film compared to the crystals in the powder, which
were also used as seeds for film growth. The same difference
between powder and film was not observed for silicalite-
1(OH−) where the adsorption of water was very similar for
both film and powder samples. In the latter samples, a majority
of the silanol groups are likely internal; therefore, the
contribution from adsorption on silanol groups on the external
surface becomes negligible in comparison. Consequently, the
adsorption behavior of water is very similar for both samples.

Figure 9. Adsorption isotherms for water vapor in silicalite-1(F−) film
at (■) 35 °C, (○) 50 °C, (▲) 65 °C, and (▽) 80 °C, obtained from
FTIR experiments.

Figure 10. Experimentally determined water adsorption isotherms for
silicalite-1 films and powders studied in this work together with the
water isotherms in silicalite-1 powders reported by Zhang et al.33 (All
of the isotherms were measured at 35 °C.)
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The small amount of water adsorbed in silicalite-1(F−) film
was very similar to the previous report by Zhang et al.33 for a
powder of comparatively large crystals, and these amounts are,
to the best of our knowledge, the smallest amounts reported
from experiments on MFI-type zeolites. The low water
adsorption observed for the silicalite-1 (F−) film together
with the high affinity for butanol implies that a very high
butanol/water adsorption selectivity would be expected for this
type of film. Therefore, an additional experiment was carried
out by exposing the silicalite-1(F−) film to a butanol/water
vapor mixture with a molar composition of 15% butanol
(PButOH = 0.14 kPa and Pwater = 0.79 kPa) at 35 °C. The
adsorption selectivity, determined by extracting the adsorbed
concentrations of water and butanol from spectral data and
using equation S2 (see the SI), was 606, showing that the film
was highly butanol-selective. This selectivity value was
significantly higher than that for the silicalite-1(OH−) film,
reported in our previous work to be 107,30 showing that the
silicalite-1(F−) film has a much more hydrophobic nature. The
adsorption of butanol from binary mixtures of butanol and
water and the determination of the butanol/water selectivity
will be the subject of further investigation.

■ CONCLUSIONS
A film composed of a monolayer of b-oriented silicalite-1
crystals was produced using seeds prepared with fluoride as a
mineralizing agent and grown at nearly neutral pH using
fluoride as a mineralizing agent for the first time. According to
solid-state 29Si MAS NMR and volumetric adsorption data, the
number of structural defects in the form of polar silanol groups
in these crystals was very small, thus demonstrating the
hydrophobic nature of the crystals. Adsorption isotherms of
water and butanol from the vapor phase were determined at
four different temperatures. The butanol isotherms were typical
of an adsorbate with a high affinity for a microporous material
with a sharp increase in the amount adsorbed at low partial
pressures. The Sips model was fitted to the butanol isotherms,
and the model fit the experimental data well. The adsorption
enthalpy determined was in concert with previous reports.
Water, however, was adsorbed only in smaller amounts in the
film at all temperatures studied, and the amounts adsorbed
were comparable to the smallest amount ever reported for MFI-
type zeolites, which confirms the true hydrophobic nature of
silicalite-1 grown using fluoride as a mineralizing agent.
According to the results obtained, silicalite-1(F−) films seem
to be very promising materials for the recovery of butanol from
dilute aqueous mixtures.
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