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Abstract

We present a number of solutions for the hydrodynamic interaction between
microscopic swimmers in a viscous fluid and confining geometries. The reciprocal
theorem is adapted for this use, allowing existing solutions for Stokes drag problems
to be used to calculate the motion and rotation of force-free swimmers as well as
other aspects of the hydrodynamics, such as flow fields. We outline the general
procedure for approximating the reciprocal theorem to calculate motion for an arbi-
trary slip velocity by exploiting existing solutions for point forces and point torques
in Stokes flows. This is demonstrated with two examples: firstly, the commonly
studied case of a swimmer in the presence of an infinite wall, where we find the
reported circling of certain bacteria near a surface, and reproduce the equations of
motion for a swimmer in the presence of a wall found by other means; and secondly,
a calculation giving the leading contributions to the motion of a swimmer between
two infinite parallel plates, representing a strongly confining geometry, and relying
upon the derivation of the flow due to a point torque in this geometry, a new result.
We then derive exact solutions in two and three dimensions. In two dimensions we
find the equations of motion for a circular squirmer with arbitrary axisymmetric
slip velocity near a plane wall or inside a circular cavity, and discuss the extension
to the case of two squirmers interacting with each other, which presents some ad-
ditional mathematical difficulties. In three dimensions we provide exact solutions
for the axisymmetric motion of a squirming sphere close to a no-slip surface, both
planar and spherical. These allow the hydrodynamic interactions of swimming mi-
croscopic organisms with confining boundaries, or each other, to be determined for
arbitrary separation and, in particular, in the close proximity regime where approx-
imate methods based on point singularity descriptions cease to be valid. We find
that the circling motion of flagellated bacteria generically has opposite sense at free
surfaces and at solid boundaries, as seen experimentally. By comparing these to
asymptotic approximations of the interaction we find that the transition from near-
to far-field behaviour occurs at a separation of about two swimmer diameters. Fi-
nally we discuss possible extensions to this work, and limitations of the approach
used.
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Every man should be capable of
all ideas and I understand that
in the future this will be the case

J. L. Borges

1
Introduction

Motion through a fluid is a ubiquitous phenomenon in nature, occuring at all length
scales, from the largest animal to have ever lived, the blue whale, to unicellular
organisms, single cells within larger organisms and sub-cellular organelles [1, 2].
However, the physics of locomotion changes dramatically with size, and the micro-
scopic regime must be considered separately. At the small length scales we will
consider here the inertial forces acting on an object moving through a fluid, whether
it be a bacterium, a cell or an organelle within a cell, are negligible compared to the
viscous forces; the ratio between them, known as the Reynolds number (Re), can
be as low as 10−4− 10−5 for small bacteria such as Escherichia coli, and even larger
flagellates such as Paramecium and Opalina (with a length of up to 0.2mm) have
Re ≈ 0.1 [3, 4]. Hence the motion is effectively time-independent; indeed, Purcell
[3] estimates that a bacterium one micron long will, if it stops swimming, coast for
one-hundred-thousandth of its body length before stopping as a result of viscosity.
In contrast, when I swim I am able to coast for at least one body length, helping me
to control my approach to the edge of the pool and avoid crashing. My Reynolds
number is high, and inertia is important.

The governing equations of fluid flow in this regime are obtained by neglecting
the advective term in the Navier-Stokes equations, giving the Stokes equations. For
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a distribution of point forces f the flow u and pressure p at a point x must satisfy

−∇p(x) + µ∇2u(x) + f ≡∇ · σ + f = 0, (1.1)

where µ is the viscosity and σ is the stress tensor, defined as

σ = −p I + µ
(∇u+ (∇u)T

)
. (1.2)

If the fluid is incompressible, the flow must also satisfy the continuity equation,

∇ · u = 0. (1.3)

The time-independence of viscous flows was vividly demonstrated by Taylor
[5]. A drop of dye suspended in glycerine between two concentric cylinders was
stirred four times clockwise. When subsequently stirred four revolutions anticlock-
wise the smeared-out dye returned to a concentrated drop. The time-independence
of low Reynolds number flows has important consequences for swimming, since it
means that any propulsive stroke must be non-reciprocal in time. This phenomenon
has entered the active-matter jargon as the ‘scallop theorem’ after its most cele-
brated victim, a single-hinged scallop which over the course of one open-and-close
cycle returns exactly to its starting place [3]. Note, however, that the scallop the-
orem may be overcome by breaking spatial symmetry, allowing otherwise immobile
organisms to swim in the presence of surfaces, boundaries or other swimmers [6–8].
A formalisation of the calculation of propulsion as a result of a sequence of shapes
was given by Shapere and Wilczek [9], and used to calculate the swimming efficiency
of a number of swimming strategies [10].

A natural question to ask is how to optimise swimming with respect to en-
ergetic cost. The time-independence of Stokes flows means the theoretical optimal
swimming strategy is a ‘treadmilling’ of material on the swimmer’s surface [11, 12],
having a maximum energetic efficiency of 50% [13]. In effect the boundary is kept
stationary with respect to the surrounding fluid while the swimmer’s interior slides
forward, somewhat like a sausage being squeezed out of its casing. This is similar
to the amoeboid movement widely seen in eukaryotic cells, from protist organisms
such as Euglena [14] to cells in higher organisms such as human leukocytes and in
tumour cells, contributing to the rapid metastasis of sarcomas [15]. In lower orders
of life propulsion by flagella is common (although there exist creatures in between:
the protist Naegleria gruberi has in its life cycle both an amoeboid stage and a
flagellated stage [16]). Bacteria such as Escherichia and Vibrio overcome the lim-
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itations of high viscosity by rotating flagella in a corkscrew-type motion [17]. The
alga Chlamydomonas possesses a pair of flagella which it beats in an oar-like fashion
to pull itself through a fluid; time asymmetry here is achieved by flexibility of the
flagella causing the power stroke and rest stroke to assume different shapes [18].
Other organisms still, such as Paramecium and Opalina, are covered by a ‘carpet’
of flagella of very short length compared to their body size, which through hydrody-
namics synchronise their beating [19] to achieve a stroke very close to the theoretical
optimum [20], despite only ∼ 1% energetic efficiency. Due to its central role in lo-
comotion flagellar beating was one of the earliest active propulsion problems to be
studied in depth [21–23], and continues to be a central problem in the field [24–27].

Recent years have seen a proliferation of methods for producing artificial
self-propelled particles or swimmers with a variety of propulsion mechanisms, in-
cluding explicitly mechanical, floating swimmers powered by rolling cylinders [28]
or colloidal beads propelled by magnetically-controlled waving tails [29], and more
commonly exploiting surface processes which generate flows in response to gradi-
ents of some externally imposed or self-generated field [30] of chemical concentra-
tion [31, 32], electric potential [33, 34] or temperature [35]. These phoretic processes
enable miniaturisation, allowing for experiments with a great number of interact-
ing particles [36, 37]. There is hope that these biomimetic swimmers may fulfil a
number of nanotechnological and medical roles.

Swimming microorganisms do not live in an infinite, unbounded fluid do-
main, but instead inhabit complex geometries confined by fluid interfaces and solid
boundaries, and populated by other organisms and passive particles. Much, if not
most, of the rich variety of behaviour that is seen [1, 38] cannot be explained outside
of the context of confinement. The most basic interaction is of a single swimmer
with a boundary or object; even in such cases we see striking behaviour, such as
the ‘waltzing’ of a pair of Volvox colonies [39]. Flagellated bacteria are known to
trace out circles [40–42] near solid boundaries and, remarkably, if the boundary is
replaced by a free surface the direction of rotation changes [43, 44]. An important
effect is the attraction of swimmers to boundaries, noted by Rothschild [45] for bull
spermatozoa but subsequently also seen in bacteria [46, 47], which is thought to
contribute to the navigation of sperm cells in the female reproductive system [48]
and plays a fundamental role in biofilm formation at surfaces [49]. Swimmers adhere
to surfaces due to strong lubrication forces, causing catalytic self-propelled rods to
orbit colloidal spheres [50] and the microalga Chlamydomonas reinhardtii to orbit
cylindrical posts until flagellar beating detaches it [51]. As the number of interacting
components increases so does the complexity of the behaviour, resulting in the phase
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Figure 1. Experimental evidence of clockwise motion for bacteria near a solid wall (left panel) [reprinted with
permission from E. Lauga, W. R. DiLuzio, G. M. Whitesides, and H. A. Stone, Biophys. J. 90, 400-412 (2006).
Copyright (2006) by the Biophysical Society], and counter-clockwise motion at a free surface (right panel) [reprinted
figure with permission from R. Di Leonardo, D. Dell’Arciprete, L. Angelani, and V. Iebba, Phys. Rev. Lett. 106,
038101 (2011). Copyright (2011) by the American Physical Society].

aggregate close to walls.12 This is in fact observed for any kind of pusher, not necessarily one exploiting
helical propulsion.13–16 A second property, observed solely for helical swimmers, is a circular motion of
the cells in a plane parallel to the surface. This was accounted for both experimentally and theoretically
in the case of a solid wall17,18 and a free surface.19,20 Notably, the circular motion occurs in an opposite
direction in the presence of a solid wall (clockwise, CW, when viewed from inside the fluid) or a free surface
(counterclockwise, CCW, see Fig. 1). This change in rotation direction is qualitatively similar to the drag
increase or decrease observed for the motion of a colloidal particle near a rigid wall and a free surface.21

Indeed, a solid wall and a free surface induce opposite effects, no-slip for a rigid boundary vs. free slip in
the case of a free interface.

Past experimental results have been explained theoretically considering Newtonian fluids and perfect
interfaces, meaning either a no-slip wall or a shear-free surface. Theoretical models do predict a single
circular direction, CW in the presence of a solid wall vs. CCW in the presence of a free surface, and are
consistent with the results illustrated in Fig. 1. However, recent experiments on E. coli swimming near glass
plates and free surfaces show that the distinction in the direction of the circular motion is not straightforward,
and both CW and CCW rotations are observed under seemingly similar experimental conditions.19,22,23 In
the initial study of Lemelle et al. (2010),19 only CW motion was observed above a glass plate, but both
CW and CCW at a free surface, suggesting that particles and surfactants could alter the free slip boundary
condition. This hypothesis was further investigated by changing the concentration of a particular polymer
that can aggregate at a free surface.23 The authors confirmed this qualitative change of behavior, observing
a clear dependence on the polymer concentration of the fraction of cells undergoing CCW motion. A similar
change in rotation direction was recently highlighted experimentally at a solid wall, when the solution
contains polymers.22 Using a special surface treatment, the polymer concentration at the solid wall was
modified, generating possible slip, and resulting in CCW motion. These recent experiments demonstrate
that the presence of polymers or surfactants could have a dramatic effect on motility of nearby cells. In
this paper we present a modeling approach to quantify the dynamics of swimming bacteria near complex
interfaces.

When polymers are present in the solution, their concentration close to surfaces is reduced due to higher
shear and confinement.24,25 This wall depletion results in the formation of a thin fluid layer of lower viscosity
at the wall, thereby modifying significantly the no-slip condition. On scales larger than this thin layer,
the equivalent behavior at the wall is an apparent partial slip, characterized by its slip length ℓ ranging
from ℓ ∼ 10 nm to 10 µm.22,24,26,27 Similarly, a liquid interface covered with surfactants acts as a thin
two-dimensional fluid layer separating the liquid phases. This layer has its own rheological properties,
and modifies the stress and velocity jumps between the two fluids.28–30 As a consequence, the presence of
surfactants can affect significantly the boundary conditions and resulting flow.31,32

In the present work, we address the role of altered boundary conditions on swimming microorganisms,
focusing on interface-induced reorientation, attraction vs. repulsion by the surface, and the impact on circular
motion. Using an analytical framework based on multipole expansions for describing the hydrodynamic
interactions between a swimming microorganism and an interface, we show how complex interfaces affect
hydrodynamic interactions, providing possible explanations to past experimental results. Whereas interface
alignment and attraction are seen to be universal properties, the direction of the circular motion turns out

Figure 1.1: Circling of Escherichia coli near a solid and free boundary. Reproduced
from reference [4].

behaviours seen in dense suspensions of bacteria, including long-range orientational
order [52], and the formation of large-scale turbulent structures [53, 54] and stable
spiral vortices [55]. The latter can only occur in confinement. An understanding of
these phenomena is important for the design of microfluidic systems, such as devices
to direct swimmers [48, 56] and harness them for mass transport [57, 58], and to
extract mechanical work from their activity [59].

The interaction of swimming microorganisms with each other and their en-
vironment is a complex combination of several factors, including biology, such as
the taxis which allows them to move in search of food and tolerable living condi-
tions, and to aggregate and form patterns through chemical signalling and quorum
sensing [60, 61]; and hydrodynamics and physical contact. It has been shown that
the scattering of swimmers from planes [62] and posts [51] arises from physical con-
tact of the flagellae with the surface, so that hydrodynamics is not the dominant
contributor to the phenomena in these cases. Nonetheless, the fact that there is
physical contact with the surface emphasises that any hydrodynamic effects have to
be considered in this contact regime. Other cases are less clear-cut; for instance,
the typical density profile of a suspension of swimmers close to a wall has been re-
produced both by considering hydrodynamics [47] and Brownian motion combined
with collisions [63].

Here we look only at the effect of hydrodynamics on interactions. The sim-
plest mathematical models use point-singularity approximations, and in particular
to treat swimmers as force dipoles, since this is the slowest-decaying flow field that
a moving force-free object may produce [38]. Nevertheless this characterisation is
enough to reproduce the attraction to walls seen in several real organisms [47, 64, 65].
Including faster-decaying singularities additional effects may be explained, in par-
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ticular the rotation of flagellated bacteria near solid boundaries [43, 66] and free
surfaces [4, 44], shown in fig. 1.1. The sign of a swimmer’s dipole moment relative
to its swimming direction characterises it as extensile or contractile, referring to
whether it expels or draws fluid along its head-tail axis. The behaviour of extensile
and contractive swimmers was studied in some depth by Ishikawa et al. [67], who
found the far-field interactions by considering multipole expansions of stresslets, and
the near-contact interactions using lubrication theory. Also relevant to microscopic
swimming is slender-body theory [68, 69] which is commonly used to model the
flows generated by beating flagella [25, 70]. Point-singularity approximations have
been used to contruct continuum models describing behaviour of suspensions [1], by
extension to standard models of liquid crystal hydrodynamics [71] or ‘boids’ [72].
These models predict distinct behaviour for extensile and contractile matter, with
the nematic phase being stable in the former and unstable in the latter as a result
of activity [73, 74].

The short-ranged nature of the flows associated to swimming [21] means
the near-field interactions are particularly important, and so exact solutions to the
Stokes equations are desirable. In the case of a single swimmer in an unbounded
domain several such solutions exist, notably for the motion of a single axisymmetric
squirmer [75, 76], later generalised to non-axisymmetric slip velocities [77], and for
the motion of a ‘treadmilling’ spheroidal [11] or toroidal swimmer [3, 12, 22], as well
as a two-dimensional analogue for a squirming cylinder [78]. The squirmer solutions
have been used to find the advection of tracer particles by a passing swimmer [79],
and the capture of swimmers into orbits by spherical obstacles [80]. Dropping instead
to two dimensions a number of additional solutions in confinement become available
using conformal mapping techniques, such as the motion of an active cylinder near
a planar or concave boundary [66, 81, 82], or under a free surface [83].

The approach followed in this thesis will be to specify a slip velocity on the
surface of a swimmer, which shall usually be taken to be spherical (or circular in
two dimensions). Slip velocity has several interpretations. Lighthill [75] and Blake
[76] refer to a ‘boundary envelope’ on the surface of an organism covered in a carpet
of flagellae, which propagates as a metachronal wave, as seen in Paramecium and
Opalina. Therefore the slip velocity refers to the local speed of deformation of
an effective boundary. Slip velocity has a very different physical interpretation in
the case of artificial particles propelled by phoretic mechanisms [30]. The typical
strategy in solving for the motion is to separate the fluid dynamics into an inner
solution inside a thin boundary layer, determined by the range of the interaction of
the phoretic process, and an outer solution [84, 85]. The slip velocity is the boundary
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condition for solving the outer problem, while the inner problem is usually taken to
be non-slip.

The slip-velocity approach can only be approximate, particularly near the
limit of physical contact with another object. To give a concrete example, a heli-
cal flagellum spins as a result of a torque exerted upon it by a molecular motor.
Since the resistance to motion in general will change near a boundary, the rotation
sustained by the constant torque generated by the flagellar motor will also change.
Hence more accurately we should specify a stress distribution on the surface, as done
computationally in boundary-element simulations [86, 87]. Nevertheless the compu-
tational tractability of Dirichlet boundary conditions means using a slip velocity is
a valuable mathematical model.

This thesis is structured as follows. In Chapter 2 we present the Lorentz
reciprocal theorem [88] in a form which enables the calculation of the hydrodynam-
ics of interactions, represents the key methodology of this study. While this is a
minor extension to previous work [89] the possibilities it offers for calculation of
swimmer interactions appears under-explored in the literature. We then present
the mathematical models of swimming used herein, particularly the squirmer model
of Lighthill [75] and Blake [76, 78]. The following chapters demonstrate different
applications of the reciprocal theorem to swimmer problems. Chapter 3 shows how
simple singularity solutions to the Stokes equations may be used to develop versatile
approximate models in a variety of geometries and for a variety of swimmer shapes
and swimming strategies, and gives as explicit examples a spherical squirmer inter-
acting with a passive and active wall, and a squirmer in the channel between two
plates. Chapter 4 demonstrates exact results for interactions in two dimensions, ob-
tained using conformal mapping techniques. These compare with the approximate
results found previously to good qualitative agreement. Chapter 5 is concerned with
exact solutions in three dimensions. While these solutions are incomplete, giving
only the axisymmetric components of motion, they give valuable information about
the near-field behaviour missing from the approximate models of Chapter 3. Fi-
nally in Chapter 6 we discuss possible extensions to this work, while assessing the
limitations of the approach used.
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2
The reciprocal theorem and swimmer

hydrodynamics

2.1 The Lorentz reciprocal theorem

Any two solutions of the Stokes equations, say (u, p,σ) and (ũ, p̃, σ̃), in the same
fluid region S with boundary ∂S and outward normal n̂ are related by the Lorentz
reciprocal theorem [88, 90–92],∫

∂S
u · σ̃ · n̂ =

∫
∂S
ũ · σ · n̂. (2.1)

Eq. (2.1) is an invaluable tool in fluid mechanics (and linear elasticity, which is
governed by similar equations [93]), since it allows the boundary conditions of an
unknown problem to be transformed to those of a conjugate problem to which a
solution is known; for instance, it has been used to derive Faxén’s laws [92] and
formulate the boundary element method [91], and to prove that the resistance and
mobility matrices of objects in Stokes flow must be symmetric [88].

Eq. (2.1) follows directly from the Stokes equations: consider two stress
tensors σ and σ̃, defined as in eq. (1.2). Contracting these against each other gives

σij σ̃ij = −p̃Trσ + 2µσij∂iũj = −pTrσ̃ + 2µσ̃ij∂iuj , (2.2)
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where Einstein notation has been assumed. Then, since Trσ = −3p and Trσ̃ = −3p̃,
the flows are related by the identity

σij∂iũj = σ̃ij∂iuj . (2.3)

Now integrating by parts over S gives∫
S
σij∂iũjdV =

∫
S
σ̃ij∂iujdV =⇒

∫
S
∂i(σij ũj)dV =

∫
S
∂i(σ̃ijuj)dV. (2.4)

The omitted term on the right-hand side, which involves the divergence of the stress,
vanishes point-wise in the fluid domain as the Stokes equations, (1.1), are assumed
to hold there. Finally, the Stokes theorem converts the volume integrals to integrals
over the boundary of the fluid to give eq. (2.1).

An elegant application of the reciprocal theorem is to the determination of
swimmer motion. Swimmer problems have complicated boundary conditions, which
can vary greatly between different types of organisms [38] and active particles [30],
both in the mechanisms by which propulsion is achieved and in the local hydro-
dynamics generated. As first recognised by Stone and Samuel [89], the reciprocal
theorem provides a route to bypass explicit solution of the Stokes equations in these
cases by instead solving the Stokes equations for a conjugate problem, the Stokes
drag with force F̃ and torque T̃ on a no-slip object of the same shape as the swimmer.
The translational and rotational speeds U and Ω are extracted from an arbitrary
slip velocity us by the relation

U · F̃ + Ω · T̃ = −
∫
∂S
us · σ̃ · n̂. (2.5)

The integration kernel, σ̃ · n̂, is the force per unit area on the boundaries of the
fluid in the conjugate problem.

For a single sedimenting sphere the stress tensor is constant, so the integra-
tion kernel in eq. (2.5) is proportional to the drag force. This means that for a
single spherical microorganism this calculation is particularly simple: using the re-
ciprocal theorem, Stone and Samuel [89] found that the propulsion speed is just the
slip velocity averaged over the organism, and the rotational speed is the averaged
tangential slip velocity; explicitly,

U = − 1
4π

∫ 2π

0
dφs

∫ π

0
sin θsdθs us, (2.6)

Ω = − 3
8πa

∫ 2π

0
dφs

∫ π

0
sin θsdθs sr × us, (2.7)
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where sr is the outward normal to the sphere and (θs, φs) are the surface coordinates
on the sphere. Where the swimming stroke has a periodic dependence on time the
expressions (2.6) and (2.7) may be further averaged over one cycle to give the average
swimming speed.

Eqs. (2.6) and (2.7) suggest a decomposition of a general us in spherical
harmonics; the reciprocal theorem then identifies the propulsive contributions of
slip velocity. In particular it is immediate that self-propulsion can only result from
slip velocity components symmetric about the direction of travel, justifying the
common practice (continued here) of considering axisymmetric slip velocity profiles.

The simplicity of this calculation means it has become a standard tool in the
active matter literature [38, 94–96], although in this particular case of a spherical
swimmer Lamb’s general solution [97] of the Stokes equations exterior to a sphere
allows direct calculation of the swimming speed, giving additionally the full flow
field. Indeed, the swimming speed found for an active sphere self-propelling by
means of a metachronal wave on its surface by Stone and Samuel [89], given as an
illustrative example of this use of the reciprocal theorem, had been derived by other
means at around the same time by Ehlers et al. [98].

Perhaps slightly surprisingly, the reciprocal theorem also finds use in two
dimensions [81, 94, 99]. This is suprising because the conjugate solution is ill defined
– the celebrated Stokes paradox [100]. Nevertheless, the reciprocal theorem depends
only on the stress tensor, which decays sufficiently fast for eq. (2.5) to be well-defined.
Furthermore, since swimmer problems are force- and torque-free [22] a physically
realistic solution exists [78]. For a single active disc the two-dimensional analogues
of Stone and Samuel’s formulae, eq. (2.6) and (2.7), are

U = − 1
2π

∮
r=a

dθus, Ω = − 1
2πa

∮
r=a

dθ sθ · us, (2.8)

where sθ is the unit tangent to the disc; these expressions can be seen to have the
same structure as eqs. (2.6) and (2.7).

More recently there have been interesting extensions of the reciprocal theo-
rem and other related integral theorems to cases where direct solutions are not so
readily available, such as propulsion by the Marangoni effect [101], self-propulsion
through viscoelastic and non-Newtonian fluids [102], motion of catalytic colloidal
dimers [103, 104], and active pumping in a channel [105].
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Figure 2.1: A cartoon representation of the many-body reciprocal theorem. The
stress tensor from a known conjugate solution (bottom) allows the swimmer problem
in the same geometry (top) to be examined. (a) Translation Ui and rotation Ωi of
swimmers driven by slip velocities ui s by relation to Stokes drag on no-slip objects of
the same shape. (b) Flow u and vorticity ω found with point-force and point-torque
as the conjugate solution.

2.2 The reciprocal theorem and interactions

The reciprocal theorem is immediately applicable to find the motion of swimmers
in the presence of boundaries or other swimmers [66]. As the classic form of the
reciprocal theorem, eq. (2.1), does not specify the shape of the fluid boundary,
the boundary my be taken to be composed of several disjoint components. If the
boundary elements are labelled by an index i, so that ∂S = ⋃

i ∂Si, then eq. (2.5)
takes the form

∑
i

[
Ui · F̃i + Ωi · T̃i

]
= −

∑
i

∫
∂Si

us i · σ̃ · n̂, (2.9)

where us i are the slip velocities of each of the swimmers. This is illustrated schemat-
ically in fig. 2.1.

Eq. (2.9) is enormously general and allows essentially any aspect of swimmer
hydrodynamics to be calculated. To isolate the motion or rotation of any one swim-
mer the linearity of the Stokes equations permits the use of a conjugate solution
with a force or torque acting on the corresponding passive object, with all other
objects force- and torque-free.

As the size of the measured object is shrunk to zero we find that the reciprocal
theorem may be used to find flow fields, u(x). The object may be thought of as a
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tracer particle which samples the fluid velocity. Explicitly,

u(x) · f̃(x) = −
∑
i

∫
∂Si

us i · σ̃ · n̂, (2.10)

where in the conjugate solution the stress tensor σ̃ corresponds to a point force f̃(x)
at x, in the fluid exterior to the no-slip objects with boundaries ∂Si. The vorticity
is then the curl of the flow, but may also be found analogously to eq. (2.10) using a
conjugate solution for a point torque τ̃ (x). Eq. (2.10) is reminiscent of the boundary-
element method [91], with the conjugate stress tensor acting as the double-layer
potential and the slip velocity specifying the stress distribution over the swimmer’s
surface. The single-layer potential is zero because the swimmer is force-free.

The central object in application of the reciprocal theorem is the stress tensor
from the conjugate solution, and if this is known for a particular geometry the motion
due to any slip velocity may be found. This is in contrast to direct calculations of
swimming speed, where a particular slip velocity is taken to be a boundary condition
for solution of the Stokes equations, and must be solved for explicitly. A stress tensor
corresponding to a force extracts translational motion, and one corresponding to a
torque extracts rotation; if this force-torque pair act on a no-slip immersed object,
the reciprocal theorem finds the motion of a swimmer of the same shape given some
slip velocity, while if the force-torque pair is in the fluid region the reciprocal theorem
gives the flow at that point.

The reciprocal theorem as we have presented it has been independently noted
by Elfring and Lauga [106]. Although it is only a mild extension of the original
application, its capabilities in solving swimmer problems exactly have been little
explored in the literature. One exception is the work of Crowdy, who has found
the motion in two dimensions of squirming [81] and self-diffusiophoretic discs close
to walls [82], using as a conjugate solution the Stokes drag on a cylinder in the
half-space [107].

2.2.1 Exact and approximate solutions using the reciprocal theorem

While conceptually the use of the reciprocal theorem is straightforward, it is contin-
gent on having an explicit conjugate solution available and in practice the number
of exact solutions to Stokes drag is small, particularly for flows about multiple
objects or in non-trivial geometries. For single objects, as well as the sphere men-
tioned before, there are solutions available for certain solids of revolution, such as
tori [108–110], spherical caps and lenses [111, 112], which could prove useful for
modelling novel microswimmers (see, for instance, the ‘smoke ring’ swimmer hy-
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pothesised by Taylor [22] and Purcell [3] and studied in detail by Leshansky and
Kenneth [12]). In Chapter 5 we will investigate Stimson & Jeffery’s classic solution
for the axisymmetric translation of a pair of spheres [113], together with the analo-
gous axisymmetric rotation [114] and with some discussion of behaviour near a free
surface [115]. Unfortunately no exact solution for non-axisymmetric translation or
rotation is yet available for this geometry [116]. In two dimensions, however, all
components of motion of two discs to be found [107, 117, 118], as will be shown in
Chapter 4. Furthermore the availability of conformal maps means the solution for
two discs may, in principle, be transformed to that for any doubly-connected do-
main [119], meaning the solutions for a great variety of two-body interactions come
within reach.

Greater progress is possible if the reciprocal theorem is used in an approx-
imate sense. Since the leading contribution to the stress due to the dragging on
any object is that due to a point force, an appropriate singularity solution may
be used as a conjugate solution for use with eq. (2.9) [66]. Such solutions ex-
ist for a number of physically relevant confined geometries. In Chapter 3 we will
demonstrate as explicit examples the motion near a wall [120] and between two
parallel plates [121]. Other available solutions include those for a point force near
a fluid-fluid interface [122, 123], which has as a limit a free surface and could help
understand processes such as biofilm formation [49]; outside a sphere [70], where
artificial microswimmers have been observed to become trapped in orbits [50]; or
inside a pipe [124], with particular applicability to modelling somatic processes such
as clearing of mucus from the lungs [125] or transport of the ovum in the female
reproductive tract [126].

This approach is distinct from but complementary to other approximate so-
lutions of swimmer problems, which model activity by some combination of flow
singularities and calculate interactions by means of truncated multipole expan-
sions [65, 67, 127–129]. Davis and Crowdy [129] explicitly calculate the interac-
tion of a swimmer with a wall using both matched asymptotics and the reciprocal
theorem with an approximated stress tensor, obtaining the same dynamics and con-
cluding that the latter approach is computationally unwieldy for the calculation of
interactions.

Both the reciprocal theorem and truncated multipole expansions rely on
having a solution for the flow due to a point force in a given geometry. For the
reciprocal theorem this is used to calculate a stress tensor. This then allows the
motion due to any slip velocity to be calculated. In a multipole expansion explicit
reflections of this point force must be calculated to order depending on the desired
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accuracy of the expansion. We take the view that the reciprocal theorem is a
versatile tool that provides a straightforward way to adapt the variety of Stokes
drag problems to swimmer problems without restricting the boundary conditions;
the flexibility in specification of the slip velocity compensates for the inability to
resolve flow fields at the same time as finding swimmer motion.

2.3 Swimmer hydrodynamics

We now outline some hydrodynamic models of swimming that will be used in the
remainder of this thesis. First we record the singularities of viscous flow which
form the basis of asymptotic descriptions or swimmers, and describe a common
categorisation of swimmers by their asymptotic flow fields. Then we present the
squirmer model of Lighthill [75] which, in the fully generalised form given by Pak
and Lauga [77], allows any slip velocity on a spherical or circular swimmer to be
written down.

2.3.1 Flow singularities

Since the Stokes equations are linear, solutions may be constructed using the Green’s
function, also known as the Stokeslet (“for want of a better word” – Hancock [23]),
which gives the flow at x due to a point force f of unit strength located at y as

uSto(r;f) = 1
8πµ

[
f

|r|
+ (f · r)r

|r|3
]
, pSto(r;f) = f · r

4π|r|3 , (2.11)

where r ≡ x−y. A simple example in which the Stokeslet may be used in swimmer
problems is given by Chlamydomonas, which propels itself by beating a pair of flag-
ella. A very good agreement to the flow field was obtained by Drescher et al. [130],
reproduced in fig. 2.2(a)-(b), by imposing two equal Stokeslets acting backwards
at the flagella, plus a single Stokeslet in the centre of the body representing the
reaction force exerted by the fluid, so that the total force is zero.

Any derivative of eq. (2.11) is also a solution of the Stokes equations. For
instance the Stokes-doublet, or force dipole, is the first spatial derivative of the
Stokeslet, and is equivalent to a pair of equal and opposite forces in the limit of
diverging strength and vanishing separation. While the Stokeslet is quantified by
a single unit vector representing the direction of the force, the Stokes-doublet is
quantified by two unit vectors representing the direction of the force and the di-
rection of the gradient of the Stokeslet; equally, higher-order derivatives (called the
quadrupole, octupole etc. by analogy to potential theory) are quantified by three,
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air bubbling, whereas C. reinhardtii (strain UTEX 89) was
grown axenically in tris-acetate-phosphate (TAP) medium
[17] on an orbital shaker, both in a diurnal growth cham-
ber with 16 h in artificial cool daylight (!4000 lux) at
28 "C, and 8 h in the dark at 26 "C. The large difference
in organism size between Volvox and Chlamydomonas
required two distinct methods to measure the flows they
create [20]. A CCD camera (Pike, Allied Vision
Technologies) mounted on a continuously focusable mi-
croscope (Infinivar, Infinity Optics) and connected to a
vertical motorized XY stage (Thorlabs) followed individ-
ual Volvox colonies as they swam upwards [21] in a straight
line along the central axis of a 5# 5# 50 mm sample
chamber filled with SVM at 21$ 1 "C. The stage was
controlled by a custom LabView routine. The fluid was
seeded at volume fraction 10%5 with 1 !m nile-red poly-
styrene microspheres (Invitrogen) illuminated by a vertical
!500 !m thick laser sheet (" ¼ 532 nm). Volvox is pho-
totactic [22] at this wavelength, and at the intensities used
here it swims smoothly along the laser sheet. We recorded
the flow field of 19 different colonies at 30 fps for
!2–3 min each. The measured flow field v was obtained
by particle image velocimetry (Dantec Dynamics).
Background flows in the chamber were <10 !m=s.

We observed a dilute suspension (!3# 106 cells=cm3)
of Chlamydomonas in TAP on a Nikon inverted micro-
scope at 40# ðNA 0:6Þ by exciting their chlorophyll auto-
fluorescence with a laser (635 nm, !60 mW), which also
excited 1:6 !m fluorescent polystyrene microspheres
(FS04F, Bangs Labs) used as tracers. Cylindrical polydi-
methylsiloxane sample chambers (5 mm radius, 0.4 mm
height) were prepared, pacified, and filled following [7].
Experiments were performed at 21$ 1 "C, with the laser
providing the only light source. We focused on a plane
150 !m inside the chamber to minimize surface effects,
and recorded movies at 250 fps (Fastcam SA3, Photron).
Movies were analyzed with standard algorithms to track
cells and tracers. For each cell swimming along the focal
plane for more than 1 s (!10 body lengths), we collected
the instantaneous velocity of all tracers at r < 14R, nor-
malized by the swimmer’s speed. The resulting 3:3# 106

velocity vectors were binned into a 2:5 !m square grid
(shown in Fig. 4), and the mean of the well-resolved
Gaussian in each bin was used for the flow field.

In both experiments U0 indicates the swimmer velocity,
while uðrÞ and vðrÞ ¼ uðrÞ % U0 are the velocity field in
the laboratory and comoving frames, respectively.

A typical experimental flow field around Volvox is
shown in Fig. 1(a). We fit these fields to a superposition
of a uniform background velocity (U0), a Stokeslet (St), a
stresslet (str) and a source doublet (sd):

vfitðrÞ ¼ %U0ŷ %
ASt

r
ðIþ r̂ r̂Þ * ŷ % Astr

r2
½1% 3ðy=rÞ2,r̂

% Asd

r3

!
I

3
% r̂ r̂

"
* ŷ (1)

where I is the unit tensor, ŷ is the upward vertical unit

vector, r̂ ¼ r=r, and r is measured from the center of the
organism (xc, yc). The orientation of all multipoles is fixed
to be along the vertical, and we are left with six parameters:
(U0, ASt, Astr , Asd, xc, yc). The fits, obtained by minimizing
the integrated squared difference between the model and
the experimental flows, describe remarkably well the ex-
perimental flow, almost down to the surface of the organ-
isms [see Figs. 1(b) and 1(c)]. Typical values for the
parameters are U0 ! 102 !m=s, ASt ! 104 !m2=s, Astr !
106 !m3=s (indicating a pusher-type stresslet), Asd !
109 !m4=s, with the actual magnitude depending on the
colony radius R. From the Stokeslet component, we can
calculate the average colony density as !# ¼ 6$ASt=gR

3,
where $ ¼ 10%3 Pa s and g is the gravitational accelera-
tion. The dependence of both !# and U0 on R (Fig. 2)
compares well with previously published data [21] ob-
tained by different means, thereby validating the measure-
ments and analysis procedures. Removing the Stokeslet
contribution from the experimental flow field [Fig. 3(a)]
reveals that the near field is dominated by the source dou-
blet component, with the stresslet responsible only for a
slight forward-backward asymmetry [Figs. 3(b) and 3(c)].
The orientation of the source doublet is opposite to that
around a translating solid sphere, and is compatible with a
model that assigns a constant force density to the colony

FIG. 1 (color online). Flow field of a freely swimming
V. carteri in the laboratory frame. (a),(b) Magnitude and stream-
lines of u and its fitted approximation ufit, respectively.
(c) Relative error of the fit: % ¼ ku% ufitk=kuk. (a) and
(b) have the same color bar, different from (c). ~g is gravity.
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ual Volvox colonies as they swam upwards [21] in a straight
line along the central axis of a 5# 5# 50 mm sample
chamber filled with SVM at 21$ 1 "C. The stage was
controlled by a custom LabView routine. The fluid was
seeded at volume fraction 10%5 with 1 !m nile-red poly-
styrene microspheres (Invitrogen) illuminated by a vertical
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totactic [22] at this wavelength, and at the intensities used
here it swims smoothly along the laser sheet. We recorded
the flow field of 19 different colonies at 30 fps for
!2–3 min each. The measured flow field v was obtained
by particle image velocimetry (Dantec Dynamics).
Background flows in the chamber were <10 !m=s.
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of Chlamydomonas in TAP on a Nikon inverted micro-
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methylsiloxane sample chambers (5 mm radius, 0.4 mm
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Movies were analyzed with standard algorithms to track
cells and tracers. For each cell swimming along the focal
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malized by the swimmer’s speed. The resulting 3:3# 106
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Gaussian in each bin was used for the flow field.
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106 !m3=s (indicating a pusher-type stresslet), Asd !
109 !m4=s, with the actual magnitude depending on the
colony radius R. From the Stokeslet component, we can
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tion. The dependence of both !# and U0 on R (Fig. 2)
compares well with previously published data [21] ob-
tained by different means, thereby validating the measure-
ments and analysis procedures. Removing the Stokeslet
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flow may be important [30]. We are currently investigating
whether similar conclusions hold for the flow field around
bacteria, the prototypical ‘‘pusher’’ microorganisms.
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FIG. 4 (color online). Time- and azimuthally-averaged flow field of C. reinhardtii. (a) Streamlines (red [medium gray]) computed
from velocity vectors (blue [dark gray]). The spiraling near elliptic points is an artifact of the direct integration of a noisy experimental
velocity field. A color scheme indicates flow speed magnitudes. (b) Streamlines of the azimuthally-averaged flow of the three-Stokeslet
model: flagellar thrust is distributed among two Stokeslets placed (not fitted) at the approximate flagellar position (lateral green
arrows), whose sum balances drag on the cell body (central red arrow). (c) Decay of kuðrÞk for the three directions indicated by
separate colors in the inset, compared to results from the three-Stokeslet model (dashed lines).
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Figure 2.2: Point-singularity models of swimming microorganisms compared to mea-
sured flow fields, reproduced from reference [130]. (a) Time-averaged flow field of
Chlamydomonas reinhardtii. (b) Three-Stokeslet model of Chlamydomonas rein-
hardtii. (c) Time-averaged flow-field of Volvox carteri. (d) Model of Volvox carteri
using Stokeslet, stresslet and source-dipole. (e) Error of model compared to mea-
surement.

four and so on unit vectors. Hence, the Stokes-doublet is given by

uSD(r;f , g) = −g · ∇(uSto(r;f)), pSD(r;f , g) = −g · ∇(pSto(r;f)), (2.12)

borrowing notation from Chwang and Wu [131]. A more intuitive physical interpre-
tation of the flow associated with the Stokes-doublet is given by separating it into
its symmetric and antisymmetric components (under interchange of f and g). The
latter is called the rotlet, with a flow field

uRot(r; τ ) = 1
8πµ

τ × r
|r|3

, pRot(x; τ ) = 0, τ ≡ f × g. (2.13)

The vector strength τ should be interpreted as a point torque, since the torque on
any volume containing y is τ . The symmetric component of the Stokes-doublet is
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called the stresslet, with a flow field

uStr(r;f , g) = 1
8πµ

[
−f · g
|r|3

+ 3(f · r)(g · r)
|r|5

]
r

pStr(r;f , g) = 1
4π

[
−f · g
|r|3

+ 3(f · r)(g · r)
|r|5

]
. (2.14)

The stresslet gives the leading-order flow of a force-free object and plays an impor-
tant role in the method of reflection used to calculated disturbance flows [92]. A
slightly different definition of the stresslet is used by Batchelor [132] and Spagnolie
and Lauga [65], who remove the first term in the flow.

Finally, additional fundamental solutions to the Stokes equations are given
by the solutions of

∇2u = 0, (2.15)

corresponding to flows with constant pressure (without loss of generality taken to
be zero) and zero forces [65]. The source, representing injection of fluid at y with
rate 1, has the flow field

uSou(r) = 1
4π

r

|r|3
; (2.16)

while the source dipole (or potential doublet) is derived from this is in the same way
as the Stokes doublet, with a flow

uPD(r; g) = 1
4π

[
− g

|r|3
+ 3(g · r)r

|r|5
]

(2.17)

Chwang and Wu [131] noted that the source dipole is related to the Stokeslet by

uPD(r; g) = −µ∇2uSto(r; g), (2.18)

and therefore any source-free flow may be described solely in terms of Stokeslets
and their derivatives. We shall only use swimmer models with constant volume,
at least in a time-averaged sense, although introduction of sources and sinks allows
modelling of organisms such as Euglena, which self-propels by exchanging material
between its head and tail [14].

2.3.2 Pushers and pullers

The absence of external forces on a self-propelled swimmer mean that any forces
exerted on the fluid are balanced by an opposite body force. Thus the most slowly
decaying contribution to the flow that a swimmer may exhibit is the stresslet,
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Extensile – “Pusher”

e.g. Spermatozoon

Contractile – “Puller”

e.g. Chlamydomonas spp.

a.
b.

c.

Time reversal

Figure 2.3: (a) Extensile and contractile swimmers as force dipoles with opposite
sign. (b) The splay instability in contractile active liquid crystals [73]. (c) Under
time-reversal extensile swimmers map to contractile swimmers swimming in the
opposite direction.

eq. (2.14), going as r−2, which dominate asymptotic behaviour and far-field in-
teractions. However a stresslet is head-tail symmetric and cannot be motile; the
lowest-order self-propulsive, force-free flow singularity is the source dipole, eq. (2.17),
which goes as r−3. It is common to model swimmers using just these singularities, to
account for the observations that they self-propel and have a far-field straining flow
which decays as the inverse distance squared. Volvox carteri, which is approximately
spherical, is described very well even at small distances by a model composed of a
Stokeslet corresponding to gravity, of non-negligible strength despite a very small
excess buoyancy, and a stresslet and source dipole describing the swimming [130],
as shown in fig. 2.2(c)-(e).

The relative sign of the stresslet compared to the source dipole characterises
a swimmer as extensile (pusher in the commonly-used jargon), meaning fluid is
expelled along the orientation axis and drawn in on the equator, or contractile
(puller), drawing in fluid along the orientation axis; a cartoon picture of these is
shown in fig. 2.3(a). Most prokaryotes, such as flagellated bacteria, and swimming
cells such as spermatozoa are pushers, while pullers tend to be higher organisms such
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as the flagellated alga Chlamydomonas. The change of sense of local flow around
pushers and pullers means interactions with geometry and other swimmers can be
very different for each [105].

2.4 The squirmer model

Possibly the earliest mathematical model of a microscopic swimming mechanism was
G.I. Taylor’s waving sheet [21]. The following year James Lighthill (incidentally, a
keen open-water swimmer) published his squirmer model [75], based on Lamb’s clas-
sic solution of the Stokes equations outside a sphere [97], and gives a decomposition
of flow on the surface of a sphere in Legendre polynomials. In the original for-
mulation only axisymmetric tangential and radial components of slip velocity were
considered, allowing the use of a Stokes streamfunction to solve the problem. A
typographical error in Lighthill’s manuscript was infamously later corrected by his
student, John Blake [76].

The inclusion of ‘swirling modes’, or azimuthal flow with axisymmetric pat-
terning [66], is straightforward since axisymmetric, azimuthal flows satisfy Laplace’s
equation [114]; these have been used to model Volvox, which rotates about its swim-
ming axis [133]. A full non-axisymmetric generalisation of the squirmer model was,
despite the availability of Lamb’s solution, only published in 2014 by Pak and Lauga
[77]. The flow about a squirmer in non-zero Reynolds number has even more re-
cently been investigated numerically, finding that pushing strokes are stable up to
Reynolds numbers ∼ 1000 while pulling strokes trap vorticity in the wake of the
swimmer which breaks up the flow and causes high inefficiency in swimming [134].

The axisymmetric slip velocity, including swirling components, is expressed
in terms of radial, meridional and azimuthal squirming modes, Al, Bl and Cl. In a
spherical basis {sr, sθ, sφ} centred on a swimmer of radius a the slip velocity is

us =
∑
l

[
AlPl(cos θs)sr +BlVl(cos θs)sθ + aClVl(cos θs)sφ

]
, (2.19)

where Pml (x) are the associated Legendre polynomials, with Pl ≡ P 0
l , and Vl is

defined by Lighthill [75] as

Vl(x) ≡ − 2
l(l + 1)P

1
l (x). (2.20)

The coefficients of the radial and meridional modes have units of speed, and Cl has
units of angular frequency. A0 represents uniform expansion or contraction, while
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all other modes are volume-preserving.
The swimming speed of the squirmer may be calculated using the reciprocal

theorem, eq. (2.6). Since the slip velocity is axisymmetric the azimuthal integral
in (2.6) acts only to average the unit vectors in eq. (2.19). Explicitly, if e3 is the
direction of the swimmer’s head, using standard relations between Cartesian and
spherical coordinates we have∫ 2π

0
dφs sr = 2π cos θsx3 = 2πP1(cos θs)x3, (2.21)∫ 2π

0
dφs sθ = −2π sin θsx3 = 2πP 1

1 (cos θs)x3, (2.22)∫ 2π

0
dφs sφ = 0. (2.23)

Then, using orthogonality of Legendre polynomials to integrate over θ, the swimming
is in the direction of the axis of symmetry with a speed

U = 1
3(2B1 −A1). (2.24)

This is the same swimming speed as calculated by Lighthill [75], and, while the
details of the calculation differ, the condition determining it is the same: that the
swimmer should be free of net force. This condition is assumed in the derivation
of eq. (2.5). A similar procedure using eq. (2.7) determines that the free rotation
speed of a squirmer is proportional to C1.

In asymptotic approximations it is common to truncate the slip velocity to
order l = 2 and consider only tangential deformations, giving

us = [B1V1(cos θs) +B2V2(cos θs)]sθ. (2.25)

The first term then sets the swimming speed and asymptotically gives the r−3

dependence of the flow of a source dipole [75, 76]; the second term corresponds to
a stresslet [67] as in associated with a flow that decays asymptotically as r−2. The
ratio of B1 and B2 determines whether a swimmer is a pusher (in which case the
ratio is negative) or a puller (positive).

Blake has given a two-dimensional analogue [78] of the squirming set, eq. (2.19),
describing small oscillations about an infinite cylinder of radius a. The slip velocity
is decomposed into Fourier modes with real coefficients An, Bn describing the radial
flow, ur, and the tangential flow, uθ. Despite the laziness in notation it will hope-
fully be clear from the context when An, Bn are two-dimensional and where they
are three-dimensional. The flow on the swimmer’s surface is expressed relative to
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a. b.

Figure 2.4: Some low order squirming modes according to the Fourier decomposition
of Blake [78]. The three-dimensional modes of Lighthill [75] and Blake [76] are
analogous. (a) The two lowest-order radial modes visualised as volume-preserving
changes of shape about a circle, A1 (blue) and A2 (red). (b) The two lowest-order
tangential, shape-preserving modes, B1 (blue) and B2 (red). Higher-order modes are
analogous. A0 is ignored here, and corresponds to uniform expansion or contraction.

its head’s orientation, α, as

ur =
∞∑
n=0

An cosn(θ − α), uθ =
∞∑
n=1

Bn sinn(θ − α), (2.26)

where ur and uθ are the radial and tangential components of slip velocity, respec-
tively. With this convention in place it was found that the swimming speed is
1
2(B1−A1) [78], which again is easy to derive using the reciprocal theorem, eq. (2.8).
The first two radial and tangential modes and the flow field they generate are shown
in fig. 2.4.

2.4.1 Time-dependent squirming

The squirmer formulation allows for calculation of swimming behaviour based on an
explicit cycle of deformation about a sphere. In this way Lighthill [75] was able to
propose a number of different swimming strategies of this type, and calculate their
propulsion speed and energetic efficiency. Here we demonstrate the two-dimensional
model proposed by Blake [78], but the three-dimensional case is analogous [75, 76].

The swimmer is taken to be a disc of radius a, with points on its surface
parametrised by the polar angle θ. The squirming activity results in deformations
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Figure 2.5: (a). A model of a microorganism driven by small oscillations of shape
about a circle or sphere. Model and figure after Lighthill [75], Blake [76, 78]. The
grey lines show the progression of the metachronal wave on the surface at intervals
of one-twelfth the time period. (b) Speed (grey) and displacement (red) of two-
dimensional squirmer shown in (a) over one time period. Parameter values used
with eq. (2.29) are ε1 = ε4 = −ε2 = −ε3 = ε = 0.05 and N = 10. The time-
dependent squirming coefficients are given in tables 2.1 and 2.2.

An(t)
n O(aε) O(aε2)
0 - ν

4
(
ε22 − ε21 − 2Nε1ε3 + 2(N + 1)ε2ε4

)
sin 2νt

1 - ν
4 (ε1ε4 + ε3ε2) + ν

4
(
2ε1ε2 + (2N + 1)(ε2ε3 + ε1ε4)

)
cos 2νt

N −νε1 sin νt -
N + 1 νε2 cos νt -

2N - −ν
4 ε

2
1 sin 2νt

2N + 1 - ν
4 (2N + 1)(ε1ε4 − ε3ε2) + ν

4 (2ε1ε2 + ε1ε4 − ε3ε2) cos 2νt
2N + 2 - ν

4 ε
2
2 sin 2νt

Table 2.1: Time-dependent radial squirming modes of the Blake model squirmer.

to the shape, so that the point (a, θ) is mapped to
(
rs(θ, t), θs(θ, t)

)
, as shown in

fig. 2.5, where rs and θs are appropriate periodic functions of time, decomposed in
coefficients An(t),Bn(t) as

rs(t) = a
[
1 + ε

∑
n≥2
An(t) cosn(θ−α)

]
, θs(t) = θ+ ε

∑
n≥1
Bn(t) sinn(θ−α). (2.27)

The parameter ε represents to the typical size of the oscillations. The analogous
three-dimensional case is obtained by replacing cosn(θ − α) by Pn

(
cos(θ − α)

)
and

sinn(θ − α) by Vn
(
cos(θ − α)

)
in eq. (2.27).

In order for the surface activity to represent a travelling wave we must have
that An(t) and An+1(t), and Bn(t) and Bn+1(t), are approximately one quarter
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Bn(t)
n O(aε) O(aε2)

1 -
ν
4
(
2N(ε1ε4 + ε2ε3 − ε1ε2 + ε3ε4) + 3ε1ε2 + 2ε1ε4 + ε3ε4

)
+ν

4
(
2N(ε1ε4 − ε2ε3)− ε1ε2 + 2ε1ε4 + ε3ε4

)
cos 2νt

N −νε3 sin νt -
N + 1 νε4 cos νt -

2N - ν
4
(
N(ε1 − ε3)2 − 2ε21

)
sin 2νt

2N + 1 -
ν
4
(
(2N + 1)(ε1ε4 − ε2ε3)− (ε1 − ε3)(ε2 − ε4)

)
+ν

4
(
2ε1ε4 + 3ε1ε2 − ε3ε4 − 2N(ε1 − ε3)(ε2 − ε4)

)
cos 2νt

2N + 2 - ν
4
(
2ε22 − (N + 1)(ε2 − ε4)2) sin 2νt

Table 2.2: Time-dependent tangential squirming modes of the Blake model squirmer.

cycle out of phase [76]. Then the time-dependent squirming coefficients An(t), Bn(t)
may be related to the deformation functions An(t),Bn(t) by Taylor expansion in
the amplitude of the surface oscillations, of order ε � 1. Thus, for instance, the
swimming speed to first order is

U = 1
2aεḂ1. (2.28)

Since B1(t) is periodic the average speed is zero, and one must go to higher order
to see motion in an unbounded fluid.

Consider the explicit model proposed by Blake [78], consisting of the four
deformation functions

AN = ε1
ε

cos νt, AN+1 = ε2
ε

sin νt,

BN = ε3
ε

cos νt, BN+1 = ε4
ε

sin νt. (2.29)

for a particular integer N > 2 with angular frequency ν, and all other An,Bn equal
to zero. This is the minimal model that exhibits both radial and tangential defor-
mation, and results in motion, since a swimmer with deformation functions of only
one order would be constrained to be stationary by symmetry under time reversal.
The corresponding time-dependent squirming coefficients are given to second order
in the oscillation amplitudes in tables 2.1 and 2.2.

An effective description of the squirming is given by time-averaging the
squirming coefficients. It can be seen from tables 2.1 and 2.2 that the only squirm-
ing coefficients that are not purely oscillatory are those of order n = 1 and 2N + 1,
appearing at second-order in the deformation amplitude ε. The average swimming
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speed is

〈U〉t = νa
8

[
(2N + 1)(ε1ε4 + ε2ε3 − ε1ε2 + ε3ε4) + 4ε1ε2 − 2ε2ε3

]
. (2.30)

Just like Taylor’s waving sheet, also driven by a travelling wave on the surface [21],
the swimming speed is proportional to the wavenumber N , and may be maximised
or reversed by appropriate selection of ε1, ε2, ε3 and ε4.

It is interesting to note that for N > 2 this model has no dipole contribution,
havingA2 = B2 = 0. This is sharp contrast with the common treatment of swimmers
as stresslets. Instead the leading-order contribution is due the source dipole terms,
A1, B1. The stresslet terms enter at third order in oscillation amplitude. Of course,
different swimming strategies will change the squirming set, and addition of extra
contributions to eq. (2.29) will add extra beat frequencies which may include the
stresslet modes. Nevertheless, the fact that consecutive modes must be π/2 out of
phase means any even-numbered beats are purely oscillatory at second order in ε,
so even a more complicated model exhibits no dipole contribution if the swimming
stroke is time-averaged; hence, the pusher-puller categorisation breaks down. The
consequences of this on interactions are discussed by Pooley et al. [6]. Volvox carteri
is approximately spherical and thus is apparently an ideal organism to compare
to the squirmer model [77]. Hydrodynamic synchronisation between flagella on
its surface [135] result in an envelope well-described by a travelling wave [136].
However, modelling Volvox as a squirmer results in a significant under-estimate of
its self propulsion speed [133]; as the flagella coating its surface are separated by
distances comparable to the length of the flagella themselves, the description of
Volvox by a deforming envelope is inappropriate. Drescher et al. [39], in contrast,
find that the experimentally measured flow generated by swimming Volvox is very
well described by a classic asymptotic model of stresslet-plus-source-dipole, shown in
fig. 2.2 (nevertheless some sources still describe Volvox as a neutral swimmer [137]).
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3
Approximate calculations

In this chapter we investigate the use of point-singularity solutions of the Stokes
equations in approximating swimmer problems. While point-singularity models
of swimmers are common in the literature in both two [127, 128, 138–140] and
three [4, 43, 47, 65] dimensions, the approach we outline here is complementary to
these, which model the swimmer itself as a collection of moving singularities and
calculate interactions based on reflections of these singularities. Instead, here we
approximate the integration kernel used with the reciprocal theorem, while keeping
the slip velocity general.

At large distances the flow due to the dragging of any body through a viscous
fluid resembles a Stokeslet; therefore, using the Stokeslet (and rotlet, for rotation)
as a conjugate solution for the reciprocal theorem allows the motion of a swimmer
of any shape to be approximated. In addition to the freedom to specify an arbitrary
slip velocity in eq. (2.9), this makes the reciprocal theorem a powerful tool.

The approach shown here was introduced by Papavassiliou and Alexander
[66], and also outlined independently by Davis and Crowdy [129] who demonstrate
a comparison to a more usual matched-asymptotic calculation for the interaction of
a swimmer with a wall.
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Figure 3.1: Error in the magnitude of the flow about a dragged sphere (red) approx-
imated by a Stokeslet, in the lab frame. Dragging is in the horizontal direction.

3.1 The approximate Stokes drag on a sphere

The flow field due to a sphere at the origin with a no-slip boundary, dragged by a
force F is

ui = Fk
8πµ

(
δik
|r|

+ rirk
|r|3

)
+ a2Fk

24πµ

(
δik
|r|3
− 3rirk
|r|5

)
, p = Fkrk

4π|r|3 . (3.1)

In terms of fundamental singularities the first term is the free-space Stokeslet, and
the second is a source dipole. As the dipole has constant pressure, the pressure is
just that of a Stokeslet.

It can be seen that the flow field to leading order decays as the inverse of
distance, with corrections at third order. Thus as long as the distance from the
sphere is larger than its radius, just a point force gives a reasonable approximation;
fig. 3.1 shows that even on the surface of the sphere the error in the magnitude of
the flow field is at most 50% if approximated by a Stokeslet only.

The method here could be improved by including higher-order singularities,
starting with the source dipole present in eq. (3.1) and in principle continuing to
any order of the multipole expansions calculated by Hicks [141] and Basset [142],
among others; however, the rapid decay of these higher-order contributions means
the correction to the far field behaviour will be negligible while any truncation is
inappropriate in the contact limit. The Stokeslet is common to the dragging of any
object, with corrections due to shape entering at higher order.
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Figure 3.2: The flow at (x1, x2, x3) due to a point force (red) at (y1, y2, h) near
an infinite planar surface, x3 = 0, is a Stokeslet at this point plus a Stokeslet and
higher order singularities at its image (blue) under reflection in the wall. r and R
are the respective position vectors of a point in the fluid from these singular points.
Adapted from Blake [120].

3.2 Swimming close to a planar surface

Microorganisms near a wall exhibit a variety of interesting behaviour. The attraction
to surfaces first reported by Rothschild [45], resulting in a non-uniform distribution
of spermatozoa between two microscope slides, has since been confirmed to be a
generic hydrodynamic effect [47]. Flagellated bacteria such as Escherichia coli and
Vibrio alginolyticus are known to trace out circles near boundaries, with the di-
rection of the circling depending on the nature of the boundary [4, 42–44, 46] (see
fig. 1.1). Ciliated surfaces are ubiquitous in nature, playing, to give one example, a
crucial role in the transport of mucus in the lungs, with defects leading to potentially
serious respiratory disease [125, 143]; artificial ciliated surfaces have been proposed
in microtechnological roles for sorting of particles [144] and influencing flow [145].

The study of interactions with a planar boundary also provides a first approx-
imation to motion in more complicated geometries, of which the wall is a limiting
case. While some exact solutions for the Stokes drag of a sphere close to a wall
exist [113, 114] these are incomplete, giving only the axisymmetric components of
the motion; these will be explored in Chapter 5. Subsequent attempts to include
the components of motion parallel to the wall have not managed to give a closed
solution [116, 146].

Instead, by the procedure described in § 2.2.1 an approximate solution for the
motion of a swimmer near a wall may be found using Blake’s solution for a point
force and torque in this geometry [120, 147]. This solution allows an integration
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kernel to be constructed which, in principle, can be used to calculate the motion of
a swimmer of any shape, if the reciprocal theorem integral is performed over the
appropriate domain, and any slip velocity, if this can be written down in a closed
expression.

3.2.1 Blake’s solution

It is well-known that the electric field generated by a point charge near an infinite
conducting plate is described by the method of images, with an equal and opposite
charge an equal distance on the other side of the wall [148]. Similarly, in solving
the flow for a point force close to a no-slip wall a good initial guess is for an equal
force pointing in the opposite direction. Since we seek a solution to the Stokes
equations rather than the simpler Laplace equation this procedure does not solve the
problem, but it simplifies it enough that a solution is straightforward, and leads to a
convenient representation of the solution in terms of point-singularities [131]. In this
way the flow due to a point force near a no-slip wall was given by Blake in a seminal
analysis [120], and has come to be known by some as the Blakelet [149]. Although
the result had been known for a long time, having been first derived by Lorentz [90],
Blake’s was the first representation of the solution as an image system composed
purely of flow singularities. Blake’s method was subsequently expanded upon to
calculate the image systems for higher-order singularities, specifically the rotlet,
stresslet and source-doublet, near a wall [147]; a schematic representation of this is
shown in fig. 3.3. A two-dimensional analogue was calculated by Crowdy and Or
[127].

If we have a Stokeslet of vector strength F at (y1, y2, h), with a wall at x3 = 0,
then the flow and pressure at (x1, x2, x3) depend only on r = (x1−y1, x2−y2, x3−h)
and R = (x1 − y1, x2 − y2, x3 + h), as illustrated in fig. 3.2. Assuming Einstein
notation, where Greek letter indices run over the directions parallel to the wall,
α, β, · · · = {1, 2}, and Latin letters run over all three directions, the flow and pressure
driven by this point force near a wall is

ui = Fj
8πµ

[(
δij
r

+ rirj
r3

)
−
(
δij
R

+ RiRj
R3

)

+ 2h(δjαδαk − δj3δ3k)
∂

∂Rk

{
hRi
R3 −

(
δi3
R

+ RiR3
R3

)}]
, (3.2)

p = Fj
4π

[
rj
r3 −

Rj
R3 − 2h(δjαδαk − δj3δ3k)

∂

∂Rk

{
R3
R3

}]
. (3.3)
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Figure 3.3: Blake & Chwang’s representations of the image systems for point forces
and torques near a wall. The quantities in brackets indicate the strength of the
contribution. The higher-order contributions are obtained by differentiating the
Stokeslet and the source. For instance, the dipole in (b) is the derivative in the
parallel direction of a normal Stokeslet, while the stresslet in (d) is a symmetrised
dipole. Adapted from Blake and Chwang [147].

The first term in these expressions is the free-space Stokeslet, eq. (2.11); the second
term can be identified as a Stokeslet of equal and opposite strength at the image
point (y1, y2,−h), while the remainder is composed of higher-order singularities,
illustrated in fig. 3.3. Similarly, the flow and pressure due to a point torque T are

ui = Tj
8πµ

[
εijkrk
r3 − εijkRk

R3 + 2hεkj3
(
δik
R3 −

3RiRk
R5

)
+ 6εkj3

RiRkR3
R5

]
, (3.4)

p = −Tj2π
∂

∂Rk

{
εkj3R3.

R3

}
. (3.5)

Here, instead, the leading order term is composed of a rotlet, eq. 2.13, and an equal
and opposite image rotlet; if the rotlet is aligned with the wall normal, T = (0, 0, T3),
this completes the solution.

3.2.2 Reciprocal theorem

By approximating a swimmer as a point, valid when its size is small compared to h,
an approximation of the motion of any swimmer near a passive or active wall may
be obtained. If S is the boundary of a swimmer centred on h and W is the surface
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of the wall on x3 = 0, the reciprocal theorem takes the form of an integral over the
wall and an integral over the swimmer of the slip velocities,

F̃ ·U + T̃ ·Ω =
∫
us · (σ̃F + σ̃T ) · n̂

∣∣∣
S

+
∫
us · (σ̃F + σ̃T ) · n̂

∣∣∣
W
. (3.6)

The integration kernels σ̃F and σ̃T are the stress tensors corresponding to a point
force and a point torque in this geometry, which may be derived from eqs. (3.2-
3.3) and eqs. (3.4-3.5) respectively using the definition of the stress tensor given in
eq. (1.2).

The advantage of using the reciprocal theorem is that the slip velocities
in eq. (3.6) remain unspecified. Hence the swimming strategy is left completely
arbitrary, giving a greater range of results obtainable using these two stress tensors.
For example, if the wall has some surface activity the motion of a passive (no-slip)
tracer particle is found by the integral

F̃ ·U + T̃ ·Ω =
∫
us · (σF + σT ) · n̂

∣∣∣
W
. (3.7)

Instead, if the wall has no slip on its surface and we have an active particle, the
motion is given by

F̃ ·U + T̃ ·Ω =
∫
us · (σF + σT ) · n̂

∣∣∣
S
. (3.8)

By the linearity of the Stokes equations and of the reciprocal theorem, summing
eqs. (3.7) and (3.8) gives the motion of an active swimmer near an active wall.

3.2.3 Stress tensors for Stokes drag near a wall

The stress tensors that enable evaluation of eq. 3.6 are easily obtained given eqs. (3.2-
3.5): one differentiates the flow and symmetrises, multiplies by the viscosity and
subtracts the pressure times the identity. This yields the stress tensors

σ̃F̃ij = 3F̃k
4π

[
−rirjrk
|r|5

+ RiRjRk
|R|5

+ 2h(δkαδαl − δk3δ3l)
(
−h(Riδjl +Rjδil +Rlδij)

|R|5

+ (RiRjδ3l +RjR3δil +RiR3δjl)
|R|5

+ 5(h−R3)RiRjRl
|R|7

)]
, (3.9)

28



and

σ̃T̃ij = 3T̃l
8π

[
−(εilkrj + εjlkri)rk

|r|5
+ (εilkRj + εjlkRi)Rk

|R|5

+
2εkl3

(
Rk(Riδj3 +Rjδi3) +R3(Riδjk +Rjδik)

)
|R|5

− 4hεkl3(Riδjk +Rjδik +Rkδij)
|R|5

+ 20εkl3(h−R3)RiRjRk
|R|7

]
. (3.10)

Both of these expressions contain a singular term depending on r, arising from the
Stokeslet or rotlet in the fluid. Therefore this term is the stress tensor corresponding
to motion in an infinite fluid and, together with the reciprocal theorem, gives the
propulsion speed in an unbounded domain. All other terms arise from the image
system required to satisfy boundary conditions on the wall, and therefore fully
encode the interaction. Here the free swimming speed is assumed known, or in any
case is easily determined using the reciprocal theorem of Stone and Samuel [89], so
we henceforth remove these terms from eqs. (3.9) and (3.10).

3.3 An active wall

Ciliated walls are a ubiquitous feature of the interior of higher animals, found,
for instance, in respiratory [143] and reproductive tracts [126]. Coordination of
beating flagella is known to occur in the lining of mammalian lungs, resulting in a
metachronal wave [150], and understanding the effect of this beating on the fluid
surrounding the ciliated surface, and on objects supsended in this fluid, is important
in explaining phenomena such as the clearing of mucus from airways [143] and the
transport of the ovum in the fallopian tubes [126].

While there exists a significant literature modelling ciliary arrays [24, 125,
143, 151, 152], much of this work has focused on microstructure, particularly the
shape of individual cilia and the optimal beating patterns for locomotion and trans-
port [18, 153], and the mechanisms by which cilia synchronise hydrodynamically [135,
150]. Liron gave models for a planar channel [152] and a pipe [125] coated with cilia.
Each cilium is described by a flexible array of Stokeslets undergoing some periodic
deformation in time; nevertheless it was found that in the interior of the chan-
nel/pipe the flow is time-independent. This indicates that an averaged approach
is appropriate for describing the effect of active boundaries on fluid in the bulk.
As done by Lighthill [75], we model a covering of cilia by an ‘envelope’ traced out
by their tips, acting as a small deformation of the wall; this assumes that the cil-
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Figure 3.4: The advection of fluid driven by a ciliated wall with slip velocity us.
(a) A transverse wave us = A cos(kx1 − ωt)e3. (b) A longitudinal wave us =
A cos(kx1 − ωt)e1. Up to a phase difference of π/2 the flow far from the wall is the
same. The former gives a flow field identical to that calculated by Taylor [21] for
an infinite waving sheet.

iary covering is dense, with the inter-ciliary distance smaller than the length of the
cilia [136].

We describe this ciliary envelope by a slip velocity on the wall corresponding
to transverse or longitudinal travelling wave,

utrans.
s

ulong.
s

= A cos(kx1 − ωt)
e3

e1.
(3.11)

where k is the wavenumber and ω is the frequency, and t is time. The length of
the cilia is assumed to be much shorter than the wavelength of the wave, so that
this slip velocity is imposed on the wall. Using this slip velocity together with the
stress tensors (3.9) and (3.10), the reciprocal theorem allows the calculation of the
advection of a passive, no-slip tracer particle of size a � h. Faxén’s law says that
the leading contribution to advection of a spherical particle is the background flow
at its centre, with corrections at order radius-squared [92], so as long as this tracer
is very small, its motion also gives the flow field; in fact, as we saw in § 2.2, the
calculation of the flow field in this way is exact.
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Figure 3.5: Trajectories of a tracer particle near a ciliated wall with (a) transverse
actuation and (b) longitudinal actuation. Black dots denote initial location, red dots
denote location after four time periods of the beating on the wall and black arrow
indicates the direction of wave propagation. Far-field flow is in the same direction
as the wave propagation in both cases, while in the near field the longitudinal
wave results in a counter-current. This suggests that the transverse travelling wave
corresponds to symplectic beating and the longitudinal wave to antiplectic beating.
A reversal in flow far from a ciliated surface was also found by Liron [125, 152], and
a similar effect occurs in the displaced flow by a passing squirmer [79].

To integrate eq. (3.7) on the wall we set |r| = |R| =
√
x2

1 + x2
2 + h2 ≡√

ρ2 + h2, R3 = h and r3 = −h. The wall normal is n̂ = −e3 and so the integration
kernel is −σ̃i3, which has the form

σ̃F̃i3 = 3hF̃k
2π|R|5 (hδi3 −Rαδiα)(hδk3 −Rβδkβ) (3.12)

and

σ̃T̃33 = 3h
4π|R|5 ε3lkT̃lRk, σ̃T̃α3 = 3T̃l

8π|R|5
[
ε3lαh

2 + εαlβhRβ − ε3lβRβRα
]

(3.13)

to determine the translation and rotation of the tracer particle, or, equivalently, the
flow and the vorticity.

Insertion of the surface activities, eq. (3.11), into eq. (3.7) with integration

31



kernels (3.12) and (3.13) and integrating finally gives the flow field and vorticity

u1 = −Akhe−kh sin(kx1 − ωt),

u3 = A(1 + kh)e−kh cos(kx1 − ωt),

ω2 = −A2 ke−kh sin(kx1 − ωt). (3.14)

for transverse actuation and

u1 = A(1− kh)e−kh cos(kx1 − ωt),

u3 = Akhe−kh sin(kx1 − ωt),

ω2 = A

2 ke−kh cos(kx1 − ωt). (3.15)

for longitudinal actuation. These two flow fields are shown in fig. 3.4. Both ex-
hibit exponential confinement of the flow to the region near the wall, of thickness
smaller than the wavelength; within this region the two flow fields differ considerably.
Fig. 3.5 shows trajectories of a small tracer particle for a variety of initial conditions
for each type of wall activity; it can be seen that the transverse metachronal wave,
fig. 3.5(a), advects the tracer in the same direction as the phase velocity, the longi-
tudinal metachronal wave, fig. 3.5(b), does the opposite, indicating a posteriori that
the former represents a symplectic wave and the latter an antiplectic wave [150].

Far from the wall, h � k−1, the flow fields due to a transverse and longi-
tudinal metachronal wave have the same behaviour, up to a phase difference which
may be eliminated by a suitable redefinition; we expect that this is therefore generic
behaviour which does not depend on the microscopic details of the ciliary coating of
the wall. The far-field advection in both cases is in the same direction as the prop-
agation of the metachronal wave. This means that it is in the opposite direction
to the dragging close to the wall for longitudinal beating, as shown in fig. 3.5(b).
This is seen in the much more detailed discrete-cilia models of active pipes [125]
and walls [152], and has also been reported in the advection of tracer particles by a
passing swimmer [79].

Finally, it is noted that eq. (3.14) is exactly the same flow as that calculated
by Taylor for an infinite waving sheet [21] – this is no surprise since the problem is
the same, although the details of the calculation differ.

32



2h

↵

e1

e2
e3

✓s �ss✓
( , )

s�

2h � a

asr

2he3 + asr

e✓

e�

er = sr

Figure 3.6: Surface coordinate systems on a spherical swimmer of radius a, a distance
h above a wall. The swimmer spherical basis {sr, sθ, sφ} (red and blue) is related to
the lab spherical basis {er, eθ, eφ} (green and gold) by a rotation of α about e2. The
red and blue points are the locations of the singularities and images, as in fig. 3.2.

3.4 A swimmer close to a wall

The presence of a solid boundary has a significant influence on swimmer motion, and
can cause organisms to align themselves parallel to the surface and follow circular
trajectories [40–42], or be attracted to the surface and aggregate [45, 47]. Much
of this behaviour has been explained qualitatively using leading-order multipole ex-
pansions [43, 65]. Here we show that a complementary approximate approach using
the reciprocal theorem, with the approximation in the integration kernel rather than
the slip velocity, produces the same results with relatively little calculational effort,
and generalises to arbitrary slip velocities and swimming strategies. Furthermore,
despite the level of approximation, a comparison to exact results that will be shown
in Chapter 5 reveals that the equations of motion found by this first approximation
hold up to separations between the swimmer and the wall of only a few swimmer
diameters. By the linearity of the reciprocal theorem (or, equivalently, Faxén’s law)
the advection of an active particle by an active wall is given by summing the motion
of the active particle near a no-slip wall and eqs. (3.14)-(3.15).

We take the swimmer to be a sphere of radius a� h and expand in a. The
integration kernel is then obtained by setting

r = −an̂ = aer, R = 2he3 +O(a), (3.16)

and expanding in inverse powers of the separation of the swimmer from the surface,
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h. The leading-order part of the stress tensor that determines translation due to
wall interactions is

σ̃F̃ij = 3F̃k
4π

[
δi3δj3δk3

(2h)2 + (δkαδαl − δk3δ3l)
(
−(δi3δjl + δj3δil + δl3δij)

2(2h)2

+ (δi3δj3δ3l + δj3δil + δi3δjl)
(2h)2 − 5δi3δj3δk3

2(2h)2

)]
+O[h−3]. (3.17)

Finally, the integration kernel for use with the reciprocal theorem is

[
σ̃ F̃ · n̂]

i
= − 3

8π(2h)2

(
F̃3
(
3δi3er3 + eri

)
+ F̃α

(
δiαer3 + δi3erα

))
+O[h−3]. (3.18)

Similarly, the leading-order part of the stress tensor corresponding to rotation of
the sphere arising from to interaction with the boundary is

[
σ̃ T̃ · n̂]

i
= − 3T̃α

8π(2h)3

(
ε3iαer3 + ε3jαδi3erj

)
+O[h−4]. (3.19)

The stress tensor for rotation normal to the wall is more rapidly decaying and
requires expansion to the next order in h−1,

[
σ̃ T̃3 · n̂]

i
= − 3a

8π(2h)4 T̃3ε3kierker3 +O[h−5]. (3.20)

These expressions can be used with any slip velocity that can be written down ex-
plicitly. This contrasts with calculations based on multipole expansions [43, 47, 65],
for which any distinct slip velocity or swimming stroke must be modelled separately;
this flexibility is a significant advantage of using the reciprocal theorem to calculate
interactions.

We shall restrict ourselves to axisymmetric slip velocities expanded in squirm-
ing modes, so that, in the swimmer basis {sr, sθ, sφ},

us =
∑
l

AlPl(cos θs)sr +BlVl(cos θs)sθ + aClVl(cos θs)sφ. (3.21)

The easiest way to calculate the reciprocal theorem integral is to transform the slip
velocity to the lab frame to contract against the stress tensor, then perform the
spherical integral in swimmer coordinates. If the swimmer’s head is inclined to the
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wall normal by an angle α, as in fig. 3.6, the appropriate transformations are
sr

sθ

sφ

=


sin θs cosφs sin θs sinφs cos θs
cos θs cosφs cos θs sinφs − sin θs
− sinφs cosφs 0




cosα 0 − sinα
0 1 0

sinα 0 cosα



e1

e2

e3


(3.22)

The tilt of the head is taken to be in the 1-direction and as a consequence of
axisymmetry U2 = Ω1 = 0. The remaining components are found to be

U1 = B2 −A2
5

(
a

2h

)2
P 1

2 (cosα) +O[h−3], (3.23)

U3 = −3(B2 −A2)
5

(
a

2h

)2
P2(cosα) +O[h−3], (3.24)

aΩ2 = B2 −A2
5

(
a

2h

)3
P 1

2 (cosα) +O[h−4], (3.25)

Ω3 = C2
5

(
a

2h

)4
P2(cosα) +O[h−5]. (3.26)

Recognising that A2 and B2 correspond to a stresslet flow, we note that expres-
sions (3.23), (3.24) and (3.25) are the same as those found by Spagnolie and Lauga
[65] for the interaction of a force dipole with a wall. Particularly interesting is the
rotation about the wall normal, Ω3, which leads to circular trajectories of particles
swimming parallel to the wall. When θ0 = π/2 this rotation is given by

Ω3 = a4C2
160h4 +O(h−5). (3.27)

The squirming mode C2 corresponds to a flow that circulates in an easterly sense in
the northern hemisphere but in a westerly sense in the southern hemisphere, so that a
swimmer with this squirming mode qualitatively resembles bacteria like E. coli which
have a counter-rotating head and tail. Indeed, such bacteria are known to swim in
circles close to boundaries [42]. The direction of the circling is set by the direction
of the head-tail rotation and is left-handed if C2 is positive. The radius of curvature
depends on the free swimming speed U free, and is 160U freeh4/a3C2, indicating that
this effect is strongly localised at boundaries, as reported experimentally [43]. This
h−4 decay of the rotation was also found by [4] by considering the dynamics of a
rotlet dipole – precisely the flow structure of the squirming mode C2 [133].

An alternative calculational strategy is to decompose the stress tensor in
Legendre polynomials directly. This has the advantage of immediately generalising
results to arbitrary squirming order, since now integration kernel is expanded in an
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Figure 3.7: Spherical geometry relating swimmer and lab bases. The swimmer
spherical basis {sr, sθ, sφ} is related to the lab spherical basis {er, eθ, eφ} by a
rotation Θ about er = sr.

infinite series in the same basis as the slip velocity. As an example, consider the
normal rotation, given to leading order by eq. (3.26). The integrand is

us · σ̃ T̃3 · n̂ = −3T̃3
8π

a(sr ·R)
|R|5

[
e3 · (sr × us)

]
. (3.28)

In the lab spherical basis, {er, eθ, eφ}, this may be written as

us · σ̃ T̃3 · n̂ = −3T̃3
8π

ā4(ā+ cos θ)
a3(1 + ā2 + 2ā cos θ) 5

2
e3 · (er × us), (3.29)

where ā ≡ a/2h. From the generating function for Legendre polynomials [154] we
obtain the identity

(t− x)
(1 + t2 − 2tx) 5

2
= 1

3

∞∑
n=0

(n− 1)tn−2

(1− x2) 1
2
P 1
n(x), (3.30)

so the reciprocal theorem becomes

Ω3 = 1
8π

∫
θ,φ
a2 sin θ dθ dφ

∞∑
n=0

(n− 1)ān+2P 1
n(− cos θ)

a3 sin θ e3 · (er × us). (3.31)

In order to integrate this some spherical geometry, shown in fig. 3.7, is re-
quired to express the slip velocity in terms of the lab spherical basis that the stress
tensor is written in. By the spherical cosine law the swimmer polar angle θs satisfies

cos θs = cosα cos θ + sinα sin θ cosφ, (3.32)
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while the basis vectors are related by a rotation about the sphere normal,

sθ = cos Θ eθ − sin Θ eφ, sφ = sin Θ eθ + cos Θ eφ, (3.33)

where, using the spherical sine law,

sin Θ ≡ sinα sinφ
sin θs

, cos Θ ≡
√

1− sin2 α sin2 φ

sin2 θs
. (3.34)

Since the stress tensor is axisymmetric in this case the integral over φ has the effect
of azimuthally averaging the tangential slip velocity, giving

Ω3 = 1
4

∫
θ,φ
a2 sin θdθ dφ

∞∑
n=0

(n− 1)ān+2P 1
n(− cos θ)

a3 sin θ e3 · 〈er × us〉φ. (3.35)

where, using the addition theorem for Legendre polynomials [155],

〈er × us〉φ ≡
1

2π

∫ 2π

0
dφ (er× us) =

∑
l

Pl(cosα)Vl(cos θ)
(
Bleφ − aCleθ

)
. (3.36)

This will be explained in more detail in Chapter 5, where a similar procedure will
be used to calculate exact three-dimensional solutions for squirming near a wall
(compare fig. 5.5 with fig. 3.7); there it will be desirable to include higher-order
modes to resolve the near-field behaviour, so the slip velocity will again be re-
expressed in a basis coinciding with that of the integration kernel.

Finally, using orthogonality of the Legendre polynomials, the rotation about
the wall normal is computed to be

Ω3 =
∞∑
n=2

CnPn(cosα)(−1)n (n− 1)
(2n+ 1)

(
a

2h

)n+2
, (3.37)

agreeing with, and generalising, eq. (3.26). Other components of motion follow in
much the same way, although the calculations are not shown here. We find that

U3 =
∞∑
l=0

(−1)l+1Pl(cosα)
[

3(l − 1)(l + 1)
2(2l − 1)(2l + 1)

( a
2h
)l(

2Bl − lAl
)

− (l + 3)
(2l + 1)(2l + 3)

( a
2h
)l+2(

2l(l + 2)Bl + (l + 1)(l2 − l − 3)Al
)]
, (3.38)
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U1 =
∞∑
l=0

(−1)l+1
[ 3(l − 1)l

2(2l − 1)(2l + 1)
( a

2h
)l
− (l + 1)(l2 − l − 3)

(2l + 1)(2l + 3)
( a

2h
)l+2]

AlP
1
l (cosα),

(3.39)

aΩ2 =
∞∑
l=0

(−1)l+1
[ 3(l − 1)2

(2l − 1)(2l + 1)
( a

2h
)l+1
−2(l + 2)(l2 − l − 3)

(2l + 1)(2l + 3)
( a

2h
)l+3]

AlP
1
l (cosα).

(3.40)
We have so far not succeeded in obtained a closed expression for the components
U1 and Ω2 driven by tangential slip Bl, although we have reduced both to the
expressions

U1(Bn) =
∑
l

∫ π

0
dθ sin θ3ā2

4π

[((1 + 2ā2 + 3ā cos θ)(cos2 θ − sin2 θ)
2(1 + ā2 + 2ā cos θ)5/2

+ 5(1 + 2ā cos θ)(ā+ cos θ)ā sin2 θ

2(1 + ā2 + 2ā cos θ)7/2

)
〈cosφ cos ΘVl(cos θs)〉φ

+ (ā+ cos θ)(1 + 2ā cos θ)
2(1 + ā2 + 2ā cos θ)5/2 〈sinφ sin ΘVl(cos θs)〉φ

]
Bl (3.41)

and

Ω2(Bn) =
∑
l

∫ π

0
dθ sin θ3ā2

4π

[((1 + 2ā2 + 4ā cos θ) cos2 θ − 1
2(1 + ā2 + 4ā cos θ)

(1 + ā2 + 2ā cos θ)5/2

+ 5(1 + 2ā cos θ)(ā+ cos θ)ā sin2 θ

2(1 + ā2 + 2ā cos θ)7/2

)
〈cosφ cos ΘVl(cos θs)〉φ

+ (ā+ cos θ)(1 + 3ā cos θ)
2(1 + ā2 + 2ā cos θ)5/2 〈sinφ sin ΘVl(cos θs)〉φ

]
Bl. (3.42)

All the azimuthal dependence is contained in the angled braces, which denote an
integral over φ from 0 to 2π. Just as we have seen in eqs. (2.6) and (2.6), this
indicates what contributions to the slip velocity result in motion. The rest of the
integrand is axisymmetric and may be expanded in Legendre polynomials as before.

These expansions demonstrate the versatility of the reciprocal theorem: using
just the solutions for a point force and torque near a wall we have derived a complete,
albeit approximate, description of the interaction of a spherical organism with any
axisymmetric slip velocity with a solid boundary.

We emphasise that the above have been calculated for completeness. The
fast spatial decay of higher-order behaviour decays means that, while neat, these
contributions become influential only as the contact limit is approached, in which
case the point-singularity approximation is not valid. Nevertheless some important
facts are highlighted. The angular dependence of each squirming mode is described
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by a Legendre polynomial of the same order as the squirming mode, of degree zero for
motion about or along the wall normal and degree one for motion parallel to the wall.
Just as the flow field due to a squirming mode of order l has a contribution decaying
as r−l and one as r−(l+2) [75, 76], each squirming mode gives two contributions to
the interaction with a wall, with the same spatial decay.

3.5 Squirming in confined geometries

In many real-world cases swimming microorganisms exist in strong confinement.
This could be thin films [156–158], channels [48] or porous media [159]; the human
gut alone contains up to 500 different species of bacteria, and about ten times as
many bacterial cells as there are eukaryotic cells in the entire body [160]. The
complexity and diversity of these environments hinders mathematical modelling,
particularly if exact solutions are desired; however, the long-standing interest in
Green’s functions for Stokes flow for a variety of geometries means several solutions
exist which enable swimmer problems to be tackled in an approximate fashion, as
explained in § 3.2. We now consider one such solution.

Following an approach analogous to that of Blake [120], Liron and Mochon
[121] found the solution for a Stokeslet between two infinite parallel plates. This
involves an infinite array of reflections of the Stokeslet, as illustrated in 3.8(b),
supplemented by an auxiliary solution which satisfies any outstanding boundary
conditions. Although the solution has a closed form, the authors have not found
a way to express it in terms of fundamental singularities. This solution was then
used to model an array of cilia between two plates by modelling each cilium as a
distribution of point forces [152], a theoretical approximation of a ciliated tubule
such as the male ductus efferentes. The explicit solution for a Stokeslet in a pipe
was subsequently also found [124] and applied to biologically-motivated transport
problems [125].

Here we will show that this solution may be used to construct a stress tensor
to calculate motion in this confined geometry. This allows, for instance, the calcu-
lation of flow inside the channel due to activity on the surface, although this has
already been investigated in depth by the much more detailed approach of modelling
cilia using point forces [152]. However, we may also find the swimming behaviour in
a channel, as well as the interaction of a swimmer with an imposed active pumping,
and compare the results to those seen for a single wall. Understanding of swimming
between parallel plates is of particular relevance to experimental biology, where
confinement between a pair of microscope slides is commonplace [45]. Paramecium
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has been observed to follow an oscillating trajectory when confined to the narrow
space between two plates [161]; this has recently been analysed in detail numerically
by Shum and Gaffney [162] and de Graaf et al. [163] in studies that provide a central
point of comparison for the results that will be shown in this section. In particular
it was found that pushers follow unstable oscillating trajectories which grow in am-
plitude and lead to collisions with the plates, while pullers follow damped oscillatory
trajectories which converge to a linear path along the middle of the channel; this is
perhaps to be expected as a result of the time-reversal duality between pushers and
pullers. The analogous two-dimensional case of a disc swimming in an infinite fluid
strip of finite width has been studied by Crowdy and Davis [139], although only for
one type of slip velocity corresponding to a stresslet.

Firstly we will compute the Stokes flow due to a point torque in this channel
geometry; this is done by analogy to the original calculation of the Stokeslet [121],
and completes the solution so that all components of motion may be found. As
far as we are aware this is a new result. Then we will present the leading-order
components of motion of a spherical squirmer, of very small size compared to the
separation of the plates, and discuss the behaviour, in particular comparing with
the results for a single wall shown in § 3.4.

3.5.1 A rotlet between two plates

As we have seen before in eq. (2.13), the flow at x due to point torque T at y is
given by the rotlet,

u = 1
8πµ

T × (x− y)
|x− y|3

, p = 0. (3.43)

The pressure is constant for any axisymmetric azimuthal flow [114], and in an un-
bounded fluid any axis is an axis of symmetry so the rotlet has no pressure gradients
associated with it.

Now consider a rotlet between two no-slip plates. We know from the well-
established results for point-singularities near a single no-slip wall that the leading-
order image singularity for a rotlet is a rotlet of equal and opposite strength, located
an equal distance from the wall [147]. If the point torque is aligned with the normal
to the wall this completes the solution; otherwise there are additional higher-order
image singularities. We start with this contribution. For two walls, we have an
infinite number of reflections, of alternating sign. Having written this down we will
seek to add an auxiliary solution to the flow field which is regular everywhere in the
fluid, to satisfy any unresolved boundary conditions.
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Figure 3.8: Setup for a point singularity between two plates, adapted from Liron
and Mochon [121]. (a) A point-singularity is located at the point (y1, y2, h) between
two plates at which the flow vanishes, at x3 = 0 and x3 = H. (b) The locations of
the reflected singularities of order n that form the initial guess of the solution. Red
singularities have the same sign as the singularity in the channel, blue singularities
have the opposite sign. The n = 0 term (yellow region) is the image system at a
wall, while the full reflection scheme takes the yellow region to be a unit cell of size
2H in the x3 direction. This periodic structure allows the solutions to be Hankel
transformed trivially.

Reflections of the source

Consider a flat wall located at x3 = 0, and another at x3 = H, as shown in fig. 3.8.
A point torque of unit strength is located at (y1, y2, h), with 0 < h < H. Reflections
of this singularity of opposite strength are located at

Rn ≡ (x1 − y1, x2 − y2, x3 + h+ 2nH), Rn ≡ |Rn|, (3.44)

while those of equal strength are at

rn ≡ (x1 − y1, x2 − y2, x3 − h+ 2nH), rn ≡ |rn|, (3.45)

where n runs over all integers in both cases. Introducing Einstein notation, where
once more Greek letter indices run over α, β, · · · = {1, 2} and Latin letters run over
all three directions, the flow field, vi, due to this infinite array is given by

vi = 1
8πµεijkTj

∞∑
n=−∞

[
rn,k
r3
n

− Rn,k
R3
n

]
, p = 0. (3.46)
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Since all rn and Rn lie on a line along e3, the components parallel to the plates are
the same, rn,α = Rn,α ≡ rα ∀n and eq. (3.46) may be written

vi = 1
8πµεijαTjrα

∞∑
n=−∞

[
1

(ρ2 + r2
n,3) 3

2
− 1

(ρ2 +R2
n,3) 3

2

]

+ 1
8πµεij3Tj

∞∑
n=−∞

[
rn,3

(ρ2 + r2
n,3) 3

2
− Rn,3

(ρ2 +R2
n,3) 3

2

]
(3.47)

where ρ =
(
(x1− y1)2 + (x2− y2)2)1/2 = (rαrα)1/2 is the cylindrical radius. Now we

make use of the Lipschitz integral [164],

(ρ2 + τ2)−1/2 =
∫ ∞

0
J0(λρ)e−|τ |λdλ. (3.48)

Differentiating this gives the identities

(ρ2 + τ2)−3/2 =
∫ ∞

0

λ

ρ
J1(λρ)e−|τ |λdλ =

∫ ∞
0

λ

|τ |
J0(λρ)e−|τ |λdλ, (3.49)

which allow the flow field to be written as

vi = 1
8πµTj

∞∑
n=−∞

∫ ∞
0

λ

[
εijα

rα
ρ
J1(λρ)

(
e−|rn,3|λ − e−|Rn,3|λ

)
(3.50)

+ εij3J0(λρ)
(

sgn(rn,3)e−|rn,3|λ − sgn(Rn,3)e−|Rn,3|λ
)]

dλ. (3.51)

It now becomes necessary to split the solution into two parts, one for x3 > h

and the other for x3 < h, to deal with the discontinuity in the flow at x3 = h, ρ = 0.
From eq. (3.44)-(3.45) we have that

sgn(Rn,3) =
{

+1, n ≥ 0
−1, n < 0

and sgn(rn,3) =


+1, n > 0,
sgn(x3 − h), n = 0,
−1, n < 0.

, (3.52)

giving the flow field

vi = εij3Tj
4πµ

∫ ∞
0
λJ0(λρ) sinhλh

sinhλH coshλ(H − x3) dλ

+ εijαTj
4πµ

rα
ρ

∫ ∞
0

λJ1(λρ) sinhλh
sinhλH sinhλ(H − x3) dλ, (3.53)
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for x3 > h and

vi = −εij3Tj4πµ

∫ ∞
0
λJ0(λρ)sinhλ(H − h)

sinhλH coshλx3dλ

+ εijαTj
4πµ

rα
ρ

∫ ∞
0

λJ1(λρ)sinhλ(H − h)
sinhλH sinhλx3dλ, (3.54)

for x3 < h; these solutions coincide on x3 = h, except at ρ = 0 where they are
singular. On the plates the flow should vanish; here we have

vi(x3 = H) = εij3Tj
4πµ

∫ ∞
0

λJ0(λρ) sinhλh
sinhλH dλ (3.55)

on the top plate and

vi(x3 = 0) = −εij3Tj4πµ

∫ ∞
0

λJ0(λρ)sinhλ(H − h)
sinhλH dλ (3.56)

on the bottom plate. Hence to complete the solution we must find an auxiliary flow
which is regular everywhere in the channel, and opposite to these boundary values
on the plates. However the flow solution due to a point torque normal to the walls
is complete, as is the 3-component of the flow due to a parallel torque.

Auxiliary solution

The requirement is to find a flow field w and a pressure $ satisfying

∇$ = µ∇2w, ∇ ·w = 0, ∇2$ = 0,

w(x3 = 0, H) = −v(x3 = 0, H),
(3.57)

so that the full solution is given by

u = v +w, p = $. (3.58)

As done elsewhere [78, 121, 147] we shall solve this auxiliary problem in Fourier
space. If we have cylindrical symmetry so that ϕ depends only on ρ then the two-
dimensional Fourier transform,

ϕ̂(λ1, λ2, x3) = 1
2π

∫ ∞
−∞

∫ ∞
−∞

ϕ(r1, r2, x3)ei(λ1r1+λ2r2)dr1 dr2, (3.59)

is equivalent to the Hankel transform,

ϕ̂(λ, x3) =
∫ ∞

0
ρJ0(λρ)ϕ(ρ, x3) dρ, ϕ(ρ, x3) =

∫ ∞
0

λJ0(λρ)ϕ̂(λ, x3) dλ, (3.60)
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where λ ≡ (λ2
1 + λ2

2) 1
2 . The reverse Fourier transform is

ϕ(r1, r2, x3) = 1
2π

∫ ∞
−∞

∫ ∞
−∞

ϕ̂(λ1, λ2, x3)e−i(λ1r1+λ2r2)dλ1 dλ2. (3.61)

The previous use of the Lipschitz integral ensured the boundary conditions for the
auxiliary solution, eqs. (3.55)-(3.56), are expressed as Hankel transforms. Fourier-
transforming the Stokes equations gives

−iλαδiα$̂j + δi3
∂

∂x3
$̂ = µ

(
∂2

∂x2
3
− λ2

)
ŵi, (3.62)

while the continuity equation becomes

−iλαŵα + ∂

∂x3
ŵ3 = 0. (3.63)

Since the pressure must be harmonic,
(
∂2

∂x2
3
− λ2

)
$̂ = 0, (3.64)

it has the general form

$̂ = B0 sinhλ(H − x3) + C0 coshλ(H − x3), (3.65)

where B0 and C0 are some complex constants. Finally, the Fourier-transformed
boundary conditions are

4πµŵi(λ,H) = −εij3Tj
sinhλh
sinhλH , 4πµŵi(λ, 0) = εij3Tj

sinhλ(H − h)
sinhλH (3.66)

Inserting eq. (3.65) into the Stokes equations, (3.62), we find that

2µŵi = Bi sinhλ(H − x3) + Ci coshλ(H − x3)

+
(
B0δi3 + iδiα

λα
λ
C0

)
x3 sinhλ(H − x3)

+
(
C0δi3 + iδiα

λα
λ
B0

)
(x3 −H) coshλ(H − x3), (3.67)

for some as-yet undetermined complex vectors B and C, and insisting on incom-
pressibility finally gives the linear system

C0 = λHB0 + λB3 + iλαCα, B0 = −λHC0 + λC3 + iλαBα. (3.68)
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The solution of eq. (3.68) with the boundary conditions (3.66) is

2πCi = ε3jiTj
sinhλh
sinhλH , (3.69)

2πC0 = iε3βjTjλβ
(
sinhλh sinhλH − λH sinhλ(H − h)

)
(H2λ2 − sinh2 λH)

, (3.70)

2πB0 = iε3βjTjλβ
(
λH coshλ(H − h)− coshλh sinhλH

)
(H2λ2 − sinh2 λH)

, (3.71)

2πB3 = iε3βjTjλβH cothλH
(
sinhλh sinhλH − λH sinhλ(H − h)

)
(H2λ2 − sinh2 λH)

, (3.72)

2πBα = ε3αj
coshλh
sinhλH

+ ε3βj
λαλβ
λ2

λH coshλH
(H2λ2 − sinh2 λH)

(
coshλh− λH coshλ(H − h)

sinhλH

)
. (3.73)

As expected, these coefficients are all zero when the rotlet points along the plate
normal.

Now we need to transform back to real space. The pressure is

2π$̂ = −iεβ3jTjλβA$(λ, x3) (3.74)

where

A$(λ, x3) =
(
λH sinhλ(h− x3)− sinhλH sinhλ(H − h− x3)

)
(H2λ2 − sinh2 λH)

, (3.75)

so the real-space pressure is

2π$ = εβ3jTj
2π

∫ ∞
−∞

∫ ∞
−∞

(−iλβ)A$(λ, x3)e−i(λ1r1+λ2r2)dλ1 dλ2 (3.76)

= εβ3jTj
2π

∫ ∞
−∞

∫ ∞
−∞

∂

∂rβ
A$(λ, x3)e−i(λ1r1+λ2r2)dλ1 dλ2 (3.77)

In the second line the differentiation may be taken outside the integration so that
the integral is cylindrically symmetric, allowing it to be Hankel-transformed:

2π$ = εβ3jTj
∂

∂rβ

∫ ∞
0

λJ0(λρ)A$(λ, x3) dλ

= ε3αjTj
rα
ρ

∫ ∞
0

λ2J1(λρ)A$(λ, x3) dλ. (3.78)

For the flow field it is best to consider the different components separately. The
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normal flow in Fourier space is

4πµŵ3 = iε3βjTjλβA(3)(λ, x3), (3.79)

where

A(3)(λ, x3) =
{
λH2 sinhλ(H − h) sinhλx3

(H2λ2 − sinh2 λH) sinhλH
+ λx3H sinhλ(h− x3)

(H2λ2 − sinh2 λH)

−x3 sinhλH sinhλ(H − x3 − h)
(H2λ2 − sinh2 λH)

− H sinhλx3 sinhλh
(H2λ2 − sinh2 λH)

}
,

(3.80)

so in real space we have

4πµw3 = ε3αjTj
rα
ρ

∫ ∞
0

λ2J1(λρ)A(3)(λ, x3) dλ. (3.81)

Finally, the parallel flow is

4πµŵα = ε3βjTj

(sinhλ(H − x3 − h)
sinhλH δαβ + λαλβA(α)(λ, x3)

)
, (3.82)

in Fourier space, where

A(α)(λ, x3) =
{
H2 coshλ(H − h) sinhλx3

(H2λ2 − sinh2 λH) sinhλH
− x3H coshλ(h− x3)

(H2λ2 − sinh2 λH)

+x3 coshλ(H − x3 − h) sinhλH
λ(H2λ2 − sinh2 λH)

− H sinhλx3 coshλh
λ(H2λ2 − sinh2 λH)

}
.

(3.83)

Thus in real space it is

4πµwα = ε3βjTj

∫ ∞
0

{
δαβJ0(λρ)sinhλ(H − x3 − h)

sinhλH

+
[
δαβ

λ

ρ
J1(λρ)− rαrβ

λ2

ρ2 J2(λρ)
]
A(α)(λ, x3)

}
λdλ.

(3.84)

This completes the solution for the rotlet. This supplements the existing solution for
a Stokeslet, so that trajectories of a swimmer between two plates may be calculated
using the reciprocal theorem.
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3.5.2 Stress tensor

In order to use this result together with the reciprocal theorem we need to calculate
the stress tensor by differentiating our various flow components. The idea is the same
as in § 3.2: we expand the stress tensor about the centre of the (small) swimmer,
retaining as much of the tensorial structure as possible.

Hence, we will calculate the stress tensor corresponding the rotlet solution
we have just calculated (with the torque henceforth written with a tilde, to empha-
sise that it corresponds to the conjugate solution), as well as that for the Stokeslet
calculated by Liron and Mochon [121], and evaluate them at the point (y1, y2, h),
corresponding to a zeroth order expansion. The auxiliary solution, being regular ev-
erywhere in the channel, will not pose us problems; however, the flow corresponding
to the rotlet array, given in eqs. (3.53)-(3.54), is singular at this point. As before,
this singularity, and the analogous one in the stress tensor corresponding to the
Stokeslet in this geometry, give the motion in an unbounded fluid, and is neglected.
The terms that are left fully characterise the interactions with the geometry.

The flow due to the rotlets not in the channel, ṽ, is given by

4πµṽi = εijkT̃j
2

∫ ∞
0

{
δk3J0(λρ)∂A0

∂x3
− δkαrα

λ

ρ
J1(λρ)A0

}
dλ, (3.85)

where
A0 =

[sinhλx3
sinhλH e−λ(H−h) + sinhλ(H − x3)

sinhλH e−λh
]

(3.86)

and the total back flow, ũ, is

ũ = ṽ +w, p = $, (3.87)

where the auxiliary solution is the same as before. The stress tensor σ̃ corresponding
to this back flow is given by

4πσ̃ = −4π$ I + 4πµ
(∇ũ+ (∇ũ)T

)
. (3.88)

After some rather tedious algebra we arrive at the expressions

[
σ̃ · er

]
i

= 1
8πaT̃3ε3jier3erj

∫ ∞
0

∂A0
∂x3

λ

ρ
J1(λρ)dλ+O[a2] (3.89)

47



h/H

|"|

0.0 0.2 0.4 0.6 0.8 1.0

10-4

0.001

0.010

0.100

Figure 3.9: Fractional error |ε| of the approximate integral eq. (3.96) compared to
numerical integration of eq. (3.93)

and

[
σ̃ · er

]
i

= 1
8π T̃β(ε3iβer3 + ε3kβδi3erk)

∫ ∞
0

[
λ2J0(λρ)coshλ(h− x3)

sinhλH e−λH

− λ

ρ
J1(λρ)

[
A0 + λ

∂A(α)
∂x3

+ λA(3)

]]
dλ+O[a] (3.90)

for the stress tensors corresponding to torques pointing normal and parallel to the
plates. The tensorial structure in these expressions is exactly the same as in the
leading-order stress tensors used to calculate rotational motion near a single wall,
eqs. (3.19) and (3.20).

These stress tensors are approximated by evaluating at the location of the
swimmer, x3 = h, ρ = 0, and retaining only the leading order term in the swimmer
size a. This procedure is valid as long as the integral above is uniformly convergent;
unfortunately we have not yet been able to demonstrate this. This then allows the
limit-taking and integration to be exchanged.

Intrepidly assuming this can be done, we can take the limit of the integrand
using the identity

lim
ρ→0

ρ−nJn(λρ) = λn

(2n)!! , (3.91)

which gives the leading-order contributions in an expansion in the swimmer’s size
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and allows eq. (3.89) to be evaluated as

[
σ̃ · er

]
i

∣∣∣x3→h
ρ→0

= 1
8πaT̃3ε3jier3erj

∫ ∞
0

λ3 sinhλ(2h−H)
2 sinhλH dλ+O[a2]

= − 3aT̃3
128πH4 ε3jier3erj

(
ζ
[
4, hH

]
− ζ

[
4, 1− h

H

])
+O[a2]. (3.92)

In the same limit the stress tensor for parallel rotation, eq. (3.90), becomes

[
σ̃ · er

]
i

∣∣∣x3→h
ρ→0

= − 1
8π T̃β(ε3iβer3 + ε3kβδi3erk)

∫ ∞
0

λ2

2

[coshλ(H − 2h)
sinhλH

− 3e−λH
sinhλH + λ2H2 coshλH

(λ2H2 − sinh2 λH) sinhλH
− 2λH cosh2 λh

(λ2H2 − sinh2 λH)

− 2λh sinhλH sinhλ(H − 2h)
(λ2H2 − sinh2 λH)

+ sinhλH coshλ(H − 2h)
(λ2H2 − sinh2 λH)

]
dλ+O[a]. (3.93)

The first two terms under the integral are readily integrated using

1
sinhλH = 2

∞∑
n=0

e−(2n+1)λH , (3.94)

but we have been unable to integrate the remaining terms. Therefore we approxi-
mate again, by replacing the denominator by

(λ2H2 − sinh2 λH)−1 → − sinh−2 λH. (3.95)

This approximation is appropriate for large λ, but even at λ = 0 the integrand has
the correct limit of zero in the approximation. With this in place the integral may
be evaluated. A plot of the error of this approximation, compared to a numerical
integration performed by Mathematica, is shown in fig. 3.9 and is under 10% in the
entire range 0 ≤ h ≤ H. Finally, with these approximations in place the integral in
eq. (3.93) is

∫ ∞
0

λ2

2

[2λh sinhλ(H − 2h)
sinhλH − 3e−λH

sinhλH + 2λH cosh2 λh

sinh2 λH
− λ2H2 coshλH

sinh3 λH

]
= 3

8H3

(
ζ
[
3, hH

]
+ ζ

[
3, 1− h

H

]
− 4ζ[3]

)
, (3.96)

so that the integration kernel for the calculation of rotations parallel to the plates
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Figure 3.10: The rotation of a squirmer between two plates for a range of plate
separations. Asymptotic one-wall limit shown as grey dotted line. (a) Parallel
rotation Ω2. (b) Normal rotation Ω3. Dashed line indicates change of sign.

is

[
σ̃ · er

]
i

= − 3T̃β
64πH3 (ε3iβn3 + ε3kβδi3nk)

(
ζ
[
3, hH

]
+ ζ

[
3, 1− h

H

]
− 4ζ[3]

)
+O[a].

(3.97)

3.5.3 The motion of a squirmer between two plates

Rotation

Now, finally, we may find the behaviour of a swimmer between two plates. The stress
tensors have been heavily approximated, but are valid for a very small swimmer not
close to either plate, a

H �
h
H . Integrating the stress tensors against a slip velocity

expanded in squirming modes, eq. (3.21), we find the rotations

aΩ2 = a3

8H3

(
ζ
[
3, hH

]
+ ζ

[
3, 1− h

H

]
− 4ζ[3]

)(B2 −A2)
5 P 1

2 (cosα) +O[a4] (3.98)

Ω3 = a4

16H4

(
ζ
[
4, hH

]
− ζ

[
4, 1− h

H

])C2
5 P2(cosα) +O[a5], (3.99)

with the extra two powers of a coming from the integration measure. Since

ζ
[
n, hH

]
=
∞∑
k=0

(
h
H + k

)−n
→ (h/H)−n + ζ[n] as h

H
→ 0, (3.100)

we can take the limit of eqs. (3.98) and (3.99) as the top plate is taken to infinity,
H →∞, finding that they coincide exactly with the expressions calculated for inter-
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Figure 3.11: The translation of a squirmer between two plates for a range of plate
separations. Asymptotic one-wall limit shown as grey dotted line. (a) Parallel
translation U1. (b) Normal translation U3. Dashed line indicates change of sign.

action with a single wall, (3.25) and (3.26). A comparison is shown in fig. 3.10. It can
also be seen that these expressions are symmetric and antisymmetric respectively
under h/H → 1− h/H, as expected.

Translation

Using the solution of Liron and Mochon [121] for a point force in a channel, a similar
procedure to that outlined in § 3.5.2, again omitting the tedious algebra, leads to
the expression for the stress tensor corresponding to a point force,

σ̃F̃ij = F̃3
4π

∫ ∞
0

dλ
[
2δij

(
(A3 +Ak4)λ

ρ
J1(λρ)−A6J0(λρ)

)

+ δi3δj3

(
∂

∂x3

(
λ
∂A0
∂λ
− 2A0 + 2A2

)
J0(λρ)− 2(A3 +Ak4)λ

ρ
J1(λρ)

)]

+ F̃α
4π (δi3δjα + δiαδj3)

∫ ∞
0

dλλ
ρ
J1(λρ)

(
A3 +Aj4 −

∂A1
∂x3

)
+O[a], (3.101)

where A1, A2, A3, A
j,k
4 , A6 are functions of λ, h,H, x3 given explicitly by Liron and

Mochon [121]. Finally, approximating these integrals as before where necessary
(assuming uniform convergence of the integrand) and integrating the result against
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a slip velocity, the leading-order translational motion is found to be

U1 = a2

H2
(B2 −A2)

5 P 1
2 (cosα)

[
− 1

12

(
ζ
[
2, hH

]
− ζ

[
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H

])

− 1
3
(
3 h
H

(
1− h

H

)
− 1

)(
ζ
[
4, hH

]
− ζ

[
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H

])

− 1
3
h
H

(
1− h

H

)(
1− 2 h

H

)(
ζ
[
5, hH

]
+ ζ

[
5, 1− h

H

])]
+O[a3] (3.102)

U3 = − a2

H2
(B2 −A2)

5 P2(cosα)
[

3
2
(
1− 2 h

H

)
ζ[3] + 2

3

(
ζ
[
2, hH

]
− ζ

[
2, 1− h

H

])

− 3
4
(
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H

)(
ζ
[
3, hH

]
+ ζ

[
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])
+ 1

12
(
33 h

H

(
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)
− 8

)(
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[
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[
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3
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H

(
1− h

H

)(
1− 2 h

H

)(
ζ
[
5, hH

]
+ ζ

[
5, 1− h

H

])]
+O[a3]. (3.103)

Once again using eq. (3.100) these expressions coincide with the one-wall results,
eqs. (3.23) and (3.24), in the limit H →∞. The magnitude of the translation speed
is shown for a variety of gap widths in fig. 3.11. As can be seen in these figures, the
motion changes sign as the swimmer’s position crosses the centre of the channel, as
may be verified by exchanging h and H − h in eqs. (3.102) and (3.103). This is a
consequence of the head-tail symmetry of the squirming modes A2 and B2.

To this level of approximation the propulsive modes A1, B1 do not result
in any interaction with the plates. However, adding a self-propulsion speed in the
direction of the head’s orientation α it is possible to write evolution equations for
a squirmer. Trajectories of two such squirmers, a puller and a pusher, are shown
in figs. 3.12 and 3.13 respectively. While the pusher rapidly crashes into one of
the two plates, the puller travels for a longer distance along the channel before
crashing or settling into the stable trajectory parallel to the plates in the middle of
the channel. The existence of such a trajectory was also reported by the numerical
study of de Graaf et al. [163], who included higher-order singularities in order to
avoid collisions with the wall and found oscillatory behaviour down the channel
observed in vivo by Jana et al. [161].

The inset of fig. 3.13 shows the evolution of orientation along a trajectory
for a pusher and a puller. The pusher reorients itself so the head-tail axis is parallel
to the plates; the drawing in of fluid perpendicular to this axis results in attraction
to the nearest plate, and also means swimming parallel to the plates is unstable.
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Figure 3.12: Trajectories of a contractile swimmer of radius a = 0.01H between
two plates for initial orientation α(t = 0) = nπ/12, n ∈ {1, 2, . . . , 12}. As found
by de Graaf et al. [163] pullers have a stable trajectory along the middle of the
channel.

In contrast the puller exhibits a stable trajectory parallel to the plates because the
expulsion of fluid normal to the swimming direction pushes it away from the plates.
Otherwise, the orientation tends to evolve so that the head-tail axis is normal to
the plates, resulting in collision.

Despite the lack of mathematical rigour, the approach demonstrated in this
section has given valuable results, which reduce to the expected expressions when
one of the plates is taken infinitely far away. Furthermore the behaviour found, and
illustrated in figs. 3.12 and 3.13, compares favourably to that found in the detailed
numerical study of de Graaf et al. [163]. We nevertheless emphasise that these results
are preliminary, in particular assuming that the integrals performed are uniformly
convergent and can thus be approximated in the way shown. More careful analysis
is required to check the swimming behaviour in a channel. Numerical integration
could be used to provide a better estimate, while the collision dynamics with the
plates could be investigated more thoroughly by including the source-dipole term to
the integration kernel to more accurately represent the swimmer’s shape.

3.6 Discussion

The reciprocal theorem provides a simple and effective technique for harnessing
solutions to the Stokes equations to calculate swimmer interactions. While the de-
scription obtained is only approximate, the fast decay of the higher-order terms that
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Figure 3.13: Trajectories of an extensile swimmer of radius a = 0.01H between
two plates for initial orientation α(t = 0) = nπ/12, n ∈ {1, 2, . . . , 12}. There is
strong wall attraction, as reported elsewhere for extensile swimmers [65]. When the
swimmer is aligned with the wall normal there are two fixed points where the self-
propulsion speed matches the repulsive effect of the stresslet. By symmetry, these are
the same distance from the nearest plate (in this case, at h = 0.653H,h = 0.347H).
Inset: trajectories of an extensile (red) and a contractile (blue) swimmer with the
same boundary condition, showing evolution of orientation. The puller aligns with
the wall normal, while the pusher aligns parallel to the wall, as reported else-
where [47, 65]. The attraction to the wall of the extensile swimmer is perpendicular
to the swimming direction, resulting in the kinked trajectory.

describe microscopic detail means that the agreement is good up to a small number
of body sizes from the swimmer; indeed, even for an organism like Chlamydomonas,
which propels itself by beating a pair of flagellae of length comparable to its body
and therefore is not readily described as a squirming sphere, Drescher et al. [130]
find that microscopic detail only becomes important at a distance of less than seven
body sizes (with the caveat that the flow outside this near-field region is at most
1% of the magnitude at the swimmer’s surface and therefore almost negligible).

Here two Stokes drag solutions have been used, namely Blake & Chwang’s
classic image systems for a point force and torque near an infinite plane [147], and
Liron’s solution for a Stokeslet between two parallel plates [121], which is here
supplemented by the analogous rotlet, an apparently new result. The interaction
with a plane represents the most basic of possible interactions, as well as being
of interest in its own right; furthermore an object larger than a swimmer can be
expected to act as a wall if the separation is smaller than the object’s size. The
motion between parallel plates is relevant for the variety of experiments that are
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confined between two microscope slides [37, 45, 47] and has as a limit the interaction
with a single wall, meaning the effect of increasing confinement is easy to assess by
comparison.

Several other existing solutions lend themselves to the treatment demon-
strated in this chapter. In particular, the solution for a Stokeslet outside a sphere
by Oseen, later reproduced by Higdon [70], could be used to calculate interactions
between swimmers, providing an alternative to the multipole expansions of Ishikawa
et al. [67]. The solution for point singularities near a fluid interface [122, 123]
could be used to calculate the swimming near a free surface, which has been ex-
amined in two dimensions using conformal maps [83] and in three using multipole
expansions [18] or numerics [149], and may be particularly relevant for understand-
ing biofilm formation [49]. Finally, there exists a solution for pipe flow due to a
Stokeslet [124]. If a corresponding solution for the rotlet could be found in this
geometry, as was done for the flow between two plates here, we would have a pow-
erful tool for investigating swimming or transport in a pipe, of potential relevance
to problems in medicine, particularly fertility [126] and respiratory disease [125];
this problem has attracted attention recently [163, 165], and the reciprocal theorem
provides a useful way to attack it, although, regrettably, not in this thesis.
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4
Exact solutions in two dimensions

Chapter 3 showed how the reciprocal theorem can be used to find approximate
results for the interaction. However it is also valuable in obtaining exact solutions.
We first demonstrate this in two dimensions, where a complete solution is available,
and then extend to three. We look at the motion of a swimming disc in geometric
confinement. We shall solve two cases: firstly, the interaction with a wall; then,
inside a fluid region of finite volume with a circular boundary. Finally, interaction
between two discs in an infinite fluid is discussed but not solved, due to mathematical
issues with the conjugate solution.

4.1 Hydrodynamics in two dimensions

This chapter will explore some exact results in two dimensions using the reciprocal
theorem and the classic solutions for a pair of discs in Stokes flow [107, 117]. There is
a precedent for these results in the work of Crowdy, who inspired this research [81,
82], although here we make some generalisations of the geometry, and consider
an arbitrary axisymmetric swimmer model. The conjugate solution had first been
derived independently [166] and later related to that of Jeffrey and Onishi [107].

As well as conferring significant computational convenience, allowing study
of problems that are intractable in higher dimensions, working in two dimensions is
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appropriate in a number of regimes, such as those confined to a fluid surface [167]
or in a thin planar region. There is a relatively small but wide-ranging literature
of active swimming problems in two dimensions. A notable example is Crowdy’s
point-singularity model of swimmer near a wall [127, 140] which reproduced and
explained the observed trajectories of a robotic floating swimmer [28, 168]. This
model was later solved exactly [81]. Other examples include swimming under a free
surface [83], near a corner [128] or gap in a wall [169] and inside a semi-infinite
strip [139]. As well as the two-dimensional version of the squirmer model [78],
other propulsion mechanisms studied explicitly include self-electrophoresis [94, 99],
self-diffusiophoresis [82] and mixed stress and slip boundary conditions [170]. Stud-
ies of deforming two-dimensional bubbles [171, 172] have been used to study the
hydrodynamics of cells with changing shape [173].

It is common to formulate two-dimensional problems using complex analy-
sis [148], with space described by the complex coordinate z and its conjugate z,

z ≡ x1 + ix2, z ≡ x1 − ix2. (4.1)

Under this formalism a vector is described by a complex number, with the compo-
nents of the vector in the Cartesian directions given by its real and imaginary parts.
If we have two vectors a, b represented by the complex numbers a, b then their scalar
and vector products are given by

ab =
(
Re[a]Re[b] + Im[a]Im[b]

)
+ i
(
Re[a]Im[b]− Re[b]Im[a]

)
≡ a · b+ i(a× b)3. (4.2)

The generalisation of eq. (4.2) to three dimensions led Hamilton to his discovery of
the quaternions [148]. Since a and b are coplanar their cross product is purely in
the e3 direction. Hence when working with this representation of vectors as complex
numbers vector products will be written as scalars.

For a two-dimensional flow (u, v, 0), here written u+ iv, incompressibility is
identically satisfied for all flows that are the curl of the field (0, 0, ψ) such that

u = − ∂ψ
∂x2

, v = ∂ψ

∂x1
. (4.3)

(although not all flows may be represented in this way – for example, any flow
containing sources or sinks of fluid is not divergence-free everywhere). The scalar
quantity ψ is called the streamfunction [174].
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Taking the curl of the Stokes equations, eq. (1.1), gives

∇×∇2u = ∇2(∇× (∇×ψ)
)

= ∇2(∇(∇ ·ψ)
)
−∇2∇2ψ = 0. (4.4)

Therefore in two dimensions the Stokes equations reduce to the scalar biharmonic
equation,

∇4ψ ≡ ∇2∇2ψ = 0, (4.5)

provided the streamfunction is divergence-free, which in this case means ∂x3ψ = 0,
obviously true for any scalar streamfunction depending only on x1 and x2.

The solution of the biharmonic equation is found as follows. The Laplacian
of the streamfunction must be harmonic,

∇2ψ = 4∂z∂zψ = a(z) + b(z), (4.6)

for some analytic functions a(z) and b(z) [148]. Integrating successively with respect
to z and z gives

2∂zψ = za(z) +B(z) + c(z) (4.7)

=⇒ ψ = 1
2
(
zA(z) + zB(z) + c(z) + d(z)

)
, (4.8)

where A,B are the antiderivatives of a, b, and c, d are arbitrary analytic functions.
Hence the general solution of the biharmonic equation depends on four functions.
Finally, the requirement that the streamfunction be real removes two degrees of
freedom, and it is conventional [175] to write the streamfunction as

ψ(z, z) = Im
[
zf(z) + g(z)

]
. (4.9)

The analytic functions f(z) and g(z) are called the Goursat functions. Once these
have been determined for a given flow the problem is solved, since from them all
other quantities of interest can be derived [175] as

p

µ
− iω = 4f ′(z), u+ iv = −f(z) + zf ′(z) + g′(z), (4.10)

where p is the pressure and ω is the vorticity,

ω ≡∇× u, (4.11)
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and where we have used the Schwarz conjugate,

b(z) ≡ b(z). (4.12)

The stress tensor may be formed explicitly by combining the pressure and
flow using eq. (1.2). However, in problems involving immersed objects it is more
useful to define the stress normal to a boundary S, or, equivalently, the force per
unit length along S. This is a vector, which may be written as a derivative with
respect to arclength along S [81] as

(σ · n̂S)1 + i(σ · n̂S)2 = 2µi dh
dS , where (4.13)

h(z, z) ≡ f(z) + zf ′(z) + g′(z). (4.14)

We comment briefly on the nature of the singularities in the Goursat functions
associated to forces and torques in two dimensions, which may be determined from
the stress tensor, (4.13). Since eq. (4.13) is a total derivative the total force FS on
S is given by

FS = {2µih(z, z)}S = {4µif(z)}S , (4.15)

where the curly braces indicate the change in the enclosed quantity over an anti-
clockwise circuit of S. The second equality is deduced noticing that, within the
fluid,

h(z, z) = 2f(z) + u+ iv. (4.16)

Then, since the fluid velocity must be single-valued everywhere in the fluid region,
the force is simply the sum of the jumps in the value of f across the branch cuts
that are traversed on a circuit. It can also be shown by similar arguments [81] that
the torque TS about a point z0, on an object with boundary S is given by

TS = 2µRe
∫
S

(z − z0)g′′(z) dz − 2µRe{z0f(z)}S . (4.17)

The first term records any point torques in the fluid, while the second term accounts
for the couple induced by point forces [127].

4.1.1 The reciprocal theorem

In two dimensions the reciprocal theorem takes precisely the same form as in three,

∑
j

Re[UjF̃j ] + Re[Ωj T̃j ] = −
∑
j

Re
[
2µi

∫
Sj

usj
dh̃
dS dS

]
. (4.18)

59



Here Sj denote the boundary components of the fluid with normal vector n̂S , and dS
is the arclength along these boundaries. Writing the right-hand side of eq. (4.18) in
this way allows it to be integrated by parts and evaluated with the residue theorem,
provided an appropriate conjugate solution is known, encoded in the function h̃,
which corresponds to the normal stress due to forces F̃j and torques T̃j .

In what follows S shall be taken to be the boundary of a disc centred at
the point z0, with an axisymmetric slip velocity us decomposed into Fourier modes
corresponding to Blake’s squirming set [78]. If ur and uθ are the radial and tan-
gential components of us, then the specification is in terms of the real coefficients
An, Bn, n ≥ 1, so that

ur =
∞∑
n=0

An cosn(θ − α), uθ =
∞∑
n=1

Bn sinn(θ − α). (4.19)

The angle α specifies the direction of the swimmer’s head-tail axis; this and the
polar angle θ are measured from the real axis so that

eiθ = (z − z0)
|z − z0|

, (4.20)

allowing the complex form of the slip velocity to be written as

us = (ur + iuθ)
(z − z0)
|z − z0|

. (4.21)

4.2 The conjugate two-disc problem

The solution for the motion of two discs in two-dimensional Stokes flow is a well-
established result. Jeffery [117] solved the flow about two rotating discs; this was
supplemented by Jeffrey and Onishi [107], who also found the flow due to translation,
with a particular focus on the limit where one of the discs is infinite in radius and
becomes a plane boundary. This solution was independently rediscovered using
conformal mapping techniques by Tchieu et al. [166], and later identified with the
Jeffrey-Onishi result for the interaction of a disc with a plane boundary [81]. Here we
derive the same solution in the same way as Crowdy [81], but generalise to two discs
in an arbitrary configuration, including where one encloses the other, and present
the solution in terms of the two-dimensional fundamental singularities of viscous
flow [127], which allows the result to be related to analogous and well-known results
in three dimensions [147].

We consider two non-slip discs of radii r1,2, as shown in fig. 4.1, centred at
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Figure 4.1: The conformal map between the z plane and the ζ plane used in this
chapter. Regions in one plane map to regions of the same colour in the other, with
the coloured frames representing infinity. Three distinct geometries are available
from this conformal map: two external discs (a), a disc in the half-space (b) and two
nested, non-overlapping discs (c). In the latter two cases the integration contour
used to calculate force or torque is equivalent for both boundaries, up to a sign
difference, since it does not enclose the singular point ζ = 1. Therefore the force
and torque on each boundary must be equal and opposite.

the points z1,2 separated by a distance d. They are dragged by forces F̃1,2 and
torques T̃1,2, resulting in translational velocities Ũ1,2 and angular velocities Ω̃1,2.
Then, in the rest frame of the fluid, the flows on the surfaces of the discs correspond
to translation plus rotation, and are given by

ũ+ iṽ =
{
Ũ1 + i (z−z1)

r1
r1Ω̃1 on |z − z1|2 = r2

1,

Ũ2 + i (z−z2)
r2

r2Ω̃2 on |z − z2|2 = r2
2.

(4.22)

These boundary conditions determine the Goursat functions f(z) and g(z) on the
surfaces of the discs. Then, since f(z) and g(z) are holomorphic functions they are
determined by analytic continuation into the fluid domain.
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4.2.1 Conformal map

A conformal transformation is one that is locally angle preserving, which is to say
that the Jacobian of the corresponding coordinate transformation is a scalar function
times a rotation matrix. While in d > 2 Liouville’s theorem limits the conformal
transformations to homotheties, isometries and inversions, in two dimensions any
analytic function defines a conformal transformation. These are of great use in two-
dimensional fluid mechanics in simplifying boundary conditions. Possibly the most
famous example is that of the flow around an airplane wing, in which a conformal
transformation maps the flow about an airfoil, with nontrivial shape, to the much
simpler case of flow about a rotating cylinder. Further examples abound in the
literature on Stokes flows about bubbles, slits and with mixed boundary conditions
[171, 172, 176, 177]. Darren Crowdy in particular has in recent years applied con-
formal transformation to a great variety of swimmer problems, such as the flow past
a wall with a gap [138] with application to swimming near such a structure [169],
exact solutions for a circular swimmer [81] and self-diffusiophoretic disc [82] near a
wall, swimming underneath a free surface [83], near a corner [128] and in a semi-
infinite strip [139]. These often rely on the point-singularity description outlined
in Crowdy and Or [127] as an approximation of the swimming stroke, modelling the
force dipole contribution that is common to force-free swimmers. Some examples
by other authors also exist. For instance Squires and Bazant [99] find solutions for
the swimming of chemically-propelled objects with non-trivial (simply connected)
shape by relating them to solutions for a disc using conformal transformations, a
procedure guaranteed by the Riemann mapping theorem.

Here the conformal transformation used is the definition of bipolar coordi-
nates, which will be outlined in more depth in Chapter 5. The standard polar grid
is the stereographic projection of the lines of latitude and longitude on S2 onto the
plane about one of the poles, whereas the bipolar grid is a stereographic projection
of the same lines of latitude and longitude about an equatorial point. Hence the two
coordinate systems are related by a solid rotation in three-dimensional space. Any
pair of lines of latitude, when projected thus, become two non-concentric circles on
the plane, with one enclosing the other if they originated on the same hemisphere
of the globe. Thus any pair of circles may be related to concentric circles. More
technically, the fluid region between two non-concentric discs is conformally equiv-
alent to a twice-punctured plane, and any such region is conformally equivalent to
an annulus [119].

Given any pair of circles in the plane, there exist two points on their common
diameter that map to each other under inversion in the circles. If the circles are
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concentric these two points are their common centre and infinity. We take their
common diameter to be the imaginary axis and define the z coordinate by placing
these two points at z = ±iR, where R is real. The Möbius transformations

z(ζ) = −iRζ + 1
ζ − 1 and ζ(z) = z − iR

z + iR, (4.23)

map the family of circles which relate the points z = ±iR under inversion to the
family of concentric circles about ζ = 0, with the real line mapped to the unit circle
and infinity to ζ = 1.

Then, if a circle of radius r1 located at z1 maps to the circle |ζ| = κ−1
1 and

another circle or radius r2 and centre z2 to |ζ| = κ2, with 0 ≤ κ1 and 0 ≤ κ2 ≤ 1,
we derive the geometry in z space as

r1,2 =
∣∣∣∣∣ 2Rκ1,2
1− κ2

1,2

∣∣∣∣∣, y1,2 = R
1 + κ2

1,2
1− κ2

1,2
,

z1 = −iy1, z2 = iy2, d ≡ y1 + y2,

(4.24)

as illustrated in figure 4.1(a). In the limit κi → 1 disc i becomes an infinite wall
(figure 4.1(b)), while if κ1 > 1 the fluid in the z plane is now the region between
two non-concentric nested circular boundaries (figure 4.1(c)).

The fluid region must be free of singularities. Hence in the ζ plane we may
only have singularities in |ζ| > κ−1, |ζ| < κ2 or at ζ = 1, which is the image of
infinity and may therefore have a divergent flow due to the Stokes paradox. When
finding the forces and torques acting on two discs this singularity structure means
that with κ1 ≥ 1, corresponding to a half-space or nested circles, the forces and
torques must be equal and opposite.

Defining the transformed Goursat functions by

F(ζ) ≡ f
(
z(ζ)

)
, G(ζ) ≡ g′

(
z(ζ)

)
, (4.25)

the boundary conditions (4.22) transform to

−F(ζ) + z(ζ)F
′(ζ)

z′(ζ)
+ G(ζ) =

Ũ1 + i
(
z(ζ)− z1

)
Ω̃1 on |ζ| = κ−1

1 ,

Ũ2 + i
(
z(ζ)− z2

)
Ω̃2 on |ζ| = κ2.

(4.26)

The problem is therefore to find F and G, which may then be transformed back
to give f and g. Using eq. (4.23), eqs. (4.26) are transformed to the ζ plane as
conditions on the circles parametrised by ζ = 1/κ2

1ζ and ζ = κ2
2/ζ, which are
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analytically continued to the entire domain, so that

−F(ζ) + z(ζ)F
′(1/κ2

1ζ)
z′(1/κ2

1ζ) + G
( 1
κ2

1ζ

)
= Ũ1 + i(z(ζ)− z1)Ω̃1 (4.27)

−F(ζ) + z(ζ)F
′(κ2

2/ζ)
z′(κ2

2/ζ) + G
(
κ2

2
ζ

)
= Ũ2 + i(z(ζ)− z2)Ω̃2. (4.28)

We rescale 4.27 by ζ → ζ/κ2
1 and 4.28 by ζ → κ2

2ζ, and subtract them to eliminate
G(ζ), giving the condition

F(ζ/κ2
1)−F(κ2

2ζ) + (1− κ2
1κ

2
2)(ζ − 1)2

ζ(ζ − κ2
1)(κ2

2ζ − 1)F
′
(1
ζ

)
= Ũ2 − Ũ1 + 2R(ζ − 1)

(
κ2

1Ω̃1
(1− κ2

1)(ζ − κ2
1) + κ2

2Ω̃2
(1− κ2

2)(κ2
2ζ − 1)

)
.

(4.29)

By (4.27) and (4.28), G(ζ) is then given by either of

G(ζ) = Ũ1 −
2κ2

1R(ζ − 1)Ω̃1
(1− κ2

1)(κ2
1ζ − 1) + F

( 1
κ2

1ζ

)
+ (ζ − 1)2(κ2

1ζ + 1)
2(κ2

1ζ − 1) F ′(ζ) (4.30)

= Ũ2 + 2κ2
2R(ζ − 1)Ω̃2

(1− κ2
2)(ζ − κ2

2) + F
(
κ2

2
ζ

)
+ (ζ − 1)2(ζ + κ2

2)
2(ζ − κ2

2) F ′(ζ). (4.31)

Finally in order to calculate the mobility matrices we need expressions for the force
and torque. Using eqs. (4.15) and (4.17), these are given by

F1,2 = ∓{4µiF(ζ)}1,2, (4.32)

T1,2 = 2µRe
[∫

1,2
dζ
(
z(ζ)− z1,2

)dG(ζ)
dζ

]
− 2µRe{z1,2F(ζ)}1,2 (4.33)

Note that if κ1 < 1 then under the conformal transformation the boundary of disc
1 is inverted so the integrations to calculate force and torque on this disc change
sense and pick up a minus sign.

The general solution to this problem was found by Tchieu et al. [166] to be
of the form

F(ζ) = F0 log ζ + Fαζ + Fβ
ζ

+ Fγ
ζ − 1 , (4.34)

by expanding eq. (4.27)-(4.28) in partial fractions and matching to the Goursat func-
tions. Crowdy [81] also used this solution, showing that it is identical to the much
older solution by Jeffrey and Onishi [107] in which the conformal transformation,
eq. (4.23), was implicit through the use of bipolar coordinates.

What does eq. (4.34) physically correspond to? Without yet evaluating the
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unknown constants we may transform back to the z plane to get a better idea of
what this flow field is. Combining eq. (4.34) with the conformal map, eq. (4.23) we
find the flow field has singularities at the focal points z = ±iR and centres z = z1,2 of
the discs. These singularities are identified with fundamental singularities of Stokes
flow and the ansatz may be expressed as a singular part u∗ and a part analytic
everywhere, ua. Then,

u+ iv = u∗ + ua, (4.35)

with the singular flow given by

u∗ = F0Stokeslet[z − iR]−F0Stokeslet[z + iR]

−2iR
(
F0 −

Fα
κ2

1
−Fβκ2

1

)
Rotlet[z − iR]

−2iR
(
F0 + Fα

κ2
1

+ Fβκ2
1

)
Rotlet[z + iR]

+2iR
(
F0 + Fα

κ2
1
−Fβκ2

1 −
κ2

1Re[Fγ ]
(1− κ2

1)2

)
Rotlet[z − z1]

+2iRFβ
(
Stresslet[z − iR]− iRDipole[z − iR]

)
−2iRFα

(
Stresslet[z + iR] + iRDipole[z + iR]

)
,

(4.36)

using the definitions of the Stokeslet, rotlet, stresslet and source-dipole listed by Crowdy
and Or [127], and the analytic flow by

ua = − iRe[Fγ ]
R

(z − z1) +
[
Fα

1− κ2
1

κ2
1
−Fβ(1− κ2

1)− 2F0 log[κ1]
]
. (4.37)

Although the Jeffery-Jeffrey-Onishi solution is well-established this representation of
the flow in terms of point singularities has not appeared elsewhere, and is instructive
in understanding the nature of this solution. The structure of eq. (4.36) shows
that we have equal and opposite forces on the two discs. This means only relative
motions can be calculated using the reciprocal theorem, since the left-hand side of
eq. (4.18) gives only U2 − U1. To calculate absolute motions using the reciprocal
theorem a Stokes drag solution with non-zero total force is needed. The flow would
diverge logarithmically with a strength proportional to the total force, and would
therefore have at least a logarithmic singularity of ζ = 1, and its reflections in
the boundaries |ζ| = κ−1

1 and |ζ| = κ2. This singularity structure involves the
Schottky-Klein prime function and its derivatives [178], which arises naturally in
several problems relating to elliptic operators in multiply-connected domains [179],
in this case the biharmonic equation in the annulus. Several attempts to overcome
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Jeffery’s paradox [117] rely on placing singularities at infinity that correspond to
a non-zero total force and torque [118, 180–182], although this not been related to
the more theoretical literature on flow in multiply-connected domains in which the
Schottky-Klein prime function arises [178, 179].

We also note from eq. (4.37) that the coefficient Fγ is associated with solid
rotation of the entire fluid domain (the imaginary part of Fγ corresponds to a
constant streamfunction and does not affect the flow field, so it may be set to zero
without loss of generality). This is a valid solution to eq. (4.22), as we shall see
later, because at no point have we insisted on an asymptotically decaying flow field,
and because the inertia of an infinite volume of fluid is, at zero Reynolds number,
negligible. This results in force-free translation and torque-free rotation of one or
both of the discs. Furthermore, as the analytic part of the flow field has a constant
contribution, we have a potentially non-zero stream at infinity; this is known as
Jeffery’s paradox [117]. This, again, will be discussed later.

4.3 A swimming disc in a confined geometry, κ1 ≥ 1

For the confined geometries corresponding to a disc next to a wall or within a circular
boundary, shown in figs. 4.1(b,c), the forces and torques are equal and opposite, so
only relative motions and rotations in the swimmer problem may be determined.
This is not a problem since in these cases one of the boundaries defines a frame of
reference. Furthermore, the fact that the fluid is bounded regularises the solution
and means the Stokes paradox does not arise.

Combining the ansatz (4.34) with the condition (4.29) determines F(ζ) and
G(ζ), with the frame of reference chosen by setting Ũ1 = Ω̃1 = 0. Then, eqs. (4.32)
and (4.33) allow the resistance matrix to be calculated as

Im[F̃2]
Re[F̃2]
T̃2

 = 4πµ


M11 0 0

0 M22 M32

0 M23 M33




Im[Ũ2]
Re[Ũ2]

Ω̃2

 , (4.38)
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where

M11 = 1
(1−κ2

1κ
2
2)

(1+κ2
1κ

2
2) + log[κ1κ2]

, M22 = −κ1κ2
K

(
r1
r2

+ r2
r1

)
, (4.39)

M23 = M32 = (1− κ2
1κ

2
2)

K

r2
2

2R, (4.40)

M33 = 1
K

(
(1− κ2

1κ
2
2)2

(1− κ2
1)(1− κ2

2)r
2
2 + r1r2κ1κ2

(
1 + (1 + κ2

1κ
2
2)

(1− κ2
1κ

2
2) log(κ1κ2)

))
, (4.41)

and
K = (κ2

1κ
2
2 − 1)− κ1κ2

(
r1
r2

+ r2
r1

)
log(κ1κ2). (4.42)

The resistance matrix is symmetric, which can be proven to be a general property
of motion in a viscous fluid using the reciprocal theorem [88] (in linear elasticity this
result is called the Maxwell-Betti theorem [93]). For a disc in the half space, given by
the limit κ1 → 1 and r1 →∞, the mobility matrix is diagonal, with M23 = M32 = 0,
as found by Jeffrey and Onishi [107] and Crowdy [81], and its entries are

M11 = 1
(1−κ2

2)
(1+κ2

2) + log(κ2)
, M22 = 1

log(κ2) , M33 = −(1 + κ2
2)

(1− κ2
2)r

2
2, (4.43)

Armed with this solution, we are now able to apply the reciprocal theorem.
Given a disc with surface slip velocities us swimming in a force-free and torque-free
fashion and transforming the integral (4.18) to the annulus in ζ space, we obtain

Re[F̃2]Re[U2 − U1] + Im[F̃2]Im[U2 − U1] + T̃2(Ω2 − Ω1) =

4πµRe

 ∮
|ζ|=κ2

us2H′2(ζ) dζ
2πi

 (4.44)

where the stress function H′2(ζ) is related to the Stokes drag solution, using (4.16),
by

H′2(ζ) = 2F ′(ζ) + iz′(ζ)Ω̃2 = 2Fα + 2F0
ζ
− 2Fβ

ζ2 −
2(Fγ +RΩ̃2)

(ζ − 1)2 . (4.45)
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Figure 4.2: The image systems for point force and torque near a wall in two dimen-
sions, after Blake and Chwang [147]. These have the same qualitative structure as
their three-dimensional analogues.

Inverting this system we find that the ansatz parameters may be expressed as

F0 = − F̃2
8πµ, Fγ = − R(1− κ2

1κ
2
2)

4πµr2
1(1 + κ2

1κ
2
2) T̃2 −

R2(1− κ2
1κ

4
2)

2πµr2
1(1− κ2

2)(1 + κ2
1κ

2
2)Re[F̃2]

Fα = κ2
1
κ2

2
Fβ = κ2

1
8πµ(1 + κ2

1κ
2
2)

(
F̃2 −

2Re[F̃2]
(1− κ2

2) − T̃2

)
(4.46)

and the disc’s rotation is

Ω̃2 = − (1− κ2
1κ

2
2)2

4πµκ1r1(1− κ2
2)(1 + κ2

1κ
2
2)Re[F̃2]− (1− κ2

1κ
2
2)(r−2

1 + r−2
2 )

4πµ(1 + κ2
1κ

2
2) T̃2. (4.47)

In the half-space r1 →∞ so Fγ → 0. Hence the flow field may be described purely
in terms of flow singularities as in eq. (4.36). Furthermore in the limit κ2 → 0
we obtain the two-dimensional analogues of the image systems for point forces and
torques near a wall originally given by Blake and Chwang [147] (although this is
a rather convoluted way to obtain this result: a procedure for a direct calculation
of these image systems was given by Crowdy and Or [127], who used it to find the
interaction of a stresslet with a wall and model the swimming of a particular floating
robotic device [28]). These image systems are illustrated schematically in fig. 4.2.

Now introducing a squirming set on the surface of the disc, as in eq. (4.19),
where α denotes the angle the swimmer’s head-tail axis makes with the real line,
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evaluation of the integral (4.44) gives the motions

Re[U2] =
∑
n

κn−1
2

[(2κ2
2(1− κ2

1)
(1 + κ2

1κ
2
2) − n(1 + κ2

2)
)
An

+ n
(1− κ2

1κ
2
2)(1 + κ2

2)
(1 + κ2

1κ
2
2) Bn

]
sinn

(
α+ π

2
)

(4.48)

Im[U2] =
∑
n

κn−1
2

[(2κ2
2(1 + κ2

1)
(1 + κ2

1κ
2
2) + n(1− κ2

2)
)
An

− n(1− κ2
1κ

2
2)(1− κ2

2)
(1 + κ2

1κ
2
2) Bn

]
cosn

(
α+ π

2
)

(4.49)

Ω2 =
∑
n

2κn2
r2

[(
n− (1− κ2

1κ
2
2)

(1 + κ2
1κ

2
2)

)
An +

(
1− n(1− κ2

1κ
2
2)

(1 + κ2
1κ

2
2)

)
Bn

]
sinn

(
α+ π

2
)

(4.50)

The results we give here extend the analysis of Crowdy [81], who considered a
disc with surface activity corresponding to the squirming mode B2 near a wall, to
arbitrary squirming motions and to arbitrary geometries with κ1 ≥ 1.

4.3.1 Dynamics

Now we may transform back to real space and find the trajectories corresponding
to these evolution equations. We will consider the case of a wall and a concave
boundary separately, since different coordinate systems are convenient for each. For
a wall we have

R =
√
y2 − r2

2, κ2 =
y −

√
y2 − r2

2

r2
, κ1 = 1

U2 = ẋ+ iẏ, Ω2 = α̇

(4.51)

where x, y are the Cartesian coordinates parallel and normal to the wall.
For a concave boundary of radius r1 we define the swimmer’s position using

the polar coordinate (d, φ) relative to the centre of the tank. The motion can only
depend on the orientation relative to the radius, so we must replace α by α − φ.
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Figure 4.3: (a) Trajectory of a squirmer with B1 = 1 in real space for a variety of
initial conditions. (b) Trajectories in phase space. (c) Trajectory of a squirmer with
B2 = 1 in real space for a variety of initial conditions. (d) Trajectories in phase
space, showing the periodic orbits reported by Crowdy [81].

Finally, to transform the motions to real space we use

R =

√
d4 + r4

1 + r4
2 − 2(d2r2

1 + d2r2
2 + r2

1r
2
2)

2d ,

κ1,2 = ±
d2 + r2

1,2 − r2
2,1 +

√
d4 + r4

1 + r4
2 − 2(d2r2

1 + d2r2
2 + r2

1r
2
2)

2dr1,2
,

U2 = dφ̇− iḋ, Ω2 = α̇.

(4.52)

A detailed analysis of these dynamical systems could at this point follow, in
the spirit of Or and Murray [28] and Crowdy [81], and indeed would be straightfor-
ward, given the solution (4.50); we feel this is not an undertaking likely to lead to
tremendous insight into general squirmer behaviour. Instead we attempt to charac-
terise the behaviour by exploring a number of trajectories for specific examples.
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The behaviour of a swimmer with the tangential modes B1 and B2 is shown
in fig. 4.3. In the former case, which gives self-propulsion, the interaction with the
wall is short-ranged and leads to deflection and scattering for all initial configura-
tions except those with an initial orientation exactly normal to the wall, as can be
seen in the phase portrait, fig. 4.3(b). B2 on the other hand, the surface activity
studied by Crowdy [81], shows periodic bound trajectories, as had also been earlier
predicted by point-singularity models [127] and seen in a particular floating robotic
swimmer [28].

Since the radial modes A1 and A2 correspond to deformations it is physically
unrealistic for them to take a constant value. Instead we consider the simplest possi-
ble activity with these contributions oscillating: a squirmer of unit radius deforming
to a side-to-side to a shape somewhat resembling a jelly-bean, as shown in fig. 4.4(a)
on page 78, with a radial slip velocity

ur = 0.1 sinω1(t− π) sin(θ − α) + 0.2 sin 2ω1(t− π/2) sin 2(θ − α). (4.53)

While time-averaging this would result in zero activity, the interaction with the wall
causes a gradual realignment of the swimmer’s axis parallel to the wall and eventual
collision for all initial conditions examined. Two of these trajectories, both in real
space and in parameter space, are shown in fig. 4.4(b),(c) and fig. 4.4(d),(e), and
demonstrate a drift towards the wall. In this case a more detailed treatment of
an explicitly deforming boundary is needed to determine the accuracy of the slip
velocity, since the deformation has been taken to be only one order of magnitude
smaller than the swimmer’s size; in three dimensions the slip velocity due to radial
deformations of such large size is not well-described by the linearised description
used here [183]. Studies of a deforming bubble in Stokes flow would provide a way
to do this [171, 172].

A more biologically realistic model is Blake’s swimmer [78], undergoing a
short-wavelength, periodic deformation of the shape,

rs(t) = a
[
1 + ε

∑
n≥2
An(t) cosn(θ−α)

]
, θs(t) = θ+ ε

∑
n≥1
Bn(t) sinn(θ−α), (4.54)

with

AN = ε1
ε

cos νt, AN+1 = ε2
ε

sin νt,

BN = ε3
ε

cos νt, BN+1 = ε4
ε

sin νt, (4.55)
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inspired by multiflagellates such as Paramecium which propel themselves using a
metachronal wave of beating cilia [151]. Then the squirming set for such a swimmer
is found by projecting the deformations onto the surface of the sphere; the explicit
squirming set is given in tables 2.1 and 2.2. In this case we have taken the model
parameters to be N = 20 and ε1 = −ε2 = −ε3 = ε4 = 0.05r2. A consequence of
the structure of the activity is that the dipolar contributions to the slip velocity
are purely periodic in time, and therefore zero in a time averaged description, so
that a squirmer of this form is neither a pusher nor a puller. This in turn means
the interaction with a wall results only in reorientation and deflection, as may be
seen in fig. 4.5. A comparison of the full time-dependent model and a time-averaged
description shows that there is very little difference in trajectories, even when the
separation with a surface is very small. This is because the swimming speed is of
order ε2νr2, while one time period of the squirming action is 2π/ν. Hence in one time
period the swimmer translates by a displacement around two orders of magnitude
smaller than its size, and the propagation speed of the surface metachronal wave is
much smaller than the swimming speed.

The behaviour of a small swimmer inside a circular tank has the same qual-
itative features as the swimming near a wall. Thus the B2 modes, shown on the
left-hand side of fig. 4.6(a), show similar periodic orbits following the edge of the
tank. The right-hand side of the same figure shows the behaviour of constant A2

behaviour, and is shown for comparison with the results of Davis and Crowdy [128],
who found very similar trajectories, which reorient and stop on impact, for a swim-
mer modelled by a dipole singularity with higher-order image corrections. Fig. 4.6(b)
shows the motion of a simple puller (blue) and pusher (red), demonstrating the sym-
metry under time-reversal: the red trace followed backwards is the same as the blue
trace, up to a reversal of swimming direction, as demonstrated schematically in
fig 2.3. A Blake-type metachronal swimmer again undergoes deflection, with the
time-dependence of the swimming stroke becoming important close to contact and
changing the deflection angle (fig. 4.7).

4.4 Two external discs

The flow about two non-enclosing cylinders was solved by Jeffery [117], but not
given in general except for the special case of two counter-rotating cylinders of equal
size (the general case, completed but unpublished by Jeffery, was given explicitly
much later by Smith [184]). This was used to demonstrate what has since become
known as the Jeffery paradox: that two rotating cylinders generate a uniform stream
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infinitely far away, as well as a solid-body rotation of the fluid. This problem,
together with the Stokes paradox mentioned earlier, arises because the assumption
of Stokes flow is not valid at infinity. In particular, an expansion in Reynolds number
about the Stokesian limit fails where flows decay more slowly than the reciprocal
of distance [100]. Thus we expect to run into some problems. In the enclosed
geometries considered previously (κ1 ≥ 1) these problems were avoided since the
flow at infinity is either specified as a boundary condition (in the case of the wall)
or physically irrelevant (in the case of enclosing circular boundaries).

The ansatz used for the solution, eq. (4.34), features equal and opposite forces
on the boundaries. This avoids the Stokes paradox, since far away the effect of the
two opposing forces cancels out, at the expense of limiting the utility of possible
solutions. Nevertheless when used with the reciprocal theorem we are still able to
resolve relative motions, and thus characterise interactions. On the other hand,
following the same solution scheme as used in the previous section runs into deeper
problems. In particular, while there is a non-zero force and torque on each of the
two cylinders, the force and torque acting on any portion of the fluid containing
both cylinders is zero [180, 181, 185]. Thus we do not have sufficient freedom in our
solution to specify six components of motion, as they are driven by six forces/torques
with three constraints (that the resultant force in both planar directions and torque
on the cluster be zero).

Before discussing the resolution of this problem we demonstrate the Jeffery
solution as a limiting case of the solution presented above. In terms of the ansatz
coefficients the forces are equal and opposite, as before, and given by

F̃1,2 = ±8πµF0, (4.56)

while the torques are

T̃1,2 = −8πµy1,2Re[F0]∓ 8πµR(κ−2
1 + κ2

2)Re[α]

= −Im[z1,2F̃1,2]∓ 8πµR(κ−2
1 + κ2

2)Re[α] (4.57)

The first term in the torque corresponds to the couple induced by the tangential
force, which is perpendicular to the line of centres of the discs. It may be verified
by taking a circuit about ζ = 1 that the total torque on the system about the origin
is zero.
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The resistance matrix for the motion of the two cylinders is
Im[F̃1]
Re[F̃1]
T̃1

T̃2

 = 4πµ


MU‖ 0 0 0

0 MU⊥
r1
r2
MΩU

r2
r1
MΩU

0 r1
r2
MΩU MΩ1 MΩΩ

0 r2
r1
MΩU MΩΩ MΩ2




Im[Ũ1 − Ũ2]
Re[Ũ1 − Ũ2]

Ω̃1

Ω̃2

 , (4.58)

where
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1κ
2
2)

(1+κ2
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2
2) + log[κ1κ2]
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K
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)

MΩU = −r1r2
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(1− κ2
1κ

2
2)

K
, MΩ1,2 = (1− κ2

1κ
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(4.59)

and
K = κ1κ2

(
r1
r2

+ r2
r1

)
log(κ1κ2)− (1− κ2

1κ
2
2). (4.60)

As the ansatz (4.34) has no net force (as is clear from the expression of the flow in
terms of singularities, eq. (4.36)),

F̃2 = −F̃1. (4.61)

This system is not invertible, the resistance matrix having determinant zero. With
respect to the four components of motion shown in the resistance matrix, there is a
solution to the Stokes equations with the boundary conditions (4.22) that is force-
and torque-free, but with nonzero motion of the two discs. Consider the flow field

ũ+ iṽ = iΩ�(z − z�), (4.62)

which corresponds to solid rotation of the fluid about a point z� (this solid rotation
does not introduce any forces or torques in the zero Reynolds number limit as these
would be a result of inertia). Since this flow is not singular anywhere it is trivially
true that there is no force or torque acting anywhere. Next, on the disc surfaces the
boundary conditions are

iΩ�(z − z�) = Ũ1 + i(z − z1)Ω̃1, iΩ�(z − z�) = Ũ2 + i(z − z2)Ω̃2 (4.63)
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so
Ω̃1 = Ω̃2 = Ω�, Ũ1,2 = −iΩ�(z1,2 − z�). (4.64)

This solid-body rotation arises from the solution presented above and vanishes only
if

r2
1Ω̃1 = −r2

2Ω̃2. (4.65)

Presumably this is the reason Jeffery chose the solution of two equal counter-rotating
cylinders, which satisfies this condition, to present his paradox [117].

For the reciprocal theorem we require, ideally, a solution to the Stokes drag-
ging of the two cylinders with independent forces and torques on each one. Failing
this a solution able to isolate equal and opposite force and torque on the two cylin-
ders at least allows for relative motions to be computed. However we cannot even
do this; while the axial force, Im[F̃1] decouples from the rest of the motion, the
tangential force cannot be decoupled from the torque. We find that

T̃2 = −T̃1 −
2R(1− κ2

1κ
2
2)

(1− κ2
1)(1− κ2

2)Re[F̃1], (4.66)

so while the case F̃1,2 = 0, T̃1,2 6= 0 may be calculated, allowing determination of
relative rotations, this solution does not afford us the case T̃1,2 = 0, F̃1,2 6= 0, and
the translation may not be isolated.

Resolution of Jeffery’s paradox

As the streamfunction is a biharmonic function it may have harmonic terms added
to it. One such term, which is not separable, is the two-dimensional Green’s function
for Laplace’s equation,

log |z|. (4.67)

Clearly, derivatives of this function are also harmonic, and by consequence bihar-
monic. In his solution of the Stokes flow about two rotating discs Jeffery [117]
neglected this important term from his expansion of the streamfunction.

These extra terms had been identified in a previous paper on elastic stress in
a domain between two circular boundaries, also governed by the biharmonic equa-
tion [186], but not applied to the hydrodynamic problem. It was later recognised,
apparently independently, by Umemura [181] and Watson [118] that these forgotten
contributions to the streamfunction correspond to Stokeslets and rotlets at infinity
- in other words, allow a non-zero resultant force and torque on the cylinder cluster,
while avoiding the overall solid-body rotation that plagues any näıve attempt to
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solve the two-disc Stokes drag problem.
Since the total force on the system may now be non-zero the Stokes paradox

once again appears. Although the resolution by matching to an outer Navier-Stokes
solution has been used in the two-disc solution [180, 181] to regularise the far-field
flow (see also the work of Smith [182, 185] for discussions of the Jeffery paradox as a
limit of three-dimensional Stokes flow), as we saw in Chapter 2 the Stokes paradox
does not preclude use of the reciprocal theorem. Hence for our purposes it would
be sufficient to find just the inner solution.

4.5 Discussion

We have presented exact solutions for the interaction of a circular swimmer with a
planar or concave boundary in two dimensions. While the equations of motion of
an active disc near a wall have been given before by Crowdy [81, 82], and indeed
the present work should be viewed as an extension of these studies, we generalise to
concave geometries and account for any axisymmetric slip velocity. This is possible
thanks to the use of the reciprocal theorem, which allows the motion due to any slip
velocity to be found once a suitable integration kernel has been identified.

The conjugate solution used here is that for Stokes drag on two circular
boundaries [81, 107, 117, 166] which, by its use of bipolar coordinates, gives a
general result valid both for a interaction of a disc with a plane wall and with a
circular enclosure. By rederiving this result based on the approach of [81] we have
been able to express the solution in terms of point-singularities, connecting it to the
three-dimensional literature on singularity solutions.

We have examined the motion of a circular swimmer propelling itself by
means of surface distortions, as proposed by Blake [78], representing the metachronal
wave of microorganisms such as Paramecium and Opalina. As the squirming sets of
these organisms lack a stresslet term, A2, B2, the interaction with surfaces results in
reorientation and deflection, with the deflection angle slightly changed if a fully time-
dependent model is considered. The behaviour at a wall and a concave boundary is
qualitatively similar.

A full generalisation to non-axisymmetric slip velocities would be straightfor-
ward by supplementing Blake’s two-dimensional squirming modes, eq. (4.19) with
the antisymmetric slip velocity

ur =
∞∑
n=0

A′n sinn(θ − α), uθ =
∞∑
n=1

B′n cosn(θ − α). (4.68)
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This antisymmetric squirming set is rather simpler to write down than the full three-
dimensional expansion of slip velocity in vector spherical harmonics [77]. Equations
of motion analogous to eqs. (4.48)-(4.50) could be found, and it is expected by the
similarity of the structure of eq. (4.68) to the axisymmetric squirming set, eq. (4.19),
that the algebra will follow in the same way. This would give a full, exact solution
for all components of motion, which is not available in three dimensions, as will be
discussed in Chapter 5. In this way investigation of non-axisymmetric swimming
strategies, under-investigated in the literature, could be undertaken and would be
an illuminating extension of this work.

While the Jeffery-Jeffrey-Onishi solution may be further generalised to the
Stokes drag on two separate discs in an infinite fluid, and thus in principle be used
to calculate exact expressions for the interactions of two swimmers with each other,
this solution is known to have serious issues that hinder such use. Specifically, the
Jeffery-Jeffrey-Onishi solution exhibits zero net force and zero net torque on the
system of two discs. As a result there is no freedom to independently specify the
forces and torques, and the resistance matrix for the two discs, eq. (4.58), is singular.
Furthermore, for all choices of rotations of the two discs except r2

1Ω̃1 = −r2
2Ω̃2 the

flow corresponds to a solid-body rotation of the entire fluid domain, and is therefore
not physically realistic.

These issues are addressed in a number of papers by the addition of a point
force and torque at infinity, which allows the disc cluster to experience non-zero
resultant force and torque [118, 180, 181]. These extra point singularities at infin-
ity manifest themselves in the conformal-mapping formulation of the problem as
Schottky-Klein prime functions, which arise naturally in problems involving elliptic
operators in multiply-connected domains as a result of infinite series of reflections
in the boundaries [178]. This also results in the Stokes paradox, since the net force
in the fluid is zero, which is typically dealt with by taking the Stokes flow as an
inner solution and matching to an outer solution of the Navier-Stokes equations.
Nevertheless, as we have seen in Chapter 2 the Stokes paradox does not hinder use
of the reciprocal theorem and this additional step is not required.
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Figure 4.4: Behaviour of a ‘jelly-bean’ squirmer of unit radius with changing shape
near a wall. The slip velocity is ur = 0.1 sinω1(t − φ1) sin(θ − α) + 0.2 sin 2ω1(t −
φ2) sin 2(θ − α), with phases φ1 = π, φ2 = π/2. (a) Cycle of shapes over a time
period T . (b) Trajectory in real space with initial configuration α(0) = −0.7rad. (c)
Trajectory of coordinates and orientation in time for trajectory (b), where ∆ denotes
the difference from the initial value of a particular quantity. (d) Trajectory in real
space with initial configuration α(0) = +0.6rad. (e) Trajectory of coordinates and
orientation in time for trajectory (d).
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Figure 4.5: Some example trajectories of the motion of a time-dependent Blake-
type squirmer, as outlined in chapter 2, near a wall. The squirmer’s parameters
are N = 20, ε1 = −ε2 = −ε3 = ε4 = 0.05r2. The black trace retains full time-
dependence, while the red trace uses time-averaged squirming coefficients. The
dominance of the A1 and B1 modes means the generic behaviour is deflection. The
squirmer description breaks down if the gap between the swimmer and the wall
becomes comparable to the amplitude of the surface oscillations, since the squirming
coefficients are calculated by an expansion in this amplitude.
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Figure 4.6: (a) Behaviour of squirming modes A2 (dashed) and B2 (solid) for initial
orientations α(0) = nπ/12, n ∈ {0, . . . , 6}. At impact the B2 mode causes deflection
and scattering, while A2 leads to trapping as seen in point-singularity models [128].
(b) Swimming of a puller (blue) and pusher (red) with the same relative magnitude
of B1 and B2, indicating time-reversal symmetry. the initial orientation is the
horizontal direction, to the right.
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a. b.

0.025r2

Figure 4.7: (a) Some example trajectories of the motion of a time-dependent Blake-
type squirmer in a circular tank (red), compared to a time-averaged description
(blue). The squirmer’s parameters are N = 20, ε1 = −ε2 = −ε3 = ε4 = 0.025r2.
(b) Close-up of impact with wall, showing difference between time-dependent and
time-averaged descriptions. Collision radius shown as dotted black line. The region
shown corresponds to the small black box in (a).
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5
Exact solutions in three dimensions

In this chapter, we find exact solutions for the axisymmetric translation and rotation
of a squirmer in the presence of a spherical or planar boundary. These are valid at
any separation, both in the far-field where point singularity solutions are accurate
and in the contact limit of vanishing separation, where such approximate solutions
are not accurate. They also account for any type of squirming motion and not simply
the lowest order modes that point singularity descriptions are typically restricted
to [65, 67]. It should be noted that the behaviour of a squirmer close to a surface
has been investigated numerically by Ishimoto and Gaffney [149].

This is done using exact solutions for the conjugate Stokes drag problem.
Such solutions are available for the Stokes drag on a pair of spheres, or of a single
sphere close to a planar wall or fluid interface. The symmetries of the geometry
mean there are two independent directions, namely the common diameter of the two
spheres and any axis perpendicular to this, and the solution consists of translation
and rotation in each of these directions, so that the general motion separates into
four components that can be treated individually. The axisymmetric rotation was
solved exactly by Jeffery [114], and has since been supplemented by the closely
related solution for rotation of a sphere beneath a planar fluid interface [115, 187].
The solution for axisymmetric translation was given by Stimson and Jeffery [113]
and found to be in remarkably good agreement with experiment [188]. The special
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case of sedimentation of a sphere towards a solid plane was subsequently given a
more detailed analysis both in the limit of large separation [189] and of contact [190],
with the latter giving a comparison to results obtained from lubrication theory, while
the case of two spheres in contact translating along their line of centres was studied
by Cooley and O’Neill [191]. Several attempts to find the non-axisymmetric motions
and rotations have been unable to give the solution in a closed form; the problem
is reduced to a system of difference equations, of which an analytic solution has
not been found. Nevertheless it is possible to compute the flow to any degree of
accuracy [116, 192–197].

All of these results rely on the use of bispherical coordinates, in which any
configuration of two convex or concave spherical boundaries, as well as the interme-
diate limit of a plane, is an isosurface. This coordinate system greatly simplifies the
imposition of boundary conditions; furthermore, since it is conformally equivalent
to spherical coordinates, Laplace’s [198] and by consequence Stokes’ [117] equations
are separable.

This Chapter exhibits exact solutions for hydrodynamics interactions be-
tween spherical squirmers, using the reciprocal theorem. The derivation of the
conjugate solutions used is rather technical, and the reader primarily interested in
applications to swimmer motion is invited to skip directly to § 5.4, and refer back to
previous sections as necessary. We first introduce the bispherical coordinate system
which facilitates exact calculations on two spherical boundaries. We then demon-
strate the Stokes drag solutions that are to be used with the reciprocal theorem:
§5.2 is an exposition of Jeffery’s solution for the drag on two spheres rotating in an
axisymmetric arrangement, together with a closely related solution for the rotation
of spheres in two fluids separated by a stress-free interface, while §5.3 is a discussion
of the general solution to the Stokes equations in bispherical coordinates, and the
application to two axisymmetric translating spheres.

The motion of an axisymmetric squirmer interacting with a passive spherical
boundary is found in §5.4 using the reciprocal theorem. The contribution to the
motion from the azimuthal squirming coefficients is found explicitly for all orders and
is shown for a model organism driven by a rotating cap, while a simple extension to
case of interaction with a planar free surface discussed in §5.4.5. The meridional and
radial squirming coefficients do not at present have a general form for the interaction
valid at all orders; in §5.4.6 we calculate the interaction due to the lowest two orders
of these modes. Finally we discuss some of the limitations of the method presented
here in §5.5.
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Figure 5.1: (a) Stereographic projection of gridlines on a globe about a pole gives
a polar grid (below), while a projection about an equatorial point gives a bipolar
grid. (b) Conventions of the bispherical coordinate system (ξ, η, φ) used in this
work, related to the cylindrical basis (z, ρ, φ). The φ coordinate coincides for the
two coordinate systems.

5.1 Bispherical coordinates

In three dimensions, to perform calculations involving conditions on two spherical
surfaces it is convenient to use bispherical coordinates. These arise naturally as an
extension of the two-dimensional bipolar coordinates used in the previous chapter
by rotation about the line of separation of the two discs; this rotation is quantified
by an azimuthal coordinate.

As we shall see, this definition of bispherical coordinates is particularly con-
venient for axisymmetric configurations, such as the translation or rotation about
the separation axis, in which case the problem is effectively two-dimensional (for the
same reason, the three-dimensional Stokes streamfunction is only useful in axisym-
metric contexts [174]).

There exist several uses of the bispherical coordinate system in the swim-
mer literature, although it appears none exploit them to solve for interactions, in-
stead using them to model novel swimming strategies. For instance, [103] and [104]
constructed a theoretical model of a catalytic dimer [199, 200] composed of a self-
diffusiophoretic [30, 31] catalytic bead attached to a passive bead of ‘cargo’. Self-
propulsion results from the head-tail asymmetry and may be adjusted by changing
the relative sizes and compositions of the two beads, and is calculated using the
single-body form of the reciprocal theorem [89]. Many two-dimensional studies on
two discs [81, 82, 166] use bipolar coordinates, a planar analogue of bisphericals.
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Figure 5.2: The range of geometries allowed by the bispherical coordinate system.
The red sphere is given by ξ = ξ1, which is always taken to be positive; the other
boundary is defined by ξ = ξ2, and the sign of ξ2 determines the geometry as shown:
(a) A spherical enclosure. (b) A planar surface. (c) A solid sphere.

The closely related toroidal coordinates have also seen use in calculating the flow
about a torus [108–110], and using these solutions the swimming speed of Purcell’s
rolling toroidal swimmer [3, 12].

5.1.1 Definition of coordinates

The solution of boundary value problems on two spheres is greatly simplified by
employing a bispherical coordinate system, where these surfaces are level sets. If
z+iρ is a complex coordinate on a Cartesian grid, the bipolar coordinate grid ξ+iη
is defined by

ξ + iη = ln
[
z + iρ−R
z + iρ+R

]
, z + iρ = −R

[
sinh ξ − i sin η
cosh ξ − cos η

]
, (5.1)

where R is a positive real number. This can be thought of as a stereographic projec-
tion of the lines of latitude and longitude on a sphere about a point on the equator.
The poles map to two symmetric points. Finally, a rotation by 2π about the sym-
metry axis on which the points lie gives an azimuthal coordinate φ, which coincides
for bispherical and ordinary cylindrical coordinates. Note that this definition differs
slightly from the most common definition in the literature,

ξ + iη = ln ρ+ i(z +R)
ρ+ i(z −R) , (5.2)

which more closely matches the conformal map used in the previous chapter [113],
although the two definitions are obviously equivalent since they differ only by a
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rotation. Eq. (5.1) gives the conformal transformation used previously under the
identification eξ+iη ≡ ζ and −ρ + iz ≡ z (noting in the latter case that the z on
the left hand side is the axial coordinate while that on the right hand side is the
complex coordinate).

Surfaces of constant ξ are non-intersecting spheres of radius r = R |cosechξ|
with their centres at −R cothξ; we define the fluid as the region ξ2 < ξ < ξ1, where
ξ1 is taken to be positive. The choice of ξ2 defines the geometry: if it is positive the
fluid is the region between two nested spherical boundaries and if it is negative the
fluid is external to two spheres, while the intermediate case ξ2 = 0 represents the
half-space.

The metric in bispherical coordinates is conformal to the standard round
metric on R× S2,

dρ2 + dz2 + ρ2dφ2 = h2[dξ2 + dη2 + sin2 η dφ2], (5.3)

where
h(ξ, η) = R

cosh ξ − cos η (5.4)

is the conformal factor. This conformal equivalence means the scale factors are
immediate:

hξ = hη = h(ξ, η), hφ = h(ξ, η) sin η. (5.5)

These can be used in the usual way to compute differential operators.
We now record some useful relations between bispherical and cylindrical co-

ordinates. Since the φ coordinates coincide for both coordinate systems there is a
planar rotation about this axis that maps between (eξ, eη) and (ez, eρ) (up to a
minus sign). By our definition of the bispherical coordinates we find that

[
ez

eρ

]
= −

[
cosβ − sin β
sin β cosβ

] [
eξ

eη

]
(5.6)

where the rotation angle is defined by

cos
(
β(ξ, η)

)
≡ 1− cosh ξ cos η

cosh ξ − cos η , sin
(
β(ξ, η)

)
≡ sinh ξ sin η

cosh ξ − cos η . (5.7)

Using this transformation we derive the following properties of the bispherical unit
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vectors,
h−1∂ξeξ = sin η

R
eη, h−1∂ηeξ = −sinh ξ

R
eη,

∂φeξ = − sin β eφ, h−1∂ξeη = −sin η
R
eξ,

h−1∂ηeη = sinh ξ
R

eξ, ∂φeη = − cosβ eφ,

∂φeφ = −eρ = cosβ eη + sin β eξ,

(5.8)

which will be useful later when calculating derivatives.

5.1.2 Laplace’s equation in bispherical coordinates

As we saw in the previous chapter, solutions to the Stokes equations can be con-
structed using harmonic functions. While Laplace’s equation may be computed
using the scale factors as

∇2u = 1
h3∂ξh∂ξu+ 1

h3 sin η∂η sin ηh∂ηu+ 1
h2 sin2 η

∂φφu = 0, (5.9)

this form is not separable. We therefore establish the general form of solutions of
Laplace’s equation, ∇2u = 0, in bispherical coordinates. The following solution was
first given by Jeffery [198].

Defining a conformal metric tensor by gij = h2g̃ij , the Laplacian of a scalar
function u is given by

∇2u = 1√
det g ∂i

√
det g gij∂ju. (5.10)

Introducing a conformal scaling of the field u with weight w,

∇2u = h−3 1√
det g̃ ∂ih

√
det g̃ g̃ij∂j

(
h−w(hwu)

)
, (5.11)

= h−3
[
h1−w 1√

det g̃ ∂i
√

det g̃ g̃ij∂jhwu

− w
( 1√

det g̃ ∂i
√

det g̃ g̃ijh−w∂jh
)
hwu

+ (1− 2w)h−wg̃ij
(
∂ih
)(
∂jh

wu
)]
.

(5.12)

The last term in eq. (5.12) is eliminated by the choice w = 1
2 for the conformal

weight for any conformal metric. In this case g̃ij is the standard round metric on
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R× S2 as given in eq. (5.3),

g̃ij =


1 0 0
0 1 0
0 0 sin2 η

 . (5.13)

Substituting the explicit form of the metric Laplace’s equation in bispherical coor-
dinates takes the form

∇2u = h−
5
2

[
∂ξξ + 1

sin η ∂η sin η∂η + 1
sin2 η

∂φφ −
1
4

]
h

1
2u = 0. (5.14)

Supposing a separable solution of the form

h
1
2u = Ξ(ξ)H(η)eimφ, (5.15)

eq. (5.14) becomes

Ξ′′(ξ)
Ξ(ξ) −

1
4 = m2

sin2 η
− 1
H(η)

( 1
sin η∂η sin η∂ηH(η)

)
. (5.16)

Since this must hold for H(η) independently of ξ and for Ξ(ξ) independently of η,
the right- and left-hand sides must equal the same constant, say l(l + 1), and we
must solve

Ξ′′(ξ) =
(
l + 1

2
)2Ξ(ξ) (5.17)

and
1

sin η∂η sin η∂ηH(η) +
(
l(l + 1) + m2

sin2 η

)
H(η). (5.18)

The first of these gives an exponential dependence on ξ. The latter is Legendre’s
differential equation, with the general solution

H(η) = χ1P
m
l (cos η) + χ2Q

m
l (cos η) (5.19)

where Pml and Qml are associated Legendre functions of the first and second kind
respectively and χ1,2 are some constants. Since Qml (cos η) is divergent for η = 0, π,
corresponding to the z-axis, any solution which is to be finite on this axis can only
contain contributions from Legendre functions of the first kind. Furthermore, since
the η coordinate is periodic we retain only Legendre polynomials of integer order.
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Hence the general harmonic function in bispherical coordinates is

u = h−
1
2

∞∑
l=0

l∑
m=−l

[
al,m e(l+1/2)(ξ−ξ2) + bl,m e−(l+1/2)(ξ−ξ1)

]
eimφPml (cos η), (5.20)

where al,m, bl,m are arbitrary constants, subject only the condition that u be real.
The factors depending on ξ1 and ξ2 have explicitly been put in to reflect the fact
that we will be solving this (and other related differential equations) in the region
between ξ1 and ξ2.

5.2 Stokes drag solutions for axisymmetric rotations

5.2.1 Two rotating spheres

The general solution for axisymmetric azimuthal flows was given by Jeffery [114],
together with a number of specific examples, including the coaxial rotation of two
spheres, and was subsequently expanded upon by Kanwal [112]. Here we present
the solution for two spheres, together with a closely related solution for a sphere
rotating about the normal to a flat free surface [115, 187]. The solution may then
be used together with the reciprocal theorem to calculate the axisymmetric rotation
of a spherical squirmer close to another sphere or free surface.

For an axisymmetric, purely azimuthal Stokes flow, such as that due to a
solid of revolution rotating about its symmetry axis [114], the fluid velocity takes
the form u = uφ(z, ρ)eφ. The pressure is constant everywhere and may be taken
to be equal to zero without loss of generality, and the Stokes equation is reduced to
the scalar equation

(∇2 − ρ−2)uφ = 0. (5.21)

This equation is rather simpler to solve than the full Stokes equations and as such
several exact solutions of rotating axisymmetric objects exist in the literature, such
as ellipsoids [114], lenses and tori [112]. By an entirely analogous procedure to the
solution of Laplace’s equation shown above, the general solution of equation (5.21)
in bispherical coordinates is

h
1
2uφ =

∑
l

[
cl e(l+ 1

2 )(ξ−ξ2) + dl e−(l+ 1
2 )(ξ−ξ1)

]
P 1
l (cos η), (5.22)

where cl and dl are real constants. The force per unit area on the boundary takes
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the form

σ · n̂
∣∣∣
∂Di

= ±µ
(
h−

3
2∂ξ
(
h

1
2uφ

)
+ h−

1
2

3 sinh ξ
2R h

1
2uφ

)∣∣∣∣
ξ=ξi

eφ, (5.23)

and the torque about the common diameter is given by

Ti =
∫
ξ=ξi

ρ eφ ·
(
σ · n̂)h2 sin η dη dφ (5.24)

= ±2πµ
∫ π

0
sin η

(
h

3
2∂ξ
(
h

1
2uφ

)
+ h

5
2

3 sinh ξ
2R h

1
2uφ

)
sin η dη, (5.25)

where the integral over φ is immediate since the stress tensor is axisymmetric. The
η integral is computed as follows. Since h 1

2 is the generating function for Legendre
polynomials [154] we have

(
h

R

) 1
2

=
√

2
∑
m

e−(m+ 1
2 )|ξ|Pm(cos η), (5.26)

it follows by differentiating both sides with respect to η that

(
h

R

) 3
2

sin η = −2
3
2
∑
m

e−(m+ 1
2 )|ξ|P 1

m(cos η). (5.27)

Then, n differentiations with respect to ξ give

(
h

R

)n+ 3
2

sin η =
√

2 (−2)n+1

(2n+ 1)!!

∞∑
m=1

P 1
m(cos η)

[ 1
sinh ξ ∂ξ

]n
e−(m+ 1

2 )|ξ|. (5.28)

We shall make extensive use of equation (5.28) in evaluating integrals throughout
this chapter. In this particular case we need only consider n = 0 and n = 1,
which give us decompositions of h 3

2 and h
5
2 in Legendre polynomials of degree 1.

Combining these expansions with the integral (5.25) gives an integral over a product
of Legendre polynomials, easily evaluated using the orthogonality property∫ π

0
dη sin ηP 1

l (cos η)P 1
m(cos η) = 2l(l + 1)

(2l + 1) δlm (5.29)
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to give the torques

T1 = −4πµ(2R)
3
2
∑
l

l(l + 1)e−(l+ 1
2 )ξ2cl, (5.30)

T2 =


4πµ(2R) 3

2
∑
l
l(l + 1)e−(l+ 1

2 )ξ2cl if ξ2 > 0,

−4πµ(2R) 3
2
∑
l
l(l + 1)e(l+ 1

2 )ξ1dl if ξ2 < 0.
(5.31)

The torques are equal and opposite when the fluid is the finite volume between
nested spheres (ξ2 > 0) as a result of incompressibility.

The coefficients cl and dl are found from the boundary conditions of solid-
body rotation of each sphere. If the sphere ξ = ξ1,2 rotates about the z axis with
angular velocity ω1,2, then the flow must satisfy

h
1
2uφ

∣∣
ξ=ξ1,2

= ω1,2h
3
2 sin η

∣∣
ξ=ξ1,2

. (5.32)

Using equation (5.27) write the boundary conditions as

h
1
2uφ

∣∣
ξ=ξ1,2

= −(2R)
3
2ω1,2

∑
l

e−(l+ 1
2 )|ξ1,2|P 1

l (cos η). (5.33)

Equating (5.22) and (5.33) yields the solution scheme
[

e(l+ 1
2 )(ξ1−ξ2) 1

1 e(l+ 1
2 )(ξ1−ξ2)

] [
cl

dl

]
= −(2R)

3
2

[
ω1e−(l+ 1

2 )|ξ1|

ω2e−(l+ 1
2 )|ξ2|

]
. (5.34)

This is invertible, except for in the degenerate limit ξ1 = ξ2 in which two spheres
share a boundary, and leads to the explicit expressions

cl = −(2R)
3
2

e−(l+ 1
2 )|ξ1|ω1 − e−(l+ 1

2 )(ξ1−ξ2+|ξ2|)ω2

2 sinh(l + 1
2)(ξ1 − ξ2)

(5.35)

dl = (2R)
3
2

e−(l+ 1
2 )(ξ1−ξ2+|ξ1|)ω1 − e−(l+ 1

2 )|ξ2|ω2

2 sinh(l + 1
2)(ξ1 − ξ2)

, (5.36)

which solve the problem fully. In the contact limit ξ1, ξ2 → 0 the expressions (5.35)
and (5.36) are undefined since the denominator vanishes. However, since

1
2 sinh ξ = e−ξ

1− e−2ξ = e−ξ
∞∑
n=0

e−2nξ =
∞∑
n=0

e−(2n+1)ξ, (5.37)
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expressions (5.35) and (5.36) may be written as uniformly convergent sums,

cl = (2R)
3
2

∞∑
n=0

(
ω2e−(l+ 1

2 )
(
2(n+1)(ξ1−ξ2)+|ξ2|

)
− ω1e−(l+ 1

2 )
(
(2n+1)(ξ1−ξ2)+|ξ1|

))
, (5.38)

dl = (2R)
3
2

∞∑
n=0

(
ω1e−(l+ 1

2 )
(
2(n+1)(ξ1−ξ2)+|ξ1|

)
− ω2e−(l+ 1

2 )
(
(2n+1)(ξ1−ξ2)+|ξ2|

))
, (5.39)

allowing the torques (5.31) to be evaluated explicitly as

T1,2 = 8πµr3
1,2

∞∑
n=0

{
ω1,2

sinh3 ξ1,2

sinh3(n(ξ1,2 − ξ2,1) + ξ1,2
)

−ω2,1
sinh3 ξ1,2

sinh3(n+ 1)(ξ1,2 − ξ2,1)

}
, ξ2 < 0 < ξ1,

(5.40)

T1,2 = ±8πµr3
1(ω1 − ω2)

∞∑
n=0

sinh3 ξ1

sinh3(n(ξ1 − ξ2) + ξ1
) , 0 ≤ ξ2 < ξ1. (5.41)

5.2.2 Two rotating spheres separated by a fluid interface

Using the general solution (5.22) it is possible to construct the solution for an
axisymmetric, azimuthal flow in two phases of different viscosities µ1 and µ2 with a
spherical interface at ξ = ξ0. Here we will consider the most general case available
using bispherical coordinates, of a rotating sphere at ξ1 > ξ0 and another one
at ξ2 < ξ0, which reduces to the solution presented above when µ1 = µ2 = µ.
Alternatively, as µ2/µ1 → ∞ the interface at ξ0 becomes a solid boundary and
the flow once again corresponds to that between two solid spheres. This solution
was given by [115] for the rotation of a single sphere near a planar interface; it
had previously been noted by [187] that when two spheres of the same size rotate
with the same angular frequency about their common diamater the stress on the
midplane identically vanishes, giving the solution for a single sphere beneath a free
surface.

Suppose we have in each phase a solution of the form (5.22), so that

h
1
2u1eφ =

∞∑
l=1

(
al e(l+ 1

2 )(ξ−ξ0) + bl e−(l+ 1
2 )(ξ−ξ1)

)
P 1
l (cos η)eφ, ξ0 < ξ < ξ1, (5.42)

h
1
2u2eφ =

∞∑
l=1

(
cl e(l+ 1

2 )(ξ−ξ2) + dl e−(l+ 1
2 )(ξ−ξ0)

)
P 1
l (cos η)eφ, ξ2 < ξ < ξ0. (5.43)

The flow is driven by the rotations ω1 and ω2 on the surfaces of the two solid spheres
at ξ1 and ξ2. As before, ξ1 is taken to be positive, and the sphere it describes convex,
while the sphere at ξ2 may be convex (ξ2 < 0), flat (ξ2 = 0) or concave (ξ2 > 0).
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The flow is driven by the rotating spheres, so that

h
1
2u1,2

∣∣
ξ=ξ1,2= −(2R)

3
2ω1,2

∞∑
l=1

e−(l+ 1
2 )|ξ1,2|P 1

l (cos η). (5.44)

To match the upper and lower solutions the flow and the stress must be continuous
across the interface. The first of these conditions,

h
1
2u1

∣∣
ξ=ξ0

= W
1
2u2

∣∣
ξ=ξ0

. (5.45)

implies the relationship between the unknown coefficients

al + bl e−(l+ 1
2 )(ξ0−ξ1) = cl e(l+ 1

2 )(ξ0−ξ2) + dl. (5.46)

Flat interface, ξ0 = 0

If the fluid interface is flat, ξ0 = 0, the pressure in both phases is the same. Then the
stress on the boundary identically has no normal component so we need only match
the tangential component, which is given by (5.23). Hence the stress continuity
condition is

µ1h
− 3

2∂ξ
(
W

1
2u1

)∣∣∣∣
ξ=ξ0

= µ2W
− 3

2∂ξ
(
W

1
2u2

)∣∣∣∣
ξ=ξ0

, (5.47)

immediately giving the relation

al e(l+ 1
2 )ξ0 − bl e−(l+ 1

2 )(ξ0−ξ1) = µ2
µ1

(
cl e(l+ 1

2 )(ξ0−ξ2) − dl e−(l+ 1
2 )ξ0

)
. (5.48)

The force per unit area on the two boundaries is

σ · n̂ = µ1(h−3/2∂ξh
1/2u1 + 3 sinh ξ1

2R Ω−1/2Ω1/2u1)ξ1eφ

=
∑
l

µ1(h−3/2(l + 1/2)(ale(l+1/2)ξ1 − bl)

+ 3 sinh ξ1
2R h−1/2(ale(l+1/2)ξ1 + bl))ξ1P

1
l (cos η)eφ

(5.49)
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on ξ1, while on ξ2 it is

σ · n̂ = −µ2(h−3/2∂ξh
1/2u2 + 3 sinh ξ2

2R h−1/2Ω1/2u2)ξ2eφ

= −
∑
l

µ2(h−3/2(l + 1/2)(cl − dle−(l+1/2)ξ2)

+ 3 sinh ξ2
2R h−1/2(cl + dle−(l+1/2)ξ2))ξ2P

1
l (cos η)eφ.

(5.50)

Integrating these quantities over the spheres we find that

T1 = −πµ1(2R)3/2∑
l

4l(l + 1)al, T2 = −πµ2(2R)3/2∑
l

4l(l + 1)dl, (5.51)

with the coefficients given by

al = (2R)3/2

((
(µ1 − µ2)e(2l+1)ξ2 − (µ1 + µ2)

)
ω1 + 2µ2e(2l+1)ξ2ω2

)
(µ1 + µ2)(e(2l+1)ξ1 − e(2l+1)ξ2) + (µ1 − µ2)(1− e(2l+1)(ξ1+ξ2))

dl = (2R)3/2
e(2l+1)ξ2

(
2µ1ω1 −

(
(µ1 − µ2) + (µ1 + µ2)e(2l+1)ξ1

)
ω2
)

(µ1 + µ2)(e(2l+1)ξ1 − e(2l+1)ξ2) + (µ1 − µ2)(1− e(2l+1)(ξ1+ξ2))
,

(5.52)

with similar expressions for bl and cl. The relationship between the two viscosities
µ1 and µ2 is conveniently encoded in a single dimensionless parameter,

λ = µ1 − µ2
µ1 + µ2

. (5.53)

which can take values between between −1 and 1. At these extreme values one of
the two phases is inviscid relative to the other, while at the intermediate value λ = 0
the two phases have the same viscosity and the interface is negligible.

There does not appear to be a general resummation that regularises the
divergence of (5.52). Two special cases, however, may be resummed, namely ξ2 →
−∞ and ξ2 = −ξ1, corresponding respectively to a sphere only in one of the two
phases, and to both spheres having the same size. Therefore these choices both
represent a loss of a degree of freedom, since the two spheres may not be specified
independently. In fact we will see that in the latter case it is instructive to think of
one of the two spheres as the image of the other under reflection in the boundary.
It is worth recalling that the use of bispherical coordinates was already restrictive,
since the choice of two spheres of arbitrary size separated by a plane fixes the spatial
configuration such that the surfaces of the sphere and the intermediate plane are
level sets; hence, fixing the relative sizes of the spheres also fixes their distance from
the central plane.

93



d/r1
1 2 3

3
4ζ(3)

1

ζ(3)

µ2/µ1 = 0
µ2/µ1 = 0.5

µ2/µ1 = 1

µ2/µ1 = 2

µ2/µ1 = 1

T1

8⇡µ1!1r3
1

Figure 5.3: The torque on a sphere of radius r1 in a fluid with viscosity µ1 when
it rotates at rate ω1 a distance d from the planar interface with another fluid of
viscosity µ2. µ2 > µ1 the torque increases with approach to the boundary, while
when µ2 < µ1 torque decreases; the asymptotic approach to the free-space rotation
8πµ1ω1r

3
1 is proportional to d−3. Adapted from [115].

When there is only one sphere, ξ2 → −∞ and

al = −(2R)3/2ω1e−(2l+1)ξ1

1 + λe−(2l+1)ξ1
= −(2R)3/2ω1

∑
m

e−(2l+1)(m+1)ξ1(−λ)m

dl = 0.
(5.54)

The torque on the sphere is

T1 = 8πµ1ω1R
3∑
m

(−λ)m
∑
l

4l(l + 1)e−(2l+1)(m+1)ξ1 (5.55)

= 8πµ1ω1r
3
1
∑
m

(−λ)m sinh3 ξ1

sinh3(m+ 1)ξ1
. (5.56)

[115] studied precisely this limit, noting that “the more general problem of two
spheres one in each phase rotating with unequal angular velocities can be treated
by the same method”, as shown above.

Resummation is also possible when the two spheres have the same size and are
equally far from the interface on either side, in which case ξ2 = −ξ1 and r1 = r2 ≡ r.
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Then the coefficients become

al = (2R)3/2((λe−(2l+1)ξ1 − 1)ω1 + (1− λ)e−(2l+1)ξ1ω2)
1− e−2(2l+1)ξ1

e−(2l+1)ξ1

= (2R)3/2(λω1 + (1− λ)ω2)
∑
m

e−(2l+1)(2m+2)ξ1 − (2R)3/2ω1
∑
m

e−(2l+1)(2m+1)ξ1

dl = −(2R)3/2e−2(2l+1)ξ1(−(1 + λ)ω1 + (λ+ e(2l+1)ξ1)ω2)
1− e−2(2l+1)ξ1

= ((1 + λ)ω1 − λω2)(2R)3/2∑
m

e−(2l+1)(2m+2)ξ1 − (2R)3/2ω2
∑
m

e−(2l+1)(2m+1)ξ1 ,

(5.57)

so now the torques are given by

T1 = 8πµ1r
3∑
m

[
ω1

sinh3 ξ1

sinh3(m+ 1)ξ1
− 2(µ1ω1 + µ2ω2) sinh3 ξ1

(µ1 + µ2) sinh3(2m+ 2)ξ1

]

T2 = 8πµ2r
3∑
m

[
ω2

sinh3 ξ1

sinh3(m+ 1)ξ1
− 2(µ1ω1 + µ2ω2) sinh3 ξ1

(µ1 + µ2) sinh3(2m+ 2)ξ1

]
.

(5.58)

The first term in these is the torque close to a no-slip wall, and the other is a
reduction in the torque due to the finite viscosity of the other phase. When the two
phases have the same composition and the boundary vanishes, µ1 = µ2 = µ, this
expression becomes the rotation of two equal spheres, also given by (5.40), explicitly

T1 = 8πµr3∑
m

[
ω1

sinh3 ξ1

sinh3(2m+ 1)ξ1
− ω2

sinh3 ξ1

sinh3(2m+ 2)ξ1

]

T2 = 8πµr3∑
m

[
ω2

sinh3 ξ1

sinh3(2m+ 1)ξ1
− ω1

sinh3 ξ1

sinh3(2m+ 2)ξ1

]
.

(5.59)

Thus, by comparison with (5.56), we see that two special cases of rotation near a
planar boundary are described by an ‘image system’: when ω2 = −ω1, (5.58) is the
torque close to a no-slip wall, while the rotation close to a free surface is given by
ω2 = ω1, as noted by [187].

The more general case where ξ0 6= 0 is of interest, since it represents the
rotation of a sphere inside or outside a bubble of a different fluid; as the flow in this
case is still azimuthal and axisymmetric the pressure in each phase is constant, but
to sustain the curvature of the bubble’s membrane there must be a pressure step
across the boundary equal to the Laplace pressure inside the bubble. Taking p1 = 0,
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the stress condition on the surface is

µ1

(
h−

3
2∂ξh

1
2u1 + 3 sinh ξ

2R h−
1
2h

1
2u1

)
ξ=ξ0

eφ

=
(
p2 + 2γ sinh ξ0

R

)
eξ + µ2

(
h−

3
2∂ξh

1
2u2 + 3 sinh ξ

2R h−
1
2h

1
2u2

)
ξ=ξ0

eφ, (5.60)

so the pressure-balance condition is

p2 = −2γ sinh ξ0
R

, (5.61)

where γ is the surface tension.
We have not yet succeeded in finding a closed expression for the flow satisfy-

ing the tangential part of eq. (5.60) because the second term on each side depending
on sinh ξ0, which in the case of a planar interface vanished, cannot be expanded in
the same Legendre series as the first term, resulting in an infinite set of difference
equations determining the coefficients of the flow. It is noted that the condition
may be written in the neat form

µ1∂ξh
−1u1

∣∣∣
ξ=ξ0

= µ2∂ξh
−1u2

∣∣∣
ξ=ξ0

, (5.62)

suggesting that a different expansion of the flow may be useful.

5.2.3 The contact limit

In the limit of vanishing separation where the spheres touch, ξ1 and ξ2 both tend to
zero in a way that preserves the ratio r1/r2,

sinh ξ1 ∼ ξ1, sinh ξ2 ∼ sgn(ξ2)r1
r2
ξ1. (5.63)

In this limit (5.40) and (5.41) converge to the finite limiting values

T1,2 →
8πµr3

1r
3
2

(r1 + r2)3

{
ω1,2 ζ

(
3,
(
1 + r1,2

r2,1

)−1)− ω2,1 ζ(3)
}
, ξ2 < 0 < ξ1, (5.64)

T1,2 → ±
8πµr3

1(ω1 − ω2)
(1− r1

r2
)3 ζ

(
3,
(
1− r1

r2

)−1)
, 0 ≤ ξ2 < ξ1, (5.65)

where ζ(s, q) ≡ ∑∞n=0(n + q)−s is the Hurwitz zeta function and ζ(s, 1) ≡ ζ(s) the
Riemann zeta function. That the torque remains finite even when the two spheres
touch is due to the fact that the contact point between them has zero area.

That these limits exist may be demonstrated using elementary analysis. We
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must show that the limit of the summand exists, and that the sum is uniformly
convergent. This then allows exchange of the limit-taking and the summation op-
erations. Consider, for example,

lim
ξ→0

∞∑
n=1

sinh3 ξ

sinh3 nξ
= ζ(3). (5.66)

By L’Hôpital’s rule

lim
ξ→0

sinh3 ξ

sinh3 nξ
= 1
n3 . (5.67)

Since

sinhnξ ≥ n sinh ξ ≥ 0, ∀n ≥ 1, ξ ≥ 0

sinhnξ ≤ n sinh ξ ≤ 0, ∀n ≥ 1, ξ ≤ 0 (5.68)

we have that the summand is bounded independently of ξ,

sinh3 ξ

sinh3 nξ
≤ 1
n3 ∀ ξ, n ≥ 1, (5.69)

and therefore forms a uniformly convergent sequence by the Weierstrass M-test.
Hence the order of the limit and the summation in the original expression can be
interchanged, and

lim
ξ→0

∞∑
n=1

sinh3 ξ

sinh3 nξ
=
∞∑
n=1

lim
ξ→0

sinh3 ξ

sinh3 nξ
= ζ(3). (5.70)

All other limits of this type are found in exactly the same way and will not be shown
further.

The solution we have presented for two separate spheres is fully general and
allows any combination of torques. For use with the reciprocal theorem we require
solutions in which one or the other of the torques is zero. We have been unable to
invert (5.40) analytically to give the mobility functions for two external spheres in
general, with the exception of the limit of infinite separation where, for T2 = 0, T1 is
the usual drag on a sphere rotating with angular velocity ω1 and ω2 is the asymptotic
vorticity due to a rotlet, (d/r1)−3ω1, and in the opposite limit of contact, as in (5.64).
In practice the value of ω2 such that T2 vanishes may be computed numerically and
gives the free rotation of sphere 2 due to a torque applied to sphere 1 about their
common diameter. These free rotations are tabulated by Jeffery [114].

Where one sphere encloses the other (ξ2 > 0) the torques on the two spheres
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are equal and opposite. This means the left-hand side of (2.9), in the absence
of force, becomes T1(Ω̃1 − Ω̃2) and allows the relative rotation to be determined.
It is natural to take the concave boundary to set the frame of reference. In the
intermediate limit of a plane (ξ2 = 0) the two solutions (5.64) and (5.65) coincide.
As with the enclosed system the torque on the wall is equal and opposite to the
torque on the finite-sized sphere.

5.3 Stokes drag solution for two spheres translating about
the common diameter

The translational motion of two spheres along their common diameter was first
studied by [113] and subsequently adapted for the special case of a sphere sedi-
menting towards a planar surface [189, 190]. The approach adopted involves the
introduction of a streamfunction to solve the continuity equation by construction
and then the Stokes equations reduce to a fourth-order operator for the streamfunc-
tion. Later studies [110, 116, 146, 192, 193, 197], motivated in part by a desire to
extend to translations perpendicular to the common axis, follow the opposite ap-
proach: the Stokes equation is first solved by constructing a harmonic vector from
an appropriate combination of the flow and the pressure (u− 1

2µpx), the coefficients
of which are then to be determined from boundary conditions and the imposition
of incompressibility, resulting in a set of second-order difference equations that un-
fortunately proves analytically intractable. Our own approach here returns to the
original method of Stimson & Jeffery in that we first solve the continuity equation,
although the exact way we do this differs slightly from their approach and may be
viewed as a minor modernisation to the more explicit use of cohomological methods.
We also generalise to arbitrary translational speeds V1 and V2 and to the full range
of geometries allowed by the bispherical coordinate system.

The fluid domain is bounded by two spherical surfaces. In such a region the
continuity equation, ∇ · u = 0, has solutions where the velocity is the curl of a
vector potential and solutions that are not of this form. The latter correspond to
volume changes of the two spheres, either compressions or expansions. When the
two spheres are external to each other these may evidently be made independently,
while if one encloses the other any changes must be correlated so as to preserve
the total volume of fluid between them. In formal terms for the former case, the
second de Rham cohomology group for the fluid domain is H2

dR(R3\{pt1, pt2}) ∼= R2

and solutions of the continuity equation are characterised by a pair of real numbers
corresponding to these classes, which specify the strengths of the two sources (or

98



sinks). Representatives of the two classes may be given by converting standard
point-singularity expressions [147] into bispherical coordinates. For two sources of
equal unit strength we find

u(1,1) = 1
4π

h−1/2
√

2R3/2

{[
(1− 2 cosh ξ− cos η) sinh ξ/2

]
eξ +

[
sin η cosh ξ/2

]
eη
}
, (5.71)

while for a source-sink pair of equal and opposite unit strength we have

u(1,−1) = 1
4π

h−1/2
√

2R3/2

{[
(1−2 cosh ξ+cos η) cosh ξ/2

]
eξ−

[
sin η sinh ξ/2

]
eη
}
. (5.72)

Thus the most general flow field in this domain may be written

u = f u(1,1) + gu(1,−1) +∇×ψ, (5.73)

for an arbitrary pair of real numbers f , g and an arbitrary vector potential ψ.
Although we do not pursue it here, the full solution would constitute an interest-
ing extension with possible applications to swimming problems where there is an
exchange of volume between components of a swimmer, such as the metaboly of Eu-
glena [14]. In everything that follows we consider only two spheres of fixed volume,
corresponding to the particular solution f = g = 0.

Without loss of generality the vector potential can be chosen to be divergence-
free, ∇ ·ψ = 0 (the Lorenz gauge in electromagnetism). Then to satisfy the Stokes
equations it must be biharmonic

∇4ψ = 0. (5.74)

We emphasise that this is different to the equation solved by [113] for their stream-
function. Solutions of the biharmonic equation may be characterised as follows. If
λ is a harmonic function then zλ is biharmonic but not harmonic. The same is
true for each of the Cartesian coordinates. Thus the general solution of the scalar
biharmonic equation can be written

λ = λ1 +
(
ν1x+ ν2y + ν3z

)
λ2, (5.75)

where λ1, λ2 are arbitrary harmonic functions and (ν1, ν2, ν3) is a real constant
vector, which without loss of generality can be normalised to unit magnitude. A
general biharmonic vector is an arbitrary biharmonic scalar field in each Cartesian
direction. Of course, there is a large degree of redundancy in (5.75) since different
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choices of the constants ν1, ν2, ν3 can lead to the same biharmonic function λ when
coupled to suitable changes in the harmonic functions λ1, λ2. To the best of our
knowledge, this redundancy is properly understood in terms of sheaf cohomology
and Penrose’s twistor transform [201], although currently this lies outside our own
expertise. In the present situation, the axisymmetry of the problem allows one to
see the appropriate choices that should be made.

On grounds of axisymmetry the flow field should have components in the
axial (z) and radial (ρ) directions only (equivalently the ξ and η directions), with
no azimuthal component, and should be independent of the azimuthal angle φ. An
appropriate vector potential for such a flow has the form ψ = ψ(z, ρ)eφ (uniquely
so if we impose Lorenz gauge). We determine the scalar function ψ by writing a
suitable biharmonic vector using (5.75),

ψeφ =
[
λx1 − yλ2

]
ex +

[
λy1 + xλ2

]
ey, (5.76)

=
[
λx1 cosφ+ λy1 sinφ

]
eρ +

[
λy1 cosφ− λx1 sinφ+ ρλ2

]
eφ. (5.77)

Thus λ2 should be independent of φ, while λx1 and λy1 should contain only terms with
dependence sinφ and cosφ, respectively, and have equal and opposite coefficients.
Using (5.20) together with standard manipulations of the associated Legendre poly-
nomials, the potential can be given in the general form

h−
1
2ψ =

∞∑
l=1

(
Ale(l+ 3

2 )ξ +Dle−(l+ 3
2 )ξ +Ble(l− 1

2 )ξ + Cle−(l− 1
2 )ξ
)
P 1
l (cos η) (5.78)

for real constants Al, Bl, Cl, Dl. The boundary conditions that determine these con-
stants are that the flow should equal the constant translation speeds V1,2 ez on the
two spheres ξ = ξ1,2, and that the normal gradient of flow should vanish on their sur-
faces. These conditions may be combined into the statement∇(ρψ− 1

2ρ
2Vj)ξ=ξj = 0

[113], giving four equations to determine the four unknown coefficients, that in our
formulation reduce to the 2× 2 block-diagonal form[

(e(l+ 3
2 )ξ1 + e(l+ 3

2 )ξ2) (e(l− 1
2 )ξ1 + e(l− 1

2 )ξ2)
(2l + 3)(e(l+ 3

2 )ξ1 − e(l+ 3
2 )ξ2) (2l − 1)(e(l− 1

2 )ξ1 − e(l− 1
2 )ξ2)

] [
Al +Dle−(l+ 3

2 )(ξ1+ξ2)

Bl + Cle−(l− 1
2 )(ξ1+ξ2)

]

= R√
2


(

e−(l+ 3
2 )|ξ1|

(2l+3) − e−(l− 1
2 )|ξ1|

(2l−1)

)
V1 +

(
e−(l+ 3

2 )|ξ2|

(2l+3) − e−(l− 1
2 )|ξ2|

(2l−1)

)
V2

sgn(ξ1)
(
e−(l− 1

2 )|ξ1| − e−(l+ 3
2 )|ξ1|

)
V1 − sgn(ξ2)

(
e−(l− 1

2 )|ξ2| − e−(l+ 3
2 )|ξ2|

)
V2


(5.79)
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and[
(e(l+ 3

2 )ξ1 − e(l+ 3
2 )ξ2) (e(l− 1

2 )ξ1 − e(l− 1
2 )ξ2)

(2l + 3)(e(l+ 3
2 )ξ1 + e(l+ 3

2 )ξ2) (2l − 1)(e(l− 1
2 )ξ1 + e(l− 1

2 )ξ2)

] [
Al −Dle−(l+ 3

2 )(ξ1+ξ2)

Bl − Cle−(l− 1
2 )(ξ1+ξ2)

]

= R√
2


(

e−(l+ 3
2 )|ξ1|

(2l+3) − e−(l− 1
2 )|ξ1|

(2l−1)

)
V1 −

(
e−(l+ 3

2 )|ξ2|

(2l+3) − e−(l− 1
2 )|ξ2|

(2l−1)

)
V2

sgn(ξ1)
(
e−(l− 1

2 )|ξ1| − e−(l+ 3
2 )|ξ1|

)
V1 + sgn(ξ2)

(
e−(l− 1

2 )|ξ2| − e−(l+ 3
2 )|ξ2|

)
V2


(5.80)

Inversion is straightforward, although we will not give the explicit forms of the
coefficients Al, Bl, Cl, Dl here. For later convenience we record the expression for
the fluid velocity in the bispherical basis

u =∇×ψ =
[
h−

1
2

1
sin η∂η

(
sin η h−

1
2ψ
)
− 3 sin η

2R h
1
2 .h−

1
2ψ

]
eξ

−
[
h−

1
2∂ξ
(
h−

1
2ψ
)
− 3 sinh ξ

2R h
1
2 .h−

1
2ψ

]
eη.

(5.81)

Finally, the pressure at a point x can be computed from the flow field through the
integral

p(x) = p∞ +
∫ x

∞
dl · ∇p = p∞ + µ

∫ x

∞
dl ·∇2u, (5.82)

where p∞ is its asymptotic value, although we will not need to evaluate it explicitly
here.

The solution we have presented is equivalent to those given previously [113,
189], although it is not identical because the manner in which we have solved the
continuity equation differs slightly. This leads, for instance, to an expansion of the
vector potential in associated Legendre polynomials P 1

l , rather than in Gegenbauer
polynomials C−1/2

n+1 . In addition the final form we arrive at for determining the
coefficients Al, Bl, Cl, Dl presents the 4 × 4 problem in block diagonal form, which
we have not seen in the previous literature. We feel this offers a modest improvement.

[113] have given an elegant and compact expression for the hydrodynamic
drag on the spheres. Unfortunately, we cannot directly adopt their formula as
the vector potential we have introduced in the solution of the continuity equation
is not identical to their streamfunction. Nonetheless, the final expression for the
drag that we obtain is almost the same as theirs. It is found by integrating the
normal component of the stress (1.2) over the surfaces ξ1,2 and consists of a viscous
component Fv due to gradients of the flow, and a component driven by the pressure,

101



Fp. The former is easy to write down given (5.81),

Fv 1,2 =± 4πµ
∫ π

0
dη h2 sin η

[cosh ξ cos η − 1
cosh ξ − cos η

(1
h
∂ξuξ −

sin η
R

uη
)

+ sinh ξ sin η
2(cosh ξ − cos η)

(1
h

(∂ξuη + ∂ηuξ) + sin η
R

uξ + sinh ξ
R

uη
)]∣∣∣∣

ξ=ξ1,2

. (5.83)

The contribution of the pressure to the drag is given by the integral

Fp 1,2 = ±ez ·
∫ 2π

0
dφ
∫ π

0
dη h2 sin η (−p) eξ

∣∣∣
ξ=ξ1,2

(5.84)

= ±πµ
∫ π

0
dη h3 sin2 η (eη ·∇2u)

∣∣∣
ξ=ξ1,2

, (5.85)

where we have used the definition of the pressure, (5.82), and integrated by parts
to rewrite this in terms of the flow field which is known. Using the expression
(5.81) leads to eight separate contributions involving partial derivatives of the vector
potential and half-integer powers of the conformal factor W , which can be expanded
in associated Legendre polynomials using various derivatives of (5.26). Thus each
term in the integral is written a product of two expansions in Legendre polynomials,
and may be evaluated using orthogonality. This is a straightforward but tedious
undertaking, and eventually yields a remarkably simple form for the pressure on
each sphere,

F1,2 = ±4πµ
√

2R
∞∑
l=1

l(l + 1)
{
−(Al +Bl), ξ1,2 ≥ 0,
(Cl +Dl), ξ1,2 < 0.

(5.86)

When the fluid has a finite volume or in the limiting case of the half-space (ξ2 ≥ 0),
the net force on the fluid is zero since the contributions from the two boundaries are
equal and opposite. This is also seen for a point force in the half-space [147], which
is obtained from our solution in the limit ξ1 →∞, ξ2 → 0, with R held constant.

Since the coefficients have exponential decay in ξ1 and ξ2 the sums converge
rapidly for large separation, however the forces are divergent as the separation van-
ishes. This limit has been treated in detail by Cox and Brenner [190] for a planar
boundary. The force has a leading-order divergence of order ξ−2

i , and a subleading
harmonic sum independent of ξ, which can be regularised as a logarithmic depen-
dence on separation. Generalising their method to arbitrary curvature the forces
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Figure 5.4: A spherical swimmer of radius r1, located a perpendicular distance d
away from the surface of a shell, wall or tracer of radius r2. The swimmer surface
is parametrised by the coordinate (θs, φs) and the swimmer approaches the passive
sphere at an angle α to the common diameter.

have the limiting expressions

F1 = 12πµV1r1

(
ξ−2

1
(1 + r1

r2
)3 −

(
1 + 7 r1

r2
+
( r1
r2

)2)
5(1 + r1

r2
)3 log ξ1

)
+ constant & decaying terms, ξ2 < 0 < ξ1,

(5.87)

F1 = 12πµV1r1

(
ξ−2

1
(1− r1

r2
)3 −

(
1− 7 r1

r2
+
( r1
r2

)2)
5(1− r1

r2
)3 log ξ1

)
+ constant & decaying terms, 0 ≤ ξ2 < ξ1,

(5.88)

for small separations and V2 = 0.

5.4 Swimmer interactions

5.4.1 Squirming

The results of the previous section for Stokes drag of two spheres allow a variety of
axisymmetric swimmer motions to be determined via the reciprocal theorem. For
instance, we can explore phenomena such as the circular motion of microorganisms
such as E. coli close to planar boundaries [40, 43] and free surfaces [42, 44], the
hydrodynamics of a daughter colony of Volvox inside its parent [39], or the contact
interaction of swimmers with passive particles [156]. The contact interaction with
a plane is can also shed light on general features of interaction of a swimmer with
a large (non-spherical) obstacle, such as a channel of large diameter compared to
its size [48, 161] or a post [51]. Many of these problems have been studied asymp-
totically using leading-order point-singularity descriptions [47, 65, 67], but using
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the exact solutions for Stokes drag we can describe the behaviour for arbitrarily
small separation, enabling us to understand the role of hydrodynamics in situations
of physical contact [48, 51]. Furthermore an exact description allows to assess the
accuracy, and therefore utility, of point-singularity approximations.

The reciprocal theorem gives the motion as

Ũ1F1 + Ũ2F2 + Ω̃1T1 + Ω̃2T2 =−
∫ 2π

0
dφ
∫ π

0
h2 sin η dη (us1 · σ · n̂)

∣∣∣
ξ=ξ1

−
∫ 2π

0
dφ
∫ π

0
h2 sin η dη (us2 · σ · n̂)

∣∣∣
ξ=ξ2

, (5.89)

and clearly, since this is linear, to calculate interactions it suffices to calculate the
cases us1 6= 0,us2 = 0 and us1 = 0,us2 6= 0 separately and sum them [67]. Hence
we shall demonstrate just former of these two cases. The stress tensor is (5.23) for
the rotation, or an equivalent expression for the translation.

We consider a swimmer of radius r1 centred a perpendicular distance d away
from the surface of a passive sphere of radius r2, which may be convex, flat or concave
and we respectively term the tracer, wall or shell, as shown in fig. 5.4. The swimmer
approaches the surface at an angle α and its squirming motion is described in terms
of a local orthonormal basis {sr, sθ, sφ} and polar coordinate system (θs, φs) relative
to this direction. Its slip velocity may be decomposed into squirming modes [75] as

us =
∑
n≥1

[
AnPn(cos θs) sr +BnVn(cos θs) sθ + r1CnVn(cos θs) sφ

]
, (5.90)

where Vn(x) ≡ −2P 1
n(x)/n(n+ 1) and An, Bn and Cn are real coefficients with the

units of velocity. The free swimming speed, asymptotically far from the surface, is
Ufree = (2B1 − A1)/3 [75, 76]. The addition of the azimuthal modes Cn [77] allows
for axial rotation of the swimmer, as seen in several real microorganisms.

To perform the integral in (5.89) it is convenient to express the swimmer’s
slip velocity in bispherical coordinates. By the spherical cosine rule, the swimmer
polar angle satisfies

cos θs = cosα cosβ + sinα sin β cosφ, (5.91)

where β is given by eq. (5.7). This relationship is illustrated in figure 5.5. Then,
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the surface unit vectors are given by the transformation
sr

sθ

sφ

 =


−1 0 0
0 ∂β cos θs

sin θs
sinα sinφ

sin θs
0 sinα sinφ

sin θs −∂β cos θs
sin θs



eξ

eη

eφ

 . (5.92)

The slip velocity involves Legendre polynomials in cos θs, which can be expanded
using the addition theorem for Legendre functions [155],

Pn(cosα cosβ+ sinα sin β cosφ) = Pn(cosα)Pn(cosβ)

+ 2
n∑

m=1

(n−m)!
(n+m)!P

m
n (cosα)Pmn (cosβ) cosmφ. (5.93)

A number of proofs of this are compiled by Maleček and Nádeńık [202]. As the
stress tensor in (5.89) is axisymmetric the integral over φ can be performed first
and only affects the slip velocity, leading to the azimuthally averaged expression

〈us〉φ = −
∑
n≥1

Pn(cosα)
[
AnPn(cosβ)eξ +BnVn(cosβ)eη − r1CnVn(cosβ)eφ

]
.

(5.94)

It is already clear from (5.94) that the radial and meridional modes An and Bn

cannot drive axisymmetric rotation, since the normal stress corresponding to a
torque, (5.23), is purely azimuthal; similarly the azimuthal modes Cn cannot drive
axisymmetric translation. The dependence of the motion on the swimmer’s ori-
entation α is a purely geometric factor for each order of squirming mode, and at
large separations where higher-order modes may be neglected the orientation depen-
dence is simply P2(cosα), in agreement with point-singularity models of swimmer
interactions with walls [65, 66].

The contributions from the tangential modes, Bn, Cn, are evaluated straight-
forwardly (albeit tediously) using orthogonality of Legendre polynomials. The radial
modes, An, pick up a contribution from the pressure, which may be rewritten in
terms of the flow by integrating by parts using the identity

h2 sin(η)Pn(cosβ) ≡ − R2

n(n+ 1)∂η
[ sin η

sinh2 ξ
∂ηPn(cosβ)

]
. (5.95)

This is a generalisation of the calculation of the pressure contribution to the drag (5.85),
which corresponds to the particular case n = 1.
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Figure 5.5: If the swimmer’s head-tail axis s makes an angle α (green arc) to the
global z axis, the point (θs, φs) may be expressed in bispherical coordinates using
standard results in spherical trigonometry. The angle β (blue arc) is the rotation
mapping the orthogonal unit vectors (ez, eρ) to (−eξ,−eη).

5.4.2 Rotation

In this section we calculate explicitly the rotational motion of a squirmer close
to a surface. Combined with self-propulsion parallel to the surface this rotation
results in circling behaviour, which has been observed experimentally for flagellated
bacteria such as E. coli and Vibrio alginolyticus in close proximity to a planar
boundary [40, 43]. The effect is highly local, with the gap between the bacterium
and the wall typically much smaller than the size of the bacterium itself. While
point-singularity methods predict such behaviour just as a result of the C2 mode
and indeed agree that it should be strongly localised close to the surface, with
an inverse-fourth dependence on the separation [66], higher order modes can be
expected to play an important role at such small gap widths.

The induced rotation is calculated by performing the integral (5.89) using
the slip velocity (5.94) and stress corresponding to rotation, (5.23)

Ω̃1T1 + Ω̃2T2 = −2πµ
∑
l≥2

∞∑
i=1

r1ClPl(cosα)
∫ π

0
sin η dη P 1

i (cos η)Vl(cosβ)

×
(
h

1
2 (i+ 1

2)
(
ci e(i+ 1

2 )(ξ1−ξ2) − di
)

+ h
3
2

3 sinh ξ
2R

(
ci e(i+ 1

2 )(ξ1−ξ2) + di
))∣∣∣∣

ξ=ξ1

. (5.96)

The factor of Vl(cosβ) may be written as a polynomial of order l−1 in the conformal
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factor h,

Vl(cosβ) = 2 sinh ξ sin η
l(l + 1)

h

R
P ′l

(
cosh ξ − sinh2 ξ

h

R

)

≡ 2 sin η
l(l + 1)

h

r1

l−1∑
n=0

wn(ξ)
(
h

R

)n
, (5.97)

where the coefficients wn(ξ) are calculated using any of the various series represen-
tations of Legendre polynomials [154], so that (5.96) becomes

Ω̃1T1 + Ω̃2T2 = −2πµ
∑
l≥2

l−1∑
n=0

2R 3
2

l(l + 1)wn(ξ)
∞∑
i=1

ClPl(cosα)

×
(

(i+ 1
2)
(
ci e(i+ 1

2 )(ξ1−ξ2) − di
) ∫ π

0
sin η dη P 1

i (cos η)
(
h

R

)n+ 3
2

sin η

+ 3 sinh ξ
2

(
ci e(i+ 1

2 )(ξ1−ξ2) + di
) ∫ π

0
sin η dη P 1

i (cos η)
(
h

R

)n+ 5
2

sin η
)∣∣∣∣

ξ=ξ1

.

(5.98)

Finally, successive differentiations of the generating function (5.26) give the identity

(
h

R

)n+ 3
2

sin η =
√

2 (−2)n+1

(2n+ 1)!!

∞∑
m=1

P 1
m(cos η)

[ 1
sinh ξ ∂ξ

]n
e−(m+ 1

2 )|ξ|, (5.99)

which reduces (5.96) to a pair of integrals over orthogonal Legendre polynomials.
Performing these integrals and resumming the results we find that near a concave
shell or wall the motion is

(Ω̃1 − Ω̃2)T1 = −8πµω1r
3
1
∑
l≥2

ClPl(cosα)
∞∑
n=0

sinh3 ξ1 sinhl−1 n(ξ1 − ξ2)
sinhl+2(n(ξ1 − ξ2) + ξ1

) , (5.100)

while for interaction with a tracer it is

Ω̃1T1 + Ω̃2T2 = 8πµr3
1
∑
l≥2

ClPl
(
cosα)

×
∞∑
n=0

[
ω2

sinh3 ξ1 sinhl−1(n(ξ1 − ξ2)− ξ2
)

sinhl+2(n+ 1)(ξ1 − ξ2)
− ω1

sinh3 ξ1 sinhl−1 n(ξ1 − ξ2)
sinhl+2(n(ξ1 − ξ2) + ξ1

) ], (5.101)

where the torques are given by (5.40) and (5.41). These expressions are exact, for
any separation and any axisymmetric slip velocity. Perhaps the most experimentally
relevant limit is that of small separation, approaching contact, which we describe
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first.
To find Ω̃1, ω2 must be chosen so that T2 = 0. Conversely, choosing ω2 such

that T1 = 0 allows the tracer motion Ω̃2 to be found. With these expressions it is
then straightforward to find the limiting rotational speed when the swimmer is in
contact with the surface, again using (5.63). For a shell

Ω̃1 − Ω̃2 → −
∑
l≥2

ClPl(cosα)
l−1∑
k=0

(−1)k
(
l − 1
k

)(
1− r1

r2

)−k ζ(3 + k,
(
1− r1

r2

)−1)
ζ
(
3,
(
1− r1

r2

)−1)
(5.102)

and for a tracer

Ω̃1 → −
∑
l≥2

ClPl(cosα)
l−1∑
k=0

(−1)k
(
l − 1
k

)(
1 + r1

r2

)−k

×
[
ζ
(
3,
(
1 + r2

r1

)−1)
ζ
(
3 + k,

(
1 + r1

r2

)−1)− ζ(3)ζ(3 + k)

ζ
(
3,
(
1 + r2

r1

)−1)
ζ
(
3,
(
1 + r1

r2

)−1)− ζ(3)2

]
. (5.103)

It can be readily verified that these coincide for r1/r2 → 0 with the value

Ω̃1 → −
∑
l≥2

ClPl(cosα)
l−1∑
k=0

(−1)k
(
l − 1
k

)
ζ(3 + k)
ζ(3) , (5.104)

representing the rotation of a squirmer touching a no-slip wall.
To illustrate the near-field behaviour that can be found exactly using the

reciprocal theorem, we give a specific example of a swimmer whose slip velocity is
an azimuthal circulation within a polar cap region of opening angle θ0. Although
crude, this provides a squirmer representation of a rotating flagellar bundle, and
counter-rotating cell body. Explicitly, we take the slip velocity to be

us =
{

Ωcr1 sin θssφ, 0 < θs < θ0,

−Ωbr1 sin θssφ, θ0 < θs < π,
(5.105)

as depicted schematically in figure 5.7(a). The slip velocity within the cap region
is Ωc, which is balanced by a counter-rotation of the body, Ωb, such that the net
torque on the swimmer is zero. The squirming coefficients are given by

Cl = −(2l + 1)
4

[
Ωc

∫ θ0

0
dθ sin2 θP 1

l (cos θ)− Ωb

∫ π

θ0
dθ sin2 θP 1

l (cos θ)
]
, (5.106)

and insisting that the coefficient C1 = 0 we find that the counter-rotation required
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Figure 5.6: The rotational speed, Ω̃, due to the C2 squirming mode, in units of
C2/P2(cosα), as a function of d. (a) Near a no-slip (black) and free (red) pla-
nar boundary, compared to the d−4 decay predicted by approximate models (grey
dashed). The rotation near a free surface has the opposite sense to that near a solid
boundary. (b) Inside a shell of radius 1.2 (blue), 1.5 (grey), 2 (black) and 4 (red),
and the wall limit (dashed). Inset: behaviour at small separation. (c) Near a tracer
of radius 0.5 (orange), 1 (grey), 2 (black) and 10 (blue), and the wall limit (black
dashed).

to cancel out any net torque is

Ωb = Ωc
(2 + cos θ0)
(2− cos θ0) tan4

(θ0
2
)
. (5.107)

When θ0 = π/2 we have that Ωb = Ωc, as expected on symmetry grounds. E. coli
has a body counter-rotation measured to be on the order of one-tenth the rotation
of its flagellar bundle, with large variation between specimens [203], and inversion
of (5.107) gives an appropriate value of approximately 0.28π for θ0, which we idealise
as π/4.

The dependence of the swimmer’s rotation on its orientation at large dis-
tances is given by the slowest-decaying squirming mode, C2, and hence by P2(cosα),
which is head-tail symmetric. However in the near-field there may be significant
asymmetry in the orientation-dependence which could persist for relatively large
separations. Figure 5.7(b) shows how the orientation-dependence changes for dis-
tances up to 100 times the swimmer radius, for a model E. coli interacting with a
no-slip wall. A comparison between the interaction with a no-slip wall of a spherical-
cap swimmer calculated using all modes up to C100, and an equivalent squirming
sphere with only the dominant far-field C2 mode, is shown in figure 5.7(c) and
further illustrates the importance of including higher-order modes in calculating
near-field interactions: at separations of the order of the swimmer’s size the effect
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Figure 5.7: The behaviour of a ‘spherical cap’ type swimmer near a wall, calculated
using squirming modes up to C100. (a) Schematic of the swimmer. (b) Orientation-
dependence of rotation as a function of distance for θ0 = π/4. Rotation is normalised
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0 dα sinαPl(cosα)Ω̃. (c) Near-field discrep-
ancy between exact solution (solid) and asymptotic C2 mode behaviour (dashed) for
swimmer with θ0 = π/4 and α = π/4 (black), cosα = 3−1/2 (blue) and cosα = 0.783
(red).

of including the higher order modes can be dramatic. In the case of α = π/4 the
swimmer’s rotation changes sense as it approaches the wall. When cosα = 3−1/2

the contribution of the C2 mode is identically zero since P2(3−1/2) = 0; however
there is still motion driven by higher-order modes of non-negligible magnitude.

5.4.3 Asymptotics at large separation

The flow field generated by the Cl contribution to the slip velocity has an asymptotic
decay of d−(l+2) [77], so asymptotically the slowest-decaying contribution to the
axisymmetric rotation of a squirmer is from C2, representing a rotlet dipole. Here
we discuss the interaction of this squirming mode with a passive sphere as a leading-
order behaviour which is generic for all swimmers.

In Chapter 3 it was found that a squirmer circling parallel to a wall has
an asymptotic angular frequency proportional to C2d

−4; figure 5.6(a) shows that
this behaviour agrees with our exact solution (5.100) up to a separation of about a
squirmer diameter. The behaviour in a shell, shown in figure 5.6(b), also has this
form since the separation is always smaller than the redius of curvature of the shell.
Note that the rotation of the swimmer when it is precisely in the centre is zero by
symmetry and changes sense as the swimmer crosses between hemispheres.

The asymptotic rotation of a swimmer in the presence of a tracer may be
calculated using the leading-order forms ξ1 ∼ log(r1/d) and ξ2 ∼ log(r2/d), giving
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a decay of

Ω̃1 ∼ C2P2(cosα)r
4
1r

5
2

d9 . (5.108)

Figure 5.6(c) shows a crossover to this behaviour when the separation exceeds the
radius of the tracer. In the near-field the passive sphere resembles as a wall and we
see a d−4 dependence of the swimmer’s rotational speed. For the passive sphere (not
shown) the crossover is not seen, and the asymptotic interaction is d−4, equal to the
asymptotic vorticity generated by a rotlet dipole; thus, the dominant effect of the
C2 squirming mode is the motion of the tracer, and by superposition two squirmers
with this slip velocity would tend to move each other more than themselves.

5.4.4 Asymptotic normal rotation using a multipole reflection scheme

The fact that the asymptotic rotation goes as d−9 and not d−7 can be understood
in terms of multipole reflections [92]. At large separation the swimmer’s motion
is driven by the flow reflected in the tracer, which has the leading behaviour of a
stresslet since the tracer must remain force- and torque-free. Dimensional analysis
suggests that the reflected flow at the swimmer should have a strength going as d−6,
and therefore a vorticity of d−7, but for this case of an axisymmetric, azimuthal flow
the leading reflected flow is identically zero, so the rotation is driven by a vorticity
of d−9.

In an unbounded fluid, the flow field due to the azimuthal squirming modes
is

eφ · u =
∑
l=1

r1Cl

(
r1
r

)l+1
Vl(cos θ), (5.109)

where r is the spherical radius and eφ is defined relative to the swimmer’s head-
tail axis [77]. The slowest-decaying mode is the C2 mode, so we shall look at this
contribution. The swirling flow is

u(0) = r1C2

(
r1
r

)3
sin(θ) cos(θ)φ̂, (5.110)

where the superscript denotes the order of the reflection.
Particle 1, of radius r1 and position x1, gives a flow field as described above.

By Fáxen’s second law the rotation of particle 2, with radius r2 and position x2

with |x2 − x1| ∼ d, is

Ω2 = 1
2∇× u

(0)
∣∣∣∣
x=x2

∼ d−4, (5.111)

while its stresslet, which drives the disturbance flow since all the motion must be
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force- and torque-free, is

S(1)
2 = 20

3 πµr
3
2
(
I + r2

2
10∇

2)e(0)
∣∣∣∣
x=x2

∼ d−4 (5.112)

where e(0) is the rate-of-strain associated with u(0). The disturbance flow produced
by the rotation of the tracer is

u(1) =
(
S(1)

2 · ∇
)
· G(x− x2)

8πµ ∼ d−6 (5.113)

where
Gij(r) = 1

r
δij + rirj

r3 . (5.114)

is the Oseen tensor for a point force. In cylindrical coordinates this has the form

G = (eρeρ + eφeφ + ezez)
(ρ2 + z2)1/2 +

(
ρ2eρeρ + ρz(eρez + ezeρ) + z2ezez

)
(ρ2 + z2)3/2 . (5.115)

The rotation of the tracer is, again using Faxén’s second law, asymptotically equal
to the vorticity associated with the reflected flow u(1),

Ω1 ∼ ω(1) ∼∇× u(1), (5.116)

which by näıve dimensional analysis we would expect to decay as d−7.
The leading contribution to u(1) is proportional to

[e(0) · ∇] · G = 1
2

[(
∂ρu−

u

ρ

)(
eρ ·

1
ρ
∂φG + eφ · ∂ρG

)
+ ∂zu

(
ez ·

1
ρ
∂φG + eφ · ∂zG

)]
.

(5.117)
Using that ∂φeρ = eφ and ∂φeφ = −eρ, the gradients of the Oseen tensor are

∂ρG = −ρ(eρeρ + eφeφ + ezez)
(ρ2 + z2)3/2 +

(
2ρeρeρ + z(eρez + ezeρ)

)
(ρ2 + z2)3/2

−
3ρ
(
ρ2eρeρ + ρz(eρez + ezeρ) + z2ezez

)
(ρ2 + z2)5/2 ,

1
ρ
∂φG =

(
ρ(eφeρ + eρeφ) + z(eφez + ezeφ)

)
(ρ2 + z2)3/2 ,

∂zG = −z(eρeρ + eφeφ + ezez)
(ρ2 + z2)3/2 +

(
ρ(eρez + ezeρ) + 2zezez

)
(ρ2 + z2)3/2

−3
z
(
ρ2eρeρ + ρz(eρez + ezeρ) + z2ezez

)
(ρ2 + z2)5/2 ,

(5.118)
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and substitution into (5.117) shows that this contribution is identically zero for any
axisymmetric, azimuthal flow. The next highest order contribution to the rotation
is proportional to [

[∇2e(0)] · ∇
]
· G (5.119)

and goes as d−9, as observed. Note that this is a peculiarity of an axisymmetric
motion due to an azimuthal flow; while in principle we have a tilt α breaking the
axisymmetry, in using the reciprocal theorem the axisymmetry of the stress tensor
means the slip velocity is azimuthally averaged when the integral over the swimmer’s
surface is carried out.

5.4.5 Rotation near a free surface

An interesting application of the exact solution presented above is to find the rota-
tion of a squirmer close to a free surface. It has been hypothesised [43] and subse-
quently observed experimentally [44] that the circular trajectories of E. coli near a
free surface have the opposite sense to those near a no-slip wall. Using the known
hydrodynamic solution for the rotation of a sphere beneath the interface between
two fluid phases we find that both cases of rotation near a wall and a free surface
may be described as image systems, using the two-sphere solution presented previ-
ously. This allows the swimming close to such boundaries to be found and compared
without further calculation, and we find that the change of direction depending on
the type of boundary is generic and explained by these image systems.

If a sphere rotates beneath the flat interface between the fluid that contains it,
and another fluid of viscosity µ̃ [115], the flow may be found explicitly by supposing
an ansatz of the form (5.22) in each phase and matching flow and stress across the
boundary. Then the torque on the sphere is

T1 = 8πµω1r
3
1

∞∑
n=0

(−Λ)n sinh3 ξ1

sinh3(n+ 1)ξ1
, (5.120)

where Λ = (µ− µ̃)/(µ+ µ̃). When Λ = −1 the empty phase is infinitely viscous and
corresponds a no-slip wall; instead, when Λ = +1 the boundary is a free surface.
Since the torque (5.40) corresponding to the two-sphere solution when r1 = r2 = r

is
T1 = 8πµr3

∞∑
n=0

[
ω1

sinh3 ξ1

sinh3(n+ 1)ξ1
− (ω1 + ω2) sinh3 ξ1

sinh3(2n+ 2)ξ1

]
, (5.121)

it can be seen that the result for a free surface is recovered when ω2 = ω1 [187],
while the result for a no-slip wall is given by ω2 = −ω1. Hence a rotating sphere
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Figure 5.8: The behaviour of a ‘spherical cap’ type swimmer near (a) a wall and
(b) a free surface, calculated using squirming modes up to C100. The spatial decay
of the rotation has been removed by dividing by an α-average of the rotation, to
isolate the orientation dependence. The sense of the rotation is opposite, and the
dependence of the rotation on orientation α is smoother at a free surface than at a
wall, since higher-order modes give weaker interactions.

near a free surface has as its image system a corotating sphere which decreases the
torque compared to the free-space value, while near a wall the image system is an
antirotating sphere which increases the torque.

The rotation near a free surface may then be calculated exactly using the re-
ciprocal theorem and compared to our expressions for squirming near a wall, (5.100).
Although the activity of the squirmer generates tangential flows on the interface,
since the stress in the conjugate problem is zero there is no contribution to the
reciprocal theorem from an integral over the free surface and an expression for the
rotation is obtained immediately from (5.101) by substituting ξ2 = −ξ1 and ω2 = ω1,
giving

Ω̃1T1 = −8πµr3
1ω1

∞∑
l=2

Cl
r1
Pl
(
cosα)

∞∑
n=0

(−1)n sinh3 ξ1 sinhl−1 nξ1

sinhl+2(n+ 1)ξ1
. (5.122)

In both cases of a wall and a free surface the leading far-field contribution from
the l-th squirming mode is equal and opposite, with a strength Ω̃1 ∝ (2h)−(l+2).
Hence the nature of the boundary determines the sense of rotation generically in
the asymptotic limit. In the contact limit, which for a wall is given by (5.104) and
for a free surface

Ω̃1 → −
4
3

∞∑
l=2

Cl
r1
Pl(cosα)

l−1∑
k=0

(−1)k
(
l − 1
k

)(
1− 2−(k+2))ζ(3 + k)

ζ(3) , (5.123)
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we find that the contribution to the rotation from each squirming mode is smaller
at a free surface than at a wall, and the ratio of these contributions has a faster-
than-exponential decay with increasing l, indicating that higher-order effects due
to microscopic details of a swimmer are less important at a free surface than at a
wall. Fig. 5.6(a) compares the behaviour of the C2 mode at a free surface with that
at a wall, while fig. 5.8 gives a comparison of the behaviour of the spherical-cap
swimmer defined in § 5.4.2 at a solid wall and a free surface. It can be seen that the
direction of the rotation is opposite, as seen experimentally [44]. Furthermore the
dependence of the rotation on orientation α is influenced more by the lower modes
at a free surface than at a wall, as evidenced by the smoother profile. In both cases
the asymptotic behaviour is proportional to C2P2(cosα)d−4.

The reciprocal theorem relies on the swimmer problem and the conjugate
Stokes drag being defined in the same region. Here we have assumed that the
free surface does not deform in either solution, so that this region is the half-space
with an embedded sphere in both cases; however, there is no reason not to expect
deformation, particularly in the close proximity regime and furthermore, it cannot
be assumed that this deformation of the surface will be the same for a swimmer and
a dragged sphere.

Nevertheless, if the deformation of the surface is small enough that it may
be treated in a linear fashion by projecting onto the plane and expressing as a
slip velocity (much as Lighthill’s deforming squirmer has its activity projected onto
the surface of a sphere for determination of the swimming speed [75]), this is not a
problem. The swimmer’s motion is the sum of an integral of the slip velocity over the
swimmer’s boundary and an integral of this deformation flow over the free surface,
with the stress from the Stokes drag under the free surface as the conjugate solution.
As the free surface is, by definition, stress-free, the latter integral does not contribute
to the motion. Then, once the swimmer’s motion is determined the deformation of
the surface may be estimated by some other method. For instance, Crowdy et al. [83]
give a detailed two-dimensional treatment of swimming under a free surface using
conformal mapping techniques, while Aderogba [122] and Aderogba and Blake [123]
find the three-dimensional flow due to a Stokeslet near a fluid interface, calculating
the first-order deformation; their approach may be adapted here to an approximate
solution of the deformation due to higher-order singularities that correspond to
swimming, in particular the stresslet and the source dipole.
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Figure 5.9: The interactions of the A1 (dashed) and B1 (solid) modes. (a) The
speed Ũ of a squirmer, in units of the free swimming speed Ufree, as a function of d
inside a shell of radius 1.2 (blue), 1.5 (grey), 2 (black), 4 (red). The wall limits are
shown as dotted lines. (b) The speed difference ∆Ũ = |Uc − Ufree| at the centre a
shell as a function of shell radius r2, showing an excluded volume dependence. (c)
Ũ as a function of d near a tracer of radius 0.5 (orange), 1 (grey), 2 (black) and 10
(blue).
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Figure 5.10: The speed Ũ of a squirmer due to modes A2 and B2, normalised so
that A2Pl(cos α) = B2Pl(cos α) = 1, as a function of d. Dashed line is A2, solid
line is B2. (a) Interaction with a no-slip wall. Dotted grey line is point-singularity
approximation. (b) Interaction with a shell of radius 1.2 (blue), 1.5 (grey), 2 (black)
and 4 (red). Ũ = 0 in the centre of the shell and the motion is equal and opposite in
the other hemisphere. (c) Interaction with a tracer of radius 0.5 (orange), 1 (grey),
2 (black) and 10 (blue), with the red dotted line demonstrating the wall limit.
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5.4.6 Translation

The calculation for the translational motion is analogous to the calculation for ro-
tation, but is rather more involved and will not be shown explicitly. The general
result for an arbitrary squirming mode has not yet been found and each contribu-
tion must be calculated separately. For this reason we consider only the few most
important translational squirming modes, A1, B1, A2 and B2. The first two of
these set the self-propulsive speed in free space and asymptotically resemble source
dipoles. A2 and B2 give the asymptotic stresslet of the swimmer [67] and while they
generate no motion in an unbounded domain they are of fundamental importance in
the interactions of the swimmer with boundaries, since both the swimmer and the
boundaries must remain force-free and the lowest-order image singularity will be a
stresslet. In the far-field these point-singularity descriptions are sufficient to fully
characterise the generic behaviour [65, 66]. Figures 5.9 and 5.10 show, respectively,
the interactions of the A1 and B1, and the A2 and B2 modes, with a passive sphere.

The flow due to the Al and Bl modes of a swimmer has the same asymptotic
decay in an unbounded fluid, meaning that in a leading-order point-singularity de-
scription the radial and polar modes are indistinguishable. The availability of exact
solutions means we can estimate the separation beyond which these asymptotic ap-
proximations hold. It can be seen from figure 5.9 that beyond a distance of around
five swimmer radii the interaction due to A1 and B1 coincides, and similarly for A2

and B2 in figure 5.10. However the near-field behaviour is dramatically different for
the radial and polar modes. The latter have an interaction which goes to zero at the
limit of contact, as a result of the divergent drag in this limit. The former have a
divergent interaction, resulting from the incompatibility of the boundary conditions
of no-slip and radial flow on two touching surfaces.

An interesting consequence of this effect is the behaviour of a swimmer inside
a small shell, with a radius smaller than the threshold for crossover to asymptotic
behaviour. When a B1 swimmer is inside such a shell the swimming speed is at-
tenuated by the presence of the boundaries, and by symmetry attains a maximum
value, Uc, in the centre of the shell. Conversely, a swimmer with A1 activity has
an increased speed due to the interactions, as a result of the divergent interaction
of the radial modes near boundaries. A comparison is shown for a variety of shell
sizes in figure 5.9(a). The speed at the centre of the shell, Uc, may be calculated
analytically and depends on the relative sizes as

Uc = Ufree −
5
3(A1 +B1)

(r1
r2

)3
(

1−
( r1
r2

)2
1−

( r1
r2

)5
)
. (5.124)
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Thus as the shell becomes large, Uc approaches the free swimming speed in propor-
tion to the volume of fluid displaced by the swimmer, see figure 5.9(b). The same
occurs in two dimensions where an exact result is available for the swimming of an
active disc inside a circular boundary [66], and where the maximum speed of a self-
propulsive swimmer approaches its free-space value in proportion to the excluded
area.

The A2 and B2 squirming modes generate an asymptotic flow field of d−2,
while the propulsive modes A1 and B1 give a flow field decaying as d−3. Hence
mixing is dominated by the swimmers’ dipoles, and the speed of a passive tracer has
a dependence of d−2, by Fáxen’s law, until the separation becomes small and higher-
order effects become important. Since A2 and B2 do not drive self-propulsion, the
motion of the swimmer resulting from these modes is due to reflected flow in the
boundary of the passive sphere. At separations smaller than the tracer’s radius of
curvature the leading order of the reflected flow is equal to that of the flow itself,
and gives rise to a local d−2 behaviour. As the separation increases the finite size of
the tracer becomes important. Higdon [70] gives the image system for a force dipole
in a fixed, finite-sized sphere as the sum of a Stokeslet with leading-order strength
proportional to d−2 and a dipole with strength ∼ d−3. Thus, if the passive sphere
were fixed the leading order reflection would go as d−3, but as it is free to move in
such a way as to cancel any force acting on it, we see d−5. This dependence may also
be calculated using a second-order multipole expansion, in which case the leading-
order motion of the swimmer is driven by the reflected stresslet inside the tracer [92].
The crossover between the two types of behaviour is shown in figure 5.10(c).

5.5 Discussion

We have found exact expressions for the axisymmetric translation and rotation of
a spherical squirmer close to convex, planar or concave no-slip boundary, as well
as the axisymmetric rotation beneath a free surface, by making use of the Lorentz
reciprocal theorem and the known Stokes drag solutions in these geometries. This
covers the hydrodynamics at all separations, including at contact in the case of ro-
tation, and for arbitrary squirming motion. The near-field regime where separations
are comparable to the swimmer size or smaller is the regime of greatest relevance
to many experimental settings and our exact solution provides rigorous, generic
insight. In particular, while the radial and meridional squirming modes show the
same asymptotic behaviour, in the near field, at separations smaller than a couple of
swimmer diameters, they are markedly different, with the former giving a divergent
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interaction strength and the latter a hard repulsion. Azimuthal squirming results in
the circling behaviour near boundaries seen in flagellated bacteria and our results
describe this situation in some detail. The experimentally reported reversal of or-
bit direction at a free surface is found to be a generic effect. At large separations,
the exact solution reproduces results found previously from asymptotic calculations
using point singularity approximations of swimmers and also generalises these to
interactions of squirmers with spherical boundaries and tracer particles.

Our solution is founded upon the reciprocal theorem for swimmer prob-
lems [89] and appears to be the first application of this method to deduce exact so-
lutions that are not currently available by any other method. Given the widespread
significance of hydrodynamic interactions, with confining surfaces and with other
organisms, to swimmer motion, there are obvious merits to developing applications
of this technique in other settings. For instance, we have only been able to pro-
vide a partial solution to the interaction of two swimmers, as the non-axisymmetric
components of the motion have not been determined. This is because the solution
is founded upon the reciprocal theorem and requires the corresponding Stokes drag
problem to be solved. For the non-axisymmetric Stokes drag of two spheres, there
is, at present, no exact closed-form solution, although there is a scheme in terms of
a set of difference equations that could be solved numerically to any desired degree
of accuracy. Such an approach would allow the full hydrodynamic interaction of an
arbitrary pair of squirmers to be computed, although not in closed form. Further-
more the large range of validity of the approximate far-field solutions here compared
with our exact results indicates that asymptotic estimates are valuable and there is
merit to pursuing an approximate approach to find the non-axisymmetric behaviour.
This may be done, for instance, by constructing an approximate stress tensor us-
ing the solution for a Stokeslet outside a sphere [70], by analogy to the examples
given in Chapter 3. The solution presented here may also be supplemented by the
axisymmetric translation under a free surface, for which the Stokes drag solution
was given by Brenner [189]; while approximate solutions for swimming under a free
surface are available [4], since bacteria are known to aggregate at free surfaces [49]
an understanding of the contact regime is desirable.
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Σε σκέφτομαι κι οι σκέψεις μου, σε σκέψεις μ΄έχουν βάλει.

Σε σκέψεις που οι σκέψεις τους, σκέφτονται εσένα πάλι.

Cretan

6
Conclusions and outlook

The reciprocal theorem in principle allows any aspect of swimmer hydrodynamics
to be solved, provided an appropriate conjugate solution to the Stokes equations
is known. This solution should be for a no-slip object of the same shape in the
same domain as the desired swimmer problem; thus, to calculate the motion of a
swimming sphere close to a wall using the reciprocal theorem one must use the
solution for the Stokes drag on a sphere close to a wall, and so on. By setting
the swimmer’s surface activity to zero we find the motion of a passive, neutrally
buoyant tracer particle, and by taking its size to zero it becomes clear that the
reciprocal theorem allows flows to be found. Furthermore, as the leading-order flow
in the Stokes drag of any object is a Stokeslet, Stokeslet solutions may be used to
find approximate solutions, valid asymptotically, for the motion of swimmers of any
shape. This was demonstrated in Chapter 3 to find the flow fields for two types
of ciliated walls, corresponding to symplectic and antiplectic metachronal waves,
and to study the case of a swimmer near a plane boundary, which has attracted
significant experimental and theoretical attention [47, 65]; we then demonstrated
a result for the leading-order swimming motion in the fluid between two parallel
plates, which despite its heavy level of approximation gives the same qualitative
behaviour as the much more detailed numerical model of [163], and illustrates the
versatility of the reciprocal theorem. This relied upon having a solution for a point
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torque in this geometry, which is a new result.
An advantage of using the reciprocal theorem for calculating motion or in-

teractions is that the swimming stroke, encoded in a slip velocity, may be kept fully
arbitrary through the calculation. Thus we were able to find the general solution for
the motion of a two-dimensional squirming disc near a wall or inside a circular tank
in Chapter 4, based on Crowdy’s calculation of the motion of a treadmilling disc
near a wall [81]. The only requirement was that the slip velocity be axisymmetric
(although the extension to non-axisymmetric slip velocities would be straightfor-
ward). This allowed, for instance, calculation of the exact trajectories of a swimmer
propelling itself by a short-wavelength surface metachronal wave. Chapter 5 then
showed how we can calculate the axisymmetric components of motion for a three
dimensional spherical swimmer near a curved boundary or free surface. This con-
firms that the approximate results of Chapter 3 are valid up to surprisingly small
separations, of just a few swimmer radii. The experimentally observed reversal of
circling direction of flagellated bacteria at a free surface compared to a solid bound-
ary was found to be a generic effect of axisymmetric azimuthal slip velocity, and not
just the rotlet dipole term considered elsewhere in the literature [4, 65].

As with any large investigative work this thesis raises more questions than
it answers, and there are many possible avenues that this work could be, and in-
deed would benefit from being, extended along. The calculation in the second half
of Chapter 3 for the interaction of a swimmer with two plates is preliminary and
needs more careful treatment from a mathematical point of view to ensure that the
various approximations made to the integrals are valid; nevertheless, the excellent
correspondence to the results for interaction with a single plate is encouraging, as
is the reproduction of behaviour found by much more detailed models [163]. Also,
the calculation of the exact solutions for three-dimensional motion in Chapter 5
is missing the non-axisymmetric components. This could be addressed either by
adapting the known solutions for parallel translating spheres, despite their issues
as discussed previously [116, 197], or by combining the exact solutions for the ax-
isymmetric components with approximate solutions for the non-axisymmetric com-
ponents, with some confidence that beyond a few swimmer radii of separation this is
reasonable, as is demonstrably the case for the axisymmetric components of motion.

The two-dimensional solution presented in Chapter 4 has its utility ham-
pered by Jeffery’s paradox, meaning that it cannot be used to find the interactions
of two discs. However, there is a literature outlining the procedure to overcome
this problem [118, 180, 181] which could be utilised. A further method to regularise
two-dimensional problems is to embed the plane of motion in a three-dimensional
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fluid [167]; this would be a particularly interesting extension of this work as a de-
scription of surface processes on cell membranes.

A more fundamental issue is that the assumption of a slip velocity is itself
an approximation, and Lighthill [75] and Blake [151] certainly never intended their
squirmer model to be taken as an exact description of any microorganism. More
correctly we have some distribution of flagellae on the surface of an organism which
exert stress on the fluid. Then the lack of inertia means the reaction force from
the fluid results in motion. This formulation is the basis of the boundary-element
method, which is analogous to the reciprocal theorem (and in fact is derived using
the reciprocal theorem). The slip velocity approximation is a coarse-graining of this
surface actuation, and is valid when the swimmer is in an unbounded domain or
far from other obstacles. There is no doubt that the slip-velocity description is of
great value; however an important question is on the relation between surface stress
and slip velocity in a variety of geometries, and in particular in the close-to-contact
regime. Liron’s model of a carpet of cilia between two plates [152] could be used
for this, with the plate separation taken to be small (in the extreme case, similar to
the length of the cilia); this work would necessarily be numerical but could inform
analytical and approximate models.
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