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Abstract	

Antimicrobial	resistance	(AMR)	presents	one	of	the	most	important	threats	to	human	
health	 of	 the	 21st	 century.	 The	 recent	 report	 on	 AMR	 predicted	 that	 by	 2050	 10	
million	deaths	a	year	will	be	directly	attributable	 to	AMR	bacterial	 infections.	The	
dissemination	 of	 antibiotic	 resistance	 genes	 (ARG)	 in	 to	 the	 environment	 has	
previously	 been	 highlighted	 as	 an	 important	 route	 of	 transmission	 and	 was	
investigated	in	the	current	study.	
Wastewater	treatment	plants	(WWTP)	have	been	highlighted	to	contribute	to	ARG	
pollution	of	rivers	focusing	on	effluent	impact	on	receiving	water	bodies.	In	this	study	
the	aim	was	 to	 further	 investigate	 the	effects	of	WWTP	effluent	on	 the	 receiving	
river,	but	also	investigate	the	release	of	raw	sewage	resulting	from	combined	sewer	
overflow	(CSO)	events	on	the	receiving	river.	This	study	found	that	sediment	samples	
carried	a	higher	abundance	of	all	ARG	and	therefore	present	a	greater	risk	compared	
to	water	and	that	CSO	spills	are	important	in	the	spread	of	ARG	likely	contributing	
more	 substantially	 to	 the	 environmental	 spread	 of	 resistance	 than	 continuous	
release	of	treated	wastewater.		

In	addition,	the	present	study	aimed	to	investigate	the	genetic	potential	of	viable,	
potentially	pathogenic	Escherichia	coli	isolates	from	the	river	sediment	to	determine	
whether	these	human	opportunistic	pathogens	carried	the	genetic	capacity	to	spread	
resistance	and	cause	disease.	E.	coli	strains	were	shown	to	carry	extensive	resistance	
to	many	clinically	relevant	antibiotics,	metals	and	biocides	as	well	as	carrying	vast	
virulence-associated	genes.	 This	 study	 identified	ST940	as	an	 important	 sequence	
type	(ST)	in	the	dissemination	of	the	ESBL	blaCTX-M-15	gene	and	suggests	further	work	
to	 investigate	 the	 importance	 of	 this	 ST	 type	 in	 the	 transmission	 of	 this	 clinically	
important	ARG.		

The	 work	 presented	 here	 supports	 previous	 studies	 demonstrating	 extensive	
environmental	ARG	dissemination	in	rivers	as	a	direct	result	of	WWTP	impacts	and	
further	 highlights	 rivers	 as	 an	 important	 reservoir	 of	 ARG	 and	 antibiotic	 resistant	
bacteria	(ARB).	The	discovery	of	clinically	important	viable	E.	coli	isolates	in	sediment	
suggests	more	rigorous	methods	of	wastewater	treatment,	specifically	a	reduction	
in	the	number	of	CSO	release	events,	must	be	employed	if	further	dissemination	of	
ARB	is	to	be	prevented.		
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Chapter	1	

Introduction	

	
1.1 Origins	of	antibiotic	resistance	

Antimicrobial	 resistance	 (AMR)	 no	 doubt	 constitutes	 one	 of	 the	 most	 important	

threats	 to	human	health	of	 the	21st	 century.	A	post-antibiotic	era	whereby	minor	

infections	and	common	illness	become	fatal	is	predicted	to	occur	within	the	century	

(O'Neill,	 2016).	 The	 recent	 emergence	 of	 the	 mobilisable	 colistin	 conferring	

resistance	genes	mcr-1	and	mcr-2	has	highlighted	the	severity	of	the	current	situation	

and	may	 result	 in	 untreatable	 bacterial	 infections	 (Liu,	 2015,	 Xavier	 et	 al.,	 2016,	

McGann	et	al.,	2016).		

	

AMR	 is	an	ancient	phenomenon	(D'Costa	et	al.,	2011),	 the	study	by	D’Costa	et	al.	

investigated	the	Beringian	permafrost	to	reveal	AMR	is	at	least	30000	years	old.	The	

first	natural	product	antibiotics	are	estimated	to	have	arisen	two	billion	–	40	million	

year	ago,	which	intuitively	suggests	that	the	first	antibiotic	resistance	genes	(ARG)	

must	have	arisen	at	a	similar	 time	point	 (Hall	and	Barlow,	2004,	Baltz,	2005).	The	

precise	role	of	natural	antibiotics	 is	unknown	and	the	clinical	 impacts	of	antibiotic	

production	 and	 ARG	 dissemination	 have	 far	 outweighed	 the	 call	 for	 studies	 to	

investigate	the	roles	these	products	play	in	the	natural	environment.	Not	only	has	

clinical	 importance	 outweighed	 the	 significance	 of	 these	 studies,	 the	 difficulties	
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associated	with	studying	production	and	resistance	in	the	natural	environment	are	

numerous.		However,	with	the	rapid	dissemination	of	ARG	throughout	the	clinic	and	

the	environment	the	call	 for	studies	 investigating	the	natural	roles	these	products	

play	 is	 becoming	 increasingly	 important.	 If	 the	 innate	 nature	 of	 antibiotics	 is	

elucidated,	 then	 it	 may	 be	 possible	 to	 find	 new	 mechanisms	 combating	 ARG	

evolution.	 Antibiotics	 are	 often	 found	 at	 sub-inhibitory	 levels	 in	 the	 environment	

(Michael	et	al.,	2013,	Kummerer,	2009,	Bernier	and	Surette,	2013)	and	have	been	

suggested	to	play	a	role	in	quorum	sensing	and	biofilm	formation.	Selman	Waksman,	

the	 microbiologist	 who	 coined	 the	 term	 “antibiotics”	 believed	 they	 played	 no	

significant	 role	 in	 “modifying	or	 influencing	 living	processes	 that	occur	 in	nature”	

(Waksman,	 1961).	 Although	 there	 has	 been	 little	 evidence	 to	 disprove	 this,	 the	

complex	nature	of	antibiotic	production	suggests,	contrary	to	this,	 that	antibiotics	

must	 play	 an	 important	 environmental	 role	 (Sengupta,	 2013).	 In	 the	 natural	

environment	survival	 is	community	driven	with	multi-cellular	networks	 interacting	

making	it	difficult	to	determine	the	precise	role	antibiotics	play	(Bernier	and	Surette,	

2013).	Determining	 a	 clear-cut	mechanism	behind	 antibiotic	 action	 in	 the	natural	

habitat	 is	 therefore	 incredibly	 intensive.	 The	 question	 posed	 by	 Julian	 Davis	 “are	

antibiotics	naturally	antibiotics?”	is	an	important	question	that	must	be	addressed	in	

the	 future	 (Davies,	 2006).	 Currently	 suggestions	 for	 natural	 product	 antibiotics	

include	the	obvious	role	of	interspecies	competition	as	well	as	signalling	molecules,	

increased	virulence,	host-parasite	interaction,	SOS	and	DNA	repair	gene	expression	

and	quorum	sensing	(Sengupta,	2013).		

	

The	mass	 production	 of	 penicillin	 in	 1945	 started	 the	 industrial	 era	 of	 antibiotic	

production	which	no	doubt	 contributed	 to	 the	 rapid	 dissemination	of	ARG	which	

Fleming	had	warned	about	in	his	Nobel	 lecture	in	1945		(Aminov,	2010).	Although	

ARG	 are	 a	 naturally	 occurring	 phenomenon,	 the	 rate	 at	 which	 these	 genes	 have	

evolved	and	disseminated	is	no	doubt	related	to	anthropogenic	impact.		

	

1.2	Antibiotics	and	resistance	mechanisms	

AMR	is	particularly	problematic	in	Gram-negative	bacteria	with	resistance	typically	

emerging	two-three	years	after	introduction	in	to	the	clinic	(Hall	and	Barlow,	2004).	
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There	 are	 multiple	 AMR	 mechanisms;	 target	 modification,	 reduced	 penetration,	

increased	 efflux,	 bypass	 mechanisms,	 target	 overproduction	 and	 enzymatic	

inactivation	(Blair	et	al.,	2015).	Gram-negative	bacteria	are	also	characteristically	less	

sensitive	 to	 antibiotics	 than	 Gram-positives	 due	 to	 their	 outer	 membrane	 which	

prevents	some	antibiotics	e.g	glycopeptide	antibiotics	permeating.		

	

1.2.1	Beta-lactam	antibiotics	and	resistance	mechanisms	

The	beta-lactam	antibiotics	are	the	most	important	clinical	antibiotic	class.	b-lactam	

activity	is	upon	the	murein	layer	of	bacteria	cell	walls	whereby	interruption	of	cross-

linking	 	 between	murein	 strands	 through	 covalently	 binding	 the	 	 transpeptidase,	

responsible	 for	 cross-linking,	 	 and	 D-alanine	 D-alanine	 carboxypeptidase	 which	

removes	the	terminal	D-alanine		(Kong,	2010).		

	

Despite	 the	widespread	 resistance	 to	b-lactams,	 they	 are	 routinely	 used	 and	 are	

often	first-line	response	antibiotics	due	to	their	broad	spectrum	activity	and	low	level	

toxicity,	with	third	and	fourth	generation	cephalosporins	listed	by	the	WHO	advisory	

group	 as	 important	 antimicrobials	 in	 the	 treatment	 of	 human	 infections	 (WHO,	

2013)(Livermore,	1996).	The	combined	effect	of	the	b-lactamase	inhibitor	clavulanic	

acid	and	b-lactam	antibiotics	 is	still	one	of	the	most	successful	drug	combinations	

(Brown,	1976).	In	2009,	the	international	market	for	b-lactams	was	$15	billion	per	

year	 and	 accounted	 for	 65	%	of	 the	 total	 antibiotics	 in	 the	market	 (Thakuria	 and	

Lahon,	2013).	Antibiotic	resistance	arose	shortly	after	the	discovery	of	penicillin	in	

1945	(Bellamy,	1948).	Resistance	to	b-lactams	arises	through	enzymatic	cleavage	of	

the	b-lactam	ring	by	b-lactamases.	There	are	two	classification	schemes	that	have	

been	used,	one	based	on	the	amino	acid	sequence	of	b-lactamases	and	an	updated	

system	grouping	based	on	molecular	characterisation.	There	are	~900	unique	protein	

sequences	 for	b-lactamases	which	 has	made	 grouping	 difficult	 (Bush	 and	 Jacoby,	

2010).		

	

The	 first	 classification	 system	 consisted	 of	 four	 classes;	 A,	 B,	 C	 and	 D	 which	 are	

grouped	 according	 to	 sequence	 similarity	 (Ambler,	 1980,	 Jaurin,	 1981,	 Ouellette,	



	 24	

1987).	 Class	 A	 b-lactamases	 are	 primarily	 involved	 in	 the	 enzymatic	 cleavage	 of	

penicillin	and	ampicillin.	 They	are	also	able	 to	hydrolyse	most	 cephalosporins	but	

most	carry	out	hydrolysis	of	a	specific	subset	(Hall	and	Barlow,	2004).	The	class	B	b-

lactamases,	 designated	 the	 metallo-b-lactamases	 due	 to	 the	 requirement	 of	 a	

bivalent	 metal	 ion	 (commonly	 Zn2+)	 are	 structurally	 unrelated	 to	 the	 serine-b-

lactamases	(Classes	A,	C	and	D)	and	instead	of	hydrolysing	substrates	by	forming	an	

acyl	 enzyme	 through	 an	 active	 site	 serine,	 this	 utilise	 an	 active-site	 zinc	 ion	 to	

facilitate-b-lactam	 hydrolysis	 (Bush	 and	 Jacoby,	 2010).	Within	 this	 group	 there	 is	

much	diversity,	both	by	DNA	and	protein	sequence.	The	complexity	of	this	group	has	

resulted	in	subgroups	within	the	Class	B	enzymes:	B1,	B2	and	B3	based	on	structural	

similarity	(Galleni	et	al.,	2001).	Class	C	enzymes	are	generally	referred	to	as	the	AmC	

b-lactamases	 and	have	a	 very	broad	 spectrum	of	 activity	 against	 cephalosporin’s.	

Class	 D	 enzymes	 are,	 like	 Class	 A	 b-lactamases,	 primarily	 penicillinases,	 but	 are	

involved	in	hydrolysing	oxacillin,	cloxacillin,	methicillin	and	carbenicillin	(Naas,	1999).	

Similarly,	 Class	 D	 enzymes	 also	 specialise	 in	 the	 hydrolysis	 of	 specific	 subsets	 of	

cephalosporins	(Naas,	1999).			

	

The	updated	classification	of	b-lactamases	groups	enzymes	in	to	3	groups,	group	1	

(which	 	 contains	 all	 Class	 C)	 cephalosporins,	 group	 2	 (Classes	 A	 and	 D)	 broad-

spectrum,	 inhibitor	 resistant	 and	 extended-spectrum	 b-lactamases	 (ESBL)	 serine	

carbapenemases	and	group	3	which	consists	of	the	metallo-b-lactamases.	Group	1	

cephalosporinases	are	chromosomally	encoded	b-lactamases	which	are	encoded	by	

many	 Enterobacteriaceae	 (Jacoby,	 2009).	 They	 are	 generally	 not	 inhibited	 by	

clavulanic	acid	and	display	resistance	to	cefotaxime	but	not	ceftazidime	(Yu,	2008).	

AmpC	 expression	 is	 low	 but	 inducible	 on	 exposure	 and	 when	 induced	 in	 large	

amounts	group	1	enzymes	are	able	to	confer	resistance	to	carbapenems,	particularly	

ertapenem	 (Bush,	 1982,	 Jacoby,	 2009,	 Livermore,	 1987,	 Weber,	 1990,	 Bradford,	

1997,	 Jacoby,	 2004,	 Quale	 et	 al.,	 2006).	 The	 most	 common	 plasmid-mediated	

subgroup	 of	 the	 group	 1	 b-lactamases	 are	 blaCMY,	 blaACT,	 blaDHA,blaFOX	 and	 blaMIR		

(Jacoby,	2009).		
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Group	2	serine	b-lactamases	(classes	A	and	D)	is	the	largest	group	of	b-lactamases.	

They	 contain	 the	 ESBL	 resistance	 genes	 which	 are	 currently	 the	most	 frequently	

found	plasmid-mediated	b-lactamases	(Jacoby,	2009).	This	group	also	represents	the	

penicillinases	which	are	the	most	common	b-lactamases	within	Gram-positive	cocci	

(Kernodle,	1989).	Group	2	is	sub	grouped	in	to	12	groups;	2a,	2b,	2be,	2br,	2ber,2c,	

2ce,	2d,	2de,	2df,	2de	and	2df.	Group	2a	consists	of	penicillinases,	2b	contains	b-

lactamases	 which	 hydrolyse	 penicillins	 and	 early	 cephalosporins	 but	 are	 strongly	

inhibited	 by	 clavulanic	 acid	 and	 tazobactem,	 examples	 include	 blaTEM	and	 blaSHV.	

Group	2be	 is	 the	ESBLs	consisting	of	blaCTX-M	enzymes,	also	sensitive	 to	clavulanic	

acid.	Group	2br	comprised	broad-spectrum	b-lactamases	which	are	resistance	to	the	

inhibitor	clavulanic	acid,	examples	include	blaTEM-30,		and	5	of	the	72	blaSHV		enzymes	

(Jacoby	 and	Munoz-Price,	 2005,	 Bush	 and	 Jacoby,	 2010).	 Group	 2ber	 consists	 of	

blaTEM	enzymes	that	are	relatively	resistant	to	clavulanic	acid	and	have	been	termed	

complex	 mutant	 TEM	 (CMT).	 Group	 2c	 are	 penicillinases	 which	 are	 effectively	

inhibited	by	clavulanic	acid,	Group	2ce	have	expanded	activity	against	cefepime	and	

cefpirome	 (Potron,	 2009).	 The	 subgroup	 2d	 consists	 of	 b-lactamases	 able	 to	

hydrolyse	cloxacilin/oxacillin	more	effectively	than	benzylpenicillin	and	consist	of	the	

blaOXA		enzymes.	2de	comprises	cloxacillin/oxacillin	hydrolysing	enzymes	which	have	

an	extended	spectrum	of	activity	to	include	the	oxyimino-b-lactams.	The	subgroup	

2df	 enzymes	 have	 carbapenem	 hydrolysing	 activities	 	 and	 are	 found	 primarily	 in	

Acinetobacter	 baumannii	 on	 the	 chromosome	 (Walther-Rasmussen	 and	 Hoiby,	

2006).	Subgroup	2e	b-lactamases	can	hydrolyse	extended-spectrum	cephalosporins	

and	are	inhibited	by	clavulanic	acid	or	tazobactam.	The	final	subgroup	of	the	Group	

2	 serine	b-lactamases	 is	 subgroup	2f	which	 consist	 of	 carbapenemases	which	are	

inhibited	 more	 efficiently	 by	 tazobactam	 than	 clavulanic	 acid	 (Bush	 and	 Jacoby,	

2010).	

	

The	Group	3	metallo-b-lactamases	are	structurally	and	 functionally	 separate	 from	

Group	 1	 and	Group	 2	b-lactamases.	 The	 capacity	 to	 hydrolyse	 carbapenems	was	

originally	the	defining	feature	of	this	group,	however	there	are	now	some	serine	b-

lactamases	also	able	to	hydrolyse	these	antibiotics.		Group	3	metallo-b-lactamases	
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are	 not	 able	 to	 effectively	 hydrolyse	 monobactams	 and	 are	 not	 inhibited	 by	

clavulanic	acid	or	tazobactam	but	can	be	inhibited	by	metal	chelators	such	as	EDTA	

however	are	able	to	hydrolyse	virtually	all	other-b-lactams	(Marchiaro	et	al.,	2008).	

The	original	discovery	of	metallo-b-lactamases	did	not	prompt	concern	because	they	

were	found	in	non-pathogenic	organisms	and	were	encoded	on	the	chromosome	but	

the	mobilisation	of	blaVIM	and	blaIMP	in	the	1990s	on	plasmids	and	transposons	was	

the	first	indication	of	the	clinical	relevance	these	resistance	genes	might	have	(Lim,	

1988,	Walsh,	1994,	Cornaglia,	2011).	The	most	concerning	enzyme	within	this	group	

is	the	blaNDM-1-	which	was	first	detected	in	2008	(Yong	et	al.,	2009).		Within	this	group,	

there	are	3	subgroups	designated	B1,	B2	and	B3	based	on	structure	and	3a.	3b	and	

3c	when	sub	grouped	based	on	function	(Frere	et	al.,	2005,	Galleni	et	al.,	2001,	Garau	

et	 al.,	 2004,	Bush	 and	 Jacoby,	 2010).	 Subgroup	3a	 consists	 of	 the	major	plasmid-

encoded	metallo-b-lactamases	blaVIM		and	blaIMP.	Subgroup	3b	is	a	smaller	group	that	

will	 preferentially	 hydrolyse	 carbapenems	 compared	 with	 penicillin’s	 and	

cephalosporins.	The	blaNDM-1	blaVIM	and	blaIMP	are	all	subgroup	B1.		

	

The	first	blaCTX-M	gene	was	identified	from	an	E.	coli	isolate	from	a	cancer	patient	in	

1989	and	the	first	publication	was	from	an	E.	coli	 isolate	from	a	4-month	old	child	

suffering	with	otitis	media	in	Munich	hence	the	name	CTX-M;	CefoTaXime	and	the	–

m	from	Munich	(Bernard,	1992,	Schwaiger	et	al.,	2014).	Since	the	discovery	of	these	

ESBLs	the	presence	of	these	enzymes	has	nearly	displaced	all	other	ESBL	genes	 in	

Enterobacteriaceae	 and	 they	 represent	 some	 of	 the	 most	 clinically	 important	

resistance	genes	are	present	(Hawkey	and	Jones,	2009,	Canton,	2012).	Dissemination	

is	 likely	due	to	the	cumulative	effects	of	 insertion	on	to	highly	mobilisable	genetic	

elements	and	the	location	of	these	genes	within	particularly	successful	clones	as	well	

as	 co-selective	 effects	 of	 the	 mobile	 genetic	 elements	 (MGEs)	 particularly	 with	

respect	to	carriage	of	aminoglycoside	and	fluoroquinolone	genes	(Woodford	et	al.,	

2009,	Dhanji,	2011,	Woodford,	2008,	Dhanji	et	al.,	2011,	Canton	and	Ruiz-Garbajosa,	

2011).	 The	 most	 widespread	 blaCTX-M	 are	 the	 blaCTX-M-3,	 blaCTX-M-14,	 blaCTX-M-15,	 and	

blaCTX-M-9.	There	are	five	main	clusters	of	blaCTX-M	genes.	The	chromosomal	bla	gene	

kluC	from	Kluyvera	cryocrescens	is	considered	the	ancestor	of	the	blaCTX-M-1	cluster	of	

genes	(Decousser,	2001),	kluA	from	K.	ascorbata	 is	considered	the	ancestor	of	the	
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blaCTX-M-2	 gene	 cluster	 and	 the	 gene	 clusters	 blaCTX-M-8,	 blaCTX-M-9,	 blaCTX-M-25	 are	

believed	to	have	originated	from	K.	georgiana	kluG,	kluY	and	blaCTX-M-78	respectively		

(Humeniuk	et	al.,	2002,	Poirel,	2002	,	Olson,	2005,	Rodriguez	et	al.,	2010).	Although	

it	 is	 widely	 accepted	 that	 Kluyvera	 spp.	 are	 responsible	 for	 the	 evolution	 of	 the	

mobilisable	 blaCTX-M	 genes	 there	 has	 been	 some	 speculation	 due	 to	 evidence	

suggesting	that	the	evolutionary	relationships	 	of	blaCTX-M	and	Kluyvera	16S	do	not	

completely	 correlate	 (Canton,	 2012).	 Another	 concern	 over	 the	 suggestion	 that	

Kluyvera	 	 is	 the	 ancestral	 origin	 of	 blaCTX-M	 	 is	 that	 three	 suggested	 ancestral	

chromosomal	 genes	 originate	 from	 one	 species	 each	 forming	 separate	 clusters	

(Canton,	 2012).	 	 And	 thirdly,	 the	 blaKLU	gene	 upstream	 region	 is	 identical	 to	 the	

genetic	organisation	in	Enterobacter	aerogenes	which	suggests	Kluyvera	may	have	

gained	the	blaKLU	gene	after	species	divergence	and	suggests	most	 isolates	should	

carry	this	gene.	Expression	in	the	ancestral	host	is	known	to	be	weak	and	requires	a	

strong	 promoter.	 The	 ISEcp1	 and	 ISCR1	 provide	 this	 strong	 promoter	 in	

Enterobacteriaceae	 but	 have	 not	 been	 found	 in	 any	 environmental	 isolates	 of	

Kluyvera	(Canton,	2012).	b-lactamases	have	few	essential	positions;	136	polymorphic	

positions	 have	been	 identified	with	 some	 increasing	 the	 spectrum	of	 activity	 and	

some	 restoring	 activity	 of	 previous	 mutations.	 The	 instability	 of	 these	 enzymes	

suggests	 evolutionary	 stasis	 of	 these	 enzymes	 has	 not	 yet	 been	 reached	 and	

consequently	could	result	in	broader,	more	efficient	activity	(Canton,	2012).			

	

1.2.2	Aminoglycoside	antibiotics	and	resistance	mechanisms		

The	use	of	aminoglycoside	antibiotics	is	primarily	in	the	treatment	of	Gram-negative	

aerobic	bacilli,	staphylococci	and	other	Gram-positive	bacterial	infections	(Ramirez	

and	Tolmasky,	2010).	They	function	through	disruption	of	the	30S	ribosomal	subunit	

causing	disincorporation	of	amino	acids	in	to	peptides	which	can	result	in	misfolded	

membrane	 proteins	 and	 resultant	 accumulation	 of	 drugs	 leading	 to	 cell	 death	

(Kohanski,	2010).		Aminoglycoside	resistance	is	widespread.	The	global	dissemination	

of	resistance	to	these	antibiotics	has	rendered	them	virtually	useless	in	the	treatment	

of	 some	 infections.	 Aminoglycoside	 modifying	 enzymes	 have	 different	 modes	 of	

action	 with	 some	 modifying	 the	 –OH	 or	 NH2	 groups	 of	 the	 2-deoxystreptamine	

nucleus	 or	 the	 sugar	moieties.	 There	 are	 three	 different	 types	 of	 aminoglycoside	
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modifying	 enzymes:	 phosphotransferases,	 nucleotidyltransferases	 and	

acetyltransferases	 (Ramirez	 and	 Tolmasky,	 2010).	 Other	 mechanisms	 of	

aminoglycoside	resistance	exists	with	mechanisms	included	the	modification	of	the	

target	though	16S	rRNA	or	ribosomal	protein	mutation,	the	methylation	of	16S	rRNA,	

reduction	in	permeability	through	outer	membrane	modification	or	removal	of	inner	

membrane	transport	export	via	efflux	and	drug	sequestration	through	binding	to	an	

acetyltransferase	of	 low	activity	 (Galimand	et	al.,	2005,	O’Connor,	1991,	Hancock,	

1981,	MacLeod,	2000,	Aires,	1999,	Magnet,	2003).			

	

1.2.3	Quinolone	and	fluoroquinolone	antibiotics	and	resistance	mechanisms			

Quinolones	were	first	discovered	in	1962	(Lesher,	1962).	They	are	broad-spectrum	

antibiotics	 and	 are	mainly	 used	 in	 the	 treatment	 of	 urinary	 tract	 infections	 (UTI)	

caused	by	Gram-negative	pathogens	They	are	listed	in	as	important	antimicrobials	in	

the	 treatment	 of	 human	 infections	 (WHO,	 2013).	 Substitution	 at	 C-6	 and	 C-8	

positions	results	in	more	effective	drugs	and	a	substitution	at	the	C-6	position	with	

fluorine	 results	 in	 fluoroquinolone	 production	 (Mitscher,	 2005,	 Domagala,	 1994,	

Guo,	2011,	Aldred,	2014).	The	highly	effective	nature	of	quinolones	combined	with	a	

low	toxicity	makes	them	highly	favourable	in	the	clinic	(Sharma,	2009).	They	are	also	

used	 in	 veterinary	 medicine	 to	 treat	 infections	 in	 food-producing	 animals,	 in	

aquaculture	and	 companion	animals	 (Liu,	 2006).	Because	of	 their	 extensive	use	a	

wide	range	of	 resistance	mechanisms	have	been	 identified.	The	 fluoroquinolones,	

have	 been	 used	 extensively	 to	 treat	 both	 Gram-positive	 and	 Gram-negative	

infections.	There	are	three	mechanisms	by	which	resistance	can	occur;	mutation	of	

target,	 plasmid	 mediated	 involving	 efflux	 and	 a	 decreased	 interaction	 and	

chromosome-mediated	 involving	a	decreased	 influx	of	drug	 in	 to	 the	cell	 (Jacoby,	

2005).	Quinolone	targets	class	II	topoisomerase	(GyrA	and	GyrB)	and	topoisomerase	

IV	 (ParC	and	ParE)	converting	drug-enzyme-DNA	cleavage	complexes	 in	to	cellular	

toxins	(Kampranis,	1999).	Gyrase	and	topoisomerase	IV	work	together	in	replication,	

transcription,	recombination	and	DNA	repair.	Quinolone	resistance	prevents	binding	

of	gyrase/topoisomerase,	through	modifications	of	serine	or	acidic	residue	of	amino	

acids	in	the	water-metal	ion	bridge	which	decreases	quinolone	binding	affinity.	The	

location	 of	 these	 amino	 acid	 substitutions	 is	 termed	 the	 quinolone-resistance-
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determining-region	(Cabral,	1997).	Efflux	mediated	resistance	in	E.	coli	is	mediated	

by	 the	AcrAB-TolC	efflux	pump	with	mutations	 in	 the	acrR	 gene	 increasing	pump	

activity	(Wang	2001).	Mutations	inactivate	marR	resulting	in	increased	activation	of	

acrAB	 and	 tolC	 	 decreasing	 in	 turn	 the	 translation	 of	 the	 ompF	 gene	 ultimately	

reducing	 the	 influx	 and	 increasing	 the	 quinolone	 efflux	 (Cohen,	 1989,	 Alekshun,	

1997).	Efflux	pumps	conferring	resistance	to	quinolones	have	been	found	in	many	

enteric	bacteria	as	well	as	Psuedomonas	aeuringosa,	Stenotrophomonas	maltophilia	

and	Acinetobacter	baumannii	(Cohen,	1993,	Alonso,	2001,	Magnet,	2003).	Plasmids	

can	encode	resistance	mechanisms	with	the	qnr	genes	coding	for	proteins	which	bind	

both	gyrase	and	topoisomerase	IV	resulting	in	resistance	against	ciprofloxacin	and	

next	 generation	 fluoroquinolones	 (Tran,	 2005,	 Tran,	 2002).	 Plasmids	 carrying	qnr	

genes	usually	carry	additional	resistance	genes	including	blaCTX-M	ampC,	blaFOX,	and	

blaSHV			and	are	therefore	often	associated	with	ESBL	producing	bacteria	(Zhong	et	al.,	

2015,	Ewers	et	al.,	2010,	Dhanji,	2011),	(Paterson	DL,	2000).	

	

1.2.4	Macrolide	antibiotics	and	resistance	mechanisms	

Macrolide	antibiotics	are	primarily	used	in	the	topical	treatment	of	infections,	upper	

respiratory	tract	infections	and	soft	tissue	infections.	They	are	particularly	useful	in	

the	 treatment	 of	 patients	with	 allergic	 reactions	 to	 penicillin.	 The	 first	macrolide	

antibiotic	to	be	discovered	was	erythromycin	which	was	first	used	in	the	early	1950’s	

(Lewis,	 2013)	 and	are	 listed	by	 the	WHO	as	 critically	 important	antimicrobials	 for	

human	medicine	(WHO,	2013)Erythromycin	 is	useful	 in	treating	some	 intracellular	

pathogens	 including	 Legionella,	 Mycoplasma	 and	 Chlamydia.	 	 However,	

erythromycin	 can	 cause	 gastrointestinal	 (GI)	 intolerance	 and	 has	 a	 short	 half-life	

making	 them	 unfavourable.	 The	 development	 of	 advanced	 macrolides	 with	 an	

extended	spectrum	of	activity	and	increased	half-life	has	however	resulted	in	more	

favourable	 characteristics	 for	 use	 in	 the	 clinic	 (Zuckerman,	 2004).	 The	 use	 of	

clarithromycin	 and	 azithromycin	 has	 been	 extensive	 since	 their	 introduction	 in	

treatment	of	respiratory	infections,	sexually	transmitted	diseases	and	Helicobacter	

or	Mycobacterium	avium	complex	(Zuckerman,	2004).	Ketolides	are	synthesised	by	

substitution	 of	 the	a-L-cladinose	moiety	 at	 the	 3	 position	 of	 the	 14-memebered	

erythronolide	 A	 ring	 which	 in	 turn	 provides	 greater	 acid	 stability	 and	 prevents	
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resistance	 (Douthwaite,	 2001,	 Shain,	 2002).	 	 Macrolide	 antibiotics	 function	 by	

reversibly	binding	 to	 the	50s	subunit	of	 the	 ribosome	blocking	protein	 translation	

(Sturgill,	 1992).	 The	 ketolides	 bind	 the	 23S	 rRNA	 enabling	 binding	 to	 macrolide	

resistance	bacteria	(Zuckerman,	2004).		

	

Macrolide	 resistance	 is	 usually	 via	 multiple	 mechanisms	 including	 ribosomal	

modification	 through	 methylation	 or	 mutation,	 efflux	 and	 drug	 inactivation	 and	

resistance	 (Leclercq,	 2002).	 Methylation	 of	 the	 ribosomal	 target	 is	 the	 most	

widespread	mechanisms	of	resistance	and	was	the	first	detected	resistance	which	

arose	shortly	after	the	introduction	erythromycin	in	to	the	clinic	in	1956	(Leclercq,	

2002).	The	Erm	proteins	are	responsible	for	this	mode	of	resistance	and	function	by	

dimethylating	 a	 key	 adenine	 residue	 in	 the	 23S	 ribosomal	 subunit	 which	

consequently	 prevents	 binding	 of	 macrolide	 antibiotics.	 This	 effective	 mode	 of	

resistance	has	resulted	in	approximately	40	different	erm	genes	identified	(Roberts,	

1999b).	Target	modification	resistance	is	 less	frequently	detected	but	 involves	the	

modification	 in	 rrn	 operons	 encoding	 the	 23S	 subunit.	 The	 mechanism	 confers	

resistance	 to	 clarithromycin	 in	 the	 majority	 of	 Mycobacterium	 avium	 and	

Helicobacteria	pylori	(Leclercq,	2002).	Efflux	of	macrolide	antibiotics	is	primarily	via	

the	RND	pumps	 in	Gram-negative	bacteria	 and	by	ABC	and	MFS	pumps	 in	Gram-

postive	(Leclercq,	2002).		

	

1.2.5	Tetracycline	antibiotics	and	resistance	mechanisms	

Tetracyclines	were	discovered	in	the	1940s	(Chopra	and	Roberts,	2001).	Action	is	via	

inhibition	of	the	binding	of	aminoacyl-tRNA	to	mRNA-ribosome	complex	to	 inhibit	

protein	 synthesis	 (Chopra	 and	 Roberts,	 2001).	 In	 addition	 to	 their	 antibacterial	

properties	 are	 also	 effective	 against	 non-bacterial	 infections	 including	 protozoan	

diseases	such	as	giardiasis	and	viral	infections	such	as	West	Nile	fever	(Katiyar,	1991,	

Dutta,	2011).	They	also	have	been	shown	to	have	anti-inflammation,	anti-apoptotic	

and	neuroprotective	properties	which	cannot	be	explained	by	the	current	mode	of	

action	 (Debrah	 et	 al.,	 2006,	Michaelis	 et	 al.,	 2007,	 Elewa,	 2006).	 A	 recent	 paper	

suggested	that	rather	than	a	specific	binding	site,	tetracycline	action	is	related	more	

to	double-stranded	structures	of	RNA	which	 in	turn	may	disrupt	normal	biological	
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processes	 through	 the	 inhibition	 of	 cleavage	 by	 RNase	 II	 which	 in	 turn	 prevents	

processing	of	RNAs	which	may	 in	part	explain	why	these	antimicrobials	 infer	such	

abroad	range	of	therapeutic	activities	(Chukwudi	and	Good,	2016).	Regardless	of	the	

mode	 of	 action,	 tetracyclines	 have	 been	 widely	 exploited	 in	 both	 clinical	 and	

veterinary	medicine	due	to	their	broad	spectrum	of	activity	and	limited	side	effects	

(from	bacteriostatic	concentrations	used	in	the	clinic)	(Chopra	and	Roberts,	2001).	

They	are	also	used	as	growth	promoters	in	animal	feed	in	the	United	States	despite	

the	emergence	of	resistance	(Chopra	and	Roberts,	2001).	Resistance	to	tetracyclines	

is	 conferred	 by	 the	 tet	 genes	 which	 encode	 efflux	 mechanisms	 to	 remove	

tetracyclines	from	the	cell	and	reduce	intracellular	concentration.	The	efflux	proteins	

encoded	by	the	tet	genes	are	of	the	major	facilitator	superfamily	(MFS).	In	addition	

to	 tet	 genes,	 ribosomal	 protection	 proteins	 can	 also	 confer	 resistance	 to	

tetracyclines.	 These	 are	 cytoplasmic	 proteins	 able	 to	 confer	 a	 wide	 range	 of	

resistance	to	tetracycline	antibiotics.	They	are	homologous	to	the	elongation	factors	

EF-Tu	and	EF-G	(Sanchez-Pescador,	1988,	Taylor,	1996).	The	TetM,	TetO	and	OtrA	

proteins	 all	 reduce	 the	 susceptibility	 of	 ribosomes	 to	 tetracycline	 action.	 In	 the	

presence	of	TetM	and	TetO	tetracycline	is	released	from	the	ribosomes	(Tamayo.	M.,	

1999).	

	

1.2.6	Polymyxins	antibiotics	and	resistance	mechanisms	

The	emergence	of	the	mobilisable	mcr-1	and	very	recent	(June	2016)	emergence	of	

mcr-2	colistin	resistance	genes	has	received	a	lot	of	attention	(Liu,	2015,	Xavier	et	al.,	

2016).	 Polymyxins	 represent	 last-resort	 antibiotics	 and	 since	 the	 discovery	 of	

plasmids	carrying	mcr-1	and	ESBL	genes,	pan-resistant	bacteria	are	likely	to	become	

more	frequent	in	the	clinic	(McGann	et	al.,	2016).	The	dissemination	of	mcr-1	is	likely	

underestimated	but	is	increasingly	being	detected	with	reports	from	Singapore,	UK	

and	United	States	confirming	the	presence	of	mcr-1	in	isolates	less	than	a	year	after	

the	initial	identification	(Liu,	2015,	Teo	et	al.,	2016,	Anjum	et	al.,	2016,	McGann	et	

al.,	2016).		

Polymyxins	were	first	introduced	in	1949	(Catry	et	al.,	2015)	but	were	not	considered	

suitable	 for	 clinical	 systemic	 use	 due	 to	 their	 nephrotoxicity	 (Koch-Weser,	 1970).	
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Instead	polymyxin	antibiotics	have	been	primarily	used	as	topical	antibacterial	agents	

in	human	medicine	and	in	the	treatment	of		GI	infections	in	agriculture	and	veterinary	

medicine	 (Olaitan,	2014).	However,	due	 to	 the	global	dissemination	of	multidrug-

resistant	(MDR)	Gram-negative	bacteria,	the	polymyxins	have	recently	received	a	lot	

of	attention	as	last	resort	antibiotics.		

There	are	two	forms	of	colistin	that	are	available,	colistin	sulphate	and	the	prodrug	

CMS	 (syn.	 colistin	 methanesulphate,	 colistin	 sulphonyl	 methate,	 penta-	 sodium	

colistimethanesulphate),	which	is	microbiologically	inactive	but	becomes	active	after	

inhalation	 (Li	 et	 al.,	 2006,	 Falgas,	 2005).	 Polymyxin	 B	 differs	 from	 colistin	 by	 one	

amino	acid	(D-leucine	in	colistin	and	phenylalanine	in	polymyxin	B	at	position	6).	Like	

colistin,	polymyxin	B	is	systemically	toxic	and	is	therefore	only	used	as	a	last	resort	

antibiotic	(Nord,	1964).	Most	investigations	in	to	the	mechanism	of	polymyxin	action	

has	focused	on	polymyxin	B,	because	colistin	is	so	similar	in	structure	the	mechanism	

is	predicted	to	be	identical	(Storm,	1977).	Polymyxin	B	acts	by	binding	to	the	outer	

membrane	 of	 Gram-negative	 bacteria	 through	 electrostatic	 interaction	 which	

competes	with	divalent	cations	for	membrane	lipid	phosphate	groups	(Dixon,	1986).	

The	 attachment	 of	 polymyxins	 causes	 membrane	 disruption	 and	 release	 of	

lipopolysaccharide	 (LPS)	 (Peterson,	 1985).	 Resistance	 mechanisms	 employed	 by	

bacteria	include	modification	of	the	LPS	via	covalent	modification	of	lipid	A	moiety	

by	adding	phophoethanolamine	(PEtN)	and	4-amino-4-depxy-L-arabinose	(L-Ara4N),	

deacylation	and	hydroxylation	(Ernst,	2001,	Raetz	et	al.,	2007).	Efflux	pumps	are	also	

used	 to	 remove	 polymyxin	 from	 the	 cell	 and	 capsule	 formation	 is	 also	 utilised	

(Campos,	2004,	Padilla,	2010).		

PhoP/PhoQ	 and	 PmrA/PmrB	 are	 environmentally	 stimulated	 two-component	

systems	 (TCS)	 which	 result	 in	 the	 overexpression	 of	 LPS	modifying	 genes	 (Gunn,	

1996,	Gunn,	2001,	Trent,	2001,	Abraham,	2009,	Miller,	2011)).	The	stimulation	of	the	

PmrA/PmrB	 TCS	 upregulates	 the	 pmrCAB	 and	 arnBCADTEF-pmrE	 operons	 which	

mediate	synthesis	and	transfer	of	PEtN	and	L-Ara4N	t	to	lipid	A.	PhoP/PhoQ	indirectly	

activates	 the	 PmrA/PmrB	 TCS	 through	 PmrD	 which	 once	 activated,	 the	

phosphorylated	 PmrA	 binds	arnBCADTEF	operon	 promoter	 increasing	 recognition	

and	binding	RNA	polymerase	 leading	 to	 lipid	A	modification	 (Wosten,	 1999).	 Like	
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these	TCS,	the	most	recent	polymyxin	resistance	conferring	genes	mcr-1	and	mcr-2	

confer	 resistance	 through	modification	 of	 lipid	 A	 (Liu,	 2015,	 Xavier	 et	 al.,	 2016).	

Capsular	 polysaccharides	 from	Klebsiella	 pneumoniae	have	been	 reported	 to	 trap	

polymyxins	preventing	the	drug	from	reaching	the	cell	however	this	mechanism	of	

resistance	 is	debated	by	some	(Llobet,	2008,	Clements,	2007).	Efflux	of	polymyxin	

antibiotics	 out	 of	 the	 cell	 has	 also	 been	 observed	 as	 a	 mechanism	 of	 colistin	

resistance	with	mutated	AcrAB	pumps	making	K.	pneumoniae	more	susceptible	to	

polymyxin	B	action	(Padilla,	2010).		

1.2.7	Sulphonamide	antibiotics	and	resistance	mechanisms	

Sulphonamides	were	first	introduced	in	the	1930s	and	have	been	used	in	both	clinical	

and	veterinary	medicine	and	are	active	against	bacterial	and	protozoal	 infections.	

Sulphonamide	 action	 is	 via	 alternative	 substrate	 binding,	 acting	 as	 a	 structural	

analogue	of	r-amino-benzoic	acid	binding	dihyropteroate	synthase	(DHPS).	DHPS	is	

involved	in	the	folic	acid	biosynthesis	pathway	to	form	dihydrofolic	acid,	binding	of	

DHPS	therefore	prevents	this	formation	(Skold,	2000).	This	mechanism	of	resistance	

is	effective	against	Gram-negative	and	Gram-positive	bacteria	(Brown,	1962).		

Resistance	to	sulphonamides	is	widespread	and	as	a	result	they	are	usually	used	in	

combination	with	diaminopyrimidines	or	trimethoprim	in	the	treatment	of	diarrheal	

disease	(Huovinen,	2001,	Perreten,	2003).	Resistance	arises	from	mutations	 in	the	

DHPS	 gene	 (folP)	 or	 acquisition	 of	 alternative	DHPS	 genes	 (sul)	 (Swedberg,	 1993,	

Perreten,	2003,	Rådstrom,	1988,	Sundstrom,	1988).	There	are	three	sul	genes;	sul1,	

sul2	and	sul3.	The	sul1	gene	is	characteristically	located	on	the	3’	conserved	region	

of	the	Class	1	integron,	the	sul2	gene	was	identified	on	RSK10010	from	E.	coli	and	has	

been	associated	with	resistance	plasmids	and	the	sul3	gene	was	first	identified	from	

E.	coli	isolates	from	pigs	(Skold,	1976,	Rådstrom,	1988,	Perreten,	2003).	

	

1.2.8	Multidrug	resistance	conferring	efflux	pumps	and	their	role	in	antimicrobial	

resistance	

MDR	 efflux	 pumps	 allow	 export	 of	 a	 diverse	 range	 of	 antimicrobial	 agents.	 All	

bacteria	carry	multiple	MDR	genes,	however,	the	mobilisation	of	these	pumps	on	to	
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plasmids	has	resulted	in	a	higher	rate	of	efflux	of	antimicrobials	from	bacterial	cells	

due	 to	 increased	 expression	 (Piddock,	 2006).	 	 Efflux	 pumps	 are	 able	 to	 confer	

resistance	 through	 two	 mechanisms;	 increased	 expression	 or	 amino	 acid	

substitutions	 improving	efflux	efficiency.	 	They	can	have	a	broad	range	of	activity,	

able	to	export	a	variety	of	different	antimicrobial	classes	from	the	cell,	or	they	can	

be	specific	(Piddock,	2006).	Efflux	pumps	can	be	chromosomal	or	plasmid	encoded.		

	

There	 are	 five	 classes	 of	 chromosomally	 encoded	 efflux	 pumps:	 the	 resistance	

nodulation	 division	 (RND)	 family,	 the	 major	 facilitator	 superfamily	 (MFS),	

staphylococcal	 multiresistance	 (SMR),	 multidrug	 and	 toxic	 compound	 extrusion	

(MATE)	 families	and	ATP	binding	cassette	 (ABC).	RND	pumps	are	 tripartite	proton	

exporters,	functioning	through	exchange	of	hydrogen	ions	for	drug	molecules	they	

consist	of	 a	 transporter,	 a	periplasmic	accessory	protein	and	an	outer	membrane	

protein	 channel	 (Paulsen,	 2003,	 Piddock,	 2006).	 MFS	 pumps	 possess	 12	

transmembrane	 domains	 and	 also	 function	 through	 proton	 motive	 force	 (PMF)	

(Paulsen,	2003).	MATE	pumps	have	two	different	energy	sources,	one	is	the	PMF	and	

the	other	is	a	sodium	ion	gradient.	They	have	similar	functions	to	RND	pumps	but	are	

not	tripartite.	ABC	transporters	have	not	been	found	to	confer	clinically	related	MDR	

but	 are	 present	 in	 pathogenic	 bacterial	 genomes.	 A	 recent	 study	 found	 a	 novel	

tripartite	 resistance	nodulation	division	 (RND)	on	a	 IncH1	plasmid	which	was	also	

carrying	the	New	Delhi	metallo-b-lactamase	1	(NDM-1)	gene	conferring	resistance	to	

carbapenems	 (Dolejska	 et	 al.,	 2013).	 The	 RND	 class	 of	 multidrug	 efflux	 pumps	

constitute	 the	most	 clinically	 relevant	 pumps	 and	 are	 able	 to	 export	 a	 variety	 of	

different	antimicrobials	when	overexpressed	(Piddock,	2006).	

	

1.3 Persister	cells	and	their	role	in	evading	antimicrobial	treatment		

Not	 only	 are	 bacteria	 antibiotic	 resistant,	 persistent	 infections	 are	 becoming	

increasingly	 reported	as	 the	knowledge	around	these	bacteria	 improves.	Persister	

bacteria	are	defined	as	those	cells	that	are	metabolically	quiescent,	neither	growing	

or	dying	when	exposed	to	bactericidal	antibiotic	concentrations	(Lewis,	2013).	The	

persistence	phenotype	 is	not	 inherited	and	 induction	of	persister	cell	 formation	 is	

stochastic	 (Germain,	 2015).	 Persister	 formation	 is	 generally	 regarded	 as	 a	 ‘bet-
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hedging’	 strategy	 to	 evade	 unpredictable	 stress	 allowing	 a	 small	 population	 to	

survive	in	extreme	conditions	(Losick	and	Desplan,	2008,	Veening,	2008).	The	number	

of	persisters	has	previously	been	reported	to	increase	in	biofilms	suggesting	a	high	

number	 of	 persister	 cells	may	 be	 present	 in	 the	 environment	where	 biofilms	 are	

highly	abundant	(Maisonneuve	et	al.,	2013).		

	

Often	toxin-antitoxin	(TA)	systems	are	involved	in	the	development	of	persister	cells	

(Wen	et	al.,	2014,	Gelens	et	al.,	2013,	Li	et	al.,	2016,	Bertram,	2014,	Keren	et	al.,	

2004).	 	 E.	 coli	 typically	 encodes	 11	 type	 II	 TA	 systems	 which	 are	 involved	 in	

persistence,	the	HipA	(high	persister	protein	A)	kinase	of	the	hipBA	model,	is	one	of	

the	 best	 characterised	 proteins	 involved	 in	 persister	 cell	 formation	 and	 functions	

through	inactivating	glutamyl	tRNA	synthetase	by	phosphorylation	resulting	in	high	

levels	of	tRNAglu,		which	in	turn	results	in	the	activation	of	the	stringent	response	by	

activating	RelA	and	increasing	(p)ppGpp	levels	(Kaspy	et	al.,	2013)	.	The	induction	of	

the	 stringent	 response	 is	 linked	 to	 persistence	 of	 bacteria	 however	 the	 precise	

mechanisms	is	unknown.		

	

The	 function	 of	 antibiotics	 requires	 cells	 to	 be	 actively	 dividing,	 the	 formation	 of	

persister	 cells	 allows	 bacteria	 to	 evade	 killing	 and	 start	 dividing	 when	 antibiotic	

concentration	decreases.	The	requirement	for	antimicrobial	drugs	that	are	able	to	

kill	dormant	bacterial	cells	is	therefore	urgent	in	the	fight	against	infection.		

	

1.4	Current	state	of	antibiotics		

Costs	 associated	with	antibiotic	 resistance	are	predicted	 to	 increase	 to	up	 to	100	

trillion	US	dollars	by	2050	(O'Neill,	2016).	As	well	as	huge	economic	costs,	the	loss	of	

lives	as	a	direct	result	of	antibiotic	resistance	is	currently	estimated	at	700000	deaths	

and	could	overtake	the	number	of	deaths	from	cancer	at	ten	million	by	2050	(O'Neill,	

2016).		

	

No	major	antimicrobial	discoveries	were	made	between	1980-2015.	The	discovery	of	

the	novel	antimicrobial	teixobactin	made	by	Lewis	and	colleagues	was	the	first	new	

discovery	since	1997	when	the	diarylquinolone	bedaquiline	was	discovered,	a	narrow	
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spectrum	antibiotic	used	in	the	treatment	of	Mycobacterium	tuberculosis	(Ling	et	al.,	

2015,	Lewis,	2013).	Teixobactin	represents	a	novel	class	of	natural	product	antibiotics	

and	 was	 a	 major	 breakthrough	 for	 antibiotic	 discovery	 being	 the	 first	 study	 to	

successfully	identify	a	novel	antimicrobial	using	the	iChip	allowing	the	unculturable	

fraction	of	microorganisms	to	be	mined	for	antibacterial	activity	(Ling	et	al.,	2015).	

Teixobactin	is	active	against	Gram-positive	bacteria	including	Staphylococcus	aureus	

(including	methicillin	resistant	S.	aureus	(MRSA)),	M.	tuberculosis,	Clostridium	difficile	

and	Bacillus	anthracis	and	acts	through	the	inhibition	of	peptidoglycan	biosynthesis	

by	binding	a	highly	conserved	motif	of	lipid	I	and	lipid	II	(precursors	for	peptidoglycan	

and	 teichoic	 acid	 respectively).	 Although	 the	 authors	 suggest	 resistance	 to	 this	

antimicrobial	agent	is	unlikely	due	to	the	mechanism	by	which	it	acts,	teixobactin	is	

a	natural	product	and	therefore	natural	resistance	will	occur	in	Eleftheria	terrae,	the	

organism	from	which	it	was	discovered	and	therefore	will	disseminate	if	teixobactin	

is	used	in	the	clinic	(Piddock,	2015).		

	

Livestock	usage	of	antimicrobials	is	estimated	between	50-80	%	in	many	developed	

nations	(Cully,	2014).	The	large	demand	for	meat	production	has	resulted	in	a	vast	

amount	 of	 antimicrobials	 being	 used	 in	 treatment	 of	 active	 infections	 and	

prophylactically	 to	 prevent	 infections	 but	 also	 for	 growth	 promotion	 purposes.		

Despite	research	showing	high	levels	of	resistance	as	a	direct	result	of	antimicrobial	

use	 as	 growth	 promoters	 as	 early	 as	 1951,	 the	 growth	 promotion	 exhibited	 by	

prophylactic	treatment	has	continued	to	outweigh	the	significant	human	health	costs	

(at	least	from	an	agricultural	viewpoint).	In	the	United	States	the	use	of	antibiotics	as	

growth	promoters	is	still	widely	carried	out	with	more	than	half	of	antibiotics	used	

for	this	sole	purpose	(Cully,	2014).	The	specific	use	of	antibiotics	as	growth	promoters	

is	most	significant	in	pig	production	in	China.	China	is	the	largest	antibiotic	producer	

and	consumer	and	it	was	estimated	that	annual	production	equates	to	210	million	kg	

with	46.1	%	of	this	being	used	in	livestock	(Hvistendahl,	2012).	30	%	of	global	pork	

production	comes	from	China	which	has	resulted	in	significant	pressure	to	maintain	

such	high	production	 levels.	Consequently	 farmers	 in	China	are	 reported	 to	use	4	

times	more	antibiotics	than	the	US	in	the	production	of	the	same	amount	of	meat	

(Cully,	2014).	As	a	direct	result	of	this	irresponsible	overuse	of	antibiotics	one	study	
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found	that	ARG	were	enriched	by	28000-fold	in	manure	and	soil	from	Chinese	pig	

farms	 and	 has	 resulted	 in	 mobilisable	 colistin	 resistance	 (Zhu,	 2013,	 Liu,	 2015).	

Although	the	numbers	of	antibiotics	used	as	growth	promoters	is	still	high	in	both	

China	and	the	United	States	there	have	been	some	changes	to	reduce	this.	The	first	

country	to	made	amendments	to	the	number	of	antibiotics	as	growth	promoters	was	

Denmark	when	 the	Danish	minister	 for	 agriculture	 and	 fishing	banned	 the	use	of	

avopacin	in	1995	(Cully,	2014).	The	European	Union	(EU)	banned	the	use	of	clinically	

important	antibiotics	for	growth	promotion	in	2000	and	in	2006	invoked	a	complete	

ban	on	antibiotics	for	agricultural	growth	promotion	purposes		(Cully,	2014).	

	

1.5	Antimicrobial	production	prospects	

Currently	 antibiotic	 discovery	 is	 not	 an	attractive	prospect	 to	 industry	due	 to	 the	

likelihood	 of	 AMR.	 Therefore,	 incentives	 were	 set	 out	 in	 the	 recent	 government	

report	 regarding	 tackling	 AMR	 to	 make	 antibiotic	 production	 a	 more	 attractive	

prospect	(O'Neill,	2016).	As	well	as	providing	incentives	to	industries	there	were	9	

other	points	made	to	tackle	AMR:	1.	Raising	public	awareness;	2.	improving	hygiene	

and	preventing	the	spread	of	infection;		3.	reduce	unnecessary	use	of	antimicrobials	

in	agriculture	to	present	dissemination	in	the	environment;	4.	global	surveillance	of	

AMR	 for	 both	 animal	 and	 human	 consumption;	 5.	 promotion	 of	 new,	 rapid	

diagnostics;	 6.	 promotion	 of	 the	 development	 and	 the	 use	 of	 vaccines	 and	

alternatives;	 7.	 increase	 the	 numbers,	 pay	 and	 recognition	 of	 people	 working	 in	

infectious	disease;	8.	 initiate	a	global	innovation	fund	for	the	early-stage	and	non-

commercial	research;	9.	build	a	global	coalition	for	real	action	through	the	G20	and	

the	UN	(O'Neill,	2016).		

	

With	the	treatment	of	MDR	and	persistent	bacteria	there	is	an	urgent	need	for	novel	

antimicrobial	 agents.	 In	 the	 1940’s	 the	method	 used	 to	 investigate	 antimicrobial	

compounds	involved	the	soil-derived	streptomycetes	and	screened	for	antimicrobial	

activity	by	investigating	zones	of	inhibition.	This	method	of	screening	was	extremely	

effective	and	resulted	in	many	major	classes	of	antibiotics	being	discovered	that	are	

still	used	today	This	was	known	as	the	‘golden	era’	of	antibiotic	discovery	and	spread	

throughout	the	1940’s	to	1960’s	(Lewis,	2013).		However,	the	extensive	resistance	
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that	arose	due	to	the	misuse	and	overuse	of	antibiotics	has	resulted	 in	fewer	and	

fewer	antibiotics	still	useful	in	the	clinic	(Figure	1.1).		

	

	

Figure	1.1	Clinical	introduction	of	antibiotics	and	first	reported	resistance		

	

Although	 incentives	are	 to	be	employed	 to	make	antibiotic	 research	an	attractive	

prospect,	 alternative	 antimicrobials	 may	 be	 required	 as	 the	 rate	 of	 discovery	 of	

antibiotics	has	dramatically	decreased	since	the	first	discovery	of	penicillin	(O'Neill,	

2016).	 Alternative	 approaches	 include	 phage	 therapy,	 predatory	 bacteria,	

antimicrobial	peptides	from	plants,	animals	and	fungi,	gene-editing	enzymes	and	the	

use	of	metals.		

	

1.5.1	Phage	therapy	

Phage	therapy	was	first	introduced	in	the	1920s	but	after	penicillin	was	discovered	

the	Western	world	dismissed	research	in	this	field	to	focus	on	discovering	new	and	

novel	antibiotics	due	to	their	broad	spectrum	of	activity.	Almost	eight	decades	after	

the	discovery	of	penicillin,	research	is	returning	to	the	idea	of	using	bacteriophage	to	

treat	 MDR	 infections.	 The	 benefit	 of	 using	 phage	 is	 also	 its	 major	 downfall;	

bacteriophage	 are	 highly	 specific	 for	 their	 target	 making	 them	 useful	 tools	 in	

targeting	 specific	MDR	bacteria,	 however	 this	 specificity	means	unlike	antibiotics,	
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they	have	an	incredibly	narrow	spectrum	of	antibacterial	activity.	The	development	

of	phage	is	potentially	less	costly	than	the	development	of	antibiotics	which	requires	

rodent	studies	so	may	provide	an	attractive	solution	to	industry.	Hamamoto	et	al.	

suggested	silk	worm	larvae	may	be	suitable	hosts	for	experiments	drastically	cutting	

costs	of	production	(Hamamoto	et	al.,	2004).	Takemura-Uchiyama	et	al.	developed	

phage	 to	 destroy	 S.	 aureus	 in	 successful	 experiments	 resulting	 in	 survival	 of	 the	

silkworm	(Takemura-Uchiyama	et	al.,	2013).		

	

1.5.2	Predatory	bacteria	

There	is	interest	in	the	use	of	predatory	bacteria	Bdellovibrio	bacteriovorus,	which	

attacks	the	bacterial	host’s	inner	and	outer	cell	membrane	by	growing	filaments	and	

replicating	until	the	cell	bursts	(Dwidar	et	al.,	2012).	It	has	even	been	shown	to	be	

effective	 against	 E.	 coli	 O157:H7	 (Fratamico	 and	 Cooke,	 1996).	 	 A	 study	 has	 also	

successfully	engineered	E.	coli	to	kill	Pseudomonas	aeruginosa	through	production	

of	peptides	(Saeidi	et	al.,	2011).		

	

1.5.3	Antimicrobial	peptides		

Cationic	antimicrobial	peptides	from	plants,	animals	and	fungi	may	provide	a	novel	

solution	 to	 treating	 AMR	 bacterial	 infections.	 Reptiles	 and	 amphibians	 are	

characteristically	resistant	to	some	infections	therefore	investigating	peptides	with	

antimicrobial	activity	from	these	animals	may	provide	an	effective	solution	to	MDR	

pathogens.	 Studies	 investigating	 animals	 as	 a	 potential	 reservoir	 of	 antimicrobial	

peptides	have	already	successfully	isolated	peptides	from	frogs,	alligators	and	snakes	

(Flamm	et	al.,	2015,	Barksdale	et	al.,	2016,	Blower,	2015).	A	recent	study	was	also	

able	 to	 isolate	 an	 antimicrobial	 peptide	 from	 the	 ant	 Tetramonrium	 bicarinatum	

effective	against	Staphylococcus	and	Enterobacteriaceae	(Tene	et	al.,	2016).	These	

peptides	have	the	ability	to	heal	infections	in	mice	and	some	are	in	clinical	trials.	They	

are	particularly	are	useful	because	 their	potency	can	be	modified.	A	 recent	 study	

carried	out	by	Barksdale	et	al.	 	found	antimicrobial	peptides	active	against	MDR	S.	

aureus,	E.	coli,	Pseudomonas	aerunginosa	and	Acinetobacter	baumannii	(Barksdale	

et	al.,	2016).	Pexiganan,	isolated	from	a	frog,	is	in	phase	III	clinical	trials	and	could	

potentially	 be	 important	 in	 treating	 diabetic	 foot	 ulcers	 (Flamm	 et	 al.,	 2015).	
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Antimicrobial	peptides,	like	antibiotics,	have	the	capacity	to	be	broad	spectrum	and	

work	 by	 damaging	 the	 bacterial	 membrane	making	 resistance	 difficult	 (Hancock,	

1997).	Using	antimicrobial	peptides	therefore	is	a	promising	method	of	combating	

antibiotic	 resistance,	 however,	 in	 contrast	 to	 phage	 therapy	 as	 an	 alternative	 to	

antibiotics,	peptide	production	is	expensive	and	therefore	currently	an	unattractive	

prospect	to	industry.		

	

1.5.4	Gene-editing	

Gene-editing	 using	 clustered	 regularly	 interspaced	 short	 palindromic	 repeats	

(CRISPR)	poses	a	promising	strategy	that	may	help	to	destroy	MDR	bacteria.	CRISPR	

is	 used	 as	 a	 protective	 system	 in	 bacteria	 against	 phage,	 however	 studies	

investigating	 the	 potential	 to	 use	 CRISPR	 to	 destroy	 bacterial	 DNA	 are	 being	

conducted.	Yosef	et	al.	used	temperate	phage	to	deliver	CRISPR	associated	(Cas)	in	

to	the	genome	of	a	AMR	E.	coli	to	kill	only	the	AMR	E.	coli	and	not	the	antibiotic-

sensitive	strains	(Yosef	et	al.,	2015).		The	Cas9	system	has	recently	been	used	to	treat	

ESBL-producing	E.	coli	by	re-sensitizing	to	antibiotics	(Kim	et	al.,	2016).	Gene	editing	

using	 CRISPR	 presents	 a	 promising	 approach	 to	 overcome	 AMR	 with	 the	 Cas9,	

perhaps	 the	 most	 promising,	 a	 double-stranded	 DNA	 nuclease	 which	 can	 be	

programmed	to	cleave	almost	any	specific	DNA	sequence	allowing	MDR	to	be	re-

sensitised	to	antibiotics	(Jinek	et	al.,	2012).		

	

1.5.5	Metals	as	antimicrobial	agents	

Metals	 have	 also	 been	 suggested	 as	 potential	 antimicrobial	 agents	 to	 replace	

antibiotics.	The	main	concern	over	using	metals	to	combat	AMR	pathogens	is	that	

metals	are	often	toxic	to	humans.	Therefore,	although	they	are	effective	against	MDR	

pathogens,	they	will	likely	induce	significant	side-effects.	The	most	promising	metal	

to	be	used	is	gallium.	Gallium	is	able	to	kill	the	pan-resistant	A.	baumannii		due	to	the	

inability	of	proteins	to	distinguish	between	Fe3+	and	Ga3+	(Antunes	et	al.,	2012).	

	

1.6	Contributing	factors	to	the	global	dissemination	of	ARG	

Anthropogenic	impacts	have	no	doubt	contributed	to	the	widespread	dissemination	

of	 ARG	 (Figure	 1.2).	 The	 primary	 factor	 accelerating	 ARG	 in	 the	 clinic	 and	
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environment	is	currently	unknown,	but	the	cumulative	effects	of	poor	prescription	

practice,	 self-prescription,	 misuse	 of	 antibiotics,	 veterinary	 use,	 agricultural	 use	

involving	 prophylactic	 use	 in	 animals	 and	 on	 crops,	manure	 spreading,	 industrial	

waste,	and	wastewater	treatment	plant	inefficiency	all	play	a	role	(Wellington	et	al.,	

2013).		

	

	
Figure	1.2	The	environmental	resistome.	
Reprinted	from	the	Lancet	13(2):155-165	The	role	of	the	natural	environment	in	the	
emergence	of	antibiotic	resistance	in	Gram-negative	bacteria,	Copyright	(2016),	
with	permission	from	Elsevier.	
	
	

1.6.1	Travel	as	a	factor	of	ARG	dissemination	

Over	the	past	twenty	years	there	has	been	significant	increases	in	the	transport	of	

goods	 between	 Asia	 and	 Europe	 as	 well	 as	 an	 increase	 in	 travel	 of	 the	 general	

population	(Hawkey,	2015).	In	a	ten	year	period	from	2002	to	2012	the	number	of	

flights	between	the	UK	and	the	rest	of	the	world	increased	from	39.5	to	50	million	

(Hawkey,	2015).	In	addition,		an	increasing	number	of	megacities	(defined	as	cities	

with	populations	greater	than	or	equal	to	10	million	have	meant	more	people	are	

living	 in	 close	 proximity	 (DESA,	 2014).	 In	 2014	 there	 were	 28	 megacities	 with	 a	

combined	population	of	453	million	people	(DESA,	2014).	The	largest	city	was	Tokyo	

with	38	million	people	followed	by	Delhi	which	had	a	population	of	25	million.	Six	of	
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these	megacites	are	in	China.	Over	50	%	of	the	global	population	currently	lives	in	

urban	areas	and	it	is	predicted	to	increase	to	66	%	by	2050	(DESA,	2014).		

	

The	increase	in	population	and	resultant	megacities	has	increased	the	pressure	for	

effective	 sewage	disposal	 and	 safe	drinking	water	 (Hawkey,	 2015).	 Consequently,	

overcrowding	 has	 resulted	 in	 heavy	 antimicrobial	 usage	 leading	 to	 large	 levels	 of	

AMR	 within	 these	 communities.	 Combined,	 global	 travel	 has	 become	 more	

accessible	 and	 has	 dramatically	 increased	 in	 the	 past	 fifteen	 years	meaning	 that	

population	mixing	is	happening	more	frequently	and	at	a	higher	level	compared	to	

twenty	years	ago.	The	commensal	carriage	of	resistant	bacteria	in	the	intestinal	tract	

consequently	 has	 resulted	 in	 an	 increased	 exposure	 as	 a	 direct	 result	 of	 travel	

(Hawkey,	2015).		

	

Perhaps	the	most	important	ARGs	to	have	disseminated	as	a	direct	consequence	of	

increased	travel	are	the	blaCTX-M-14,	blaCTX-M-15	and	blaNDM-1	genes.	The	blaCTX-M	genes	

are	believed	to	have	originated	from	the	environmental	bacteria	Kluyvera.	Originally	

genes	were	chromosomal	but	the	association	with	ISEcp1	and	IS903	has	mobilised	

these	 genes	 on	 to	 plasmids	 allowing	 their	 rapid	 dissemination,	 particularly	 in	 the	

Enterobacteriaceae	 (Humeniuk	 et	 al.,	 2002,	 Hawkey,	 2015).	 	 The	 spread	 of	 ESBL	

producing	bacteria	as	a	direct	result	of	travel	has	previously	been	demonstrated	with	

one	study	reporting	travel	outside	of	Europe	resulted	in	a	higher	prevalence	of	ESBL	

producing	 bacteria	 in	 those	 travellers	 compared	 to	 in	 people	 who	 had	 travelled	

within	Europe	 (Tham,	2010).	 India	had	 the	highest	 colonisation	 rate	with	79	%	of	

travellers	 tested	 reported	 to	 carry	 ESBL	 producing	 bacteria.	 Travellers	 who	 had	

visited	India	were	more	likely	to	carry	the	blaCTX-M-15	gene	and	travellers	who	visited	

China	were	most	 likely	 to	 carry	 the	blaCTX-M-14	gene.	 	 Commensal	 carriage	of	 ESBL	

producing	bacteria	has	been	shown	in	healthy	Chinese	persons	with	studies	showing	

high	carriage	of	E.	coli	with	ESBL	genes	at	50	%	and	51	%	carriage	(Li,	2011,	Zhong	et	

al.,	2015).	

	

Another	study	demonstrating	the	relationship	between	location	and	prevalence	was	

a	 study	 conducted	 by	Wickramasighe	 et	 al.	 who	 demonstrated	 that	 residents	 in	
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Birmingham,	UK	had	a	higher	 likelihood	of	blaCTX-M	carriage	 if	 they	came	from	the	

Middle	East	or	South	Asia	(based	on	the	assumption	of	names	indicating	origin)	than	

individuals	 who	 had	 names	 of	 European	 origin	 (and	 therefore	 assumed	 to	 be	 of	

European	descent).	Those	individuals	assumed	to	be	of	Middle	East	or	South	Asia	had	

a	23	%	carriage	compared	to	European	carriage	of	8	%	(Wickramasinghe	et	al.,	2012).	

These	 results	were	 similar	 to	 another	 study	 conducted	 in	 France	which	 reported	

people	who	were	born	outside	of	France	were	more	 likely	 to	carry	blaCTX-M	 	genes	

(Nicolas-Chanoine	et	al.,	2012).	

	

One	other	noteworthy	gene	found	to	have	been	disseminated	as	a	consequence	of	

travel	 is	 the	 carbapenemase	 gene	 blaNDM-1.	 NDM	 refers	 to	 New-Delhi	 metallo-b-

lactamase	and	was	so	named	due	to	the	location	from	which	it	was	first	detected.	

The	first	report	of	this	gene	was	in	2008	and	was	identified	from	a	patient	of	Indian	

origin.	Both	K.	pneumoniae	and	E.	coli	blaNDM-1	carrying	strains	were	 isolated	from	

this	one	patient	(Yong	et	al.,	2009).	The	spread	of	this	gene	has	been	strongly	linked	

to	travel	in	India,	Bangladesh	and	Pakistan	with	>50	%	of	cases	from	patients	who	

had	visited	hospitals	in	these	three	countries	(Yong	et	al.,	2009,	Kumarasamy,	2010).		

	

A	 recent	 study	 investigated	 the	 microbiomes	 and	 resistomes	 of	 low	 income	

countries.	 There	 are	 currently	 about	 5.8	 billion	 people	 living	 in	 low	 and	 middle	

income	 countries	 and	 863	million	 people	 living	 in	 slums	 	 (Pehrsson	 et	 al.,	 2016).	

Human	 microbiomes	 and	 resistome	 from	 human	 faecal	 samples	 from	 two	 low-

income	communities	were	investigated,	one	being	from	a	rural	village	and	the	other	

a	peri-urban	shanty-town.	Studying	these	low-income	counties	 is	 important	public	

health	 priority	 due	 to	 the	 large	 levels	 of	 antibiotic	 usage	 that	 occurs	 in	 these	

developing	 counties	 (Pehrsson	 et	 al.,	 2016).	 	 Functional	 metagenomics	 studies	

revealed	1100	unique	AMR	genes	displaying	resistance	to	all	antibiotics	tested	except	

meropenem.	 They	 found	 in	 accordance	 with	 previous	 studies	 that	 AMR	 was	

correlated	with	the	community	composition	rather	than	a	random	distribution	across	

habitats	(Pehrsson	et	al.,	2016).		
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1.6.2	Agriculture	as	a	factor	in	the	dissemination	of	AMR	

There	 have	 been	many	 studies	 investigating	 the	 global	 importance	 of	 the	 use	 of	

antibiotics	in	agriculture,	both	in	prophylactic	use	and	in	the	treatment	of	infection.	

Studies	 in	 China	 investigating	 antibiotics	 in	 animal	manure	 found	 incredibly	 high	

levels	of	tetracyclines	(hundreds	of	mg/kg)	(Qiao	M,	2012,	Pan	X,	2011).	As	previously	

mentioned,	the	study	by	Zhu	et	al.	highlighted	the	impact	that	antibiotic	use	can	have	

on	the	selection	of	ARG	with	a	28000-fold	increase	in	samples	taken	from	farms	using	

antibiotic	supplemented	feeds	compared	to	antibiotic-free	control	samples.	In	this	

study	149	unique	 resistance	genes	were	detected	and	both	antibiotics	and	heavy	

metals	were	found	in	manure	allowing	for	co-selection.	The	direct	use	of	antibiotics	

and	 metals	 correlated	 with	 an	 increased	 ARG	 level	 in	 manure	 (Zhu,	 2013).	 The	

majority	of	veterinary	antibiotics	are	excreted	explaining	the	high	levels	in	manure	

(Alcock,	 1999).	 Consequently,	 these	 antibiotics	 are	 then	 spread	 on	 to	 land	when	

manure	is	used	as	fertilizer	and	resultantly	antibiotics	and	ARG	are	found	in	manure-

amended	soils	and	surrounding	river	waters	and	sediment	due	to	runoff	(Ghosh	and	

LaPara,	2007,	Pruden	et	al.,	2012).	As	a	direct	result	of	manure	application	to	land,	

studies	 have	 shown	 an	 increase	 in	 the	 number	 of	 resistant	 bacteria	 that	 can	 be	

retrieved	from	soils	amended	by	manure	compared	to	those	not	amended	with	an	

increased	in	the	number	of	horizontal	gene	transfer	(HGT)	events	of	ermF,	sul1	and	

sul2	and	an	increase	in	the	prevalence	of	Class	1	integrons	(Byrne-Bailey	et	al.,	2009,	

Sengelov,	2003,	Heuer,	2007,	Fahrenfeld	et	al.,	2014,	Byrne-Bailey	et	al.,	2011).		

	

Other	 studies	 investigating	 agricultural	 impacts	 of	 antibiotics	 have	 shown	

enrichment	of	ARG	in	faeces	(Chapman	et	al.,	2006,	Skurnik	et	al.,	2006,	Kanwar	et	

al.,	 2014).	 One	 metagenomic	 study	 investigated	 10	 different	 environments	

investigating	 the	 plasmid	 metagenome.	 They	 reported	 large	 differences	 in	 ARG	

presence	 between	 different	 sites.	 In	 chicken	 faeces	 for	 example	 there	 was	 an	

enrichment	of	12	ARG	types	highlighting	the	importance	of	ARG	selection	in	chicken	

production	(Li	et	al.,	2015a).	The	ARG	profiles	of	each	site	were	independent	of	other	

sites	suggesting	specific	antimicrobial	selection	pressures	at	each	site.		
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1.6.3	The	impact	of	wildlife	on	the	dissemination	of	ARG	

The	 importance	 of	 wildlife	 in	 the	 dissemination	 of	 ARG	 has	 been	 largely	

underreported	(Huijbers	et	al.,	2015).	The	presence	of	ARG	within	wildlife	has	been	

mainly	attributed	to	the	overuse	of	antibiotics	in	humans	and	in	animals	which	enter	

the	 environment	 through	 inefficient	wastewater	 treatment	 and	 runoff	 from	 land	

(Arnold	et	al.,	2016).	The	environmental	exposure	to	both	antimicrobials,	metals	and	

biocides	can	co-select	 for	MGE	carrying	ARG,	biocide	resistance	genes	 (BRGs)	and	

metal	 resistance	 genes	 (MRG).	 This	 results	 in	 widespread	 dissemination	 of	 ARG	

resulting	in	wildlife	that	has	never	been	exposed	to	humans	carrying	ARB	(Fondi	et	

al.,	2016).	Generally	reports	have	shown	animals	within	close	proximity	to	human	

populations	 carry	 a	 larger	 number	 of	 ARG	 than	 animals	 from	 more	 isolated	

populations	(Arnold	et	al.,	2016).	The	first	MDR	bacteria	isolated	from	a	wild	animal	

was	in	1975	and	was	from	an	E.	coli	isolate	from	a	pigeon	(Sato,	1978).	Other	studies	

have	 included	gorilla	populations,	elephant	seals	and	iguanas	(Rwego	et	al.,	2008)	

(Stoddard,	2008)	(Wheeler,	2012).	Birds	of	prey	with	clindamycin	and	erythromycin	

resistant	staphylococci	have	also	been	isolated	in	Portugal	and	in	the	UK	antibiotic	

resistant	 E.	 coli	 	 was	 isolated	 	 from	 magpies	 and	 rabbits	 with	 resistance	 to	

tetracycline,	ampicillin,	chloramphenicol,	kanamycin,	sulphonamides	(Sousa,	2016	,	

Livermore,	2001).	In	contrast	to	the	many	reports	of	AMR	bacteria	isolated	from	wild	

animals	one	study	which	took	33	humans	and	198	wild	animals	to	investigate	E.	coli	

prevalence	showed	no	resistance	in	isolates	from	wild	animals	but	did	find	resistance	

in	 human	 isolates	 suggesting	 human	 impact	 may	 not	 be	 as	 substantial	 as	 other	

papers	have	reported	(Lescat	et	al.,	2013).	

	

1.6.4	Domestic	animals	and	livestock	transmission	of	ARG	

It	is	easy	to	assume	that	wild	animals	acquire	resistance	from	human	impacts	in	the	

environment.	What	is	not	clear	is	if	animal-human	or	human-animal	transmission	is	

more	important	in	the	dissemination	of	resistance.	As	discussed	previously,	the	use	

of	antibiotics	in	livestock	production	is	extensive.	The	veterinary	use	of	antibiotics	for	

the	treatment	of	companion	animals	is	also	extensive	and	involves	the	use	of	broad	

spectrum	 antimicrobials	 including	 clavulanate-potentiated	 aminopenicillins,	

cephalosporins	 and	 fluoroquinolones	 (Lloyd,	 2007).	 Cats	 and	 dogs	 represent	 the	
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most	 likely	 source	 of	 domestic	 animal	 transmission	 of	 ARG.	 In	 EU	 countries	 the	

number	of	cats	and	dogs	kept	as	pets	is	estimated	at	70	million	and	several	reports	

have	shown	resistant	pathogenic	species	isolated	from	cats	and	dogs	(Guardabassi	

et	al.,	2004,	Ewers	et	al.,	2010,	Lloyd,	2007).	One	of	the	most	concerning	resistant	

human	pathogens	to	be	 found	 in	companion	animals	 is	E.	coli	ST131	O25:H4.	The	

study	by	Ewers	et	al.	identified	ST131	O25:H4	ESBL	producing	strains	from	dogs	and	

horses	(Ewers	et	al.,	2010).	O25:H4	is	a	human	pandemic	strain	which	is	generally	

characterised	by	carriage	of	fluoroquinolone	and	3GC	resistance	(Matsumura	et	al.,	

2015,	Coque	et	al.,	2008,	Zhong	et	al.,	2015,	Can	et	al.,	2015,	Dhanji,	2011,	Rooney	

et	 al.,	 2009).	 Finding	 this	 resistant	 pathogenic	 strain	 in	 companion	 animals	 is	

therefore	concerning	and	may	result	in	the	further	dissemination	of	this	pathogen.		

	

Probably	one	of	the	most	 important	reports	of	 livestock	resistance	transmitted	to	

humans	is	the	mecC	gene.	The	mecC	gene	was	identified	in	an	isolate	of	what	was	

believed	at	the	time	to	be	mecA	carrying	MRSA	from	bovine	mastitis	in	2007.	Strains	

of	S.	aureus	carrying	the	mecC	gene	are	characteristically	animal	adapted	lineages	

suggesting	that	the	transmission	of	mecC	likely	originated	from	animals,	transferring	

to	humans	(García-Álvarez	et	al.,	2011).		

	

1.6.5	The	impact	of	WWTPs	on	the	dissemination	of	ARG	

WWTPs	 collect	 11	 billion	 litres	 of	water	 from	 homes,	municipal,	 commercial	 and	

industrial	premises	and	rainwater	run-off	 from	roads	every	day	 in	the	UK	(DEFRA,	

2012).	There	are	four	stages	of	wastewater	treatment	that	can	be	employed	in	the	

UK	sewage	treatment	process	(Figure	1.3).	These	are	preliminary	treatment,	primary	

treatment,	 secondary	 treatment	 and	 tertiary	 treatment	 with	 tertiary	 treatment	

being	 the	 most	 efficient	 method	 of	 wastewater	 treatment.	 The	 level	 to	 which	

wastewater	is	treated	is	dependent	upon	the	population	equivalent	which	takes	in	

to	account	the	size	of	the	community	and	measure	the	required	oxygen	level	to	break	

down	the	organic	matter	in	waste	water	considering	if	waste	is	from	domestic	origin.	

Other	factors	taken	in	to	account	include	the	receiving	water	body	and	its	sensitivity	

to	 discharges,	 considering	 if	 discharge	 is	 to	 inland,	 estuarine	 or	 coastal	 waters	
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(DEFRA,	2012).	In	developing	countries,	the	wastewater	treatment	process	is	not	as	

extensive	and	often	untreated	sewage	 is	 released	 in	 to	water	bodies.	 It	has	been	

suggested	that	the	spread	of	the	blaCTX-M-	genes	are	 in	part	attributed	to	the	poor	

sewage	disposal	processes	of	developing	countries	(Hawkey,	2015).	

	

Preliminary	treatment	involves	grit	removal	by	flow	attenuation	and	removes	large	

solids	from	wastewater.	Primary	wastewater	treatment	is	the	minimum	treatment.	

It	 is	 only	 considered	 for	 areas	 less	 sensitive	 which	 include	 estuarine	 and	 coastal	

waters	as	the	receiving	water	bodies	and	is	no	longer	used	in	the	UK.	It	involves	the	

settlement	of	suspended	solids	and	is	therefore	a	fairly	inefficient	removal	of	waste.	

Secondary	 treatment	 is	 required	 for	 all	 communities	 of	 15000	 or	more.	 The	 risk	

associated	 with	 major	 untreated	 waste	 arises	 from	 the	 increased	 oxygen	 level	

required	for	efficient	removal	of	waste	(DEFRA,	2012).	Secondary	treatment	involved	

biological	 treatment	 using	 the	 activated	 sludge	 process	 involving	 aeration	 and	

agitated	bacterial	culture	 liquor.	 It	also	uses	 filter	beds	which	use	bacteria-coated	

aggregate	which	wastewater	is	trickled	over.	The	most	efficient	treatment,	tertiary	

treatment	can	involve	various	treatments	to	increase	the	quality	of	effluent	water.	

Methods	 can	 be	 combined	 methods	 or	 individual.	 Potential	 methods	 involved	

phosphate	 removal,	 nitrate	 removal	 by	 chemical	 process	 and	 disinfection	 either	

through	UV	radiation	of	through	filter	membranes	(DEFRA,	2012).	

	

	
Figure	1.3	The	key	steps	involved	in	the	WWTP	process	

	

There	 has	 been	 a	 lot	 of	 work	 investigating	 the	 importance	 of	 WWTPs	 in	 the	

dissemination	of	ARG	(Li	et	al.,	2015a,	Amos	et	al.,	2014).	The	general	consensus	is	

that	they	promote	HGT	as	a	direct	result	of	increased	selection	pressures	from	the	

mixing	 of	 wastes	 from	 hospitals,	 industries,	 households	 and	 agriculture	 and	
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resultantly	have	a	high	diversity	of	bacteria	present	(Berendonk	et	al.,	2015,	Berglund	

et	al.,	2014,	Rizzo	et	al.,	2013).	One	study	reported	more	than	700	genera	and	3000	

operational	taxonomic	units	(OTUs)	in	activated	sludge	(Zhang	et	al.,	2012b).	Rivers	

impacted	 by	 WWTPs	 represent	 one	 of	 the	 most	 extreme	 examples	 of	 human	

pollution	 of	 the	 environment	 and	 consequently	 has	 led	 to	 river	 systems	

contaminated	with	ARG	and	ARB.	Escalating	population	numbers	have	resulted	 in	

increased	pressure	on	the	WWTP	companies	to	deal	with	the	rising	volumes	of	waste.	

Recent	studies	have	seen	significant	levels	of	coliform	bacteria	within	river	systems	

possessing	 numerous	 antibiotic	 resistances	 as	 a	 consequence	 (Amos	 et	 al.,	 2014,	

Auerbach	et	al.,	2007,	Berglund	et	al.,	2015,	Li	et	al.,	2015a,	Wang	et	al.,	2013).		

	

Studies	investigating	resistance	genes	before	and	after	treatment	through	WWTPs	

have	reported	a	diverse	range	present	before	and	after	but	most	show	a	reduction	

in	the	abundance	of	resistance	genes	in	the	effluent	(Szczepanowski	et	al.,	2009,	Li	

et	al.,	2015a,	Auerbach	et	al.,	2007,	Al-Jassim	et	al.,	2015,	Yang	et	al.,	2014).	The	

selection	pressures	exerted	 in	treatment	process	 from	the	mixing	of	antimicrobial	

agents	from	wastes	results	in	mutations	or	selective	gene	transfer	events.	Much	of	

the	antibiotics	consumed	by	animals	and	humans	are	excreted	with	between	30	–	90	

%	of	antibiotics	being	excreted	unchanged	(Sarmah	et	al.,	2006).	These	antibiotics	

can	consequently	end	up	in	the	WWTPs	along	with	heavy	metals	and	disinfectants	

(Su	et	al.,	2014b).	WWTP	do	not	monitor	the	levels	of	biocides	and	antibiotics	in	the	

treatment	plants	and	are	not	expected	to	remove	these	compounds	from	waste.	The	

only	 specified	metal	 that	must	 be	 removed	 is	mercury	 (DEFRA,	 2012).	 	 Sublethal	

concentrations	 of	 antibiotics	 have	 been	 shown	 to	 increase	 the	 rate	 at	 which	

mutations	 occur	 with	 significant	 genomic	 and	 phenotypic	 changes	 resulting	 in	

increased	MDR	and	in	some	cases	increased	fitness	(Chow	et	al.,	2015,	Morero	et	al.,	

2011,	Fuzi,	2016,	Marcusson	et	al.,	2009).	Increased	transposon	activity	has	also	been	

observed,	 with	 gene	 rearrangements	 allowing	 more	 efficient	 expression	 of	 the	

required	resistance	genes	by	movement	to	a	position	nearer	the	promoter	resulting	

in	an	 increased	 level	of	resistance	(Barraud	and	Ploy,	2015,	Hocquet	et	al.,	2012).	

Recombination	 has	 also	 been	 shown	 to	 increase	 in	 frequency	 with	 sublethal	

antibiotic	 treatment	 and	 DNA	mobilisation	 has	 been	 reported	 to	 increase	 in	 the	
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presence	 of	 antibiotics	 in	 several	 studies,	 with	 the	 increase	 in	movement	 of	 the	

IncA/C	plasmid	and	increased	HGT	events	in	the	presence	of	sublethal	concentrations	

of	tetracycline	(Lopez	and	Blazquez,	2009,	Johnson	et	al.,	2015,	Jutkina	et	al.,	2016).	

In	the	absence	of	no	direct	selection	induced	by	the	presence	of	antibiotics	in	waste,	

varying	abundance	of	ARG	and	ARB	can	be	explained	by	the	process	of	coselection	

(Randall	et	al.,	2007,	Russell,	2003).	It	has	been	reported	that	biocides	and	metals	

have	the	capacity	to	co-select	ARG	and	with	a	recent	study	showing	levels	of	biocide	

and	metals	 resistance	 in	wastewater	at	50-300	 times	 that	of	ARG	 there	 is	a	huge	

potential	 for	 co-selection	 (Pal	 et	 al.,	 2015,	 Baker-Austin	 et	 al.,	 2006,	 Bengtsson-

Palme,	2016).	The	same	study	also	showed	that	some	metal	and	biocide	resistance	

genes	were	enriched	in	the	effluent	(Bengtsson-Palme,	2016).	One	study	also	showed	

that	over	the	period	of	3	years	the	exposure	to	quaternary	ammonium	compounds	

(QACs)	resulted	in	an	increase	in	resistance	genes	in	river	sediment	communities	(Oh	

et	 al.,	 2013).	 Clearly,	 co-selection	 is	 dependent	 upon	 the	 genetic	 context	 of	 the	

genes,	 therefore	 knowing	 the	 context	 of	 resistance	 genes	 and	 what	 additional	

elements	 are	 carried	 by	 the	 same	 integron/transposon/plasmid	 is	 important	 in	

understanding	the	extent	to	which	co-selection	can	occur	in	WWTPs.		A	recent	study	

investigated	ARG	abundance	and	prevalence	during	the	WWTP	taking	in	to	account	

the	concentration	of	biocides	and	metals	found	that	although	the	number	of	ARG	did	

decrease	in	the	effluent	compared	to	the	influent	the	relative	ARG	did	not	decrease	

to	 the	 same	 extent.	 It	 was	 also	 found	 that	 the	 WWTP	 in	 fact	 enriched	 for	 the	

carbapenamse	gene	blaOXA-48	during	the	treatment	process	(Bengtsson-Palme,	2016).			

	

Investigating	the	plasmid	metagenome	can	help	elucidate	co-carriage	of	resistance	

genes.	Schluter	and	colleagues	have	carried	out	much	of	 the	current	work	on	the	

plasmid	metagenome	with	the	first	study	in	2008	(Szczepanowski	et	al.,	2008).	They	

published	three	papers	from	the	same	dataset	generated	from	the	plasmid	genome	

of	 cultured	 bacteria	 from	 activated	 sludge	 selecting	 for	 ARB	 with	 12	 antibiotics	

(Szczepanowski	et	al.,	2009,	Schluter	et	al.,	2008,	Szczepanowski	et	al.,	2008).	The	

first	 study	 found	 a	 diverse	 range	 of	 plasmids	 in	 these	 viable	 resistant	 bacteria	

including	IncP,	IncN	and	IncT	type	plasmids	with	a	wide	array	of	resistance	genes	to	

all	 the	 classes	 used	 for	 isolation	 (Szczepanowski	 et	 al.,	 2008).	 	 The	 second	 study	
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further	investigated	the	plasmid	metagenomes	and	aimed	to	determine	the	genetic	

diversity.	They	reported	1050	different	protein	families	encoding	a	range	of	plasmid-

related	 functions.	They	concluded	 that	many	of	plasmids	 sequenced	were	mobile	

from	the	 sequencing	 signatures	and	 that	within	plasmids	were	many	 transposons	

encoding	highly	mobilisable	genetic	regions	(Schluter	et	al.,	2008).	The	third	study	

focussed	on	the	presence	of	ARG	 in	 the	samples	 taken	from	activated	sludge	and	

final	effluent	using	PCR-based	approach	to	investigate	193	key	ARG.	They	reported	a	

reduction	in	the	prevalence	of	ARG	in	the	final	effluent	compared	to	the	sludge	with	

123	and	140	ARG	detected	respectively	with	resistance	to	all	classes	of	antibiotics	

and	ARG	(Szczepanowski	et	al.,	2009).		In	2011,	a	different	approach	was	taken	by	

Zhang	 et	 al.	 to	 isolate	 plasmids.	 They	 employed	 the	 transposon	 aided	 capture	

(TRACA)	 system	 to	 isolate	plasmids	 from	activated	 sludge	 from	a	WWTP	 in	China	

(Zhang	 et	 al.,	 2011).	 This	 study	 also	 reported	 a	 large	 number	 of	 ARG	 and	MGEs	

present	in	the	plasmid	metagenome.	They	identified	novel	plasmids	but	fewer	ARG	

than	the	previous	studies,	possibly	attributable	to	the	enrichment	method	used	by	

Schluter	and	colleagues	(Zhang	et	al.,	2011).	Consistent	with	Schluter,	they	identified	

ARG	or	a	diverse	range	of	antimicrobial	classes		(Zhang	et	al.,	2011).	In	2013,	Sentchilo	

et	 al.	 reported	 the	 first	 comprehensive	 analysis	 of	 extrachromosomal	 DNA	 from	

WWTPs.	They	isolated	both	plasmid	and	circular	phage	DNA	from	activated	sludge	

samples	 directly	 reporting	 a	 large	 levels	 (51-68	 %)	 of	 uncharacterised	 coding	

sequences	convincingly	showing	that	plasmids	are	a	clear	driving	force	for	innovation	

of	genetic	material	 (Sentchilo	et	al.,	2013).	 It	was	also	shown	that	compared	with	

complete	metagenomes,	plasmid	metagenomes	carry	a	significant	number	of	ARG	

that	 are	 detectable	 in	 full	 metagenomes	 and	 that	 plasmids	 and	 resistance	

determinants	vary	between	treatment	plants,	even	those	with	similar	influents	and	

size	 (Sentchilo	 et	 al.,	 2013).	 The	most	 recent	 study	 of	 the	 plasmid	metagenome	

comprises	the	most	extensive	study.	It	was	carried	out	by	Li	et	al.	and	investigated	

influent,	activated	sludge,	digested	sludge	from	two	WWTPs.	It	identified	323	ARG	

and	 23	 MRG	 with	 a	 higher	 number	 of	 resistance	 genes	 found	 in	 the	 influent	

compared	to	the	other	samples.	Unlike	other	studies,	Li	et	al.	compared	the	plasmid	

metagenome	 to	 corresponding	 metagenomes	 of	 the	 same	 samples	 revealing	 a	

higher	 annotation	of	 plasmid	metagenomes	 compared	 to	 the	 total	metagenomes	
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suggesting	plasmids	carry	genes	that	may	be	shared	with	culturable	microorganisms	

which	are	better	characterised	(Li	et	al.,	2015a).		

	

In	2010,	18.4	%	of	sewage	sludge	was	incinerated,	0.6	%	put	to	landfill	and	0.2	%	was	

disposed	of	through	other	methods,	1.7	%	was	redistributed	for	unspecified	uses	and	

the	remaining	79.1	%	of	sewage	sludge	was	re-used	for	agricultural	purposes	(DEFRA,	

2012).	Considering	the	extensive	ARGs	and	ARBs	that	have	been	found	 in	sewage	

sludge,	 the	 substantial	 amount	 of	 sewage	 that	 is	 applied	 to	 land	 is	 no	 doubt	

contributing	 to	 the	 environmental	 resistome	 with	 large	 numbers	 of	 resistance	

plasmids	and	ARG	found	in	soils	treated	with	sludge	(Martini	et	al.,	2015,	Jechalke	et	

al.,	2015,	Smalla	et	al.,	2000a,	Heuer	et	al.,	2012).	

	

In	 times	 of	 heavy	 rainfall	WWTPs	 are	 able	 to	 release	 untreated	wastewater	 and	

sewage	in	to	rivers	via	combined	sewer	overflows	(CSOs)	(Figure	1.4).	The	number	of	

CSO	events	that	take	place	is	often	unmonitored	(Robert	Huxam,	SevernTrent	Water,	

personal	 communication,	 13th	 July	 2016)	 resulting	 in	 an	 unknown	 volume	 of	 raw	

sewage	entering	the	UK	rivers.	Clearly,	this	will	play	a	role	in	the	ARB	and	ARG	levels	

at	sites	impacted	by	CSO	release	events.	With	an	unknown	number	of	release	events	

studying	CSOs	is	difficult	and	consequently	there	have	been	few	studies	that	have	

tried	to	evaluate	the	significance	of	these	events	on	the	river	environment.	Originally,	

CSOs	were	introduced	in	1855	in	an	attempt	to	improve	urban	life	with	the	removal	

of	 cesspool	 ditches	 (Tibbets,	 2005).	 CSOs	 are	 considered	 major	 sources	 of	

microbiological	 and	 physiochemical	 pollutants	 (Madoux-Humery,	 2015)	 yet	 the	

extent	to	which	CSOs	contribute	to	environmental	pollution	has	been	rarely	studied.	

One	 study	 conducted	 by	 Madoux-Humery	 et	 al.	 attempted	 to	 investigate	 the	

temporal	 changes	 in	E.	 coli	 and	micropollutants	as	a	 result	of	CSO	 release	events	

reporting	an	increase	of	three	orders	of	magnitude	of	E.	coli,	total	suspended	solids	

and	micropollutants	during	a	release	event	(Madoux-Humery,	2015).	Another	study	

by	Jalliffier-Verne	et	al.	also	investigated	the	prevalence	of	E.	coli	in	discharges	from	

CSOs	during	release	events	by	estimating	E.	coli	concentrations	based	on	monitoring	

data	and	modelling	 the	cumulative	effects	of	CSO	releases	 (Jalliffier-Verne,	2016).	

CSO	release	events	were	surprisingly	recorded	in	periods	of	dry	weather	suggesting	
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an	overuse	of	these	emergency	outlets.	They	concluded	that	the	presence	of	E.	coli	

was	related	to	the	concentration	of	discharge	rather	than	the	number	of	overflows	

and	that	specific	CSO	events	were	more	important	in	determining	the	presence	of	E.	

coli	in	river	water	(Jalliffier-Verne,	2016).	They	also	reported	high	E.	coli	abundance	

in	drinking	water	intakes	as	a	result	of	the	dispersion	process	resulting	from	high	flow	

as	a	direct	result	of	release	from	the	CSO	suggesting	that	high	flow	and	dispersion	is	

more	important	than	dilution	factor	and	consequently	is	something	that	should	be	

taken	 in	 to	 consideration	 by	wastewater	 treatment	 companies	when	 considering	

release	events	(Jalliffier-Verne,	2016).			

	

Release	events	result	in	the	disruption	of	river	sediment	which	consequently	can	also	

result	 in	 increased	 risk	 associated	with	 river	water	 at	 these	 sites	 (Jalliffier-Verne,	

2016,	Madoux-Humery,	2015).	There	has	been	little	work	investigating	sediment	as	

a	source	of	antibiotic-resistant	pathogens	with	most	studies	primarily	investigating	

the	water	body	(Kotlarska	et	al.,	2015,	Bonetta	et	al.,	2016,	Tang	et	al.,	2016,	Amador,	

2015,	Baquero	et	al.,	2008,	Ferreira	da	Silva	et	al.,	2007,	Akter	et	al.,	2012,	Hu	et	al.,	

2016,	MacLellan	et	al.,	2015).	A	couple	of	studies	have	identified	blaCTX-M-	genes	from	

sediment	however	suggesting	sediment	is	an	important	reservoir	of	ARG	(Amos	et	

al.,	2014,	Lu	et	al.,	2010).	No	studies	could	be	found	comparing	water	and	sediment	

ARB	to	demonstrate	the	differences	in	abundance.	It	is	apparent	that	both	carry	a	

significant	level	of	ARG	and	ARB	and	therefore	must	be	investigated	if	correct	risk	

assessments	are	to	be	made.	Another	factor	that	should	also	be	considered,	but	is	

rarely	investigated	are	bioaerosols	(Korzeniewska	and	Harnisz,	2013).	Korzeniewska	

and	 Harnisz	 showed	 that	 ESBL	 producing	 Enterobacteriaceae	were	 present	 in	 air	

samples,	with	higher	numbers	 in	 samples	 taken	at	higher	 temperatures	and	wind	

speeds.	Similar	results	were	also	reported	previously	by	Gotkowska-Płachta	 	et	al.	

and	 Korzenewska	 et	 al.	who	 were	 also	 able	 to	 detect	 Enterobacteriaceae	 in	 air	

samples	using	culture	based	methods	(Gotkowska-Płachta	et	al.,	2013,	Korzeniewska	

et	al.,	2009).		
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(a)	

	

	
(b)	

	
Figure	 1.4	 CSO	 release	 events	 (a)	 Release	 of	 untreated	 water	 from	 outlet	 pipe	
resulting	from	high	level	of	wastewater.	Dam	regulates	the	flow	of	water	from	CSO,	
in	times	of	heavy	rainfall,	the	wastewater	level	increases	above	the	threshold	for	the	
‘pass	 forward	 flow’	 as	 defined	 by	 the	 EA	 and	 untreated	 wastewater	 is	 released	
directly	in	to	receiving	water	bodies.	(b)	photograph	of	one	of	the	CSO	release	sites	
from	the	Finham	WWTP.		
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Although	 most	 evidence	 supports	 the	 opinion	 that	 WWTPs	 contribute	 to	 the	

surrounding	 environment,	 there	 are	 a	 few	 reports	 that	 suggest	 evidence	 to	 the	

contrary.	The	recent	study	by	Munck	et	al.	investigated	the	dissemination	of	WWTP	

core	 resistome	 in	 the	 surrounding	 environment.	 	 Seven	 metagenomes	 were	

sequenced	 over	 a	 two-year	 period	 and	 a	 core	 resistome	 was	 based	 on	 the	

comparison	between	functional	metagenomic	results	and	complete	metagenomes.	

It	was	suggested	that	due	to	the	stability	within	the	WWTP	communities	and	core	

resistomes,	HGT	is	a	rare	event	contrasting	with	many	studies	which	suggest	HGT	is	

a	 likely	 event	 due	 to	 the	 mixing	 of	 large	 quantities	 of	 bacteria,	 biocides	 and	

antibiotics	which	can	select	directly	and	indirectly	for	antibiotic	resistance	(Munck	et	

al.,	2015).	Core	resistomes	were	compared	with	numerous	available	metagenomes	

including	human	gut,	cow	rumen	and	permafrost	and	aquifer	finding	only	6	of	the	

core	genes	of	the	core	resistome	were	present	 in	other,	non-WWTP	genomes.	No	

river	sediment	metagenomes	were	compared	so	it	is	unclear	from	this	study	if	the	

WWTP	metagenome	is	similar	to	the	river	sediment	resistome	downstream	of	the	

WWTP.	 It	 also	 highlighted	 that	 only	 a	 small	 fraction	 of	 the	 community	 exchange	

genes,	however	this	subpopulation	of	bacteria	that	undergo	HGT	are	likely	the	most	

important	fraction	and	often,	the	infectious	dose	of	such	microorganisms	is	low	so	

although	 they	 are	 only	 present	 in	 a	 small	 fraction	 of	 the	 total	 community,	 their	

existence	is	important	(Kaper	et	al.,	2004).		

	

1.6.6	Clinical	impacts	on	the	dissemination	of	ARG	

In	2014	the	World	Health	Organisation	listed	E.	coli,	K.	pneumoniae	and	S.	aureus	as	

concerning	pathogens	with	 respect	 to	 resistance	 (WHO,	2014).	 Specific	 resistance	

included	3GC	and	fluoroquinolone	resistance	in	E.	col,i	K.	pneumoniae	and	MRSA.		

	

MRSA	 in	 Europe	 and	 the	 United	 states	 decreased	 between	 2007-2015	 with	

reductions	of	22	to	18	%	and	53	to	44	%	respectively	of	methicillin	S.	aureus	isolates.	

MRSA	was	 first	 identified	 in	 the	UK	 in	 the	1960s	and	was	generally	 regarded	as	a	

healthcare-associated	 pathogen	 (Gelband,	 2015).	 The	 emergence	 of	 community-

associated	MRSA	(CA-MRSA)	infections	over	the	last	2	decades	however	has	resulted	

in	 infections	outside	hospitals	and	acquired	AMR	in	CA-MRSA	has	resulted	 in	very	
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similar	 phenotypes	 observed	 between	CA-MRSA	 and	 healthcare-associated	MRSA	

(HA-MRSA)	(Bal	et	al.,	2016,	David	and	Daum,	2010).	MRSA	differs	from	methicillin-

susceptible	S.	aureus	(MSSA)	through	the	acquisition	of	the	staphylococcal	cassette	

chromosome	(SCC)	element	which	characteristically	carries	the	mecA	or	mecC		genes	

as	well	as	other	resistance	genes	(Bal	et	al.,	2016).	The	dominant	clones	of	HA-MRSA	

in	the	UK	are	ST22	and	ST36	and	dominant	clones	of	CA-MRSA	in	Europe	is	the	ST80	

clones.	In	2010	the	control	of	MRSA	was	increased	in	the	UK	with	the	English	national	

policy	changed	to	screen	all	hospital	admissions	for	MRSA	however	due	to	substantial	

costs	associated	policy	was	streamlined	to	only	test	patients	admitted	to	high	risk	

units	and	patients	who	had	previously	identified	as	colonised	or	infected	by	MRSA	

(Robotham	et	al.,	2016,	ARHAI,	2014).		

	

The	range	of	antibiotic	resistance	in	K.	pneumoniae	is	extensive	with	isolates	carrying	

carbapenemases	(KPC)	and	oxacilinase	48	(OXA-48)	found	globally.	The	carriage	of	

carbapenemase	 genes	 often	 correlated	 to	 the	 carriage	 of	 extensive	 b-lactamase	

genes	and	consequently	treatment	of	infections	with	carbapenem	resistant	(CR)	K.	

pneumoniae	is	restricted	to	the	last	resort	antibiotics	colistin	and	polymyxin	B	(Lee	

et	al.,	2016).	As	a	result	there	is	a	high	mortality	rate	associated	with	bloodstream	

infections	with	CR	K.	pneumoniae	(Munoz-Price	et	al.,	2013).	In	the	UK	outbreaks	of	

KPC	producing	K.	pneumoniae	susceptible	to	fluoroquinolones	began	in	2010	with	

positive	 isolates	 carrying	 CR	 as	 a	 result	 of	 an	 IncFIIK	 plasmid	 (Munoz-Price	 et	 al.,	

2013).	Isolates	of	K.	pneumoniae	carrying	the	metallo-b-lactamse	blaNDM-1	have	more	

recently	been	identified	(Lascols	et	al.,	2013).		The	spread	of	CR	within	K.	pnuemoniae	

is	due	to	the	large	numbers	of	plasmids	able	to	transfer	resistance.	The	blaKPC	gene	

has	 been	 identified	 on	 IncF,	 IncI2,	 IncX,	 IncA/C,	 IncR	 and	 ColE1	 plasmids	 and	 the	

blaNDM-1	gene	has	been	identified	on	IncA/C,	IncF,	IncR,	IncH,	IncN,	IncL/M	and	IncX	

plasmid	types	(Garcia-Fernandez	et	al.,	2012,	Lee	et	al.,	2016).		

	

1.7	The	role	of	E.	coli	in	human	clinical	infections		

E.	coli	is	typically	found	as	a	commensal	of	the	GI	tract	of	humans.	It	colonises	infants	

only	a	few	hours	after	birth	and	usually	the	relationship	is	mutually	beneficial	(Kaper	

et	al.,	2004).	It	is	usually	found	to	be	most	abundant	in	the	colon	however	its	ability	
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to	survive	and	outcompete	other	bacterial	species	in	the	colon	is	poorly	understood.	

One	 proposed	mechanism	 of	 survival	 is	 that	 it	 is	 able	 to	 exploit	 gluconate	more	

efficiently	than	other	species	(Sweeny,	1996).	Although	E.	coli	is	generally	considered	

to	be	a	commensal	bacterial	species,	there	are	some	pathotypes	that	have	acquired	

virulence	 factors	 making	 them	 opportunistic	 pathogens	 and	 in	 some	 cases	 true	

pathogenic	species.	This	acquisition	of	virulence	is	usually	from	MGEs	which	either	

continue	to	exist	as	MGE	or	could	be	inserted	in	to	the	chromosome	(Kaper	et	al.,	

2004).	These	pathotypes	can	cause	diarrhoeal	disease	and	urinary	 tract	 infections	

(UTIs).	There	are	6	types	of	E.	coli	that	are	able	to	cause	intestinal	disease,	collectively	

all	extraintestinal	pathogens	are	termed	ExPEC.	The	intestinal	pathogens	include	the	

enteropathogenic	E.	coli	(EPEC)	enterohaemorrhagic	E.	coli	(EHEC),	enterotoxigenic	

E.	coli	(ETEC),	enteroaggregative	(EAEC),	enteroinvasive	E.	coli	(EIEC)	and	the	diffusely	

adherent	E.	coli	(DAEC).		

	

The	most	important	clinically	related	pathogenic	E.	coli	is	the	uropathogenic	E.	coli	

(UPEC)	 which	 causes	 UTIs	 but	 increasingly	 common	 are	 extraintestinal	 infections	

resulting	from	meningitis-associated	E.	coli	(MNEC).	Pathogenesis	of	E.	coli	is	a	multi-

step	 process	 involving	 the	 colonisation	 of	 a	 mucosal	 site,	 evasion	 of	 defence,	

multiplication	 and	 finally	 host	 damage	 which	 ultimately	 involves	 many	 factors	

including	adhesins,	invasins,	toxins,	autotransporters,	siderophores	as	well	as	many	

other	virulence	determinants	(Table	1.1).	

	

EPEC	were	the	first	type	of	pathogenic	E.	coli	to	be	identified	in	the	UK	in	1945	as	a	

result	 of	 a	 large	 outbreak	 in	 children.	 Such	 outbreaks	 are	 no	 longer	 common	 in	

industrialised	countries	but	still	occur	in	developing	countries	(Nataro,	1998).	ETEC	

infections	cause	watery	diarrhoea	which	can	range	from	mild,	self-limiting	disease	to	

sever	purging	disease.	Like	EPEC	infections	they	are	responsible	for	many	childhood	

diarrhoeal	 disease	 in	 the	 developing	 world	 (Nataro,	 1998).	 ETEC	 strains	 are	 also	

responsible	 for	 causing	 animal	 disease.	 These	 strains	 express	 fimbrial	 intestinal	

colonisation	factors	(K88	and	K99)	which	are	not	present	in	human	infecting	strains	

(Kaper	 et	 al.,	 2004).	 EHEC	 strains	 were	 first	 identified	 in	 1982	 and	 cause	 bloody	

diarrhoea,	non-bloody	diarrhoea	and	haemolytic	uremic	 syndrome.	 Infections	 are	
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associated	with	the	bovine	intestinal	tract	and	often	outbreaks	are	associated	with	

undercooked	hamburgers	 (Kaper	et	al.,	2004).	The	 low	 infectious	dose	 (estimated	

below	100	cells)	has	 led	to	many	outbreaks	of	EHEC	associated	disease.	The	Shiga	

toxin	producing	O157:H7	serotype	is	the	most	important	EHEC	pathogen	in	the	UK,	

but	there	are	other	important	serogroups	responsible	for	disease	(O26	and	O111).	

EAEC	cause	persistent	diarrhoea	in	both	developed	and	developing	countries.	They	

are	 currently	 characterised	 by	 adhering	 to	 HEp-2	 cells	 and	 the	 fact	 they	 do	 not	

secrete	 heat-labile	 or	 heat-stable	 enterotoxins	 (Nataro,	 1998)	 but	 the	

characterisation	of	 	 all	 EAEC	 as	 human	pathogens	 is	 debated	 and	 it	 is	 likely	 non-

pathogenic	clones	are	in	this	group	of	E.coli.	EIEC	are	very	closely	related	to	Shigella	

species.	They	are	responsible	for	causing	watery	diarrhoea	and	may	play	a	role	 in	

invasive	 inflammatory	 colitis	 (Nataro,	 1998).	 Pathogenesis	 is	 related	 to	 plasmid-

borne	type	III	secretion	system	which	secrete	IpaA,	 IpaB,	 IpaC	and	IpaD	which	are	

involved	in	epithelial	signalling,	cytoskeletal	rearrangements,	cellular	uptake,	lysis	of	

endocytic	vacuole	as	well	as	other	actions	(Sansonetti,	2000,	Tran	Van	Nhieu,	2000).	

DAEC	are	defined	as	a	subgroup	based	on	the	diffuse	pattern	of	adherence	to	Hep-2	

cell	monolayers.	They	are	able	 to	cause	diarrhoeal	disease	particularly	 in	children	

over	12	months	of	age	(Nataro,	1998,	Bilge,	1989).	The	majority	can	be	characterised	

by	 the	 production	 of	 F1845	 fimbrial	 adhesion.	 UPEC	 strains	 cause	 urinary	 tract	

infections	and	are	the	most	common	bacterial	infections	which	is	primarily	caused	

by	E.	coli.	There	are	six	O	groups	associated	with	the	majority	of	UTI	infections	(Kaper	

et	 al.,	 2004).	 These	UPEC	 strains	 have	 no	 distinct	 phenotypic	 profile	 but	 the	 Pap	

adhesion	 and	 FIC	 fimbriae	 are	 often	 associated	 and	 are	 important	 factors	 in	 the	

colonising	of	the	urinary	tract	(Johnson,	1991,	Nowicki,	1989).	UPEC	strains	typically	

possess	toxin	encoding	genes	including	haemolysin,	cytotoxic	necrotizing	factor	and	

autotransporter	 protease	 (Sat)	 and	 also	 carry	 pathogenicity	 islands	 (Kaper	 et	 al.,	

2004).	 MNEC	 are	 responsible	 for	 causing	 neonatal	 meningitis	 and	 are	 the	 most	

common	cause	of	 this	potentially	 fatal	 disease	with	15-40	%	of	 cases	 resulting	 in	

death	and	of	the	survivors	it	is	common	that	they	will	suffer	from	severe	neurological	

defects	(Unhanand,	1993,	Dawson,	1999).	81	%	of	such	cases	are	caused	by	strains	

with	the	K1	capsule	type.	They	are	spread	haematogenously	and	a	higher	level	in	the	

blood	correlates	with	a	higher	probability	of	contracting	meningitis.	MNEC	are	able	
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to	translocate	from	the	blood	to	the	central	nervous	system	with	no	damage	to	the	

blood-brain	barrier.	The	infection	of	the	central	nervous	system	does	not	confer	an	

obvious	 advantage	 with	 respect	 to	 selection	 and	 transmission	 as	 like	 the	 other	

pathotypes	they	are	readily	transmitted	in	urine	and	faeces	(Kaper	et	al.,	2004).	The	

pathotypes	 causing	 disease	 in	 animals	 and	 humans	 often	 carry	 many	 of	 same	

virulence	factors	making	the	source	of	pathogenic	E.	coli	often	hard	to	determine.	

The	avian	pathogenic	E.coli	(APEC)	pathotype	however	is	primarily	associated	with	

respiratory	infections,	pericarditis	and	septicaemia	of	poultry	(Kaper	et	al.,	2004).		

	

In	combination	with	the	extensive	virulence	factors,	E.	coli	typically	carry	wide	range	

of	 resistance	genes.	The	emerging	human	pandemic	O25:H4	ST131	clone	which	 is	

responsible	for	causing	UTI	infections	in	both	humans	and	animals	(Can	et	al.,	2015,	

Hertz	 et	 al.,	 2016,	 Ewers	 et	 al.,	 2010).	 Fluoroquinolones	 are	 often	 the	 first	 line	

response	to	the	treatment	of	this	strain	of	E.	coli,	however	there	are	several	reports	

of	 strains	 carrying	 an	 IncF-type	 plasmid	 with	 both	 3GC	 and	 fluoroquinolone	

resistance	genes	(Matsumura	et	al.,	2013,	Dhanji,	2011,	Phan	et	al.,	2015,	Rooney	et	

al.,	2009).		IncF	plasmids	carrying	the	blaCTX-M-15		gene	are	not	exclusive	to	the	ST131	

clone	but	are	in	fact	carried	by	a	range	of	clones	including	ST405,	ST354,	ST28	and	

ST695	and	often	carrying	additional	resistance	genes	including	blaOXA	and	aac(6’)-IB-

cr	(Carattoli,	2009).	
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Table	1.1	Virulence	factors	in	E.	coli	

Type	 Gene	 Description	 Associated	

pathotypes	

Adhesin	

paa	 Porcine	A/E-associated	gene	 EPEC	

ompA	 Outer	 membrane	 protein,	 heat-modifiable	 OMP,	 structural	 and	 ion-

permeable	porin	roles	

MNEC,	EHEC,	UPEC	

fimH	 Type	1	fimbriae,	D-mannose-specific	adhensin	 ExPEC	

csgG	 Facilitator	of	fibronectin-binding	curli	assembly	 Various		

sfmA	 Fimbrial-like	adhesion	protein	 Various		

aidA	 Adhesion	involed	in	diffuse	adherence	consisting		 DAEC	

fanAB	 Fimbrial	adhesin	 ETEC	

papA-G	 P	fimbriae,	adhesion,	includes	cytokine	expression	 UPEC	

F41	 adhesin	 ETEC	

focA	 Formate	channel	 UPEC	

focG	 Pilus	tip	molecule,	F1C	fimbriae	(sialic	acid	specific)	 ExPEC	

iha	 Novel	nonhemagglutin	adhesion	 EHEC	

nfaE	 Non	fimbrial	adhesion	I	assembly	and	transport	 ExPEC	

sfa2	operon	 S	fimbriae	 ExPEC	

gafD	 Chaperone	protein	 Various		

hra	 Heat-resistant	agglutinin	 UPEC	

tsh	 Temperature-sensitive	hemagglutinin	 APEC	

mat	operon	 Meningitis-associated	and	temperature-regulated	fimbrail	operon	 MNEC	

afa	 Described	as	an	Afimbrial	adhesion	but	in	fact	has	fine	fibrillary	structure		ExPEC,	many	UPEC	

and	EHEC	tia	 Outer-membrane	proteins	mediating	adhesion	to	colonic	epithelial	cells	 ETEC	

Toxins	

hylA	 a-hemolysin	 ExPEC	

sheA	 Silent	hemolysin	gene	 ExPEC	

cnf1	 Cytotoxic	necrotizing	factor	1	 ExPEC,	NTEC	

stx	 Shiga	 toxin,	 acts	 through	 cleavage	 of	 ribosomal	 RNA	disrupting	 protein	

synthesis	

EHEC	(STEC)	

cif	 Cycle	 inhibiting	factor,	blocks	cell	division	possibly	by	 inhibition	of	Cdk1	

kinase		

ExPEC	

map		 Two	activities:	 stimulates	Cdc42-dependant	 filopodia	 formation,	 targets	

mitochondria	to	disrupt	membrane	potential	of	these	organelles		

EPEC,	EHE	

cdt	 Cytolethal	distending	toxin,	DNaseI	activity	blocking	cell	divison	in	G2/M	

phage	of	cell	cycle	

ExPEC	

Autotransporter	agn43	 Biofilm	formation,	autoaggregation	and	attachment	to	cells	 EAEC	

Siderophores	

fyuA	 Yersina	siderophore	receptor	(ferric	yesiniabactin	uptake	 ExPEC,	ETEC	

ireA	 Iron	acquisition,	siderphore	receptor	 ExPEC,	UPEC	

iroN	 Iron	acquisition,	siderophore	receptor	 UPEC	

iutA	 Ferric	aerobactin	receptor	 ExPEC,	APEC	

Irp2	 Iron	repressible	protein	 APEC	

iucD	 Within	Aerobactin	operon	 APEC	

sitD	 Iron	transport	 APEC	

eitA	 Iron	transport	 APEC	

Invasins	
ibeA	 Invasion	of	brain	endothelium	 ExPEC,	MNEC	

ipaH	 Invasion	plasmid	antigen	 EIEC	

gimB	 Genetic	island	associated	with	human	newborn	meningitis	 NMEC,	UPEC	APEC	

Other	

traT	 Serum-resistance	associated	outer	membrane	protein	 ExPEC	

ompT	 Outer	membrane	protein	A	and	T	(protease	 ExPEC	

malX	 Phosphotransferase	 system	 enzyme	 II	 that	 recognises	 maltose	 and	

glucose	

ExPEC	

fliC	 Flagellin	structural	protein,	H	antigen	determinant	(H19	allele)	 ExPEC	

copA	 Cu(I)-translocating	efflux	pump	 Various		

cueO	 Copper	oxidase		 Various		

etsA	 Putative	 ABC	 transport	 system,	 strongly	 associated	 with	 NMEC	

pathogenicity	islands	

NMEC	

cvaC	 Plasmid	borne	colicin	V	production		 ExPEC	

pic	 Secreted	mucinase.	Antisense	strand	encodes	Shigella	enterotoxin		 EAEC	and	UPEC	

Iss	 Increased	serum	survival	 ExPEC	

neuC		 Sialic	acid	synthesis	 Various	
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1.8	Mobile	genetic	elements	

1.8.1	Plasmids	

Plasmids	and	 integrons	arguably	represent	the	most	significant	routes	of	bacterial	

transmission	 of	 ARG	 and	 are	 consequently	 the	 most	 studied	 method	 of	 ARG	

dissemination	(Norman	et	al.,	2009).	They	have	evolved	mechanisms	that	allow	the	

efficient	 capture,	 expression	 and	 transfer	 of	 genes	within	 and	 between	 bacterial	

species	allowing	the	fast	proliferation	of	ARG	within	the	environment	and	clinic.	

	

The	 term	plasmid	was	 first	 coined	 in	 1952	by	 Joshua	 Leaderberg	 to	 describe	 any	

“extrachromosomal	 hereditary	 determinant”	 (Lederberg,	 1998).	 Since	 then,	 there	

have	been	more	than	a	thousand	plasmids	identified	from	all	three	domains	of	life	

and	from	almost	every	environmental	niche	(Norman	et	al.,	2009).	Approximately	96	

%	of	the	plasmids	sequenced	so	far	have	been	bacteria,	2.9	%	from	archaea	and	1	%	

from	eukaryote	(Shintani	et	al.,	2015).	

	

Success	of	many	plasmids	is	due	to	their	ability	to	replicate	independently	of	host	

chromosomal	 DNA	 and	 the	 ability	 to	 self-transfer	 through	 the	 active	 process	 of	

conjugation	 (Carattoli,	 2013).	 Ultimately	 plasmids	 act	 to	 accumulate	 and	 transfer	

non-essential	 genes	 that	 confer	benefit	 under	 selective	pressures	 (Norman	et	 al.,	

2009).	The	mobilisation	of	ARGs	has	given	rise	to	“superbugs”	which	have	evolved	

extensive	methods	of	resistance	to	nearly	all	antibiotics	(Partridge	et	al.,	2009,	Gaze	

et	al.,	2013,	Wellington	et	al.,	2013,	Marti	et	al.,	2013b).	It	has	been	reported	that	

~14	%	of	plasmids	sequences	so	far	are	capable	of	conjugation	(Smillie	et	al.,	2010).	

Plasmids	able	to	undergo	conjugation	in	Gram-negative	bacteria	typically	carry	origin	

of	 transfer	 (oriT),	 relaxase,	 type	 IV	 coupling	 protein	 (T4CP)	 and	 type	 IV	 secretion	

system	(T4SS),	which	allow	double	stranded	plasmid	DNA	to	undergo	cleavage	at	the	

orit	 site	 by	 the	 relaxase	 protein	 which	 then	 covalently	 binds	 oriT	 DNA	 which	 is	

transported	to	the	recipient	cell	via	the	T4SS	and	single-stranded	DNA	is	transferred	

by	the	T4CP	(Shintani	et	al.,	2015).	In	Gram-positive	bacteria	plasmid	transfer	is	less	

well	understood	but	 is	known	to	occur	via	 two	mechanisms,	 the	first	 involves	the	

single	stranded	plasmid	DNA	transported	by	a	T4SS	and	second	through	conjugative	
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systems	that	are	similar	to	segregation	of	chromosomal	DNA	in	cell	division	mediated	

by	a	FtsK-like	protein	(Shintani	et	al.,	2015).	

	

The	first	record	of	plasmid-mediated	ARG	transfer	was	in	1959	by	Ochiai	et	al.	who	

transferred	resistance	from	Shigella	to	Escherichia	coli	(Ochiai,	1959).	The	process	of	

conjugation	 is	generally	regarded	to	be	genetic	exchange	between	bacteria,	but	 it	

has	 been	 documented	 on	 a	 few	 occasions	 that	 transkingdom	 transfer	 can	 occur.	

Plasmid	transfer	from	E.	coli	to	Saccharomyces	cerevisiae	was	first	demonstrated	by	

Heinemann	and	Sprague	back	in	1989	(Bates	et	al.,	1998,	Hayman	and	Bolen,	1993).	

This	route	of	transmission	is	not	well	studied	in	the	environment	but	may	provide	

another	viable	route	of	plasmid	dissemination.		

	

A	study	investigating	conjugative	transfer	from	strains	collected	in	the	‘pre-antibiotic	

era’	and	strains	collected	25	years	later	found	that	the	same	plasmid	incompatibility	

(Inc)	 types	were	 detected	 in	 both	 collections	 suggesting	 ARG	mobilise	 to	 already	

favourable	 plasmids	 (rather	 than	 selection	 of	 rare	 plasmids)	 (Datta	 and	 Hughes,	

1983,	Hughes	and	Datta,	1983).	This	is	evident	when	examining	the	dissemination	of	

the	 IncF	 plasmids	 within	 Enterobacteriaceae.	 The	 IncF-type	 plasmids	 have	 been	

commonly	 detected	 in	 both	 clinical	 and	 environmental	 isolates	 of	

Enterobacteriaceae	and	pose	one	the	most	significant	threats	to	transmission	of	ESBL	

genes.	These	plasmids	are	highly	present	 in	E.	coli	 isolates	and	are	often	found	to	

carry	blaCTX-M-15.	They	often	possess	virulence	determinants	making	them	favourable	

in	the	environment	possibly	contributing	to	increase	fitness	(Carattoli,	2009).		

	

One	of	the	first	records	of	plasmid	detection	outside	of	the	clinic	was	in	the	1970’s	

with	plasmid-possessing	strains	of	Enterobacteriaceae	being	 isolated	from	eggs	by	

Lakhotia	 et	 al.	 in	 1973	 (Lakhotia	 and	 Stephens,	 1973).	 From	 the	 1970’s	 the	

environment	was	highlighted	as	a	recognisable	source	of	ARG	and	investigations	in	

to	the	routes	of	ARG	dissemination	initiated.	At	this	point,	transmission	routes	were	

still	widely	unknown	and	most	plasmid-focussed	work	was	based	in	the	laboratory	

(Cullum	 et	 al.,	 1978).	 Since	 then	 plasmids	 have	 been	 detected	 frequently	 in	 the	

environment	 through	 exogenous	 capture,	 highlighting	 the	 importance	 of	 IncP	
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plasmids,	 carriage	 of	 plasmids	 in	 environmental	 isolates	 and	 more	 recently	

plasmidome	 studies	 have	 investigated	 the	WWTP	 environment	 to	 determine	 the	

fraction	of	the	metagenome	that	is	mobilisable	(Fox	et	al.,	2008,	Schluter	et	al.,	2007,	

Jechalke	et	al.,	2015,	Amos	et	al.,	2014,	Li	et	al.,	2015a).		

	

One	of	the	first	experiments	investigating	the	environmental	reservoir	of	ARG	was	in	

1976	which	investigated	plasmid	transfer	associated	with	human	waste.	The	study	

investigated	 plasmid	 possession	 and	 transfer	 of	 ARG	 from	 hospital	 and	 domestic	

waste	 isolates	 (Fontaine	 and	 Hoadley,	 1976).	 Later,	 experiments	 pinpointing	

wastewater	treatment	plants	as	a	potential	source	of	ARG	and	multidrug-resistance	

gene-containing	 plasmids	 began	 in	 the	 early	 1980’s.	 Two	 separate	 studies,	 both	

conducted	 in	 1982	 were	 perhaps	 the	 first	 studies	 to	 link	 plasmid-mediated	 ARG	

transmission	to	WWTP	in	what	 is	now	considered	a	known	“hotspot”.	Altherr	and	

Kasweck	 investigated	the	effects	of	WWTPs	on	the	effects	of	conjugation	of	a	60-

megadalton	 plasmid	 possessing	 antibiotic	 resistance	 genes	 (Altherr	 and	 Kasweck,	

1982).	 They	 showed	 that	 transfer	 occurred	 only	 in	 raw	 sewage	 and	 not	 in	 the	

effluent-receiving	waters.	This	was	one	of	the	first	studies	demonstrating	that	ARG	

could	 transfer	 in	 situ.	 At	 the	 same	 time	 Mach	 and	 Grimes	 at	 the	 University	 of	

Wisconsin-La	Crosse	were	also	working	on	plasmid	transfer	in	wastewater	treatment	

plants	 (Mach	 and	 Grimes,	 1982).	 They	 transferred	 multidrug	 resistance-gene	

containing	 plasmids	 from	 Salmonella	 enteritidis,	 Proteus	 mirabilis	 and	 E.	 coli	

possessing	resistance	to	ampicillin,	chloramphenicol,	streptomycin,	sulfadiazine	and	

tetracycline	 to	 susceptible	 E.	 coli	 and	 Shigella	 sonnei.	 They	 demonstrated	 the	

plasmid-mediated	 transfer	 of	 resistance	 in	 the	 absence	 of	 antibiotics	 (Mach	 and	

Grimes,	1982).	

	

Plasmid	persistence	varies	significantly	between	environment	and	host.	There	are	

four	basic	principles	that	underlie	persistence:	efficient	plasmid	segregation	during	

cell	division,	addiction	systems	including	plasmid-encoded	toxin-antitoxin	systems,	

conjugative	transfer	of	plasmids	to	infect	new	cells,	and	a	low	plasmid	cost	to	prevent	

host	 rejection	 of	 plasmid	 and	 reduce	 fitness	 costs	 (Ebersbach	 and	 Gerdes,	 2005,	

Hayes,	2003,	Stewart	and	Levin,	1977,	Ponciano	et	al.,	2007).	Plasmid	persistence	can	



	 63	

be	gained	through	acquisition	of	TA	systems	which	concurrently	can	provide	a	larger	

host	range	and	thus	are	favourable	in	environmental	conditions	where	plasmids	may	

be	transferring	to	a	diverse	range	of	hosts	 (Loftie-Eaton	et	al.,	2015,	Hayes,	2003,	

Goeders	and	Van	Melderen,	2014).	TA	systems	in	plasmid	maintenance	is	via	post-

segregational	killing	which	relies	on	the	different	stability	of	the	toxin	and	antitoxin	

where	the	toxin	is	more	stable	than	the	antitoxin.	Daughter	cells	that	do	not	acquire	

a	 plasmid	 will	 have	 toxin	 in	 their	 cytoplasm	 but	 no	 mechanism	 to	 produce	 the	

antitoxin	 resulting	 in	 cell	 death	 (Goeders	 and	 Van	 Melderen,	 2014).	 Therefore,	

plasmid	 carriage	 is	 advantageous	 to	 daughter	 cells	 and	 will	 disseminate	 in	 the	

bacterial	population	(Goeders	and	Van	Melderen,	2014).		

	

The	 mechanisms	 underlying	 plasmid	 possession	 in	 non-selective	 conditions	 is	 of	

particular	 interest	with	 respect	 to	plasmid	persistence	within	 the	environment.	 In	

laboratory	conditions	 it	 is	generally	observed	that	plasmids	from	the	environment	

are	highly	 stable	and	not	 readily	 lost.	However,	 it	 is	unlikely	 that	plasmids	are	as	

stable	in	the	natural	environment	with	the	expectation	that	if	it	were	so,	with	time	

all	bacterial	cells	would	possess	one	plasmid	from	each	plasmid	incompatibility	group	

(Sorensen	et	al.,	2005).	Studies	investigating	plasmid	stability	in	the	environment	are	

however	limited	due	to	the	laboratory	methods	required	to	determine	plasmid	loss	

which	 involve	 replica	 plating,	 selective	markers	 and	 PCR	 detection	 (Smalla	 et	 al.,	

2000b).		

	

Investigating	the	rate	at	which	plasmids	disseminate	consequently	determines	how	

successful	plasmids	are.	It	 is	of	particular	interest	and	concern	with	respect	to	the	

future	 prevention	 of	 environmental	 spread	 of	 ARG.	 Understanding	 the	 rate	 of	

transfer	 may	 provide	 better	 models	 for	 transmission	 rate.	 The	 majority	 of	

experiments	aiming	to	determine	the	rate	of	transfer	rely	on	estimating	the	rate	of	

transfer	 in	 model	 organisms	 with	 well-known	 genetics	 in	 highly	 controlled	

environments	(Aminov,	2011).	They	rely	upon	simple	cultivation	needs,	tolerance	to	

high	 nutrient	 levels	 and	 ease	 of	 genetic	 manipulation,	 which	 makes	 them	 more	

amenable	to	plasmid	transfer.	Although	useful	as	a	reference	these	experiments	are	

unlikely	to	be	a	true	interpretation	of	environmental	rates	of	transfer.	Studies	with	
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these	 microorganisms	 can	 only	 partly	 predict	 the	 level	 of	 transfer	 in	 the	

environment.	All	these	experiments	rely	on	the	culturable	fraction,	which	is	known	

to	 be	 less	 than	 1%	 of	 all	 bacteria	 (Amann	 et	 al.,	 1995,	 Torsvik	 et	 al.,	 1990).	

Investigations	 using	 “wild”	 environmental	 strains	 are	 more	 likely	 to	 give	 more	

realistic	 transfer	rates	occurring	 in	the	environment.	 	However,	replicating	mating	

conditions	 in	 the	 laboratory	 is	 difficult	 due	 to	 several	 factors	 which	 all	 vary	 the	

transfer	rate,	for	example,	whether	mating	is	liquid	or	surface	based,	the	incubation	

period	and	temperature,	oxygen	availability,	chemotaxis	and	pH	(Smalla	et	al.,	2015).	

Any	 factor	 affecting	 the	 metabolic	 activity	 of	 the	 plasmid	 donor	 will	 affect	 the	

transfer	rate.	The	incompatibility	group	will	also	affect	the	transfer	rate	in	broth	and	

surface	 matings.	 This	 was	 demonstrated	 by	 Bradley	 et	 al.	 who	 investigated	 the	

transfer	frequencies	of	different	incompatibility	groups	in	E.	coli	K-12	on	surface	and	

broth	 showing	 that	 some	 plasmids	 are	 more	 likely	 to	 transfer	 on	 solid	 or	 liquid	

surfaces	(Bradley	et	al.,	1980).	The	rate	of	transfer	also	depends	on	the	environment,	

and	thus	microcosm	experiments	can	only	accurately	estimate	the	rate	of	transfer	in	

a	 that	 particular	 environment.	 It	 has	 been	 predicted	 that	 the	 rates	 of	 transfer	

detected	in	the	laboratory	are	significantly	lower	than	in	the	environment	(Sentchilo	

et	al.,	2013,	Sorensen	et	al.,	2005).		

	

Plasmid	host	range	is	also	important	when	considering	rate	of	transfer	with	IncP	and	

IncA/C	typically	classified	as	broad-host	range	plasmids	and	IncF,	IncX	and	IncH	are	

narrow	spectrum	(Carattoli,	2009).	The	GC	content	is	also	important	for	determining	

host	range	with	GC	contents	similar	to	host	likely	involved	in	compatibility	(Rocha,	

2002).	

	

Incompatibility	 (Inc)	 has	 defined	 plasmid	 groups	 since	 the	 1970’s	 (Shintani	 et	 al.,	

2015).	 It	 is	 based	on	 the	observation	 that	plasmids	of	 the	 same	ancestry	 are	not	

compatible	 due	 to	 the	 same	 requirements	 for	 replication	 and	 partition	 (Novick,	

1987).	There	are	3	groups	of	Inc	types	at	present,	27	within	Enterobacteriaceae,	14	

in	 Pseudomonas	 and	 18	 in	 Staphylococcus	 (Shintani	 et	 al.,	 2015,	 Carattoli,	 2009,	

Carattoli,	2013).	Incompatibility	is	determined	by	the	amino	acid	sequences	of	the	

replication	initiation	(Rep)	protein	which	is	often	confirmed	by	demonstrating	in	vitro	
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the	 incompatibility	 in	 the	 same	 group.	 Generally,	 this	 method	 of	 grouping	 is	

successful	however	there	are	drawbacks	which	include	the	fact	that	plasmids	often	

carry	multiple	replicons	making	classification	in	to	a	defined	Inc	group	difficult	and	

because	the	information	currently	available	on	Inc	groups	and	Rep	types	is	limited,	

especially	 in	 Enterobacteriaceae,	 (Carattoli	 et	 al.,	 2005,	 Shintani	 et	 al.,	 2015).	 To	

overcome	the	problems	of	typing	according	to	replicon	type,	grouping	according	to	

mobilisation	 has	 been	 suggested	 with	 6	 groups	 currently	 defined	 according	 	 to	

mobility	 (MOB)	 type	 (MOBC,	MOBF,	MOBH,	MOBP,	MOBQ	and	MOBV)	 (Smillie	et	al.,	

2010).	Grouping	based	on	MOB	type	may	improve	typing	because	it	can	define	whole	

microbial	 plasmids	 and	 is	 based	 on	 the	 relaxase	 gene	 which	 is	 rarely	 carried	 in	

multiple	copies	on	plasmids,	however,	as	the	name	would	suggest,	it	is	only	able	to	

type	 transmissible	 plasmids	 (Garcillan-Barcia	 et	 al.,	 2011,	 Garcillán-Barcia	 et	 al.,	

2009).		

Investigating	in	vivo	transfer	rate	and	host	range	is	incredibly	difficult.	Reporter	genes	

can	be	inserted	in	to	plasmids	allowing	detection	but	this	method	cannot	give	a	true	

interpretation	of	transfer	rates	of	the	native	plasmid.	It	does	provide	a	useful	tool	to	

investigate	transmissibility	under	lab	conditions.	Klumper	et	al.	investigated	plasmid	

transfer	 in	complex	communities	from	three	donor	species	(Klumper	et	al.,	2014).	

They	used	Nycodenz™	to	extract	the	cell	community	from	soil	and	carried	out	plate	

mating	experiments	to	investigate	the	transfer	of	these	GFP-tagged	plasmids.	They	

discovered	 plasmids	 could	 transfer	 to	 11	 different	 bacterial	 phyla,	 both	 Gram-

negative	 and	 Gram-positive.	 Prior	 to	 this	 experiment,	 most	 investigations	 in	 to	

plasmid	 host	 range	were	 conducted	with	 pure	 strains,	 which	 cannot	 exist	 in	 the	

environment,	 meaning	 that	 the	 question	 of	 if	 plasmids	 can	 transfer	 to	 another	

species	 is	 not	 entirely	 relevant,	 instead	 if	 plasmids	 will	 transfer	 is	 of	 greater	

significance,	but	ultimately	cannot	be	determined	without	introduction	of	genetically	

modified	organisms	in	to	the	environment.		

	

It	was	first	documented	in	1970’s	that	Enterobacteriaceae	are	highly	persistent	in	the	

aquatic	environments	since	then	there	has	been	a	lot	of	work	focussed	on	prevalence	

with	respect	to	ARG	carriage	on	mobilisable	elements	within	this	family	particularly	

those	isolated	from	the	environment	(Godwin	and	Slater,	1979).		One	recent	paper	
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identified	for	the	first	time	the	prevalence	of	mobilisable	blaCTX-M-15		in	E.	coli	within	

river	systems	in	UK	and	highlighted	the	impact	of	WWTP	in	the	presence	of	these	

genes	(Amos	et	al.,	2014).	Clinical	significance	of	drug-resistant	Enteric	bacteria	has	

increased	dramatically.	 In	 fact	 the	most	 recent,	and	most	concerning	discovery	of	

mobilisable	colistin	resistance	was	found	in	E.	coli	isolates	from	pigs	in	China	in	2015	

(Liu,	2015).	This	polymyxin	resistance	mechanism	was	shown	to	be	mobilised	to	E.	

coli	with	a	frequency	of	10-1	to			10-3	and	was	shown	to	be	stable	in	a	range	of	hosts	

including	 K.	 pneumoniae	 and	 Pseudomonas	 aeruginosa,	 suggesting	 a	 potentially	

threatening	environmentally	stable	resistance	to	last-resort	antibiotics.		

	

	

Gram	 positive	 bacteria	 do	 not	 readily	 take	 up	 genetic	 information,	 however	 in	

response	to	stress,	competence	is	 increased,	suggesting	information	may	be	more	

readily	received	through	transformation	in	the	environment	(Claverys	et	al.,	2006).	

The	stress	response	in	both	Gram	negative	and	Gram	positive	is	induced	by	solar	UV	

radiation,	 partly	 explaining	 why	 aquatic	 environments	 are	 hotspots	 for	 genetic	

exchange,	 and	 particularly	 near	 to	wastewater	 treatment	 plants	which	may	 have	

selective	agents	entering	the	water	systems	including	chlorinated	compounds	which	

may	 be	 involved	 (Hader,	 2000,	 Sentchilo	 et	 al.,	 2003).	 In	 1998	 microcosm	

experiments	conducted	by	Ravatn	et	al.	concluded	that	specific	substrates	may	be	

required	for	genetic	transfer	to	occur	(Ravatn	et	al.,	1998).	Stress	response	may	be	

triggered	by	many	different	factors,	some	of	which	may	not	directly	affect	DNA.	This	

was	one	of	the	first	papers	to	talk	about	the	idea	that	there	may	be	other	selective	

agents	for	plasmid	transfer.	

		

Marcusson	et	al.	discovered	that	induction	of	certain	resistance	mutations	provided	

a	 statistically	 significant	 selective	 fitness	 advantage	 over	 strains	 with	 fewer	

resistance	 gene	 mutations.	 Some	 combinations	 of	 mutations	 conferring	

fluoroquinolone	 resistance	 resulted	 in	 reduced-drug	 susceptibility	 as	 well	 as	

increased	fitness,	for	example,	mutations	in	the	parC	gene	compensated	for	fitness	

costs	induced	by	mutations	in	gyrA	genes	(Marcusson	et	al.,	2009).	This	accumulation	

of	particular	fluoroquinolone	resistance	genes	suggests	plasmid	possession	may	not	
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always	 incur	 a	 fitness	 cost	 but	 instead	 the	 opposite	 and	 may	 provide	 fitness	

advantages	under	non-selective	conditions	(Marcusson	et	al.,	2009).	Hence	plasmids	

may	 in	 fact	 enhance	 fitness	 within	 the	 environment	 through	 carriage	 of	 certain	

resistance	genes	making	these	plasmids	particularly	favourable	because	they	both	

reduce	susceptibility	to	antimicrobials	and	induce	a	selective	fitness	advantage.		

	

The	IncK	plasmid	(pCT)	encoding	blaCTX-M-14	incurs	no	fitness	cost	when	introduced	in	

to	new	strains	of	E.	 coli	 (Cottell	et	al.,	2012).	The	main	associated	plasmid	of	 the	

blaCTX-M-14	gene	 is	 via	 the	 IncK	 plasmids	within	E.	 coli	 (Valverde	 et	 al.,	 2009).	 The	

spread	of	CTX-M	genes	(conferring	resistance	to	extended	spectrum	β-lactams)	was	

first	noted	in	the	1980’s.	The	first	discovery	of	blaCTX-M-14	in	E.	coli	in	Korea	in	1996	by	

Pai	et	al.	(Pai	et	al.,	2001).	A	mobilisable	blaCTX-M-14	gene	originated	from	the	Kluyvera	

chromosome	with	8	separate	mobilising	events	to	plasmids	from	Kluyvera	since	they	

diverged	 from	 their	 most	 recent	 common	 ancestor	 (Barlow	 et	 al.,	 2008).	 The	

widespread	dissemination	of	blaCTX-M	genes	can	be	attributed	in	part	to	the	common	

association	of	 these	genes	with	 insertion	 sequences	 (IS),	 ISEcp1	 and	 ISCR1,	which	

have	promoted	the	dissemination	of	the	two	most	prevalent	types	of	CTX-M	gene;	

blaCTX-M-14	and	blaCTX-M-15.	The	blaCTX-M-15	gene	is	most	commonly	associated	with	FII	

type	plasmids	(Coque	et	al.,	2008),	other	CTX-M	enzymes	have	been	associated	with	

IncN,	 IncI	 and	 IncL/M	which	often	 carry	other	 resistance	 genes	 including	qnr	and	

aac(6’)-Ib-cr	 genes	 conferring	 resistance	 to	 fluoroquinolones	and	aminoglycosides	

respectively	(Bado	et	al.,	2010,	Canton,	2012),	hence	the	movement	of	one	plasmid	

may	infer	multiple	resistances.	

	

In	 addition	 to	 enhanced	 promiscuity	 induced	 by	 IS	 elements,	 often	 these	

transposable	genetic	elements	will	enable	continuous	expression	of	resistance	genes	

within	cell	due	to	location	near	a	promoter.	Typically,	these	elements	are	between	

0.8	and	2.5	kb	and	will	only	encode	the	genes	required	for	transposition	and	are	able	

to	 insert	 in	to	plasmids	and	chromosomal	DNA	(Depardieu	et	al.,	2007).	 	They	are	

usually	bounded	by	inverted	repeat	regions	of	~40	bp	which	are	specific	for	each	IS.	

They	may	in	addition	carry	partial	or	complete	promoters	which	are	normally	in	an	

outward	 orientation	 and	 therefore	 capable	 of	 activating	 the	 expression	 of	
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neighbouring	genes	(Mahillon,	1998).	It	has	been	suggested	that	they	play	a	role	in	

the	 expression	 of	 genes	 conferring	 resistance	 to	 b-lactams,	 aminoglycosides,	

quinolones,	 glycopeptide,	 imidazoles	 and	 tetracyclines	 and	 as	 a	 result	 have	 been	

observed	 to	 increase	 resistance	 levels	 (Depardieu	 et	 al.,	 2007).	 This	 IS	 mediated	

expression	 of	 ARG	 may	 result	 from	 the	 insertion	 in	 to	 regions	 carrying	

weak/incomplete/no	promoter	 resulting	 in	 the	generation	of	a	complete	 IS-borne	

promoter	with	 the	 -35	 and	 -10	 regions	which	will	 form	 the	 consensus	 sequences	

TTGACA	and	TATAAT	with	17bp	spacing	region	(optimal	promoter	activity	for	E.	coli	

(Lisser,	1993).		

	

1.8.2	Integrons		

Plasmids	 are	 able	 to	 transfer	 multiple	 resistance	 gene	 cassettes	 due	 to	 efficient	

capture	by	integrons.	Integrons	have	evolved	to	capture	and	express	gene	cassettes.	

They	were	first	discovered	in	clinical	isolates	but	have	since	been	found	in	a	variety	

of	 environments	 including	 wastewater	 treatment	 plants,	 fish	 farms,	 on-farm	

biopurification	systems,	soil,	manured	soil,	pig	slurry,	lakes	poultry	litters,	estuaries	

and	reed	beds	(Marathe	et	al.,	2013,	Agerso	and	Petersen,	2007,	Dealtry	et	al.,	2014,	

Ma	et	al.,	2013,	Tennstedt	et	al.,	2005,	Ghosh	et	al.,	2009,	Holmes	et	al.,	2003,	Byrne-

Bailey	et	al.,	2009,	Tennstedt	et	al.,	2003,	Zhang	et	al.,	2011,	Du	et	al.,	2014,	Flach	et	

al.,	2015,	Byrne-Bailey	et	al.,	2011,	Agerso	and	Sandvang,	2005,	Heuer	et	al.,	2012,	

Gaze	et	al.,	2005,	Nandi,	2004,	Lu	et	al.,	2015,	L'Abee-Lund	and	Sorum,	2001,	Ferreira	

da	Silva	et	al.,	2007).	Integron	structure	allows	for	efficient	insertion	and	expression	

of	a	gene	cassette	in	to	a	genome	without	disruption	of	the	genome	making	them	

highly	favourable	both	in	clinical	and	environmental	conditions.		

	

Integrons	were	first	identified	by	Stokes	and	Hall	in	1989	over	30	years	after	the	first	

Japanese	studies	investigating	plasmid-mediated	transferable	antibiotic	resistance	in	

1950’s	(Stokes	and	Hall,	1989,	Ochiai,	1959).	They	consist	of	three	key	components:	

the	integrase	gene	(intI1),	a	recombination	site	(attI)	and	a	promoter	(Pc)	(Figure	1.5).	

All	integrons	will	possess	these	three	elements	to	enable	the	capture	and	expression	

of	gene	cassettes	with	minimal	disruption	to	the		genome	(Labbate	et	al.,	2009).	They	

are	 able	 to	 capture	 genes	 from	 diverse	 backgrounds	 and	 hence	 act	 as	 genomic	
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diversity	“hotspots”	(Boucher	et	al.,	2007,	Hall	and	Collis,	1995).	Over	130	different	

antibiotic	 resistance	 gene	 cassettes	 have	 been	 found	 on	 integrons	 providing	

resistance	 to	 most	 antibiotics	 used	 in	 the	 treatment	 of	 Gram-negative	 bacteria	

(Partridge	et	al.,	2009,	Centron	and	Roy,	2002,	Falbo	et	al.,	1999,	Koeleman	et	al.,	

2001,	 L'Abee-Lund	and	 Sorum,	2001,	Maguire	 et	 al.,	 2001,	Nordmann	and	Poirel,	

2002,	van	Belkum	et	al.,	2001).	There	are	 five	known	classes	of	 integrons,	 class	1	

through	to	5	(Cambray	et	al.,	2010).	Classes	1,	2	and	3	are	the	most	readily	detected	

integrons	with	classes	4	and	5	having	only	been	detected	once	(Hochhut	et	al.,	2001).	

They	are	classified	based	on	sequence	homology	of	the	integrase	protein	with	40-

58%	identity	(Mazel,	2006).	

	

	
Figure	 1.5	 Structure	 of	 Class	 1	 integrons,	 capture	 by	 transposons	 and	 plasmid	
insertion.	
	

The	most	commonly	detected	integron	in	both	the	clinic	and	environment	is	the	class	

1	 integron	 (Deng	et	al.,	2015).	The	suggestion	 that	class	1	 integrons	may	act	as	a	

marker	for	antibiotic	resistance	has	been	considered	for	over	a	decade,	with	the	first	

suggestions	 that	 antibiotic	 resistance	 in	 Enterobacteriaceae	 is	 strongly	 related	 to	

integrons	 in	 2003	 (Leverstein-van	 Hall	 et	 al.,	 2003).	 The	 study	 conducted	 by	

Leverstein-van	Hall	et	al.	found	the	multidrug-resistance	phenotype	was	attributed	
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to	 the	 presence	 of	 integrons	within	 strains	 and	 that	 100	%	 of	 strains	 possessing	

integrons	expressed	resistance	to	at	least	1	antibiotic	tested.		

	

Recent	 work	 into	 class	 1	 integrons	 as	 a	 proxy	 for	 ARG	 has	 been	 carried	 out	 to	

investigate	how	efficient	a	marker	it	is.	Amos	et	al.	proposed	a	model	to	predict	3GC	

resistance	 prevalence	 based	 upon	 class	 1	 integron	 prevalence	 combined	 with	

environmental	metadata	(Amos	et	al.,	2015).	Furthermore,	Gillings	et	al.	suggested	

the	class	1	integron-integrase	gene	may	act	as	a	marker	for	anthropogenic	pollution	

based	on	the	observation	of	high	abundance	of	this	gene	in	polluted	environments	

in	addition	to	many	pathogenic	and	commensal	bacteria	in	the	humans	and	animals	

(Gillings	et	al.,	2015,	Goldstein	et	al.,	2001,	Stokes	and	Gillings,	2011,	Amos	et	al.,	

2015,	Berglund	et	al.,	2015,	Marathe	et	al.,	2013,	Gaze	et	al.,	2011).		

They	also	represent	potential	monitoring	mechanisms	due	to	their	assembly,	which	

has	been	influenced	by	human	activities	resulting	 in	the	accumulation	of	BRG	and	

ARG	on	the	same	genetic	element	(Gillings	et	al.,	2008).	If	the	integrase	gene	is	to	be	

used	as	a	marker	for	antibiotic	resistance,	care	must	be	taken	to	ensure	all	integrons	

are	detected.	A	study	conducted	by	Dawes	et	al.	found	that	of	79	isolates	known	to	

possess	 class	1	 integrons,	 only	31	of	 them	could	be	detected	using	 standard	PCR	

primers	which	typically	amplify	the	3’	region		(Dawes	et	al.,	2010).		

	

Class	1	integrons	are	commonly	associated	with	Gram	negatives,	but	they	have	also	

been	detected	 in	Gram-positive	bacteria.	 In	1998	a	 class	1	 integron	was	 found	 in	

Corynebacterium	glutamicum.	Interestingly	this	integron	showed	higher	expression	

in	this	host	than	in	E.	coli	suggesting	an	Gram-positives	may	be	important	reservoirs	

of	ARG-carrying	integrons	(Xu	et	al.,	2011).		Other	Gram-positive	bacteria,	in	which	

class	 1	 integrons	 have	 been	 found	 include	 Staphylococcus,	 Corynebacterium,	 and	

Aerococcus	(Nandi,	2004,	Nesvera	et	al.,	1998,	Xu	et	al.,	2007,	Xu	et	al.,	2008b,	Xu	et	

al.,	2008a).		

	

Class	 1	 integrons	 have	 been	 associated	 with	 many	 bacterial	 families	 in	 both	

commensal	 and	 pathogenic	 bacteria	 and	 have	 been	 found	 in	 a	 variety	 of	

environments	 possibly	 as	 a	 result	 of	 location	 on	 Betaproteobacteria,	 which	 has	
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allowed	 efficient	 transfer	 from	 the	 environment	 in	 to	 the	 human	 food	 chain.	

Consequently	this	has	led	to	a	sub	class	of	class	1	integrons	that	are	found	in	human-

dominated	ecosystems	(Gillings	et	al.,	2015).	This	clinically	related	class	1	integron	is	

characterised	by	a	3’	conserved	region,	a	truncated	qacEΔ1	and	a	sul1	gene.	These	

components	 are	 believed	 to	 have	 arisen	 through	 capture	 of	 an	 environmental	

betaproteobacterium	 integron	 containing	 qacE	 biocide	 resistance	 gene	 and	

subsequent	sul1	sulphonamide	resistance	gene	which	led	to	a	truncated	qacE	which	

was	captured	by	a	Tn402	transposon	which	targets	the	res	region	of	plasmids	and	

hence	allows	the	class	1	integron-transposon	hybrid	to	transpose	in	to	a	wide	range	

of	plasmid	and	hence	become	high	mobile	(Minakhina	et	al.,	1999).		
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1.9 Hypotheses		

The	 majority	 of	 work	 investigating	 WWTPs	 as	 a	 reservoir	 of	 ARG	 and	 ARB	 has	

focussed	on	the	water	column	but	recent	studies	have	suggested	that	river	sediment	

may	also	contribute	a	significant	reservoir	of	resistance.	In	the	current	study	it	was	

hypothesised	that	the	sediment	would	in	fact	carry	a	greater	abundance	of	ARB	and	

ARG	than	the	river	water	and	that	due	to	seasonal	release	from	CSOs,	the	wetter	

winter	months	would	carry	a	greater	 level	of	ARB	compared	to	 the	drier	 summer	

months.		

Combined,	it	was	hypothesized	that	the	sediment	provides	an	unknown	reservoir	of	

pathogenic	 bacteria	 and	 aimed	 to	 investigate	 the	 pathogenic	 and	 resistance	

potential	of	E.	coli	isolates.	

	

1.10	Aims	

1. Investigate	 the	 prevalence	 and	 abundance	 of	 ARG	 within	 planktonic	 and	

sediment	river	samples.	

2. Determine	if	sediment	or	planktonic	samples	carry	more	Gram-negative	AMR	

bacteria.		

3. Determine	if	climatic	features	affect	the	number	of	viable	antibiotic	resistant	

Gram-negative	bacteria		

4. Evaluate	diversity	within	AMR	E.	coli	and	consider	the	genetic	potential	for	

pathogenicity.	
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Chapter	2	
Materials	and	Methods	
	
	
2.1	Site	selection	for	Sowe	sampling	

For	 results	 chapters	 5	 and	 6	 sampling	 was	 carried	 out	 at	 the	 River	 Sowe.	 River	

sediment	 samples	were	 collected	 from	 two	 sites	 near	 to	 the	 Finham	WWTP	 (see	

figure	2.1):	one	site	was	CSO	impacted	and	the	other	was	CSO	and	WWTP	impacted.		
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Figure	 2.1	 Sampling	 sites	 near	 the	 Finham	 WWTP	 and	 key	 components	 of	 the	
treatment	 plant.	 CSO	 impacted	 site	 (red	 point)	 and	 combined	 CSO	 and	 WWTP	
impacted	site	(purple	point)	from	the	Finham	WWTP	on	the	River	Sowe.	Numbers	in	
blue	squares	represent	the	components	involved	WWTP	process:		(1)	Digesters,	(2)	
centrifuge,	 (3)	 Primary	 settlement	 tanks,	 (4)	 Activated	 sludge	 plants,	 	 (5)	 Final	
settlement	tanks,	(6)	Combined	heat	and	power	plant.	Grey	squares	represent	inlets	
and	 outlets	 from	 the	 treatment	 plant:	 (a)	 Sherbourne	 inlet	 sample	 point,	 (b)	
Sherbourne	 settled	 storm	 sewage	 sample	 point	 (to	 Fihnam	 Brook)/	 Sherbourne	
settle	 storm	 sewage	outlet	 2	 (to	 Finham	Brook),	 (c)	 Sowe	 inlet	 sample	pount,	 (d)	
Sowe	settled	storm	sewage	sample	point	(to	river	Sowe)/	Sowe	settle	storm	sewage	
outlet	3	(to	river	Sowe),	(e)	Sample	point/final	effluent	sample	point/flow	monitoring	
point,	(f)	Final	effluent	outlet	1.		
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2.2	Sowe	sampling	regime		

Approximately	20	g	of	 river	 sediment	was	 collected	 in	50	ml	 falcon	 tubes	at	 four	

seasonal	 time	 points	 between	 February	 2015	 and	 February	 2016.	 Samples	 were	

taken	in	biological	triplicate	and	were	processed	on	day	of	collection.	

	

Weather	metadata	including	daily	temperature,	average	rainfall	over	the	month	and	

average	 sunshine	 hours	 were	 recorded	 (data	 taken	 from	 MetOffice)	 between	

February	2015	and	February	2016.	

	

Weather	summaries	were	taken	from	the	Met	Office	website	and	reports	regarding	

temperature	and	rainfall	were	recorded.	Weather	data	was	scored	on	a	scale	of	very	

high,	middle,	 low	and	very	 low	based	on	manual	 relative	measure.	Metadata	was	

added	to	mapping	file	for	16S	Miseq	analysis.		

	
Table	2.1	UK	Weather	summaries.	Taken	from	Met	Office,	
http://www.metoffice.gov.uk/climate/uk/summaries/2015		
Month/Year	 Average	month	

temperature	(oC)	
Average	rainfall	

(mm)	
Hours	of	sunshine	

Winter	2015	 6.5	 72.9	 77.5	

Spring	2015	 7.9	 46.3	 212	

Summer	2015	 18.5	 109.5	 164.8	

Autumn	2015	 7.9	 230	 29.8	

Winter	2016	 7	 114.2	 85.3	

	
2.3	Site	selection	for	Thames	sampling		

For	 results	 chapters	 3	 and	 4,	 the	 river	 Thame	 and	 river	 Kennet	 were	 chosen	 as	

sampling	sites.	The	sample	sites	within	the	Thames	catchment	were	chosen	based	

upon	agricultural	and	anthropogenic	impacts	(see	table	2.2).	The	river	Kennet	was	

chosen	primarily	for	agricultural	impacts	and	the	Thames	for	anthropogenic	activity	

with	 a	 greater	 number	 of	 farms	 and	 communities	 respectively	 in	 each	 River	

catchment.	The	sites	can	be	found	in	Figure	2.2.	

	

All	 sites	 were	 downstream	 of	 at	 least	 one	 WWTP,	 however	 sites	 were	 labelled	

upstream	 and	 downstream	based	 on	 nearest	WWTP	 location.	 Small	WWTP	were	
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considered	as	plants	serving	a	population	less	than	10000	and	any	plant	serving	over	

10000	was	 considered	 large.	WWTP	 impact	was	determined	based	on	 size	of	 the	

nearest	 WWTP	 and	 distance	 from	 the	 plant.	 	 Impact	 was	 determined	 based	 on	

distance	away	from	the	WWTP.		

	
Table	2.2	Summary	table	of	sampling	sites	in	Thames	catchment	
River	 Site	

no.	
Coordinates	 Nearest	WWTP	

(upstream/	
downstream)	

Population	
served	by	
nearest		
upstream	
WWTP	

Agricultural	
impact	

Thame	 3	 51.81478,	-
0.88781	

Downstream	 104000	 Cattle,	

Thame	 5	 51.75693,	-
0.98053	

Downstream	 11000	 Cattle	

Thame	 7	 51.67514.	-
1.1322	

Upstream	 >10000	 Cattle	

Thame	 8	 51.67512,	-
1.13157	

Downstream	 30000	 Cattle	

Kennet	 2	 51.4144,	-
1.78448	

Downstream	 <10000	 Sheep	

Kennet	 7	 51.42445,	-
1.69324	

Downstream	 <10000	 Sheep,	fish	
farm	

Kennet	 8	 51.4301,	-
1.53687	

Downstream	 <10000	 Pig		and	fish	
farm	

Kennet	 11	 51.41197,	-
1.49562	

Upstream	 <10000	 Cattle	and	
fish	

	

2.4	Thames	sampling	regime		

Samples	were	collected	in	September	2015.	Sampling	was	carried	out	using	specially	

made	sampling	poles	to	allow	access	across	the	river	bed.	Sediment	samples	were	

collected	in	50	ml	falcon	tubes	and	stored	on	ice	till	time	of	plating.	Samples	were	

collected	at	each	site	in	triplicate.	Water	samples	were	collected	in	500	ml	screw	cap	

bottles.	3L	was	collected	from	each	site	replicate	(9L	in	total	for	3	replicates).	
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Figure	2.2	Thames	sampling	sites.	Blue	markers	represent	Thame	sampling	sites	and	
red	markers	indicate	Kennet	sampling	sites	
	

2.5	Media	preparation	

HiCromeTM	 coliform	 agar	 (HiCA)	 plates	were	made	 as	 specified	 by	manufacturers	

protocol	with	 the	 exception	 of	 CTAB	 containing	 plates	which	was	 added	 prior	 to	

autoclaving	 Antibiotic	 containing	 plates	 were	made	 by	 autoclaving	 HiCA	 prior	 to	

addition	of	 antibiotic.	 Plates	without	 any	 antibiotic	 or	 biocide	were	 also	made.	A	

summary	of	the	antibiotics	used	and	concentrations	are	listed	in	Table	2.3.		

	

HiCA	 was	 chosen	 because	 it	 allows	 the	 simultaneous	 detection	 of	 coliforms	 and	

specific	identification	of	E.	coli	through	metabolic	profiling	using	Salmon-GAL	and	X-

glucoronidase	to	 identify	coliforms	and	E.	coli	respectively.	Coliforms	produce	b-D	

galactosidase	which	cleaves	Salmon-GAL	to	produce	salmon-red	colonies.	E.	coli	also	

produced	this	enzyme	as	well	as	b-Dglucuronidase	which	cleaves	X-glucoronidase.	

The	combination	of	breakdown	of	Salmon-GAL	and	X-glucoronidase	results	in	dark	

blue-violet	coloured	colonies	allowing	quick	and	easy	identification.	

	

Thame 5

Thame 3

Thame 7/8

Kennet 2
Kennet 7 Kennet 8

Kennet 11
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Table	2.3	Concentration	of	antimicrobials	used	in	HiCA	plates.	*used	in	the	Thames	
study	only,	**	used	in	Sowe	monitoring	study	only.	EUCAST	clinical	breakpoint	data	
taken	from:	http://www.eucast.org/clinical_breakpoints/		

Antibiotic/Biocide	 EUCAST	clinical	
breakpoint	(µg/ml)	

Concentration	in	HiCA	
plates	(µg/ml)	

Cefotaxime	 2	 2	
Ciprofloxacin	 1	 1	
Meropenem**	 4	 4	

CTAB	 N/A	 128	
Erythromycin*	 N/A	 8	
Tetracyline	*	 N/A	 10	

	
	

2.6	Sediment	sample	processing		

Sample	processing	was	carried	out	on	the	same	day	of	sampling	(within	12	hours	of	

collection).	 Plating	 was	 done	 in	 technical	 duplicate	 for	 each	 biological	 replicate.	

Sediment	 samples	 were	 diluted	 in	 PBS	 from	 10-1	 to	 10-5	 with	 1	 g	 sediment	 (wet	

weight)	diluted	in	9	ml	PBS	and	spread	plated	(100	μl)	in	triplicate	on	to	HiCA	agar	

with	and	without	antimicrobials.	Plates	were	incubated	for	48hrs	at	30oC.	

	

2.7	Water	sample	processing	

3L	of	water	was	passed	through	a	0.45	μm	filter.	The	filter	was	cut	in	half,	half	was	

stored	at	4	oC	for	later	processing	(see	section	2.11)	and	DNA	extraction	and	the	other	

half	was	placed	on	antibiotic/biocide	HiCA	plates	and	incubated	30oC	for	48	hours.		

	

2.8	Plate	counts	

Blue	and	pink	colonies	(representing	E.	coli	and	presumptive	coliforms	excluding	E.	

coli	(PCE)	respectively)	were	recorded	for	each	condition	tested.	At	least	three	plates	

for	each	condition	were	recorded	and	counts	averaged.		

	

2.9	E.	coli	isolation	for	whole	genome	sequencing	

Dark-blue/violet	colonies	were	picked	from	plates	and	streak	plated	to	purification.	

One	 colony	 was	 taken	 from	 each	 plate	 dilution	 and	 replicate	 where	 possible.	

Purification	involved	re-streaking	isolates	on	to	respective	antibiotic	containing	HiCA	
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agar	 plates	 at	 least	 4	 times	 until	 only	 dark-blue/violet	 colonies	 appeared	 on	 the	

plates	after	overnight	incubation.			

	

2.10	Sediment	and	water	sample	collection	of	biomass	for	DNA	extraction		

After	48	hours	colonies	were	scraped	using	plastic	loops	in	to	1.5	ml	microcentrifuge	

tubes.	250µl	PBS	was	used	for	scrapings.	Cell	suspensions	were	frozen	at	-20	oC	prior	

to	DNA	extraction.	Technical	duplicates	were	scraped	 together	 for	each	antibiotic	

and	biocide	condition.	

	

2.11	DNA	extraction	from	sediment	and	cultured	biomass	

DNA	 extraction	 was	 carried	 out	 using	 the	 FastDNA™	 spin	 kit	 for	 soil	 following	

manufacturers	protocol.	For	sediment	samples	0.5	g	of	sediment	(wet	weight)	was	

used,	for	cultured	DNA	extractions	(from	both	water	and	sediment	samples,	where	

specified,	0.5g	 soil	was	 replaced	with	250	µl	of	 suspended	colonies.	2	extractions	

were	done	for	each	sample	to	make	a	total	of	500	µl	colonies	were	extracted	from.	

DNA	was	pooled	after	extraction	in	75µl	to	give	total	DNA	in	final	volume	of	150µl	

	

2.12	DNA	extraction	from	water	

DNA	was	extracted	from	filtered	water	samples	(as	specified	in	2.7)	the	PowerWater®	

kit	from	MO	BIO	was	used	as	stated	by	manufactures	protocol.		

	

2.13	qPCR	conditions,	primers,	probes	and	oligos	

qPCR	reactions	were	set	up	using	12.5	μl	environmental	Taqman	(Fischer	Scientific),	

1	μl	BSA	(10	mg/ml),	1	μl	primers	(100	μM),		0.75	μl	nM	probe	(100	μM)	1	μl	DNA	

template	made	up	to	25	μl	with	DNA	free	water.		A	list	of	primers	and	probes	used	

can	be	found	in	Table	2.4.	For	sediment	DNA	extractions,	DNA	was	diluted	1:10	prior	

to	qPCR.		

	

Conditions	 for	 each	 reaction	 were	 the	 same,	 the	 cycle	 was	 as	 follows:	 95°C	 for	

10mins,	[95°C	for	15	seconds,	60°C	for	30	seconds,	72°C	for	40	seconds]	(40	cycles),	

95°C	for	60	seconds.	
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Table	2.4	Primers	and	probes	used	for	qPCR	

Targ
et	

Primers	 Probe	 Prod
uct	
size	

Referen
ce	

blaC
TX-M-

1	

(Gro
up	1	

ACCAATGATATTGCGGTGATCTGCGTTCTGT
TGCGGCT 	
	

6FAM-TCGTGCGCCGCTG-
MGBNFQ 	
	

85	 Pitkane
n	et	al	
(Colome
r-Lluch	
et	al.,	
2011)	

qnrS	 CGACGTGCTAACTTGCGTGAGGCATTGTTGG
AAACTTGCA	

6FAM-
AGTTCATTGAACAGGGTG
A-MGBNFQ	

118	 Colome
r-lluch	
et	al	
(Colome
r-Lluch	
et	al.,	
2014)	

tet
M	

GGTTTCTCTTGGATACTTAAATCAATCRCCAA
CCATAYAATCCTTGTTCRC	
	
	

6FAM-
ATGCAGTTATGGARGGGA
TACGCTATGGY-TAMRA	

93	 Peak	et	
al	(Peak	
et	al.,	
2007)	

erm
F	

TCTGGGAGGTTCCATTGTCCTACTTTCAGGA
CCTACCTCATAGA	

6FAM-
TCGAGGAAGCTTTACAATC
CATATACCGT-TAMRA	

106	 This	
study,	
collabor
ators	at	
Universi
ty	of	
Exeter	

intI
1	

GCCTTGATGTTACCCGAGAGGATCGGTCGAA
TGCGTGT	

6FAM-
ATTCCTGGCCGTGGTTCTG
GGTTTT-TAMRA	

193	 Baraud	
et	al	
(Barrau
d	et	al.,	
2010)	

qac
E	

CGCATTTTATTTTCTTTCTCTGGTTCCCGACCA
GACTGCATAAGC	

FAM-
TGAAATCCATCCCTGTCGG
TGT-TAMRA	

70	 Jechalke	
et	al	
(Jechalk
e	et	al.,	
2013)	

E.	
coli	
23S	

GGTAGAGCACTGTTTtGGCATGTCTCCCGTG
ATAACtTTCTC 	

6FAM-
TCATCCCGACTTACCAACC
CG-TAMRA	
	

88	 Pitkane
n	et	al	
(Pitkane
n	et	al.,	
2013)	

16S	 CGGTGAATACGTTCYCGGGGWTACCTTGTTA
CGACT	

6FAM-
CTTGTACACACCGCCCGTC
-TAMRA	

124	 Csekals
ki	et	al.	
(Czekals
ki	et	al.,	
2014)	

	
	
For	 qPCR	 standards,	 oligos	was	 ordered	were	 from	TIB	 chemicals.	 Table.	 2.5	 lists	

oligos	used	in	this	study.	For	E.	coli	23S,	16S,	and	blaCTX-M-1	standards	were	made	from	

strains	and	PCR	products.	
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Table	2.5	Oligos	used	as	standards		
Gene	 Oligo	

qnrS	
CGACGTGCTAACTTGCGTGATACGACATTCGTCAACTGCAAGTTCATTGAACA	
GGGTGATATCGAAGGCTGCCACTTTGATGTCGCAGATCTTCGTGATGCAAGTT	
TCCAACAATGCC	

ermF	
TCTGGGAGGTTCCATTGTCCTTCAATTAGAACCTACACAAAAGTTATTTTCGA	
GGAAGCTTTACAATCCATATACCGTTTTCTATCATACTTTTTTTGATTTGAAA	
CTTGTCTATGAGGTAGGTCCTGAAAGTA	

tetM	 GGTTTCTCTTGGATACTTAAATCAATCGTTTCAAAATGCAGTTATGGAAGGGA	
TACGATATGGCTGTGAACAAGGATTGTATGGTTGG	

qacE	 CGCATTTTATTTTCTTTCTCTGGTTCTGAAATCCATCCCTGTCGGTGTTGCTT	
ATGCAGTCTGGTCGGG	

inti1	

GATCGGTCGAATGCGTGTGCTGCGCAAAAACCCAGAACCACGGCCAGGAATG	
CCCGGCGCGCGGATACTTCCGCTCAAGGGCGTCGGGAAGCGCAACGCCGCTG	
CGGCCCTCGGCCTGGTCCTTCAGCCACCATGCCCGTGCACGCGACAGCTGCT	
CGCGCAGGCTGGGTGCCAAGCTCTCGGGTAACATCAAGGC	

	

2.14	Normalisation	of	qPCR	results	

16S	standards	were	from	E.	coli.	E.	coli	has	a	median	16S	copy	number	of	7	 (data	

taken	from	the	ribosomal	RNA	operon	copy	number	database	(rrnDB)	(Stoddard	et	

al.,	 2015).	 For	 16S	 results	 were	multiplied	 by	 7	 and	 divided	 by	 2.5	 (the	 average	

number	of	16S	copies).	

	

Cultured	 DNA	 extraction	 16S	were	 also	multiplied	 by	 7	 because	 the	 average	 16S	

copies	in	Enterobacteriaceae	is	7.	Values	were	multiplied	by	150	as	DNA	was	diluted	

in	150	ul	water	to	give	copies	per	total	scraped	plate	content.		

	

Results	were	normalised	then	averaged	between	the	three	biological	replicates	and	

standard	error	calculated.	For	sediment	samples,	results	were	calculated	per	gram,	

for	cultured	results,	results	were	made	relative	to	16S.		

	

2.15	qPCR	statistical	analysis		

Boxplots	generated	in	R	studio	to	determine	outliers.	Outliers	identified	in	excel	via	

sorting	and	determined	if	true	outliers	by	firstly	finding	the	1st	and	3rd	quartile	and	

then	finding	the	statistical	50%	(interquartile	range)	of	the	data	by	subtracting	the	

3rd	quartile	from	the	1st	quartile.	Outliers	were	determined	by	multiplying	the	IQR	by	
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1.5,	 if	 results	 were	 higher	 than	 this	 value,	 individual	 results	 were	 checked	 and	

excluded	based	on	manual	curation.		

	

Statistical	tests	were	performed	in	RStudio	(version	0.99.893).	Pearsons	correlation	

analysis	 was	 used	 to	 determine	 whether	 populations	 were	 independent.	

Correlograms	were	generated	using	the	R	library	corrgram	(Wright,	2015)	to	present	

correlations	 between	 ARG	 and	 explanatory	 variables.	 Heatmaps	 were	 generated	

using	 the	 R	 package	 gplots	 (Warnes,	 2016),	 to	 show	 relative	 abundance	 at	 each	

site/season/condition.		

	

Data	collected	for	all	ARG	targets	was	log	transformed	to	overcome	the	assumption	

of	analysis	of	variance	(ANOVA)	that	the	dataset	will	show	homogeneity	of	variance.	

Raw	qPCR	data	was	 log10	 transformed	and	a	constant	of	0.0000001	was	added	to	

overcome	the	zeros	in	the	dataset.	This	number	was	chosen	because	it	was	smaller	

than	 any	 of	 the	 recorded	 values.	 Two-way	 ANOVAs	were	 performed	 to	 evaluate	

differences	in	ARG	prevalence	across	different	sample	types,	rivers	and	sites	within	

rivers.		

	

2.16	Comparison	of	antimicrobial	treatment	of	cultured	DNA	extractions		

Data	was	separated	out	 in	 to	different	antibiotic	 treatments	 to	compare	different	

treatments	with	qPCR	ARG	targets.	Non-parametric	tests	were	conducted	for	each	

qPCR	 target	 to	 compare	 whether	 changes	 occurred	 in	 target	 prevalence	 with	

different	 conditions.	Non-parametric	 tests	were	performed	because	data	was	not	

normally	distributed.	

	

2.17	16S	Amplicon	targeted	metagenomics	

	16S	amplicon	targeted	metagenomics	was	carried	out	on	all	river	samples:	total	DNA	

extractions	 from	 sediment	 and	 water	 as	 well	 as	 DNA	 extractions	 from	 cultured	

fraction.	

	

16S	targeted	metagenomics	was	carried	out	as	specified	in	Illumina	Miseq	guide	for	

16S	metagenomics	library	preparation	(Illumina).	Briefly,	16S	V3	and	V4	region	was	
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amplified	using	the	forward	primer	

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG	and	reverse	

primer	

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC.	PCR	

clean	up	using	the	Ampure	XP	beads	was	then	carried	out	and	2nd	stage	PCR	to	add	

index	primers.	Second	stage	PCR	clean-up	was	then	performed	and	samples	

qubited	and	some	were	run	on	the	bioanalyser	to	check	product	size	was	correct.		

	

Libraries	were	then	pooled	to	4nM	checking	with	Qubit®.	Once	libraries	were	at	4nM,	

library	denaturation	and	MiSeq	sample	loading	was	performed.		

	

2.18	Analysis	of	16S	amplicon	targeted	metagenomics	

Analysis	 of	 16S	 sequencing	 included	 demuliplexing	 of	 samples	 through	 merging	

paired	samples	and	quality	filtering.	Quality	filtering	parameters	were	set	to	truncate	

reads	 with	 quality	 scores	 less	 than	 7	 (p	 error=	 0.19953)	 and	 to	 allow	 only	 5	

mismatches	in	the	overlap	region	of	the	paired	reads.	Reads	with	expected	errors	of	

more	than	0.5	were	discarded	and	reads	with	 less	 than	300	bp	of	sequence	were	

discarded.	Sequences	were	then	dereplicated	and	size	sorted	(minimum	size	was	set	

to	2).	OTU	clustering	was	carried	out	at	97	%	similarity	and	chimeras	filtered	out	using	

UCHIME	(Edgar	et	al.,	2011,	Edgar,	2010).	OTUs	were	assigned	using	RDP	classifier	

2.2	(McDonald	et	al.,	2012,	Werner	et	al.,	2012,	Wang	et	al.,	2007)	and	reads	mapped	

back	to	OTUs	to	create	OTU	tables.		

	

QIIME	(Caporaso	et	al.,	2010b)	was	then	used	to	further	analyse	sequences.	Briefly,	

sequenced	were	aligned	(Caporaso	et	al.,	2010a)	and	a	phylogenetic	tree	made	using	

the	filtered	FASTA	files	 (Price,	2010).	Taxonomy	was	added	to	the	biom	table	and	

taxa	summarized.	Samples	were	rarefied	and	core	diversity	analyses	was	performed	

separating	by	metadata	categories.	Simpsons	inverse	test	was	used	to	analyse	OTU	

diversity	for	rarefied	and	unrarefied	communities.		

	

Beta	diversity	was	analysed	using	the	rarefied	OTU	tables	and	2D	PCoA	plots	were	

constructed	with	weighted	 and	 unweighted	 UniFrac	 distance	matrices	 (Lozupone	
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and	 Knight,	 2005)	 to	 determine	 whether	 sample	 communities	 differed	 based	 on	

relative	abundance	of	taxa	or	true	presence/absence	of	taxa	(Lozupone	et	al.,	2007).	

PCoA	plots	were	visualised	in	EMPeror	(Vazquez-Baeza,	2013).	Community	structural	

similarity	was	determined	using	analysis	of	similarity	(ANOSIM)	analysis	run	for	999	

permutations.	 The	 core	 microbiome	 was	 determined	 for	 samples	 separately	 to	

determine	differences	in	OTUs	among	categories.		

	

2.19	Antimicrobial	phenotypic	screening	

Disc	diffusion	assays	were	used	to	determine	phenotypic	resistance	for	all	77	E.	coli	

isolates.	 OxoidTM	 antibiotic	 containing	 discs	 were	 used	 to	 determine	 phenotypic	

resistance	profiles.	Antibiotic	discs	used	can	be	found	listed	in	Table	2.6	Oxoid	Iso-

sensitestTM	Agar	CM0471	was	used	 to	determine	phenotypic	 resistance.	Agar	was	

made	as	per	manufactures	instructions.		

	

Table	2.6	Antibiotics	used	in	phenotypic	assays	
Antibiotic	 Antibiotic	concentration	

(µg/ml)	
Antibiotic	class	

Ampicillin	 25	 b-lactam	
Cefotaxime	 5	 Extended-spectrum	b-lactam,	

third	generation	
Imipenem	 10	 b-lactam,	carbapenem	
Tetracycline	 10	 Tetracycline	

Erythromycin	E	 10	 Macrolide	
Chloramphenicol	 30	 Binds	50S	subunit	of	ribosome	
Sulphafurazole	 300	 Sulfonamide	
Nalidixic	acid	 30	 Quinolone	

	

	

2.20	DNA	extraction	of	pure	cultures	

Once	colonies	were	purified,	a	single	colony	was	picked	and	inoculated	in	to	10	ml	LB	

(with	appropriate	antibiotics	where	necessary)	and	incubated	overnight	at	37	oC	with	

shaking	at	150	rpm.	Cultures	were	then	centrifuged	for	10	minutes	at	1500	rpm	and	

supernatant	 discarded.	 Pellets	 were	 resuspended	 in	 500	 µl	 PBS.	 The	 MPBio	

FastDNATM	spin	kit	for	soil	was	used	to	extract	DNA	replaced	0.5	g	soil	with	500	µl	
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resuspended	cells.	DNA	extractions	were	carried	out	as	specified	by	the	protocol	set	

out	by	MPBio.		

	

2.21	DNA	quantification	

DNA	was	quantified	using	 the	Qubit®	using	 the	ThermoFisher	Scientific	dsDNA	BR	

Assay	Kit	following	protocol.	DNA	samples	that	could	not	be	determined	using	the	

dsDNA	BR	Assay	Kit	were	discarded.	Remaining	samples	were	aliqouted	to	40	µl	and	

dried	down	using	the	speed	vacuum	till	completely	dry	(~45	minutes).		

	

2.22	Whole	genome	sequencing	

Dried	down	DNA	samples	were	sent	to	University	of	Technology,	Sydney	for	sample	

preparation	and	whole	genome	sequencing	using	the	standard	Illumina	protocol	for	

Miseq	 which	 was	 performed	 by	 Dr	 Michael	 Liu.	 Briefly	 DNA	 was	 suspended	 in	

nuclease	 free	 water.	 DNA	 was	 then	 fragmented	 to	 produce	 5’	 and	 3’	 recessed,	

overhang	 and	 blunt	 ends	 and	 tagmented	 using	 the	 Illumina	 Nextera	 kit	 which	

combines	 fragmenting	 DNA	 with	 tagmentation	 of	 adaptors	 in	 one	 step:	 8	 µl	

tagmentation	 buffer,	 5	µl	 gDNA	 and	 ddH2O,	 4	µl	 Nextera	 tagmentation	mix.	 The	

reaction	was	stopped	using		4µl	NT	buffer	after	holding	at	55	oC	for	5	minutes	and	

room	temperature	for	a	further	10	minutes.	Samples	were	incubated	with	NT	buffer	

for	5	minutes	at	room	temperature	to	ensure	the	tagementation	step	has	stopped.		

The	 library	was	enriched	 through	PCR	amplification	using	20	µl	 of	 the	 tagmented	

library,	22µl	KAPA	PCR	master	mix,	1µl	index	1	(i7)	primers,	1	µl	index	2	(i5)	primers	

and	 then	 vortexing	 to	 mix.	 The	 cycle	 for	 tagemented	 library	 amplification	 is	 as	

follows:	72	oC	for	3	minutes,	95	oC	for	30	seconds,	12	cycles	of	95	oC	for	10	seconds,	

55	oC	for	30	seconds	and	72	oC	for	30	seconds,	then	72	oC	for	5	minutes	and	infinite	

hold	at	10	oC.	Tagmented	and	amplified	DNA	samples	were	run	on	the	BioAnalyzer	

to	check	sizing	and	quantification	of	libraries.	

	

After	confirmation	of	DNA	libraries	solid	phase	reversible	immobilisation	(SPRI)	bead	

clean-up	was	performed	on	pooled	samples	to	select	for	right	and	left	side.	Samples	

were	once	again	run	on	the	bioannalyser	to	check	cleaned	sample.	DNA	library	was	
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then	denatured	and	prepared	according	to	Illumina	MiSeq	guidelines	using	20	pM	of	

each	 the	 sample	and	PhiX	 control.	MiSeq	 reagent	 kit	 2	 x	150	bp	v2	was	used	 for	

sequencing	of	E.	coli	isolates	to	generate	250	nucleotides	long	paired	end	reads	with	

approximate	total	output	of	4.5	Gb.	With	E.	coli	sized	genomes,	the	average	coverage	

if	 one	 bacterial	 genome	 was	 run	 on	 one	 cell	 would	 be	 978	 times	

(4500000000/4600000).	Therefore,	to	obtain	the	minimum	level	of	coverage	of	30	

time,	(978/30),	32	samples	can	be	run	on	with	one	v2	kit.		

77	isolates	were	obtained	from	the	Severn	Trent	catchment	(16	CSO	impacted	site,	

61	combined	CSO	and	WWTP	effluent	impacted	site).	An	initial	30	DNA	samples	were	

run	on	 the	Miseq	at	University	of	Technology,	Sydney.	The	 remaining	47	 samples	

were	run	on	the	Hiseq	at	the	Garvan	institute	of	medical	research.		

	

2.22.1	Generating	rough	assemblies	

Raw	reads	were	assembled	using	the	revised	A5-miseq	de	novo	assembly	pipeline	

(Coil,	2015)	which	consists	of	five	steps:	1)	read	cleaning,	2)	contig	assembly,	3)	crude	

scaffolding,	 4)	 misassembly	 correction,	 5)	 final	 scaffolding.	 Assembly	 summary	

statistics	and	base-call	estimates	are	produced	at	stage	5.	Rough	assemblies	were	

carried	out	at	UTS	by	Professor	Aaron	Darling.		

	

Preliminary	annotations	were	generated	using	the	automated	annotation	software	

RAST	(Overbeek	et	al.,	2014,	Aziz	et	al.,	2012).	Annotation	of	ARG	was	performed	

using	the	Resistance	Gene	Identifier	(RGI)	Version	2	on	the	Comprehensive	Antibiotic	

Resistance	Database	(CARD)	website	(McArthur	et	al.,	2013)		Contigs	were	also	run	

through	CARD	database	 to	 look	 for	 any	 resistance	genes	missed	by	 the	antibiotic	

resistance	database.	

	

2.22.2	Phylosift	analysis	

Phylogenetic	analysis	of	genomes	was	performed	using	PhyloSift	(Darling	et	al.,	2014)	

which	 is	 based	 on	 phylogenetically	 correlating	 based	 on	 37	 “elite”	 marker	 gene	

families	that	have	largely	congruent	phylogenetic	histories.	These	genes	represent	

~1%	of	an	average	bacterial	genome.	Phylosift	results	were	to	generate	phylogenetic	

trees	 using	 FastTree	 and	 were	 analysed	 using	 FigTree	 (found	 at	
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http://tree.bio.ed.ac.uk/people/)		which	is	a	graphical	viewer	for	phylogenetic	trees.	

Trees	with	and	without	references	strains	were	performed	(Table	2.7).	
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Table	2.7	Reference	strains.	Taken	from	the	GenBank	database	used	for	comparative	
genomics	

Description	 Accession	number	

E.	coli	042	(EHEC)	 FN554766.1	

E.	coli	536	(UPEC)	 CP000247	

E.	coli		O26:H11	11368	(EHEC)	 AP010955	

E.	coli	O55	H7	CB9615 	 CP00184	

CD306	ST131	 CP013831.1	
	

CFT073	 AE014075.1	

E2348/69	 NC_011601.1	

E24277A	 CP000800.1	

EC958	ST131	 NZ_HG941718.1	
	

EDL933	O157:H7	(EHEC)	 NZ_CP008957.1	
	

JJ1886	ST131	 CP006784.1	
	

JJ1897	ST131	 CP013837.1	

K12	MG1655	 U00096.3	

LF82	(AIEC)	 CU651637.1	

NA114	ST131	 NC_017644.1	

O26:H11	 AP010953.1	

O103:H2	(EHEC)	 AP010958.1	

O111:H-	(EHEC)	 AP010960.1	

O157:H7	Sakai	 BA000007.2	

E.	coli	O103:H2	str.	12009	plasmid	pO103	
PO103	

AP010959.1	

RM12579	O55:H7	(EPEC)	 CP003109.1	

S.	boydii	ATCC_9210	 CP011511.1	
	

S.	flexineri	2a	str.	301	 AE005674.2	
	

S.	flexneri	2a	str.	2357T	 NC_004741.1	
	

S.	sonnei	FORC_011	 NZ_CP010829.1	
	
	UMNK88	(ETEC)	 CP002733.1	
	

UTI89	(UPEC)	 NC_007946/1	

W3110	K12	 AP009048.1	
	

ZH063	ST131	 NZ_CP014522.1	
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2.22.3	Comparative	genomic	and	MLST	analysis	

The	move	 contigs	 function	 in	MAUVE	 (Darling	 et	 al.,	 2011)	 	 was	 used	 for	 whole	

genome	 alignment	 to	 reference	 genomes	 (Table	 2.7).	 It	 identifies	 conserved	

segments	 which	 appear	 free	 from	 genome	 rearrangements.	 These	 regions	 are	

referred	 to	 as	 Locally	 Collinear	 Blocks	 (LCBs),	 the	 fewer	 the	 LCBs,	 the	 better	 the	

alignment.	 The	 best	 alignments	 were	 chosen	 based	 on	 the	 highest	 weight	 score	

which	is	a	measure	of	how	likely	the	predicted	rearrangement	is	and	whether	it	in	

fact	exists.	Scaffolds	unable	to	align	with	the	reference	sequence	are	referred	to	as	

the	“accessory	genome”.	Scaffolds	identified	in	MAUVE	as	regions	of	interest	were	

further	 investigated	 using	 BLASTn®	 searches	 were	 carried	 out	 against	 databases	

made	at	University	of	Technology,	Sydney	for	plasmid	possession,	virulence	genes,	

antibiotic	resistance	genes,	phylogrouping,	O-	and	H-antigen	typing	to	characterise	

strains.	Progressive	MAUVE	alignments	were	performed	between	strains	of	the	same	

sequence	 time	 using	 the	 arranged	 contig	 FASTS	 files	 generated	 using	 the	 move	

contigs	 function.	 PubMLST	 	 (http://pubmlst.org/)	 was	 used	 to	 identify	 sequence	

types	of	Escherichia	isolates	using	the	Achtman	E.	coli	MLST	scheme	(Achtman	et	al.,	

2012)	 (http://mlst.warwick.	ac.uk/mlst/).	BRIG	 (Alikhan,	2011)	was	used	 for	visual	

comparisons	of	resistance	and	virulence	genes	between	key	strains.	

	

2.22.4	Investigating	virulence,	antimicrobial	resistance	and	plasmid	

incompatibility	type	

BLAST	 searches	 against	 a	 databases	 of	 virulence	 genes,	 AMR	 genes	 and	 plasmid	

incompatibility	groups	were	carried	out	using	BLAST	databases	provided	by	UTS.		

	

2.22.5	Toxin-antitoxin	searching	

TA	finder	was	used	to	search	the	TADB	(Shao	et	al.,	2011)	was	used	to	determine	

whether	 strains	 possessed	 toxin-antitoxin	 systems	 to	 help	 elucidate	 whether	

persistence	 formation	 was	 involved	 in	 the	 mechanisms	 behind	 significant	 E.	 coli	

isolates	being	found	in	the	environment.		
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Chapter	3	
	
Community	analysis	of	sites	selected	in	

the	Thames	catchment	from	the	River	

Thame	and	River	Kennet	

	
3.1	Introduction		

Thames	Water	serves	approximately	14	million	people	over	the	Thames	catchment,	

which	includes	a	range	of	diverse	environments	including	highly	urbanized	areas	and	

large	 agricultural	 regions.	 It	 comprises	 approximately	 66500	miles	 of	 sewer,	 350	

WWTPs	 (including	 the	 UKs	 largest	 plant	 at	 Beckon,	 East	 London)	 and	 treats	 4.2	

billions	 of	 sewage	 every	 day	 (ThamesWater,	 2001-2011,	 Baggs,	 2015).	 In	 London	

alone	39	million	cubic	square	meters	of	raw	sewage	is	released	in	the	Thames	river	

from	 CSOs	 each	 year	 with	 release	 events	 occurring	 more	 than	 once	 a	 week	

(ThamesWater,	 2015b).	 This	 has	 prompted	 improvements	 across	 the	 Thames	

catchment.	The	Thames	tideway	tunnel	 is	the	most	 important	change	to	be	made	

and	will	be	the	largest	wastewater	project	in	the	UK	since	Sir	Joseph	Bazalgette	built	

London’s	 combined	 sewage	 and	 drainage	 system	 in	 the	 1850s	 (Baggs,	 2015).	

Extensive	work	will	improve	waste	release	from	CSOs	through	a	new	25	km	tunnel	to	
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store	 and	 take	 sewage	 for	 treatment	 to	 be	 completed	 by	 2023	

(BazalgetteTunnelLimited,	2016).	 In	2014	a	£675	million	project	was	completed	 in	

London	to	improve	treatment	plants	and	£20	million	is	to	be	invested	in	the	next	few	

years	 to	 improve	drainage	across	 the	catchment	to	reduce	the	release	 from	CSOs	

(ThamesWater,	2015a).	Thames	water	manages	1	million	tons	of	sludge	each	year.	

Currently	Thames	water	recycles	part	of	this	to	provide	12	%	of	power	needs	for	the	

treatment	plants	which	is	planned	to	increase	to	33	%	by	2015-2020.	In	total	~60	%	

of	sludge	is	recycled	to	farms	with	~32000	hectares	of	farmland	used	for	recycling	

sludge	every	year	and	the	remaining	40%	is	incinerated	and	used	as	energy	(Baggs,	

2015).			

	

Numerous	studies	have	been	conducted	determining	anthropogenic	impact	on	this	

river	catchment	including	studies	on	ARG	levels,	chemical	pollution,	vertebrate	and	

invertebrate	studies	making	it	a	suitable	location	for	further	studies	to	elucidate	full	

human	impact	(Whitehead,	2016,	Singer	et	al.,	2014,	Dhanji,	2011,	Amos	et	al.,	2015).	

Previous	 experiments	 have	 shown	 human	 contamination	 of	 the	 environment	

contributes	to	the	dissemination	of	resistance	through	agriculture	via	run-off	from	

land	and	wastewater	treatment	(Chow	et	al.,	2015,	Korzeniewska	and	Harnisz,	2013,	

Tang	et	al.,	2016,	Amos	et	al.,	2014).	Previous	work	in	our	lab	initiated	investigations	

exploring	 the	 impact	 from	 WWTPs	 discovering	 effluent	 contributes	 to	 the	

dissemination	of	the	ESBL	gene	blaCTX-M-15	in	sediment	(Amos	et	al.,	2014).		

	

The	2016	review	on	AMR,	identified	the	environment	as	an	important	reservoir	 in	

the	 dissemination	 of	 ARB	 (O'Neill,	 2016).	 Future	 predictions	 regarding	 global	

warming,	land-use	and	population	expansion	are	resulting	in	increased	pressures	on	

river	 systems	 to	 prevent	 the	 spread	 of	 water-borne	 disease	 (Whitehead,	 2016,	

Alcamo	et	al.,	2007).	The	growth,	survival	and	transport	of	enteric	bacteria	has	been	

predicted	 to	 increase	 therefore,	 it	 is	 important	 now	 to	 understand	 the	 factors	

involved	 in	maintaining	 the	 resistant	bacterial	 community	within	both	 river	water	

and	 sediment	 to	 reduce	 the	 threat	 of	 such	 water-borne	 diseases	 becoming	

untreatable	(Liu	et	al.,	2013).		
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This	 study	 investigated	 areas	 with	 known	 WWTP	 impact.	 River	 pollution	 from	

WWTPs	 has	 been	 previously	 linked	 to	 an	 increase	 in	 resistant-pathogens	

downstream	of	effluent	release,	however	the	true	extent	is	not	fully	understood	with	

the	size	of	treatment	plant,	type	of	treatment	plant	and	location	all	having	effects	on	

river	pollution	(Kotlarska	et	al.,	2015,	Garcia-Armisen	et	al.,	2014,	Amos	et	al.,	2014).	

The	WWTP	 process	 removes	 the	majority	 of	 bacteria	 from	wastewater,	 however	

some	bacteria	will	survive	the	process,	some	of	which	may	be	pathogenic	and	carry	

ARG.	As	a	result	waters	receiving	effluent	from	WWTPs	are	likely	to	carrying	elevated	

risks	compared	to	rivers	without	impact	(Marti	et	al.,	2013a,	Kumaraswamy	et	al.,	

2014,	 Tang	 et	 al.,	 2016).	 Knowledge	 about	WWTP	 impact	 must	 be	 expanded	 to	

involve	 other	 environmental	 variables	 which	 may	 contribute	 to	 environmental	

pollution.	 Agricultural	 pollution	 contributes	 to	 environmental	 pollution	 through	

manure	spreading	but	animal	 impact	on	river	system	ARB	 levels	has	not	yet	been	

evaluated	in	combination	with	WWTP	effects	(Wichmann	et	al.,	2014,	Rogers	et	al.,	

2011,	Musovic	et	al.,	2014,	Agerso	and	Sandvang,	2005).		

	

In	 this	 study	 the	 aim	 was	 to	 investigate	 the	 importance	 of	 WWTPs	 in	 the	

dissemination	of	ARB	between	two	river	systems	to	take	in	to	account	the	size	of	the	

treatment	 plant	 and	 any	 potential	 agricultural	 impacts	 in	 the	 surrounding	 area.	

Previous	studies	investigating	bacterial	community	composition	at	sites	impacted	by	

WWTPs	 are	 largely	 underrepresented	 in	 the	 literature	with	 few	 investigating	 the	

culturable	fraction	and	none	investigating	changes	in	the	resistant	culturable	fraction	

with	changes	in	environment	(Garcia-Armisen	et	al.,	2014,	Servais	et	al.,	2007).	This	

study	represents	one	of	the	first	studies	to	compare	factors	between	the	resistant-

culturable	fraction	and	the	total	community	structure	with	the	aim	to	elucidate	the	

main	environmental	factors	leading	to	ARB	persistence	in	the	environment.	

	

The	bacterial	communities	across	two	river	systems	were	determined	to	elucidate	

whether	 population	 changes	 were	 related	 to	 site,	WWTP	 impact	 and/or	 farming	

impact.	Both	river	sediment	and	water	samples	were	collected	to	resolve	whether	

bacterial	communities	were	similar	in	different	sample	types	and	if	water/sediment	

communities	 are	 impacted	 by	 environmental	 factors.	 The	 culturable	 fraction	 of	
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sediment	 and	 water	 samples	 was	 also	 collected	 and	 subject	 to	 16S	 amplicon	

sequencing	to	determine	how	environmental	factors	affect	ARB	and	whether	factors	

affecting	the	total	fraction	correlate	with	changes	in	the	culturable	fraction.	The	aim	

of	 the	 study	was	 to	 understand	 the	 key	 factors	 involved	 in	 determining	 the	 ARB	

population	and	 if	 they	also	determined	the	total	community	structure.	Two	rivers	

were	chosen	for	this	study	from	the	Thames	catchment;	the	River	Kennet	and	the	

River	 Thame.	 The	 River	 Kennet	 is	 a	 chalk	 stream	 which	 flows	 through	 the	

Marlborough	downs	and	is	home	to	wild	brown	trout.	Predominantly,	is	a	rural	area	

and	mainly	impacted	by	agriculture	rather	than	urban	waste	(but	the	lower	regions	

pass	through	some	urban	areas).	The	River	Thame	is	also	predominately	rural	but	has	

a	 larger	 urban	 influence	 with	 elevated	 phosphate	 levels	 in	 some	 regions	 due	 to	

WWTP	 impact	 (Ascott,	2016).	Comparisons	between	 the	Thame	and	Kennet	were	

used	 to	 determine	whether	 differences	 between	 catchments	with	 similar	 profiles	

differed	according	to	increased	anthropogenic	impact	in	the	River	Thame	or	whether	

increased	agricultural	impact	at	the	Kennet	sites.		
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3.2	Aims		

The	overarching	aim	was	to	look	at	community	structure	in	different	sample	types	in	

an	 intensively	 sampled	 area	 representing	 a	 whole	 catchment.	 The	 nature	 of	 the	

cultured	 population	 on	 selective	 plates	 was	 investigated	 to	 consider	 the	 AMR	

Enterobacteriaceae	and	to	investigate	the	impact	of	antibiotics	on	the	population	to	

determine	 which	 component	 of	 this	 subpopulation	 was	 most	 impacted	 in	 the	

selective	medium.	The	aims	can	be	summarised	as	follows:	

	

1. Explore	the	impact	of	antibiotics	on	faecal	coliforms	and	other	Gram-

negatives.	

2. Investigate	if	cultured	population	differs	with	site/river.	

3. Determine	community	structure	of	planktonic	and	sediment	samples.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



	 95	

3.3	Results		

Chromogenic	 media	 was	 used	 to	 isolate	 the	 Gram-negative	 culturable	 fraction	

(CGNF).	Identification	of	E.	coli	and	PCEs	and	other	Gram-negative	bacteria	is	based	

on	metabolic	capacity	resulting	in	blue/purple	colonies,	pink	colonies	and	colourless	

colonies	respectively.	Media	contains	X-glucuronide	and	Salmon-GAL	and	relies	on	

the	ability	of	E.	coli	to	produce	β-D-glucuronidase	to	break	down	both	X-glucuronide	

and	Salmon-GAL	resulting	in	blue/purple	colonies,	PCEs	to	break	down	only	Salmon-

GAL	and	other	Gram-negatives	to	break	down	neither.		

	

3.3.1	Sample	sequencing	

Illumina	MiSeq	16S	targeted	amplicon	metagenomic	sequencing	data	from	sediment	

and	 water	 samples	 from	 the	 Thames	 catchment	 was	 collected.	 DNA	 from	 total	

sediment,	total	water,	cultured	fraction	from	sediment	and	cultured	fraction	from	

water	were	run.	Cultured	fractions	were	obtained	as	specified	in	Section	2.4.	Each	

sample	 was	 run	 in	 biological	 triplicate:	 In	 total	 there	 were	 48	 DNA	 from	 total	

extractions	and	288	DNA	samples	from	cultured	fraction	of	samples	making	up	the	

resistant	 quotient	 of	 river	 sediment	 bacterial	 communities	 with	 respect	 to	

cefotaxime,	 ciprofloxacin,	 erythromycin,	 tetracycline	 and	 CTAB.	 Analyses	 were	

carried	 out	 separately	 for	 the	 total	 DNA	 and	 the	 cultured	 DNA	 to	 compare	

community	differences.	

	

3.3.1.1	Sequencing	depth	of	total	DNA	extractions	

933742	sequences	were	obtained	from	the	total	water	and	sediment	DNA	samples	

with	 a	 median	 sequence	 number	 of	 17165	 sequences	 per	 sample.	 Rarefaction	

analysis	curves	determined	cut	off	level	(Figure	3.1).		
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Figure	 3.1	Number	 of	 sequences	 and	 observed	 species	 per	 sample	 for	 total	 DNA	
extractions.	
	

One	 sample	 had	 only	 19	 sequences	 and	 was	 excluded	 from	 further	 analysis.	 22	

samples	had	fewer	sequences	than	the	median.	The	second	lowest	count	was	2092	

and	 was	 chosen	 as	 the	 level	 for	 rarefaction.	 Simpsons	 inverse	 measure	 ranged	

between	 5.83-500.66	 for	 total	 non-rarefied	 communities,	 rarefied	 communities	

ranged	from	5.65-440.64	confirming	no	substantial	loss	of	diversity	when	rarefying	

at	2092.	

	

3.3.1.2	Alpha	diversity	of	total	DNA	extractions	from	water	and	sediment	samples	

Simpsons	 inverse	measure	 ranged	 from	 17.19	 -	 500.66	 in	 non-rarefied	 sediment	

communities	and	5.83	–	395.08	in	water	communities	and	22.76	to	440.64	in	rarefied	

sediment	 communities	 and	 5.65	 to	 336.08	 in	 water	 communities.	 Significant	

differences	were	found	in	alpha	diversity	in	sediment	and	water	samples	(p	<	0.05)	

in	both	rarefied	and	unrarefied	communities	suggesting	differing	species	richness.		
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3.3.1.3	Composition	of	water	and	sediment	samples	

4243	OTUS	were	found	in	both	sediment	and	water	samples.	Substantial	variation	in	

the	phyla	and	order	presence	in	water	and	sediment	samples	was	observed	(Figure	

3.2).	The	Proteobacteria	were	the	most	dominant	phyla	in	both	samples,	accounting	

for	40.13	%	in	sediment	and	60.70	%	in	water.	Bacteroidetes	(accounting	for	11.62	%	

in	 sediment	 and	 13.35	 %	 in	 water),	 Cyanobacteria	 (accounting	 for	 10.56	 %	 in	

sediment	and	5.81	%	in	water)	and	Actinobacteria	(accounting	for	11	%	in	sediment	

and	9.84	%	in	water)	were	among	the	most	abundant	phyla.		

	

Chloroflexi	 accounted	 for	 6.53	%	 in	 sediment	 and	1.36	%	 in	water	 showing	 some	

variation.	Abundance	of	Pseudomonales	accounted	for	only	0.4	%	in	sediment	and	

20.3	 %	 in	 water	 samples.	 Burkholderiales	 also	 varied	 with	 sediment	 samples	

possessing	3.9	%	and	water	samples	8.7	%.		The	Enterobacteriaceae	fraction	was	not	

detected	in	sediment	samples	but	was	in	water	samples	accounted	for	0.7	%	of	total	

abundance.		

	

Group	significance	tests	were	conducted	to	determine	which	OTU	group	abundances	

varied	 between	 water	 and	 sediment	 samples.	 There	 were	 65	 OTUs	 that	 had	

significantly	different	abundances	between	water	and	sediment,	the	most	significant	

being	 members	 of	 the	 Betaproteobacteria	 and	 Gammaproteobacteria.	 Chao1	

species	 richness	 test	 and	 observed	 species	 were	 significantly	 different	 between	

water	and	sediment	samples	(Kruskall-Wallis	p	<	0.05)	



	 98	

	

Figure	 3.2	 The	 relative	 abundance	 of	 the	 top	 15	 OTUs	 of	 water	 and	 sediment	
samples.	(a)	phyla,	(b)	orders		
	

3.3.1.4	PCoA	plots	for	sample	type	

Rarefied	water	and	sediment	samples	were	analysed	using	PCoA	plots	(Figure	3.3)	to	

determine	 if	 samples	 of	 the	 same	 origin	 cluster	 together	 when	 weighted	 and	

unweighted.	Weighted	samples	explain	a	greater	proportion	with	greater	separation	

suggesting	 difference	 in	 taxa	 abundance	 is	more	 important	 than	 changes	 in	 taxa	

presence/absence	 between	 sediment	 and	water.	 Unweighted	 samples	 also	 show	
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large	 separation	 suggesting,	 although	 not	 as	 important,	 changes	 in	 taxa	

presence/absence	partly	explain	differences	between	water	and	sediment	bacterial	

communities.	 				

	

	

Figure	 3.3	 PCoA	 plots	 for	 sediment	 and	 water	 samples.	 (a)	 	 unweighted	 and	 (b)		
weighted	red	=	sediment,	blue	=	water	
	

The	presence/absence	of	OTUs	and	abundance	of	OTUs	varied	significantly	between	

water	and	sediment	samples	(R	=	0.5922,	p	=	0.001)	and	taxa	abundance	(ANOSIM	R	

=0.5201,	p	=	0.001).		

	

3.3.1.5	Variation	in	OTUs	with	farming	influence	

Total	DNA	samples	were	separated	according	to	farming	influence	to	determine	if	

OTU	distribution	and	abundance	varied	with	different	 types	of	 farming.	Simpsons	

inverse	measure	 revealed	 changes	 in	 community	 diversity	 between	 sites	 affected	

with	different	farming	practices.	Diversity	measure	for	sites	impacted	predominantly	

by	cattle	ranged	between	22.76	to	440.62,	for	fish	farms	diversity	ranged	from	9.28	

to	280.94,	pig	 impacted	sites	ranged	from	5.65	to	212.95	and	sites	predominantly	

impacted	by	sheep	values	ranged	between	8.01	to	27.06.	Diversity	measures	may	

(a) (b)
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underestimate	diversity	of	sheep	impacted	sites	due	to	only	3	samples	analysed	in	

the	current	study.		

	

The	 predominant	 phyla	 in	 all	 sites	 were	 Proteobacteria	 (accounting	 for	 48.03	 %,	

54.66	 %,	 62.32	 %	 and	 64.97	 %	 for	 cow,	 fish,	 pig	 and	 sheep	 impacted	 sites	

respectively),	Cyanobacteria	(accounting	for	9.2	%,	4.3	%,	7.68	%	and	3.44	%	for	cow,	

fish,	pig	and	sheep	 impacted	sites	 respectively)	and	Bacteroidetes	 (accounting	 for	

13.3	%,	 11.8	%,	 9.98	%	 and	 12.47	%	 for	 cow,	 fish,	 pig	 and	 sheep	 impacted	 sites	

respectively).		

	

Orders	of	bacteria	with	obvious	differences	in	abundance	included	Alteromanadles	

(accounting	for	3.96	%	in	cow	separated	samples,	1.1	%	in	fish	separated	samples,	

1.12	 %	 in	 pig	 separated	 samples	 and	 0.5	 %	 in	 sheep	 separated	 samples)	 and	

Rhizobiales	(6.79	%	in	cow	separated	samples,	4.18	%	in	fish	separated	samples,	2.57	

%	in	pig	separated	samples	and	1.1	%	in	sheep	separated	samples).		
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Figure	 3.4	Relative	 abundance	 of	 the	 top	 15	OTUs	 in	 samples	 separated	 by	 farm	
influence.	Bar	charts	are	shown	for	(a)	phyla	and	(b)	order.	
	

3.3.1.6	Beta	diversity	of	samples	separated	according	to	farming	influence	

Rarefied	communities	were	used	to	generate	weighted	and	unweighted	PCoA	plots	

to	determine	 if	different	 farming	practices	contribute	 to	clustering	of	 samples	 for	

total	DNA	extractions	from	both	water	and	sediment	samples	(Figure	3.5).	Clustering	
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did	occur	 for	 both	weighted	 and	unweighted	 samples	with	 significant	 differences	

between	presence/absence	of	 taxa	 (ANOSIM	R	=	0.221,	p	=	0.004)	 in	unweighted	

communities	 and	weighted	 communities	 (R	 =	 0.1430	 p	 =	 0.025).	 The	 R	 value	 for	

weighted	communities	is	smaller	than	for	unweighted	suggesting	presence/absence	

of	taxa	is	more	important	in	clustering	of	samples	according	to	farming	impact	than	

abundance,	however	 there	was	not	a	 large	amount	of	 separation	 suggesting	 that	

there	 is	 a	 lot	 of	 overlap	 between	 samples	 with	 respect	 to	 taxa	 presence	 and	

abundance.		

	

(a) 																																																										(b)	

	

Figure	 3.5	 PCoA	 plots	 of	 samples	 separated	 according	 to	 farming	 influence.	 (a)	
unweighted	and	(b)	weighted	clustering	of	samples	separated	by	farming	influence.	
Blue	=	cow,	Orange	=	fish,	Green	=	pig	and	Red	=	sheep	impacted	samples	
	

3.3.1.7	WWTP	impact	of	alpha	diversity	within	total	DNA	extraction	of	samples		

The	 predominant	 phyla	 when	 samples	 were	 split	 by	 WWTP	 were	 the	 same	 as	

specified	for	samples	according	by	farming	impact.	There	was	little	variation	between	

samples	 grouped	 by	 WWTP	 with	 similar	 bars	 presented	 for	 most	 phyla.	 Species	

diversity	 did	 not	 change	 with	 respect	 to	 WWTP	 impact	 with	 diversity	 measure	

ranging	 from	9.28	 to	440.64	 for	samples	without	WWTP	 impact	and	 from	5.65	 to	

405.38	for	samples	with	WWTP	impact.			
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Figure	3.6	Relative	abundance	of	the	top	15	OTUs	in	rarefied	communities	separated	
according	to	WWTP	impact.	Bar	charts	are	shown	for	(a)	phyla	and	(b)	order		
	

3.3.1.8 Effect	of	WWTP	on	beta	diversity	

There	was	no	sample	clustering	according	WWTP	impact	(Figure	3.7)	for	unweighted	

samples	(ANOSIM	R	=	-0.0756,	p	=	0.889)	and	weighted	samples	(R	=	-0.0988,	p	=	

0.935)	suggesting	neither	taxa	presence/absence	nor	taxa	abundance	is	impacted	by	

the	presence	or	absence	of	WWTP	effluent	release	
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(a)				 	 	 	 	 (b)	

	

Figure	3.7	PCoA	plots	for	samples	separated	by	WWTP	impact	(a)	unweighted	and	
(b)	weighted	total	DNA	samples	coloured	according	to	WWTP	presence	(Blue)	and	
absence	(Red)	
	

3.3.1.9	Alpha	diversity	of	samples	separated	by	site	

Alpha	diversity	at	the	phyla	level	between	sites	varied	most	between	the	abundance	

of	Cyanobacteria:	the	highest	abundance	accounted	for	22.5	%	of	diversity	(Kennet	

2)	and	the	lowest	accounted	for	only	0.6	%	(Kennet	7).	The	most	abundant	genus	was	

Perlucidibaca	which	accounted	for	11.72	%	at	Kennet	2,	7.59	%	at	Kennet	7,	29.55	%	

at	Kennet	8,	24.51	%	at	Kennet	11,	2.34	%	at	Thame	3,	0.93	%	at	Thame	5,	9.5	%	at	

Thame	7	and	3.1	5	at	Thame	8	(Figure	3.8).	

	

Diversity	measure	was	calculated	using	Simpsons	inverse;	values	ranged	from	7.81	–	

117.96	for	Kennet	2,	13.97	–	341.06	at	Kennet	7,	5.83	–	236.38	at	Kennet	8	and	9.28	

–	151.20	at	Kennet	11.	At	the	Thame	river	sites,	Simpsons	inverse	measure	ranged	

from	33.20	–	305.25	at	Thame	3,	204.28	–	395.08	at	Thame	5,	32.27	–	475.16	at	

Thame	7	and	51.06	–	500.66	at	Thame	8.		
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Figure	3.8	The	relative	abundance	of	the	top	15	genera	at	each	site		

	

3.3.1.10	Beta	diversity	of	samples	separated	by	site	

No	obvious	clustering	of	samples	was	observed	for	unweighted	or	weighted	samples	

suggesting	 no	 clear	 separation	 of	 samples	 according	 to	 the	 differential	

presence/absence	of	taxa	or	abundance	of	OTUs	between	samples.	Samples	cluster	

together	with	a	small	level	of	separation	between	site	(ANOSIM	R	=	0.1369,	p	=	0.008	

for	unweighted	and	R	=	0.1499,	p	=	0.005	for	weighted)	suggesting	some	differences	

in	presence/absence	and	abundance	of	OTUs	exist	but	there	is	also	a	lot	of	overlap	

between	samples.			

	

3.3.2	Analysis	of	total	sediment	and	water	samples	separately	

Water	 and	 sediment	 communities	 differ	 significantly.	 To	 determine	 if	 water	 and	

sediment	communities	are	affected	by	WWTP,	farming	and	site,	samples	were	split	

according	to	sample	type	and	reanalysed.		

	

3.3.2.1	 Alpha	 diversity	 of	 sediment	 and	 water	 DNA	 samples	 split	 according	 to	

WWTP	impact,	farming	and	site	

Water	 with	 no	 obvious	 WWTP	 impact	 had	 Simpsons	 inverse	 diversity	 measures	

ranging	between	9.28	–	235.27	and	5.83	–	395.08	 in	 samples	affected	by	WWTP.	

Sediment	diversity	ranged	from	130.45	-	475.16	for	sediment	samples	with	no	WWTP	
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impact	 and	 30.57	 –	 500.66	 from	 sediment	 samples	 with	 WWTP	 impact.	 When	

samples	were	split	according	to	WWTP	size	diversity	was	highest	at	sites	affected	by	

large	WWTPs	 for	both	water	 and	 sediment	 samples.	 Samples	 that	had	no	 impact	

from	a	WWTP	or	impact	from	a	small	WWTP	had	similar	levels	of	diversity	ranging	

from	5.83	–	27.39	in	water	and	25.49	-	475.16	in	sediment.	Sites	impacted	by	large	

WWTPs	highest	diversity	measure	was	396.08	in	water	and	500.66	in	sediment.		

	

Samples	split	according	to	farming	type	revealed	highest	diversity	in	samples	taken	

from	sites	 impacted	by	cow	and	 lowest	diversity	 for	sheep	 impacted	sites	 in	both	

sediment	 and	 water	 samples	 suggesting	 farming	 influence	 affects	 sediment	 and	

water	communities	in	the	same	way	and	does	not	substantially	affect	one	community	

more	than	the	other.		

	

3.3.2.2	 Beta	 diversity	 of	 sediment	 and	water	 samples	 split	 according	 to	WWTP	

presence,	WWTP	size,	site	and	farming		

There	were	no	obvious	differences	for	both	sediment	and	water	samples	in	changes	

in	abundance	between	sites	impacted	by	WWTP	and	sites	not	affected	by	WWTPs,	

however	when	samples	were	split	according	to	size	it	was	apparent	that	WWTPs	do	

impact	 sediment	 and	water	 bacterial	 communities,	 but	 only	when	 the	 treatment	

plant	serves	more	than	10000	people,	with	small	WWTP	and	sites	with	no	WWTP	

clustering	together	both	in	weighted	and	unweighted	communities	for	sediment	and	

water	samples.			
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Table	 3.1	ANOSIM	analysis	 conducted	on	distance	matrixes	 to	 investigate	 factors	
important	 in	 community	 structure	 and	 abundance	 for	 planktonic	 and	 sediment	
communities	

	 Sediment	 Water	
	

WWTP	

Weighted	 R	=	-0.151,	p	=	0.940	 R	=	-0.0340,	p	=	0.573	

Unweighted	 R	=	-0.621,	p=0.962	 R	=	-0.0784,	p	=	0.695	

Farm	

Weighted	 R	=	0.2464,	p	=	0.043*	 R	=	0.1738,	p	=	0.068	

Unweighted	 R	=	0.3734,	p	=	0.006*	 R	=	0.2488,	p	=	0.017*	

Site	

Weighted	 R	=	0.7159,	p	=	0.001*	 R	=	0.4974,	p	-=	0.001*	

Unweighted	 R	=	0.7013,	p	=	0.001*	 R	=0.5906,	p	=	0	.001*	

WWTP	size	

Weighted	 R	=	0.3093,	p	=	.001*	 R	=	0.2736,	p	=	0.008*	

Unweighted	 R	=	0.3990,	p	=	0.001*	 R	=	0.2341,	p	=	0.014*	
	
	
3.3.3	DNA	extractions	from	viable	culturable	Gram-negative	fraction	

DNA	extractions	were	carried	out	for	plate	scrapings	for	6	conditions	including	one	

biocide	 (CTAB)	 condition	 and	 unamended	 HiCrome™.	 4	 different	 classes	 of	

antibiotics	were	used	for	isolation	of	the	viable	resistant	culturable	fraction	based	on	

the	key	resistances	in	Enterobacteriaceae	as	specified	by	CDC,	WHO	and	Berendonk	

et	al	(Berendonk	et	al.,	2015)	that	have	specified	urgent	need	for	monitoring	of	ARG	

conferring	resistance	to	these	key	antibiotics.	The	antibiotics	used	in	this	study	were	

from	 the	 classes:	 tetracycline,	 macrolide	 (erythromycin)	 and	 fluoroquinolones	

(ciprofloxacin)	and	3GCs	(cefotaxime).		

	

3.3.3.1	Sequencing	depth	of	DNA	samples	from	cultured	extractions	

A	 total	 of	 15718295	 sequences	 were	 obtained	 from	 sequencing	 of	 the	 cultured	

fraction	with	a	median	number	of	42775	sequences	per	sample.	The	highest	number	

of	sequences	obtained	from	one	sample	was	541585	and	the	minimum	was	40.	40	is	

too	low	to	obtain	significant	insight	in	to	community	structures	so	was	excluded	from	



	 108	

the	analysis.	Rarefaction	was	chosen	at	2402	because	it	allowed	the	most	samples	to	

be	kept	 in	 the	analysis	and	allowed	for	significant	species	diversity	 (Figure	3.9)	as	

calculated	by	the	Simpsons	 inverse	calculation	for	species	diversity.	Cultured	non-

rarefied	community	diversity	ranged	from	1.31-22.10,	rarefied	communities	to	2402	

ranged	from	1.31	-22.42.	From	Figure	3.7	it	can	be	seen	that	by	approximately	2402	

the	number	of	new	observed	species	is	starting	to	level	off.	As	a	result	of	rarefying	to	

2402	there	were	7	samples	excluded	from	the	overall	analysis.		

	

Figure	 3.9	 Number	 of	 sequences	 obtained	 per	 sample	 of	 the	 cultured	 DNA	
extractions	against	observed	species.	
	

3.3.3.2	 Alpha	 diversity	 of	 cultured	 DNA	 samples	 split	 according	 to	 water	 and	

sediment		

Samples	were	 split	 according	 to	 sample	 type	 to	 determine	 if	 resistant	 culturable	

fraction	 were	 significantly	 different	 between	water	 and	 sediment.	 The	 dominant	

phyla	 were	 Proteobacteria	 for	 both	 sediment	 and	 water	 samples	 accounting	 for	

99.81	%	of	 reads	 in	 samples.	 The	 predominant	 genera	were	Pseudomonas	which	

accounted	 for	 61.11	 %	 and	 32.87	 %	 of	 genera	 identified	 in	 sediment	 and	 water	

culturable	 fraction	 respectively.	 The	 other	 dominant	 family	 were	 the	
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Enterobacteriaceae	which	accounted	for	14.1	%	and	41.39	%	of	variability	in	genera	

in	 sediment	 and	 water	 culturable	 samples	 respectively.	 Other	 dominant	

families/genera	 included	 Aeromonadeae	 which	 composed	 5.82	 %	 of	 diversity	 in	

sediment	samples	and	3.01	%	in	water,	Achromobacter	(2.88	%	in	sediment	and	6.4	

%	in	water	samples)	

	

	

Figure	3.10	Relative	abundance	of	the	top	15	OTUs	from	the	CGNF	in	planktonic	and	
sediment	communities.	Top	15	order/genus	are	shown	for	each	sample	type	with	
lowest	possible	taxonomic	rank	shown.	OTUs	listed	in	the	same	order	in	the	key	as	
shown	in	the	chart.		
	

Samples	 from	 sediment	 culturable	 fraction	 had	 a	 Simpsons	 inverse	 value	 ranging	

from	1.66	 to	22.41.	 Samples	 from	water	 culturable	 fraction	has	Simpsons	 inverse	

values	 ranging	 from	1.31	 to	15.11	 suggesting	a	 slightly	higher	 level	of	diversity	 in	

sediment	samples	than	in	water.		

	

3.3.3.3	Investigating	beta	diversity	of	cultured	samples	split	according	to	sample	

type	

Beta	diversity	of	samples	split	according	to	sample	type	was	carried	out	(Figure	3.11).	

Unweighted	and	weighted	samples	did	not	cluster	separately	(ANOSIM	R	=	0.043,	p	
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=	0.001	for	unweighted,	R	=	0.0864,	p	=	0.001	for	weighted)	suggesting	neither	OTU	

presence/absence	or	species	abundance	was	significantly	different	between	water	

and	sediment	samples.		

	

(a) 																																																													(b)					

	

Figure	 3.11	 PCoA	 plots	 of	 planktonic	 and	 sediment	 CGNF	 communities:	 Red=	
sediment,	Blue	=	water.	(a)	unweighted	samples,	(b)	weighted	samples	
	

Although	 no	 significant	 clustering	 was	 observed	 between	 samples	 split	 by	 type	

(Figure	3.11),	the	unweighted	samples	show	a	cone-shaped	pattern	(as	indicated	by	

black	ovals)	suggesting	samples	do	cluster	in	to	two	groups	based	on	OTU	abundance,	

however	this	is	not	explained	by	the	sample	type.	Another	variable	is	therefore	likely	

involved	in	sample	clustering.		

	

3.3.3.4	Alpha	diversity	of	samples	split	according	to	farm	influence	

The	most	abundant	family	and	genera	were	Pseudomonas	which	accounted	for	42.92	

%,	38.21	%,	39.81	%	and	60.8	%	in	samples	split	according	to	cow,	fish,	pig	and	sheep	

respectively	and	Enterobacteriaceae	which	accounted	for	28.73	%,	33.20	%,	30.12	%,	

11.69	%	in	samples	split	according	to	cow,	fish,	pig	and	sheep	respectively.	
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Figure	 3.12	 Lowest	 taxonomic	 rank	 of	 the	 top	 15	 order/genus	 from	 CGNF	
communities	separated	according	to	farming	impact.	
	

Simpsons	inverse	measure	ranged	between	1.66	–	15.84	for	cow	impacted	samples,	

1.54	–	22.42	for	fish	impacted	samples,	1.56	–	14.76	for	pig	impacted	samples	and	

1.31	–	16.71	for	sheep	impacted	samples.	Results	suggest	sites	impacted	by	swine	

may	be	most	affected	and	sites	impacted	by	fish	are	least	affected	when	taking	in	to	

account	OTU	diversity.		

	

3.3.3.5	Beta	diversity	of	samples	split	according	to	farm	influence	

No	 distinct	 clustering	 of	 samples	 occurred	 (Figure	 3.13).	 Both	 unweighted	 and	

weighted	ANOSIM	analysis	 revealed	 that	 samples	did	not	cluster	 (R	=	0.0584,	p	=	

0.019,	 for	unweighted	 samples	 and	R	=	0.0274,	p	=	0.179	 for	weighted	 samples),	

according	 to	 farming	 influence	 suggesting	 high	 level	 of	 similarity	 between	 viable	

culturable	fraction	with	little	impact	from	farming	influence.																			
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(a)																																														(b)	

	

Figure	 3.13	 PCoA	 plots	 of	 CGNF	 communities	 separated	 according	 to	 farming	
influences.	(a)	Unweighted	and	(b)	weighted	samples	separated	according	to	farming	
influence.	Blue	=	cow	impacted	Orange	=	fish	 impacted	Green	=	pig	 impacted	and	
Purple	=	sheep	impacted		
	

3.3.3.6	WWTP	impact	on	alpha	diversity	of	viable	CGNF	

No	obvious	WWTP	impact	was	found	between	samples	separated	according	to	the	

presence/absence	 of	 a	WWTP	 near	 to	 the	 sampling	 site	 (Figure	 3.14).	 Dominant	

families	and	genera	were	Pseudomonas	(34.75	%	in	sites	with	no	WWTP	impact	and	

49.23	%	in	sites	 impacted	by	WWTP),	Enterobacteriaceae	 (32.41	%	in	samples	not	

impacted	 and	 26.97	 %	 for	 sites	 impacted).	 Less	 dominant	 families	 and	 genera	

included	Achromobacter	(8.64	%	in	samples	with	no	impact	from	WWTP	and	3.85	%	

in	sites	impacted)	and	Aeromonadacae	(8.10	%	in	sites	not	impacted	and	3.70	%	in	

impacted	sites).	
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Figure	 3.14	 Lowest	 taxonomic	 rank	 of	 the	 top	 15	 order/genus	 from	 CGNF	
communities	separated	according	to	WWTP	influence.		
	

Diversity	measures	ranged	from	1.66	to	14.49	in	sites	with	no	WWTP	impact	and	1.31	

to	22.42	in	sites	impacted	by	WWTP	suggesting	a	slight	increase	in	the	diversity	of	

bacterial	species	present	with	WWTP	impact.		

	

3.3.3.7	Beta	diversity	of	samples	separated	according	to	WWTP	impact	on	the	CGNF	

No	significant	clustering	was	observed	in	samples	split	according	to	WWTP	impact	in	

unweighted	samples	(ANOSIM	R	=	-0.0619,	p	=	0.969)	or	for	weighted	samples	(R	=	-

0.0007,	p	=	0.465)	(Figure	3.15)	suggesting	that	the	presence	of	a	WWTP	alone	does	

not	significantly	affect	the	community	structure	of	the	ARB	subpopulation.	
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(a) 																																																					(b)	

	

Figure	3.15	PCoA	plots	of	CGNF	communities	separated	according	to	WWTP	impact.	
(a)	Unweighted	 (a)	 and	 (b)	weighted	 samples.	 Blue	 =	WWTP	 impacted,	 Red	 =	 no	
WWTP	impact	
	

3.3.3.8	Antimicrobial	treatment	impact	on	viable	cultured	samples	

The	ciprofloxacin	resistant	community	appears	to	have	the	most	diversity	in	genera	

abundance	(Figure	3.16).	The	most	abundant	taxa	in	ciprofloxacin	communities	were	

Achromobacter	(23.3	%),	Stenotrophomonas	(18.09	%),	Enterobacteriaceae	(17.74	%)	

and	Xanthomonasdaceae	 (15.15	%).	The	most	abundant	taxa	within	communities’	

resistant	to	cefotaxime,	CTAB,	erythromycin,	tetracycline	and	none	were	dominated	

by	Pseudomonas	(65.39	%,	60.52	%,	58.91	%,	49.53	%	and	33.2	%	respectively)	(in	

ciprofloxacin	 isolated	 samples	 Pseudomonas	 accounted	 for	 only	 2.8	 %),	 and	

Enterobacteriaceae	 (18.6	 %,	 31.2	 %,	 35.5	 %,	 34.2	 %	 and	 48.2	 %	 respectively).	

Achromobacter	accounted	for	4.2	%,	23.3	%,	0.4	%,	0.5	%,	0.1	%	and	1.5	%	abundance	

in	 samples	 separated	 according	 to	 cefotaxime,	 ciprofloxacin,	 CTAB,	 erythromycin,	

none	and	tetracycline	respectively.		
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Figure	 3.16	 Lowest	 taxonomic	 rank	 of	 the	 top	 15	 order/genus	 from	 samples	
separated	according	phenotypic	resistance	of	the	CGNF	
	

Diversity	 measures	 did	 not	 vary	 greatly	 between	 antimicrobial	 treatment	 with	

cefotaxime-resistant	 culturable	 bacteria	 community	 diversity	 ranged	 from	 1.66	 -	

15.38,	 for	 erythromycin-resistant	 communities	 it	 ranged	 from	 1.54	 –	 14.62,	 for	

ciprofloxacin-resistant	 communities	 it	 ranged	 from	 1.51	 –	 11.59,	 for	 CTAB	 values	

ranged	from	1.99	–	17.92,	for	no	antimicrobial	it	ranged	from	2.02	–	22.47	and	for	

tetracycline	values	ranged	from	1.32	–	13.61.		
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3.3.3.9	Beta	diversity	of	samples	split	by	phenotypic	AMR	profile		

(a) 																																																														(b)	

	

Figure	 3.17	 PCoA	 plots	 of	 CGNF	 separated	 according	 to	 phenotypic	 resistance.	
(a)Unweighted	and	(b)	weighted.	Turquoise	=	tetracycline,	Orange	=	ciprofloxacin,	
Purple	=	erythromycin,	Blue	=	cefotaxime,	Green	=	CTAB	and	Yellow	=	none	
	
	
Communities	 isolated	 by	 their	 antimicrobial	 profile	 do	 not	 cluster	 separately	 in	

unweighted	communities	(ANOSIM,	R	=	0.0584,	p	=	0.021).	Weighted	communities	

present	some	clustering,	however	when	comparing	all	samples	against	each	other	

the	clustering	is	not	significant	(R	=	0.274,	p	=	0.162)	suggesting	communities	do	not	

cluster	according	to	species	presence,	but	that	the	abundance	of	different	taxa	may	

play	 a	 role	 in	 the	 clustering	 according	 to	 different	 antibiotics	 (Figure	 3.16).		

Ciprofloxacin	 selected	 CGNF	 clearly	 clusters	 away	 from	 all	 other	 antimicrobial-

selected	 communities.	 Although	 this	 group	 isn’t	 enough	 to	 demonstrate	 that	

antimicrobials	 select	 for	 different	 community	 compositions,	 it	 does	 demonstrate	

differences	 between	 treatment	 with	 weighted	 communities	 clearly	 presenting	

different	abundances	of	certain	OTUs	compared	to	other	treatments.	There	may	also	

be	 differences	 in	 the	 abundance	 of	 OTUs	 in	 the	 cefotaxime	 and	 tetracycline	

communities	 which	 show	 some	 clustering	 from	 other	 samples	 but	 clearly	 not	 as	

much	as	ciprofloxacin	resistant	communities.	
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3.3.3.10	Alpha	diversity	of	samples	from	different	sites		

Predominant	genera	between	sites	 from	the	cultured	samples	was	Pseudomonas,	

accounting	for	60.83	%	at	Kennet	2.	43.53	%	at	Kennet	7,	39.80	%	at	Kennet	8,	32.43	

%	at	Kennet	11,	32.54	%	at	Thame	3,	49.06	%	at	Thame	5,	36.5	%	at	Thame	7	and	71.5	

%	at	Thame	8.		The	family	Enterobacteriaceae	accounted	for	14.7	%	at	Kennet	2,	31.6	

%	at	Kennet	35.4	%	at	Kennet	7,	35.4	%	at	Kennet	8,	35.7	%	at	Kennet	11,	49.9	%	at	

Thame	3,	36.2	%	at	Thame	5,	37.3	%	at	Thame	7,	11.7	%	at	Thame	8,	with	the	majority	

at	each	site	from	unknown	genera,	but	ones	identified	include	Enterobacter,	Proteus	

and	Providencia.		

	

Simpsons	 inverse	diversity	measure	ranged	from	1.32	–	16.71	at	Kennet	2,	1.56	–	

22.10	at	Kennet	7,	1.54	–	14.43	at	Kennet	8	and	2.43	–	13.65	at	Kennet	11.	The	river	

Thame	sites,	Simpsons	inverse	ranged	from	1.98	–	9.55	at	Thame	3,	1.74	–	15.83	at	

Thame	5,	1.70	–	13.76	at	Thame	7	and	1.96	–	15.09	at	Thame	8.		

	

3.3.3.11	Beta	diversity	of	samples	from	different	sites		

No	 significant	 separation	 was	 observed	 for	 both	 weighted	 and	 unweighted	

communities	separated	by	site	(unweighted	R	=	0.0331,	p	=	0.001	and	weighted	R	=	

0.357,	 p	 =	 0.001)	 suggesting	 that	 the	 AMR	 culturable	 fraction	 of	 bacterial	

communities	within	river	water	and	sediment	is	not	dependent	on	site.	
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3.4	Discussion		

The	work	presented	here	provides	the	groundwork	for	part	of	a	larger	project.	It	was	

carried	out	as	part	of	the	Thames	catchment-scale	work	to	evaluate	ARG	within	river	

systems.	 Using	 metataxonomic	 approaches,	 the	 current	 study	 demonstrates	 a	

diverse	viable	antibiotic-resilient	community.	Communities	 isolated	on	media	with	

different	 antimicrobials	 were	 similar	 with	 respect	 to	 OTU	 presence	 suggesting	 a	

subpopulation	of	the	community	is	responsible	for	the	ARG	phenotype.	The	ability	to	

grow	on	antibiotic-containing	plates,	at	clinically	relevant	 levels,	suggests	that	this	

subpopulation	would	likely	survive	antimicrobials	entering	the	river	through	WWTP	

effluents.		

	

Metagenomic	studies	have	enabled	sequencing	of	the	unculturable	bacteria	allowing	

insight	in	to	the	diversity	and	abundance	of	ARG	and	pathogens	within	the	river.	A	

caveat	to	metagenomic	approaches	is	that	it	cannot	identify	which	bacterial	species	

are	 responsible	 for	 dissemination	 ARG	 and	 with	 such	 a	 large	 microbial	 diversity	

within	sediments	(possibly	higher	than	soil)	it	is	impossible	to	tell	with	these	studies	

alone	where	ARG	are	carried	(Gibbons	et	al.,	2014).	In	the	current	study	the	aim	was	

to	determine	bacterial	species	that	are	phenotypically	resistant	to	both	clinically	and	

veterinary	 relevant	 antimicrobials	 and	 to	 investigate	 how	 this	 subpopulation	

diversity	is	impaired	on	plates	with	regard	to	competition.		

	

Previous	 studies	 have	 identified	 key	 phyla	 within	 river	 sediment	 but	 have	 not	

investigated	 in	 depth	 the	 resistant	 fraction	 (Chao	 et	 al.,	 2013,	 Tang	 et	 al.,	 2016).	

Investigating	the	culturable	resistant	fraction	helps	to	identity	viable	strains	where	

ARGs	 are	 harboured	 to	 identify	 the	 potentially	 clinically	 important	AMR	bacterial	

fraction	 within	 river	 sediment	 to	 provide	 insight	 in	 to	 the	 risk	 associated	 with	

environmental	ARG.	A	key	drawback	of	environmental	monitoring	studies	is	that	they	

often	overlook	the	importance	of	host	and	therefore	cannot	suitably	assess	the	risk	

of	ARG	presence	in	the	environment.	Investigating	the	CGNF	has	shown	that	these	

ARG	reside	in	potentially	pathogenic	species	and	therefore	are	likely	to	pose	a	risk	to	

human	health	if	ingested.		
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In	the	current	study	it	was	found	that	bacterial	community	composition	was	different	

between	 water	 and	 sediment,	 with	 greater	 bacterial	 diversity	 in	 sediment	 than	

water.	This	data	is	consistent	with	results	by	Ibekwe	et	al.	who	reported	differences	

in	communities	within	water	and	sediment	following	WWTP	effluent	impact	(Ibekwe	

et	al.,	2016).	Analysis	of	differences	in	bacterial	prevalence	between	samples	showed	

significant	clustering	of	samples	suggesting,	as	expected,	that	water	and	sediment	

communities	differ	in	species	prevalence.		

	

No	differences	were	observed	in	species	presence	between	the	CGNF	from	water	or	

sediment	 suggesting	 this	 subcommunity	exists	 in	both	sediment	and	water	and	 is	

therefore	 resilient	 against	 environmental	 factors	 that	 affect	 the	 indigenous	

population.	The	WWTP	process	induces	a	significant	amount	of	stress	on	bacteria,	

therefore	 the	 species	 surviving	 the	 process	 are	 likely	 to	 be	 adapted	 to	 harsh	

conditions	 possibly	 explaining	 why	 non-indigenous	 bacteria	 are	 found	 in	 river	

samples	 (Baquero	 et	 al.,	 2008,	 Pruden,	 2014).	 Another	 possible	 explanation	 for	

isolation	of	this	subpopulation	of	antimicrobial-containing	plates	is	that,	rather	than	

a	persistent	community,	accretion	from	the	constant	influx	of	effluent	results	in	the	

isolation	of	ARB.		

	

Dominant	 families	 in	 the	 resistant	 cultured	 fraction	were	Enterobacteriaceae	 and	

Pseudomonadaceae.	Consistent	with	previous	studies	the	resistant	viable	population	

constituted	 only	 a	 small	 proportion	 of	 total	 river	 communities	 with	 0.8	 %	 of	

abundance	 in	sediment	and	1.9	%	 in	water	suggesting	water	communities	carry	a	

higher	 proportion	 of	 resistant	 bacteria	 but	 not	 necessarily	 a	 higher	 abundance.	

Enterobacteriaceae	 and	 Pseudomonadaceae	 consist	 of	 many	 pathogenic	 species	

which	 can	 cause	 disease	 in	 the	 human	 population	 with	 both	 multidrug-resistant	

Pseudomonas	 aeringinosa	 and	 ESBL	 producing	 Enterobacteriaceae	 labelled	 as	

serious	threats	(Tang	et	al.,	2016,	Amador,	2015,	Korzeniewska	and	Harnisz,	2013,	

Slekovec	et	al.,	2012,	WHO,	2014).	Determining	the	factors	involved	in	abundance	

and	 persistence	 of	 these	 subpopulations	 within	 river	 communities	 is	 ultimately	

important	 to	 reducing	 resistance	 levels	 in	 the	 clinic.	 The	 Enterobacteriaceae	

constituted	 a	 large	 proportion	 of	 the	 cefotaxime-resistant	 community,	 but	 the	
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proportion	 of	 Pseudomonas	 dominated.	 Resistance	 in	 Pseudomonas	 has	 been	

identified	as	a	problem	in	hospital-acquired	infections	due	to	its	characteristic	ability	

to	acquire	resistance	to	a	variety	of	antibiotics	making	treatment	difficult.	The	high	

levels	 of	 phenotypically	 resistant	 Pseudomonas	 found	 here	 in	 river	 samples	 is	

concerning,	particularly	the	large	proportion	of	phenotypically	cefotaxime-resistant	

Pseudomonas	detected.	Previous	detection	of	Pseudomonas	in	the	environment	has	

not	elucidated	the	point	source	of	resistant	strains	in	the	environment	(Schwartz	et	

al.,	2006).	

	

Consistent	with	results	from	previous	studies	Proteobacteria	dominated	all	samples	

(Tang	 et	 al.,	 2016,	 Ye	 and	 Zhang,	 2013,	Marti	 et	 al.,	 2013a,	 Ibekwe	 et	 al.,	 2016,	

Gibbons	et	al.,	2014).	 Inconsistent	with	Chao	et	al.	who	found	predominant	phyla	

were	 Alphaproteobacteria,	 the	 current	 study	 found	 the	 dominant	 phyla	 were	

Gamaproteobacteria	and	Betaproteobacteria	in	samples	with	WWTP	effluent	impact	

(Chao	et	al.,	2013).	The	sample	community	distribution	was	more	comparable	to	the	

raw	water	 communities	 recorded	possibly	 indicative	of	 significant	WWTP	effluent	

and	CSO	impact	on	these	sites	investigated	in	this	study	(Chao	et	al.,	2013).	

	

Previous	 work	 has	 demonstrated	 that	 sample	 site	 is	 an	 important	 factor	 in	

determining	bacterial	community	composition	(Gibbons	et	al.,	2014).	In	this	current	

study	site	variation	was	most	substantial	with	respect	to	cyanobacterial	abundance.	

The	 highest	 and	 lowest	 recorded	 relative	 abundance	 was	 from	 Kennet	 two	 and	

seven.	 Kennet	 two	 is	 directly	 downstream	 (130	 m)	 of	 Lockeridge	 WWTP	 and	 is	

therefore	likely	to	have	a	large	human	impact	as	well	as	significant	agricultural	impact	

partially	explaining	 the	high	abundance.	Kennet	 two	was	 recorded	as	having	high	

levels	 iron,	 and	 zinc	 (unpublished	 data,	 provided	 by	 Centre	 for	 Ecology	 and	

Hydrology)	 which	 could	 explain	 in	 part	 why	 there	 was	 such	 a	 high	 level	 of	

cyanobacteria	at	this	site	which	require	high	amounts	of	both	these	metals	to	survive	

(Jiang	et	al.,	2015,	Napolitano	et	al.,	2012).	Cyanobacteria	are	naturally-occurring,	

however	anthropogenic	activities	increase	the	abundance	within	freshwater	bodies	

with	 previous	 studies	 showing	 that	 human	 and	 animal	wastes	 (including	 effluent	

release	from	WWTPs)	contribute	to	the	level	of	cyanobacteria	within	the	river	(Davis	
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et	al.,	2009).	The	abundance	of	cyanobacteria	within	river	systems	 is	predicted	to	

increased	urbanization	and	more	exploitation	of	surround	land	in	addition	to	climate	

change	(Paerl	and	Paul,	2012).	The	most	abundant	genera	at	the	majority	of	sites	was	

Perlucidbaca	 of	 which	 there	 is	 currently	 only	 one	 species	 identified	 Perlucidbaca	

piscinae.	 	 Only	 one	 paper	 could	 be	 found	 on	 Perlucidibaca	 which	 characterised	

Perlucidbaca	piscinae,	a	member	of	 the	Moraxellaceae	 family,	which	was	 isolated	

from	 a	 eutrophic	 pond	 in	 2007	 (Song	 et	 al.,	 2008).	 At	 Kennet	 eight	 and	 eleven	

Perlucidibaca	accounted	for	approximately	25	%	of	genera	in	the	river	communities	

suggesting	a	significant	role	in	river	community	structure	which	should	therefore	be	

further	investigated.		

	

The	 presence	 of	 WWTPs	 did	 not	 impact	 the	 total	 community	 structure	 with	

comparable	 diversity	measures	 from	 sites	with	 and	without	WWTPs.	WWTPs	 did	

impact	 the	 resistant	 cultured	 fraction	 with	 increased	 diversity	 measures	 at	 sites	

affected	by	WWTP	effluent.	This	suggests,	in	accordance	with	numerous	published	

studies	 (Garcia-Armisen	 et	 al.,	 2014,	 Servais	 et	 al.,	 2007,	Madoux-Humery,	 2015,	

Jalliffier-Verne	et	al.,	2015,	Jalliffier-Verne,	2016,	Marti	et	al.,	2013a,	Kumaraswamy	

et	al.,	2014,	Tang	et	al.,	2016),	that	WWTPs	are	likely	to	contribute	to	river	levels	of	

ARB	but	contrasts	to	studies	which	found	a	decrease	in	diversity	at	WWTP	effluent	

impacted	 sites	 with	 this	 study	 finding	 an	 increase	 in	 diversity	 in	 the	 resistant-

culturable	fraction	(Atashgahi	et	al.,	2015,	Drury	et	al.,	2013,	Lu	and	Lu,	2014).	WWTP	

size	 is	 important	 in	determining	beta	diversity,	with	sites	not	 impacted	by	WWTP	

effluent	and	small	WWTP	impact	clustering	separately	from	sites	impacted	with	large	

WWTP	impact	in	both	sediment	and	water	total	communities.	This	is	consistent	with	

previous	studies	which	have	determined	that	the	size	of	the	population	served	by	

the	 treatment	 plant	 affects	 river	 pollution	 and	 suggests	 further	 work	 should	

investigate	 the	 extent	 to	 which	 WWTP	 size	 impacts	 ARB	 and	 whether	 size	 is	

proportional	to	ARB	in	rivers	(Atashgahi	et	al.,	2015)		

	

Farming	 practices	 affected	 diversity	 between	 total	 DNA	 samples.	 Sites	

predominantly	impacted	by	cattle	had	the	highest	diversity	measure	whereas	sheep	

impacted	samples	showed	considerably	less	diversity.	Different	communities	existed	
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between	samples	but	sample	evenness	did	not	vary.	This	suggests	farming	practices	

affect	community	composition	with	some	exposures	 leading	 to	a	 reduction	 in	 the	

number	of	OTUs	detected.	There	was	a	small	level	variation	in	diversity	observed	in	

cultured	 samples	 split	 according	 to	 farm	 impact.	 The	 greatest	 difference	 was	

between	cow	and	fish	impacted	sites	which	had	the	highest	and	lowest	measures	of	

diversity	respectively.	No	clustering	of	samples	was	observed	in	both	weighted	and	

unweighted	samples	suggesting	the	resistant	quotient	is	not	affected	by	the	farming	

practices	and	that	other	factors	including	industrial	effluent	impact,	WWTP	effluent	

impact,	 temporal	 changes	 and	 CSO	 events	 may	 be	 more	 important.	 Changes	 in	

microbial	communities	related	to	agricultural	impact	have	been	previously	recorded	

by	Van	Rossum	et	al.	who	determined	that	although	changes	occurred	in	community,	

seasonal	 variation	 significantly	 affected	 these	 changes	 and	 is	 more	 influential	 in	

determining	community	structure	(Van	Rossum	et	al.,	2015),	a	point	which	is	further	

discussed	in	Chapter	5.		

	

Rarer	genera	detected	within	the	cultured	fraction	included	Achromobacter	which	

are	ubiquitous	environmental	organisms	and	opportunistic	pathogens	under	some	

conditions	 (Swenson	 and	 Sadikot,	 2015).	 Global	 significance	 of	 Achromobacter	

remains	unclear	but	there	has	been	an	increase	in	reports	over	the	past	~15	years	of	

MDR	strains	causing	infection,	many	with	phenotypic	resistance		to	ciprofloxacin	and	

b-lactams	(Adam	et	al.,	2014,	Chandrasekar,	1986,	Asano	et	al.,	2005,	Derber,	2011,	

Gomez-Cerezo	et	al.,	2003,	Swenson	and	Sadikot,	2015,	Amoureux	et	al.,	2013,	Doi	

et	 al.,	 2008).	 Characteristically	 they	have	 intrinsic	 resistance	 to	 arsenic	 and	other	

toxic	metals	 and	 can	degrade	aromatic	 compounds	and	plastics	 allowing	 them	 to	

thrive	in	otherwise	inhospitable	environments	(Swenson	and	Sadikot,	2015,	Jin	et	al.,	

2015).	 They	 have	 been	 isolated	 from	 oil	 contaminated	 environments	 displaying	

biosurfactant	producing	abilities,	 in	Antarctic	 soils	 and	have	been	 isolated	 from	a	

copper	mine	in	Poland		(Tambekar,	2012,	Cowan	and	Tow,	2004,	Dziewit	et	al.,	2015).	

Primarily	 studies	 have	 isolated	 Achromobacter	 xyloxidans	 (both	 in	 the	 clinic	 and	

environment)	 suggesting	 this	 is	 the	 dominant	 and	 therefore	 the	most	 successful	

species	within	this	genus	able	to	survive	extreme	environments	and	cause	human	

infection	 (Gomez-Cerezo	 et	 al.,	 2003,	 Doi	 et	 al.,	 2008,	 Chandrasekar,	 1986,	
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Tambekar,	2012).	It	has	previously	been	found	that	Achromobacter	may	interact	with	

E.	 coli	 in	 UTI	 infections	 providing	 an	 increase	 in	 fitness	 and	 resilience	 against	

antibiotic	agents	(Azevedo	et	al.,	2014)	(Azevedo	et	al.,	2016).	It	has	been	suggested	

that	due	to	their	ability	to	degrade	components	of	plastics	they	may	sustain	E.	coli	in	

catheters	leading	to	nosocomial	UTI	infections	(Jin	et	al.,	2015,	Azevedo	et	al.,	2014).	

Azevedo	et	al.	demonstrated	the	ability	of	Achromobacter	to	increase	fitness	of	E.	

coli	 in	dual-species	biofilms	in	96-well	tissue	culture	plates	and	pre-colonisation	of	

surfaces	with	Achromobacter	appeared	to	promote	E.	coli	adhesion	and	that	these	

dual-species	biofilms	required	a	higher	concentration	of	antibiotics	to	eradicate	E.	

coli	from	the	biofilm	(Azevedo	et	al.,	2014,	Azevedo	et	al.,	2016).	These	studies	also	

demonstrated	 that	 although	 alone	 Achromobacter	 was	 more	 resistant	 to	 the	

antibiotics	used	 to	eradicate	biofilms,	when	dual-species	biofilms	were	 treated,	 it	

was	E.	coli	that	survived	at	a	higher	rate	(Azevedo	et	al.,	2016).	This	protective	role	

may	be	explained	by	3	hypotheses;	1.	Achromobacter	are	able	to	transfer	ARG	on	

MGE	to	E	coli;	2.	E.	coli	may	be	induced	into	a	different	physiological	state	whereby	

antibiotic	 uptake	 is	 reduced;	 3.	Achromobacter	provide	 a	 protective	 role	 through	

degrading	antibiotics	in	the	biofilms	(Azevedo	et	al.,	2016).		This	enhanced	survival	

of	E.	coli	in	the	presence	of	Achromobacter	in	these	in	vitro	experiments	may	explain	

why	this	genus	was	detected	on	HiCA	(which	should	be	specific	for	coliforms)	and	

may	play	 a	 role	 in	E.	 coli	persistence	 in	 river	water	 and	 sediment.	 Evaluating	 the	

contribution	 of	 Achromobacter	 in	 the	 environmental	 resistome	 by	 elucidating	

whether	the	resistance	they	carry	 is	 intrinsic	or	on	MGE	should	be	 investigated	 in	

future	studies	to	determine	if	the	transfer	from	these	predominantly	environmental	

bacteria	to	pathogenic	species	is	likely	to	occur.	

	

Investigating	16S	diversity	of	total	communities	did	not	capture	all	diversity	with	no	

detectable	 level	of	Enterobacteriaceae	present	within	 the	 river	 sediment	 samples	

which	 from	 the	 culture	DNA	 samples	 cannot	 be	 accurate.	 The	 CGNF	 contained	 a	

significant	presence	of	Enterobacteriaceae	which	were	completely	absent	from	the	

diversity	analysis	of	sediment	clearly	showing	the	value	of	selective	enrichment	of	

rare	populations	which	are	likely	to	contain	pathogenic	species	(Munck	et	al.,	2015).	

Using	metataxonomic	approaches	for	total	community	analysis	misses	rare	families	
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and	genera	in	environmental	samples	and	therefore	does	not	capture	true	diversity	

(Vos	et	 al.,	 2012).	 	 The	 less	prevalent	 groups	may	 represent	 the	most	 interesting	

populations	within	 the	communities	and	underestimating	 the	prevalence	of	 these	

groups,	due	to	sequencing,	is	something	that	must	be	considered	in	future	sampling	

regimes.	In	this	study	a	focus	of	the	component	of	the	resistome	proved	that	in	the	

Enterobacteriaceae	and	Gram-negative	bacteria	were	viable	and	therefore	may	be	

able	to	disseminate	the	resistome	further.	A	problem	of	culture	dependent	studies	

is	 that,	 although	 they	 are	 more	 sensitive	 than	 culture	 independent	 methods	 at	

determining	 rarer	 populations,	 they	 are	 considerably	 more	 biased,	 deselecting	

difficult	to	culture	groups.		

	

The	 bacterial	 community	 did	 not	 vary	 significantly	 with	 WWTP	 impact	 but	

ciprofloxacin	clearly	had	an	impact	on	the	cultured	component,	particularly	on	the	

abundance	of	Pseudomonas.	Ciprofloxacin	is	still	used	to	treat	clinical	infections	of	

Pseudomonas	with	relatively	low	levels	of	clinical	resistance,	at		approximately	30	%,	

in	 this	 genus	 which	 may	 explain	 why	 few	 Pseudomonas	 were	 isolated	 on	

ciprofloxacin	containing	plates	and	why	relatively	larger	levels	of	Enterobacteriaceae	

were	isolated	on	these	plates	in	place	of	this	genus	suggesting	a	wider	environmental	

dissemination	 of	 clinically	 important	 Enterobacteriaceae	 rather	 than	 clinically	

important	Pseudomonas		species	(Su	et	al.,	2010).	The	relative	increase	is	most	likely	

due	to	the	combined	results	of	higher	carriage	of	resistance	to	ciprofloxacin	and	a	

decrease	 in	 competition	 on	 plates	 (Frank,	 2011,	 Livermore,	 2002).	 The	 selective	

effects	 of	 other	 antimicrobial	 components	 produced	 similar	 impact	 in	 species	

diversity	 suggesting	 this	 community	 of	 ARB	 is	 a	 stable	 component	 of	 the	 total	

microbial	community.	

	

	This	 study	 found	 water	 and	 sediment	 populations	 vary	 significantly	 for	 total	

communities	but	the	CGNF	which	remains	constant	with	respect	to	same	OTUs.	 It	

also	concluded	that	alone	WWTP	effluent	release	is	not	significant	in	determining	the	

community	 structure	but	 that	 intuitively	 the	 size	of	 the	population	 served	by	 the	

WWTP	is	important	with	a	larger	population	contributing	more	substantially	to	ARB	

environmental	 pollution	 than	 WWTPs	 serving	 smaller	 communities.	 The	 work	
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presented	here	clearly	indicates	that	a	dual	approach	combining	culture	independent	

and	culture	dependent	methods	is	required	to	fully	elucidate	where	ARG	persist	and	

how	they	are	disseminated.		
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Chapter	4	

Analysis	of	ARG	in	water	and	sediment	

communities	in	the	Thames	catchment	
	

4.1	Introduction	

To	assess	the	potential	risks	of	environmental	contamination	by	ARB	it	is	critical	to	

determine	both	abundance	(defined	as	the	absolute	count)	and	prevalence	(defined	

as	 the	 count	 relative	 to	 16S	 copies)	 in	 microbial	 communities	 of	 river	 systems.	

Continuing	the	work	on	the	Thames	catchment	the	next	stage	was	to	determine	the	

prevalence	of	selected	ARG	to	evaluate	levels	of	dissemination	and	determine	if	ARG	

levels	 correlated	 to	 various	 environmental	 factors	 including	 both	 agriculture	 and	

waste	processing.	

	

AMR	has	previously	been	 studied	 in	 the	Thames	 catchment	 reporting	 an	average	

prevalence	 of	 the	 class	 1	 integron	 integrase	 gene	 at	 ~4	%	 in	 river	 sediment.	 The	

association	of	this	MGE	with	ARG	(specifically	ESBL	genes)		has	been	implied	and	this	

integrase	gene	has	previously	been	recommended	as	a	proxy	for	environmental		ARG	

presence	 (Amos	et	al.,	2015,	Dhanji,	2011,	Gillings	et	al.,	2015).	Few	studies	have	

attempted	to	correlate	the	prevalence	of	the	class	1	integron	with	ARG,	however	the	

relationship	remains	tenuous.	
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To	date	no	direct	analysis	has	been	done	on	ARG	using	culture	independent	methods	

in	 the	Thames	catchment.	 In	 the	current	study	the	aim	was	to	 further	 investigate	

AMR	 with	 respect	 to	 ARG	 in	 both	 culture	 independent	 and	 culture	 dependant	

enrichments	of	the	antibiotic	resistant	CGNF	to	determine	which	factors	impact	the	

prevalence	 of	 ARG	 in	 rivers.	 The	 effects	 of	WWTP	 effluent	 and	 agriculture	 were	

investigated	to	determine	which	play	a	dominant	role	in	shaping	ARB	communities.		

	

Berendonk	et	al.	reviewed	a	wide	range	of	studies	on	ARG	in	the	environment	and	

recommended	 a	 list	 of	 indicator	 targets	 and	bacterial	 groups	 to	 be	monitored	 to	

achieve	 comparability	 to	monitor	 global	 prevalence	 of	 a	 standardised	 core	 set	 of	

clinically	relevant	genes	(Berendonk	et	al.,	2015).	Targets	included	E.	coli,	intI1,	blaCTX-

M,	qnrS,	ermF	and	 tetM.	This	study	used	these	recommendations	and	additionally	

qacE,	 to	 further	 study	ARG	 in	 the	Thames	catchment	at	 the	eight	 sites	previously	

discussed	 in	 Chapter	 3.	 	 The	 chosen	 genes	 confer	 resistance	 to	 a	 range	 of	

antimicrobials	 including	 antibiotics	 (blaCTX-M,	 qnrS	 	 ermF	 and	 tetM)	 and	 biocides	

(qacE)	and	the	suggested	anthropogenic	pollution	marker;	the	integrase	gene	from	

class	 1	 integrons	 was	 also	 investigated	 (Amos	 et	 al.,	 2015,	 Gillings	 et	 al.,	 2015).	

Emphasis	was	placed	the	integrase	gene	because	of	the	suggestion	it	may	act	as	a	

proxy	 for	AMR	by	acting	as	a	genetic	platform	for	gene	capture	and	 is	commonly	

characterised	to	carry	the	qacED1		gene	(which	is	detected	by	the	qacE	primers).	It	

has	been	found	to	be	prevalent	in	clinical	environments	where	biocides	are	used	very	

frequently	resultantly	co-selecting	ARG	on	the	same	mobile	genetic	element.		

	

WWTPs	have	previously	been	linked	to	the	dissemination	of	ARG	in	the	environment	

and	present	one	of	the	most	important	routes	of	anthropogenic	pollution	(Jalliffier-

Verne,	 2016).	 Although	 there	 have	 been	 contrasting	 studies	 about	 the	 overall	

contribution	WWTPs	play,	most	evidence	suggests	that	they	do	play	a	significant	role	

contributing	 to	 higher	 levels	 of	 ARB	 in	 river	 water	 and	 sediment	 downstream	

compared	with	upstream	sites	(Munck	et	al.,	2015,	Amos	et	al.,	2014,	Berglund	et	al.,	

2015,	Li	et	al.,	2015a,	Szczepanowski	et	al.,	2009).	Both	water	and	sediment	samples	

were	collected	from	sites	downstream	of	WWTP	effluent	release	at	varying	distances	

from	the	effluent	release	site.	Samples	were	taken	from	regions	heavily	impacted	by	
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agriculture	and	areas	with	significant	urbanisation.	The	same	samples	were	used	for	

both	 community	 analysis	 (Chapter	 3)	 and	 evaluating	 the	 extent	 of	 ARG	

contamination	in	this	chapter.			

	

Agriculture	 can	 have	 a	 significant	 impact	 on	 the	 prevalence	 of	 	 ARG	 in	 specific	

environments	(O'Neill,	2016,	Van	Boeckel	et	al.,	2014).	A	number	of	studies	indicate	

a	strong	correlation	between	AMR	prevalence	and	antibiotic	usage	in	farm	livestock	

where	waste,	 such	as	manure,	 is	 commonly	used	as	 fertilizer.	Many	 reports	have	

demonstrated	 the	 link	 between	 ARG	 and	 manure	 spreading	 showing	 significant	

increases	 in	ARG	as	a	direct	 consequence	 (Sengelov,	2003,	Agerso	and	Sandvang,	

2005,	Fahrenfeld	et	al.,	2014).	A	key	problem	in	the	dissemination	of	ARG	relates	to	

the	fact	that	>50	%	of	antibiotics	(in	most	countries)		have	a		dual	use	in	veterinary	

and	human	medicine	(Boucher	et	al.,	2009).	Within	the	UK,	the	use	of	antibiotics	for	

growth	promotion	was	banned	by	the	European	Union	in	2006,	however	reports	of	

antibiotic	resistance	in	livestock	are	still	frequently	reported,	the	most	notable	is	the	

detection	of	 the	mobilisable	 colistin-conferring	 resistance	 gene	mcr-1	 from	 swine	

(Casewell	et	al.,	2003,	Anjum	et	al.,	2016).		

	

The	cumulative	effects	of	WWTP	effluent	and	farming	is	unknown	with	most	studies	

focussing	on	only	one	variable	when	evaluating	environmental	ARG	(Munck	et	al.,	

2015,	 Smalla	 et	 al.,	 2000a,	 Byrne-Bailey	 et	 al.,	 2011,	 Byrne-Bailey	 et	 al.,	 2009,	

Szczepanowski	et	al.,	2009,	Li	et	al.,	2015a).	For	example,	the	study	by	Munck	et	al.	

investigated	 the	 resistome	of	 the	WWTP	and	 its	 dissemination	by	mapping	 reads	

from	 WWTP	 core	 resistome	 to	 metagenomes	 from	 human	 gut,	 cow	 rumen,	

permafrost	and	aquifer.	They	showed	little	dissemination	of	the	resistome,	with	only	

8	%	of	reads	from	the	WWTP	core	found	in	non-WWTP	metagenome,	contrasting	to	

many	 studies	 suggesting	 the	 opposite,	 and	 detected	 less	 than	 10	 %	 of	 the	 core	

resistance	 genes	 found	 in	 the	 treatment	 plant	 in	 the	 environment	 (Munck	 et	 al.,	

2015).	They	considered	farms	as	a	producer	of	waste	and	the	potential	consequences	

of	 waste	 disposal	 to	 the	 treatment	 plant	 but	 only	 investigated	 the	 waste	 to	 be	

treated	at	the	plant	and	did	not	investigate	the	effects	of	surrounding	farmland	and	

the	 impacts	 they	might	have	on	 the	river	 resistome.	Studies	 investigating	 farming	
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impacts	on	the	environmental	resistome	consequently	find	ARG	in	manure	and	the	

surrounding	environment.	The	study	by	Smalla	et	al.	showed	that	resistance	genes	

in	manure	were	also	found	in	farm	soils	demonstrating	the	dissemination	of	ARG	as	

a	direct	result	of	manure	spreading	(Smalla	et	al.,	2000a).			Within	a	river	catchment	

it	is	important	to	look	at	all	anthropogenic	impact’s	including	WWTPs,	farming	and	

urbanisation.	Industrial	wastes	are	more	carefully	monitored	as	part	of	EA	activities	

however	 no	 monitoring	 of	 disposal	 of	 ARG	 and	 AMR	 in	 rivers	 is	 recorded.	 Only	

monitoring	of	biochemical	 oxygen	demand	 (BOD)	 for	water	quality	 and	biological	

pollution	 is	 considered	 (which	 is	 related	 to	 organic	 effluent	 rather	 and	 biological	

pollution)	(DEFRA,	2012).			

	

There	are	many	possible	routes	by	which	ARG	disseminate	in	to	human	populations,	

these	 include	 contamination	 of	 the	 food	 chain,	 tourism	 and	 travel.	 ARG	

contamination	within	the	food	chain	can	occur	via	several	routes;	primarily	the	use	

of	 antibiotics	 in	 food	 production	 can	 result	 in	 active	 selection	 of	 ARG,	 	 however	

intentionally	added	bacteria	(i.e	as	starter	cultures	and	for	bioconserving	purposes)	

can	also	contribute,	as	can	cross-contamination	 in	food	processing	(Verraes	et	al.,	

2013).	 One	 study	 predicted	 the	 likelihood	 of	 exposure	 to	 one	 thousand	 colony	

forming	units	of	E.	coli	at	approximately	1.5	%	when	consuming	chicken	(Depoorter	

et	al.,	2012).		Notable	transfer	from	livestock	to	humans	include	the	transfer	of	the	

mecC	gene,	a	divergent	mecA	gene,	conferring	resistance	to	methicillin	which	likely	

evolved	 in	 ruminants	 before	 spreading	 to	 the	 human	 population	 and	 the	 recent	

emergence	of	the	mobilisable	mcr-1	gene	which	was	detected	in	intensively	reared	

swine	in	2015	and	was	consequently	detected	in	clinical	isolates	a	few	months	later	

(Paterson	 et	 al.,	 2014,	 Liu,	 2015,	McGann	 et	 al.,	 2016).	 Although	 it	 has	 not	 been	

conclusively	 determined	 if	 the	 mcr-1	 gene	 originated	 from	 livestock,	 zoonotic	

transmission	is	likely	to	occur.				

	

The	increase	in	travel	and	immigration	from	the	Middle	East		and	Asia	has	no	doubt	

contributed	 to	 the	 dissemination	 of	 ARG	 (Hawkey,	 2015).	 The	 study	 by	

Wickramasinghe	 	 et	 al.	 demonstrated	22	%	of	 persons	 from	 the	Middle	 East	 and	

South	Asia	carried	the	blaCTX-M	genes	whereas	only	8.2	%	of	Europeans	carried	3GC	



	 130	

resistance-conferring	 genes	 (Wickramasinghe	 et	 al.,	 2012).	 This	 relationship	 was	

previously	reported	in	Australian	travellers	where	it	was	recorded	that	the	rate	of	

ARB	 carriage	 prior	 to	 travelling	was	 7.8	%	 and	 49	%	 post-travel	with	 the	 highest	

likelihood	 of	 carriage	 arising	 in	 travellers	 who	 had	 visited	 the	 Middle	 East.	 The	

association	between	travel	and	global	dissemination	of	ARG	is	primarily	associated	

with	 the	 ESBL	 and	 carbapenemase	 resistance	 genes,	 blaCTX-M	 and	 blaNDM-1	

respectively,	which	have	been	reported	as	a	direct	consequence	of	food	import	from,	

travel	 to,	and	poor	waste	processing	and	sewage	disposal	 in	 the	Middle	East	and	

South	Asia	(Rizzo	et	al.,	2013,	Hawkey,	2015).			

	

Chapter	3	showed	a	significant	difference	in	the	relative	abundance	of	certain	genera	

between	water	and	sediment,	however	the	CGNF	remained	stable.	The	aim	now	was	

to	 consider	 the	 correlation	 between	 culture	 dependant	 and	 culture	 independent	

methods	to	evaluate	the	variables	with	a	potential	to	drive	resistance	in	rivers.			

	

AMR	 within	 the	 Enterobacteriaceae	 has	 been	 highlighted	 as	 a	 major	 concern	 by	

multiple	reports	which	label	them	as	“serious”	threats	to	human	health	(WHO,	2014,	

O'Neill,	 2016,	 Gelband,	 2015).	 The	 resistome	 within	 this	 specific	 population	 of	

clinically	 related	 bacteria	 is	 incredibly	 diverse	 due	 to	 their	 ability	 to	 receive	 and	

disseminate	resistance	containing	plasmids	(Amador,	2015,	Humeniuk	et	al.,	2002,	

Nordmann,	 2014,	 Nordmann	 and	 Poirel,	 2014,	 Poole,	 2004,	 Korzeniewska	 and	

Harnisz,	2013,	Zhang	et	al.,	2012a,	Pai	et	al.,	2001,	Coque,	2008,	Cremet	et	al.,	2012,	

Cattoir	et	al.,	2007,	Carattoli,	2009).	Resistance	to	3GCs	is	of	particular	concern	with	

an	increase	resulting	in	last-resort	antibiotics	being	more	frequently	used	(Gelband,	

2015).	Notable	reports	include	the	dissemination	of	the	blaCTX-M-15	gene	on	an	IncF	

plasmid	 in	the	human	pandemic	strain	of	E.	coli	ST131	which	has	been	frequently	

reported	in	clinical	isolates,	usually	from	UTI	infections	(Can	et	al.,	2015).		

	

Many	potential	pathogens	entering	the	rivers	through	WWTP	effluent	may	not	be	

readily	culturable,	but	may	still	be	viable	and	therefore	infectious.	The	study	of	viable	

bacteria	within	the	environment	is	unequivocal	as	it	determines	which	species	likely	

present	risk.	Studies	investigating	the	unculturable	fraction	through	total	community	
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analysis	 fail	 to	 identity	 the	 risks	 associated.	 In	 the	 current	 study	 the	 aim	was	 to	

investigate	a	specific	fraction	of	the	viable	bacteria	community	by	investigating	the	

CGNF	to	evaluate	the	ARGs	within	these	potentially	pathogenic	species	to	determine	

specific	 ARG	 associated	 with	 AMR	 phenotype.	 The	 key	 genes	 suggested	 by	

Berendonk	 et	 al	 were	 considered	 as	 potential	 genes	 explaining	 the	 resistance	

phenotype	and	it	was	evaluated	if	these	genes	are	responsible	or	if	other	genes	are	

involved	in	dissemination	of	the	AMR	phenotype	(Berendonk	et	al.,	2015).		
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4.2	Aims		

The	focus	here	was	to	determine	prevalence	and	abundance	of	selected	ARG	in	a	

range	of	samples	to	investigate,	using	culture	dependant	and	culture	independent	

methods,	the	dissemination	of	ARG	genes	in	selected	river	sites.	

	

1. Evaluate	if	ARG	abundance	and	prevalence	is	the	same	in	water	and	sediment	

communities.	

2. Determine	if	the	Thame	and	Kennet	carry	different	ARG	prevalence.	

3. Investigate	 if	key	marker	genes	are	suitable	markers	of	phenotypic	AMR	in	

the	selected	river	environment.		

4. Investigate	 differences	 in	 ARG	 prevalence	 in	 water	 and	 sediment	

communities.	
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4.3	Results	

4.3.1	Abundance	of	bacterial	16S	and	ARG	targets	in	sediment	and	water	samples	

Substantially	higher	bacterial	abundance	was	found	in	sediment	than	in	water	with	

an	average	16S	count	of	~6	x	108	and	2	x	104	respectively.	Following,	total	abundance	

of	all	ARG	targets	was	higher	in	sediment	samples	than	in	water	(Figure	4.1).	To	allow	

direct	 comparisons	 between	 the	 culturable	 and	 total	 DNA	 extractions	 ARG	

prevalence,	relative	to	16S,	was	used	for	further	analysis.		
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Figure	4.1	Abundance	of	ARG	targets.	blaCTX-M-1	refers	to	group	1..	(a)	Sediment,	(b)	
Water.		
	

4.3.2	 ARG	 prevalence	 across	 the	 rivers	 Thame	 and	 Kennet	 in	 both	 water	 and	

sediment	samples	

The	most	prevalent	genes	recorded	 in	this	study	from	total	extractions	were	 intI1	

and	qacE	for	most	sites	(Figure	4.2	and	Figure	4.3).	ARG	profiles	(Figure	4.2)	group	
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together	 according	 to	 water	 and	 sediment	 sample	 types	 suggesting	 differential	

prevalence	 in	water	and	sediment	with	water	samples	showing	higher	prevalence	

than	the	sediment	samples	most	likely	as	a	result	of	lower	bacterial	abundance.		

	

	

Figure	4.2	E.	coli	and	integrase	gene	prevalence	in	total	DNA	extractions	from	Thame	
and	Kennet	water	and	sediment.	Yellow	=	relatively	low	prevalence,	red	=	relatively	
high	prevalence.		
	

4.3.3	Gene	target	prevalence	according	to	river	

The	Thame	and	Kennet	rivers	were	chosen	based	on	urban	and	agricultural	impacts.	

Both	rivers	run	through	predominantly	rural	areas	impacted	by	a	variety	of	animal	

impacts	including	livestock	and	aquaculture.	The	Thame	runs	through	more	densely	

populated	areas	which	are	more	urbanised	compared	to	the	Kennet.	The	treatment	

plants	that	sit	on	the	Thame	all	serve	more	than	10000	people,	whereas	all	Kennet	

WWTPs	 serve	 less	 than	 10000	 and	 therefore	 sites	 at	 the	 Kennet	 are	 less	 human	

impacted.		
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Figure	4.3	ARG	prevalence	(relative	to	16S	gene	copies)	in	sediment	and	water	from	
the	Kennet	and	Thame.	blaCTX-M-1	refers	to	group	1.	
	
4.3.4	Site	characteristics	

The	 sampling	 regime	 took	 sediment	 and	water	 from	 eight	 sites,	 from	 two	 rivers.	

Metadata	 was	 collected	 during	 the	 sampling	 regime	 to	 include	 environmental	

variables	 that	may	be	 involved	 in	 the	prevalence	of	 target	 genes	 (Table	4.1).	 The	

Thame	sites	were	impacted	by	larger	WWTPs	compared	with	the	Kennet	sites	and	

overall	the	Kennet	sites	had	a	higher	agricultural	 impact	(Table	4.1).	All	sites	were	

downstream	of	a	WWTP	effluent	outlet	and	 the	 river	 source	was	not	 tested.	The	

nearest	WWTP	effluent	impact	in	two	cases	(Thame	7	and	Thame	11)	was	however	

over	 8	 km	 away.	 Cattle	 were	 the	 most	 prevalent	 agricultural	 impact	 and	 were	

observed	at	five	of	the	eight	sites.		

	

	Although	 the	 small	 sample	 size	 allowed	 thorough	 characterisation	 of	 the	 CGNF	

allowing	multiple	AMR	conditions	to	be	tested,	it	limited	the	number	of	samples	that	

could	be	taken	and	therefore	the	number	of	potential	explanatory	variables	could	be	

analysed.		
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Table	4.1	Potential	explanatory	factors	involved	in	ARG	prevalence	and	abundance.	
Nearest	WWTP	effluent	is	defined	as	the	distance	from	the	closest	upstream	WWTP	
that	may	contribute	pollution	at	the	site.		

River	

Nearest	
WWTP	
(upstream/	
downstream)	

Approximate	
distance	to	
nearest	
WWTP	
effluent		

Population	
served	by	
nearest		
upstream	
WWTP	

Observed	
Agricultural	
impact	

Overall	
animal	
impact	
(as	
recorded	
by	CEH)	

Canal	
feeding	
in	to	
river	

Thame	3	 Downstream	 ~	3	km		 104000	 Cattle,		 High	 No	

Thame	5	 Downstream	 <	500	m	 11000	 Cattle	 Low	 No	
Thame	7	 Upstream	 ~	10	km		 >10000	 Cattle	 Low	 No	

Thame	8	 Downstream	 <	500	m		 30000	 Cattle	 Low	 No	
Kennet	2	 Downstream	 <	500	m	 <10000	 Sheep	 High	 No	

Kennet	7	 Downstream	 <	500	m	 <10000	 Sheep,	fish	
farm	 High	 No	

Kennet	8	 Downstream	 <	500	m	 <10000	 Swine	and	
fish	farm	 High	 Yes	

Kennet	11	 Upstream	 ~	8	km		 <10000	 Cattle	and	
fish	farm	 High	 Yes	

	
	

4.3.5	Investigating	target	prevalence	in	bacterial	communities	

Data	was	log	transformed	to	overcome	the	assumption	in	ANOVA	of	homogeneity	of	

variation.	 Two	 way	 ANOVAs	 were	 fitted	 to	 investigate	 the	 differences	 between	

catchments,	sample	type,	sites,	sites	within	catchments	and	the	differences	between	

these	factors.		

	

4.3.5.1	Investigating	qnrS	prevalence		

Significant	 differences	 were	 recorded	 between	 sediment	 and	 water	 with	 mean	

prevalence	 in	water	 at	 2.8	 x	 10-3	 and	mean	 prevalence	 in	 sediment	 at	 3.6	 x	 10-4	

(ANOVA	F	=	62.72,	p	<	0.001).	The	Kennet	had	a	higher	overall	prevalence	of	qnrS	but	

when	 investigating	 sediment	 and	 water	 communities	 separately	 the	 sediment	

samples	from	the	Thame	had	a	higher	prevalence	compared	to	water,	however	the	

difference	was	not	significant	(Tukey	honest	significant	difference	(HSD)	p	>	0.05).	

There	were	significant	differences	(ANOVA	F	=	7.71	p	<	0.001)	across	sites	at	both	the	

Kennet	and	Thame.	Across	the	Kennet	the	lowest	prevalence	was	recorded	at	Kennet	

2	 and	 the	highest	was	 recorded	at	Kennet	7.	Across	 the	Thame	 the	 site	with	 the	

lowest	prevalence	was	Thame	7	and	the	site	with	the	highest	was	Thame	5.	The	most	
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impacted	 site	 when	 examining	 all	 sites	 together	 was	 Kennet	 2,	 which	 is	 directly	

downstream	of	a	WWTP	and	has	agricultural	impacts	from	sheep	and	fish	farms.	The	

lowest	prevalence	was	recorded	at	Thame	7	which	was	the	site	furthest	away	from	

treatment	plant	effluent	impact,	with	the	nearest	upstream	WWTP	approximately	10	

km	from	the	sampling	site.	Thame	7	also	had	a	very	small	agricultural	impact	which	

may	suggest,	considering	Kennet	2	has	a	high	impact,	that	agriculture	is	important	in	

determining	qnrS	prevalence.	

	

Individual	 site	 analysis	 showed	 that	 all	 sites	 in	 the	 Kennet	 presented	 a	 higher	

prevalence	of	qnrS	in	water	communities	compared	to	sediment	(Tukey	HSD	p	<	0.05)	

possibly	as	a	result	of	the	high	agricultural	impact	at	the	Kennet	sites.	In	the	Thame	

the	prevalence	between	sediment	and	water	at	different	sites	was	variable	but	was	

not	significant	at	any	site	(Tukey	HSD	p	>	0.05).	At	sites	three	and	eight	the	prevalence	

was	lower	in	the	sediment,	but	for	sites	five	and	seven	the	prevalence	was	lower	in	

water	samples.	

	

4.3.4.2	Investigating	ermF	prevalence		

The	prevalence	of	ermF	was	low	at	most	sites.	Significant	differences	were	observed	

in	prevalence	of	ermF	between	sediment	and	water	with	sediment	samples	showing	

a	higher	mean	prevalence	than	water	communities	(ANOVA	F	=	31.42,	p	<	0.001).		

Sediment	 samples	 had	 a	 mean	 prevalence	 of	 8.3	 x	 10	 -5	 and	 water	 had	 a	 mean	

prevalence	of	2.99	x	10-6.	The	river	Kennet	had	a	significantly	lower	prevalence	than	

the	Thame	(Thame	mean	=	1.58	x	10-6,	and	Kennet	mean	=	1.58	x	10-4)	(	F	=	60.24,	p	

<0.001)	suggesting	agriculture	does	not	play	a	substantial	role	in	determining	ermF	

prevalence.	

	

Individual	site	analysis	showed	significant	differences	were	recorded	across	rivers	(	F	

=	 6.58,	 p	 <	 0.05).	 Kennet	 eight	 had	 the	 lowest	mean	 prevalence	 (2.5	 x	 10-7)	 and	

Kennet	seven	had	the	highest	(2.2	x	10-5).	Across	the	Thame	sites	the	site	with	the	

highest	prevalence	was	site	5	(1.5	x	10-3)	and	site	7	has	the	lowest	(7.4	x	10	-6).	Overall,	

Thame	5	showed	the	highest	prevalence	of	ermF	which	could	be	due	to	large	WWTP	

effluent	impact.	Although	combined	differences	were	significant	across	catchments	
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the	differences	at	each	site	between	sediment	and	water	was	not.	Only	Thame	7	

showed	borderline	significant	differences	between	water	and	sediment	(Tukey	HSD	

p	=	0.06)	with	a	higher	prevalence	in	sediment.			

	

4.3.5.3	Investigating	tetM	prevalence		

Significant	 differences	were	 observed	 between	 sediment	 and	water	 sample	 tetM	

prevalence	(ANOVA	F	=	9.28,	p	<	0.05).	Sediment	samples	presented	a	lower	mean	

prevalence	 (5.8	 x	 10-4)	 than	 water	 samples	 1.4	 x	 10-3).	 Between	 catchments	 the	

Kennet	 had	 a	 lower	 prevalence	 than	 the	 Thame	 (F	 =	 22.17,	 p	 <	 0.05)	 suggesting	

agriculture	is	not	as	important	as	WWTP	effluent	impacts.	

	

Individual	site	analysis	showed	significant	differences	across	the	rivers	(F	=	6.75,	p	<	

0.05).	 From	 the	 samples	 collected	 from	 the	 Kennet	 site	 8	 had	 the	 lowest	 mean	

prevalence	(1.4	x	10-4)	and	site	2	had	the	highest	(1.3	x	10	-3).	Across	the	Thame	the	

site	with	the	lowest	prevalence	was	site	7	(4.8	x	10-4)	and	the	highest	was	recorded	

at	site	5	(2.3	x	10-3).	Overall	the	site	with	the	highest	prevalence	was	Thame	5	and	

the	lowest	was	Kennet	8,	both	of	which	were	directly	downstream	of	WWTP	effluent	

releases,	however	the	treatment	at	Thame	5	was	larger	and	within	a	more	urbanised	

region.		

	

Sites	 investigated	 separately	 showed	 that	 significant	 differences	 were	 observed	

(ANOVA	F	=	9.51,	p	<	0.05)	in	the	prevalence	of	tetM,	however	significant	differences	

between	sediment	and	water	were	only	observed	at	only	Kennet	2	and	Thame	7.	

Kennet	2	had	a	significantly	higher	prevalence	 in	water	 (Tukey	HSD	p	<	0.05)	and	

Thame	seven	showed	a	higher	prevalence	in	sediment	(p	<	0.05).	

		

4.3.5.4	Investigating	E.	coli	prevalence		

A	higher	prevalence	of	E.	coli	was	recorded	in	sediment	samples	(ANOVA	F	=	72.60,	

p	<	0.001)	compared	to	water.	The	mean	prevalence	recorded	in	sediment	was	5.01	

x	10-4	and	the	mean	prevalence	in	water	was	3.5	x	10-5.	The	Kennet	had	a	significantly	

lower	 mean	 prevalence	 than	 the	 Thame	 (F	 =	 4.49,	 p	 <0.001).	 Across	 the	 river	

sampling	sites	Kennet	eight	carried	the	lowest	prevalence	(2.7	x	10-5)	and	Kennet	two	
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presented	the	highest	prevalence	(3.0	x	10	-4).	The	Thame	three	site	had	the	lowest	

recorded	prevalence	across	the	Thame	(4.4	x	10-5)	and	Thame	eight	had	the	higher	

prevalence	(7.1	x	10	-4).	Overall	E.	coli	prevalence	was	greatest	at	site	Thame	8	and	

lowest	at	Kennet	8	suggesting	urban	impacts	are	more	important	than	agricultural	in	

determining	the	prevalence	of	E.	coli.		

Investigating	 individual	site	differences	between	sediment	and	water	showed	that	

significant	differences	at	sites	 (F	=	6.09,	p	<0.05)	existed	at	Kennet	seven,	Kennet	

eight,	Thame	seven	(Tukey	HSD	p	<	0.05)	and	a	borderline	significant	difference	at	

Thame	three	(Tukey	HSD	p	=	0.06).	At	Kennet	seven	and	eight	the	prevalence	of	E.	

coli	was	recorded	to	be	significantly	higher	than	the	water	collected	at	these	sites.	At	

Thame	seven	sediment	was	also	significantly	higher	than	water	E.	coli	prevalence.	At	

Thame	three	the	water	samples	had	a	higher	prevalence.		

	

4.3.5.5	Investigating	intI1	prevalence		

In	contrast	to	the	other	ARG	targets	there	were	no	significant	differences	observed	

between	sediment	and	water	samples	with	respect	to	intI1	prevalence	(ANOVA	F	=	

0.01,	p	>	0.05).	There	was	also	no	significant	difference	between	rivers	(F	=	2.12,	p	>	

0.05).	Investigating	the	differences	between	site	prevalence	across	the	river	samples	

showed	significant	differences	(F	=	5.30,	p	<	0.05)	across	sites,	however	post	hoc	tests	

investigating	 pairwise	 comparisons	 could	 not	 determine	 significant	 differences	

between	Kennet	sites.	Significant	differences	were	observed	between	Thames	sites	

(Tukey	 HSD	 p	 <	 0.05)	 with	 Thame	 7	 presenting	 a	 significantly	 lower	 prevalence	

compared	with	sites	3,	8	and	11.	Within	the	Thames	river	sampling,	Thame	7	was	the	

furthest	from	WWTP	effluent	impact	suggesting	effluent	does	have	an	important	role	

in	determining	intI1	prevalence.		

	

Individual	 site	analysis	 showed	that	 the	only	significant	difference	between	water	

and	sediment	in	intI1	prevalence	was	at	site	7	in	the	Thame	which	showed	water	had	

a	much	lower	prevalence	(6.5	x	10-4)	than	sediment	(1.7	x	10-2)	(Tukey	HSD	p	<	0.05).		
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4.3.5.6	Investigating	qacE	prevalence		

The	 prevalence	 of	 qacE	 was	 significantly	 higher	 in	 water	 samples	 compared	 to	

sediment	 (ANOVA	F	 =	 27.48,	 p	 <	 0.05)	 and	was	 significantly	 higher	 in	 the	 Thame	

compared	to	the	Kennet	(p	<	0.05).	Sediment	samples	had	a	mean	prevalence	of	5.1	

x	10-3	and	water	samples	had	a	mean	prevalence	of	1.8	x	10-2.	Thame	samples	had	a	

mean	of	 1.6	 x	 10-2	 and	Kennet	 samples	 had	 a	mean	of	 6.2	 x	 10	 -3.	No	 significant	

differences	were	recorded	across	the	Kennet	sites	for	differences	in	qacE	prevalence	

(Tukey	HSD	pairwise	comparisons	p	>	0.05),	but	significant	differences	were	observed	

between	 Thame	 sites	 (p	 <	 0.05).	 Pairwise	 comparisons	 between	 the	 Thame	 sites	

showed	significant	differences	(p	<	0.05)	between	prevalence	at	site	7	compared	to	

sites	3,	5	and	8.	The	prevalence	at	site	7	was	significantly	 lower	compared	to	 the	

other	Thame	sites	in	the	sampling	regime.		

	

Kennet	sediment	and	Thame	sediment	qacE	prevalence	were	significantly	different	

(Tukey	HSD	p	<	0.05)	with	Thame	sediment	presenting	a	higher	prevalence	of	qacE	

compared	to	sediment	taken	from	Kennet	sites.	There	was	no	significant	difference	

between	water	samples.		

	

Site	 analysis	 showed	 that	 significant	 differences	 between	 sediment	 and	 water	

samples	 were	 observed	 at	 Kennet	 sites	 8	 and	 11	 only.	 No	 Thame	 sites	 showed	

significant	differences	between	prevalence	recorded	in	sediment	and	water	(ANOVA	

F	=	4.28	p	>	0.05).	At	Kennet	eight	and	eleven	significantly	higher	prevalence	was	

recorded	in	water	samples	(Tukey	HSD	p	<	0.5)	

	

4.3.5.7	Investigating	blaCTX-M-1	(Group	1)	prevalence		

Significant	differences	in	prevalence	of	blaCTX-M-1	were	found	between	sediment	and	

water	where	water	samples	showed	a	significantly	 lower	prevalence	compared	to	

sediments	samples	(F	=	59.66	p	<	0.001).	The	mean	prevalence	in	water	was	reported	

at	1.73	x	10-5	and	the	mean	prevalence	in	sediment	was	5.7	x	10-3.	The	river	Kennet	

had	a	significantly	lower	mean	prevalence	than	the	Thame	samples	with	a	difference	

in	means	of	1.9	x	10-3.		
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No	significant	differences	between	site	location	was	observed	in	samples	taken	from	

the	Kennet	or	the	Thame	(ANOVA	F	=	0.45	p	>	0.05)	but	differences	were	observed	

in	the	recorded	prevalence	of	blaCTX-M-1	between	the	Kennet	sediment	and	water	and	

Thame	sediment	and	water	comparisons	with	higher	prevalence	in	sediment	in	both	

rivers	(p	<	0.05).	No	significant	differences	were	recorded	between	sediment	samples	

between	Kennet	and	Thame	but	significant	differences	were	found	between	water	

samples	 with	 a	 much	 higher	 prevalence	 in	 the	 Thame	 water	 samples	 compared	

(mean=	2.2	x	10	-3)	to	the	Kennet	(mean	=	7.6	x	10-7).	

	

Investigating	 individual	 site	 differences	 showed	 prevalence	 was	 significantly	

different	between	sediment	and	water	samples	at	Kennet	sites	only	(Tukey	HSD	p	<	

0.05).	 Prevalence	 was	 different	 at	 Kennet	 seven,	 eight	 and	 eleven	 with	 higher	

prevalence	recorded	in	sediment	samples	at	each	site.		

	

4.3.5.8	Summary	of	site	prevalence	

Investigating	 the	 prevalence	 of	 ARG,	 E.	 coli	 and	 intI1	 targets	 demonstrated	 large	

variation	across	sample	type	and	river.	Each	site	presented	different	environmental	

factors	and	as	a	 result	 reported	 significantly	different	prevalence’s	of	each	 target	

investigated	(Table	4.2).		

	

The	prevalence	of	gene	targets	varied	with	sample	type	with	some	more	prevalent	

in	sediment	than	water,	and	others	more	prevalent	in	water.	The	only	gene	target	

showing	no	significant	differences	between	sample	 type	was	 intI1	which	also	was	

reported	at	the	same	prevalence	in	the	Kennet	and	Thame.	The	prevalence	of	intI1	

therefore	 does	 not	 appear	 to	 be	 strongly	 influenced	by	 anthropogenic	 and	other	

environmental	factors.		

	

Thame	7	and	Kennet	8	showed	the	lowest	gene	prevalence	for	most	targets	(Table	

4.2).	The	Thame	7	was	the	site	furthest	away	from	WWTP	effluent	impact	so	it	was	

expected	 that	 the	 prevalence	 would	 be	 lower	 at	 this	 site.	 The	 low	 prevalence	

observed	 at	 Kennet	 8	 however	was	 not	 expected	 as	 it	 is	 directly	 downstream	 of	
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effluent	 release	and	has	high	agricultural	 impact	with	pig	and	 fish	 farms	near	 the	

sampling	site.		

	

Overall,	target	prevalence’s	was	highest	in	the	Thame	for	most	targets	with	only	qnrS	

showing	significantly	higher	prevalence	in	the	Kennet	samples.	The	larger	population	

numbers	served	by	the	treatment	plants	along	the	river	Thame	are	likely	important	

in	determining	ARG	level.		

	
Table	4.2	Sites	with	the	highest	and	 lowest	prevalence	of	chosen	gene	target	and	
summarising	the	river	and	sample	type	with	highest	prevalence.	K2	=	Kennet	2,	K7	=	
Kennet	7,	K8	=	Kennet	8,	K11	=	Kennet	11,	T3	=	Thame	3,	T7	=	Thame	7,	T8	=	Thame	
8.		

		

4.3.6	Correlation	analysis	between	ARG	targets	for	water	and	sediment	samples	

Correlations	between	 targets	were	 investigated	 to	determine	 if	 the	prevalence	of	

one	determined	the	prevalence	of	others.	Samples	were	split	by	type	to	determine	

if	 water	 and	 sediment	 presented	 the	 same	 patterns.	 Correlation	 profiles	 were	

different	between	water	and	sediment	(Figure	4.4)	with	some	positive	relationships	

in	sediment	samples	presenting	negative	relationships	in	water	(qnrS	and	intI1,	ermF	

and	 E.	 coli)	 and	 some	 negative	 relationships	 in	 sediment	 showing	 positive	

correlations	 in	 water	 (qnrS	 and	 ermF).	 All	 relationships	 showing	 a	 switch	 in	

correlation	were	not	significant	but	the	change	suggests	some	significant	differences	

Target

River

Sediment/Water

Kennet Thame Site	with	highest	
prevalence

Site	with	lowest	
prevalence

Thame/Kennet

Highest	 Lowest Highest Lowest

qnrS K7 K2 T5 T7 K7 T7 Kennet* Water*

tetM K2 K8 T5 T7 T5 T8 Thame* Water*

ermF K7 K8 T5 T7 T5 K8 Thame* Sediment*

intI1 K7 K8 T5 T7 T5 T7 Thame Water

E. coli K2 K8 T8 T3 T8 K8 Thame* Sediment*

qacE K2 K11 T5 T7 T5 T7 Thame* Water*

blactx-m-1 K2 K11 T3 T7 T3 K11 Thame* Sediment*
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in	ARG	community	structure	between	water	and	sediment	samples.		No	significant	

relationships	were	significant	in	both	water	and	sediment	samples.	The	marker	gene	

inti1	 abundance	 and	 prevalence	 was	 relatively	 high	 in	 all	 samples	 (Figure	 4.3)	

particularly	high	in	water	samples	and	didn’t	correlate	with	ARG.		

	

	

Figure	 4.4	 Correlations	 between	 ARG	 (blaCTX-M-1	 refers	 to	 group	 1.),	 E.	 coli	 and	
integrase	prevalence.	(a)	sediment	(b)	water.	Correlogram	is	coloured	by	the	strength	
of	 the	 correlation	 where	 dark	 red=	 -1,	 white=	 0	 and	 dark	 blue=	 1.	 Significant	
correlations	were	calculated	using	the	Pearson’s	correlation	analysis.	
	

Surprisingly	qnrS	did	not	correlate	with	E.	coli,	however	blaCTX-M-1	did	 in	sediment.		

The	 association	 between	 these	 three	 genes	 was	 expected	 due	 to	 the	 frequent	

carriage	of	these	genes	on	the	same	MGE	within	clinical	isolates	of	E.	coli,	however	

they	were	not	found	in	the	environmental	samples	presented	here		(Partridge	et	al.,	

2011a,	Coque	et	al.,	2008,	Can	et	al.,	2015).	The	prevalence	of	qnrS	was	significantly	

higher	in	the	Kennet	compared	to	all	other	gene	targets	and	was	also	higher	in	the	

water	which	may	be	important	in	determining	why	these	targets	did	not	correlate	

(Table	4.2).	Although	in	the	clinic	this	association	is	common,	the	association	in	the	

environment	is	not	significant.		

	

Statistically	significant	(p	<	0.05)	correlations	in	water	were	found	between	tetM	and	

qacE,	ermF	and	qacE,	ermF	and	tetM.		
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4.3.7	CGNF	population	ARG	prevalence	

ARG	prevalence	was	investigated	in	the	CGNF	to	determine	if	the	key	ARG	selected	

were	present	in	the	phenotypic-resistant	subpopulation	(Figure	4.5).	High	prevalence	

of	qnrs	,	qacE,	inti1	and	E.	coli	was	seen	in	many	samples	whereas	ermF,	tetM	and	

blaCTX-M-1	didn’t	show	any	clear	distribution.	Only	one	sample	had	a	high	number	of	

tetM	which	as	expected	came	from	the	CGNF	isolated	on	tetracycline.	Interestingly	

this	 CGNF	 displayed	 a	 high	 qacE	 prevalence,	 but	 little	 intI1	 and	 E.	 coli.	 The	 two	

samples	showing	high	blaCTX-M-1	prevalence	were	from	the	CGNF	from	cefotaxime	and	

tetracycline	isolated	communities.		

	

Clearly,	 the	 intI1	 gene	 was	 the	most	 prevalent	 gene	 in	 the	majority	 of	 samples,	

although	 a	 high	 prevalence	 of	 intI1	 did	 not	 appear	 to	 be	 associated	 with	 a	 high	

prevalence	of	E.	coli	as	might	have	been	expected	(Figure	4.5a).	In	fact,	samples	with	

very	high	intI1	generally	presented	low	levels	of	E.	coli	suggesting	this	marker	gene	

may	not	be	indicative	of	potentially	important,	clinically	relevant	resistant	pathogens	

in	the	environment.	The	water	samples	did	not	show	as	much	clustering	compared	

to	the	sediment	samples	with	only	a	few	clusters	of	3	or	more	(shown	by	brackets	in	

Figure	4.5a)	suggesting	more	variable	prevalence	of	AMR	gene	targets	within	water	

samples	than	sediment.	The	sediment	samples	clustered	towards	the	bottom	of	the	

heat	map	(Figure	4.5c)	with	a	larger	number	of	sediment	samples	compared	to	water	

samples	 with	 greater	 prevalence’s	 of	 AMR	 targets.	 The	majority	 (64	 %)	 of	 these	

samples	were	from	the	Thame	CGNF.	Of	the	highlighted	section	(Figure	4.5c),	which	

represents	 the	 samples	with	 the	highest	prevalence	of	genes,	 the	majority	of	 the	

samples	 (63	 %)	 were	 from	 the	 CGNF	 of	 sediment	 suggesting	 that	 sediment	may	

contribute	 more	 substantially	 to	 viable	 ARB	 than	 the	 water	 column.	 The	 top	 12	

samples	of	the	heat	map	(Figure	4.6b)	also	represent	samples	with	higher	prevalence	

of	AMR	targets,	again	the	majority	(67	%)	of	these	samples	were	from	sediment.	The	

strong	associations	observed	at	the	top	and	bottom	of	the	heat	map	(Figure	4.5a),	

where	 prevalence	 is	 highest,	 suggest	 sediment	 is	 likely	 more	 important	 as	 a	

reservoirs	of	AMR	than	water.		
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The	 Kennet	 and	 Thame	 samples	 showed	 some	 clustering,	 particularly,	 samples	

showing	little	prevalence	of	any	target	AMR	gene	(centre	section	of	Figure	4.5a)	were	

predominantly	 Kennet	 sample	 CGNFs	 (63	 %)	 and	 samples	 displaying	 the	 highest	

prevalence	of	targets	were	mainly	from	the	Thame	with	60	%	of	samples	in	the	top	

clusters	(Figure	4.5b)	and	61	%	in	the	bottom	cluster	(Figure	4.5c).	This	suggests	that	

urbanisation	and	larger	population	sizes	are	likely	more	important	in	determining	the	

AMR	prevalence	in	rivers	than	agricultural	impacts.		
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Figure	4.5	AMR	target	prevalence	in	CGNF	communities.	(a)	full	CGNF	samples	(b)	
highlighted	top	12	samples	showing	and	(c)	bottom	27	samples.	Highlighted	regions	
represent	 the	 samples	with	 the	highest	prevalence	of	AMR	 target	genes	Brackets	
mark	 clusters,	 for	 (a)	 and	 (c)	 brackets	 represent	 clusters	 of	more	 than	 3,	 for	 (b)	
brackets	do	not	represent	clusters	and	instead	represent	different	sample	type,	with	
minimum	1	sample.	(blaCTX-M-1	refers	to	group	1.)		

in
ti1

qn
rS

qa
cE

er
m
F

te
tM

ct
x.
m

E
_c
ol
i

T5_chromo_water
K11_ctab_water
T8_tet_sediment
T5_ery_sediment
T3_ery_sediment
T8_tax_water
T3_tet_water
T8_cip_water
T5_cip_water
T5_cip_sediment
T5_tax_sediment
K7_tet_water
K7_tet_sediment
T3_cip_water
K7_ctab_sediment
K7_ery_sediment
K8_ery_sediment
T3_chromo_sediment
T3_tax_water
T3_tet_sediment
K11_tet_sediment
T7_ctab_sediment
K2_ctab_sediment
K8_ctab_sediment
T3_cip_sediment
K2_ctab_water
T8_cip_sediment
T8_chromo_water
T5_ctab_sediment
K11_tax_sediment
K11_chromo_water
K2_cip_sediment
T7_cip_sediment
T7_ery_sediment
K8_tet_sedimen
K2_chromo_sediment
K8_cip_sediment
T8_tax_sediment
T3_ctab_sediment
T8_ery_water
K2_ery_sediment
T7_chromo_sediment
T5_ctab_water
T5_chromo_sediment
T7_tax_sediment
K7_chromo_sediment
K11_tax_water
K11_cip_water
T8_tet_water
T7_chromo_water
K7_ctab_water
T7_ctab_water
T7_ery_water
K2_tet_water
K2_tax_water
K2_cip_water
K7_tax_sediment
K8_ctab_water
K8_tax_water
K2_tet_sediment
K2_tax_sediment
K8_tet_sedimen
K7_cip_water
K8_ery_water
K8_chromo_water
T7_tax_water
K2_chromo_water
K8_cip_water
K7_ery_water
T7_tet_water
K11_ery_water
T3_ery_water
K7_cip_sediment
K11_chromo_sediment
T3_ctab_water
T5_ery_water
K7_chromo_water
K7_tax_water
T8_chromo_sediment
T3_chromo_water
T8_ctab_water
K11_ctab_sediment
K2_ery_water
T7_tet_sediment
K8_chromo_sediment
T7_cip_water
K11_cip_sediment
T3_tax_sediment
T8_ctab_sediment
T5_tet_water
K8_tax_sediment
T5_tax_water
K11_ery_sediment
T5_tet_sediment
K11_tet_water
T8_ery_sediment

0 0.05 0.1 0.15
Value

0
20
0

40
0

60
0

Color Key
and Histogram

C
ou
nt

inti1 qnrS qacE ermF tetM blactx-m-1 E.	coli

sediment

water

water

sediment

water

sediment

sediment

sediment

sediment

water
sediment

(a)

i
n
t
i
1

q
n
r
S

q
a
c
E

e
r
m
F

t
e
t
M

c
t
x
.
m

E
_
c
o
l
i

T5_chromo_water
K11_ctab_water
T8_tet_sediment
T5_ery_sediment
T3_ery_sediment
T8_tax_water
T3_tet_water
T8_cip_water
T5_cip_water
T5_cip_sediment
T5_tax_sediment
K7_tet_water
K7_tet_sediment
T3_cip_water
K7_ctab_sediment
K7_ery_sediment
K8_ery_sediment
T3_chromo_sediment
T3_tax_water
T3_tet_sediment
K11_tet_sediment
T7_ctab_sediment
K2_ctab_sediment
K8_ctab_sediment
T3_cip_sediment
K2_ctab_water
T8_cip_sediment
T8_chromo_water
T5_ctab_sediment
K11_tax_sediment
K11_chromo_water
K2_cip_sediment
T7_cip_sediment
T7_ery_sediment
K8_tet_sedimen
K2_chromo_sediment
K8_cip_sediment
T8_tax_sediment
T3_ctab_sediment
T8_ery_water
K2_ery_sediment
T7_chromo_sediment
T5_ctab_water
T5_chromo_sediment
T7_tax_sediment
K7_chromo_sediment
K11_tax_water
K11_cip_water
T8_tet_water
T7_chromo_water
K7_ctab_water
T7_ctab_water
T7_ery_water
K2_tet_water
K2_tax_water
K2_cip_water
K7_tax_sediment
K8_ctab_water
K8_tax_water
K2_tet_sediment
K2_tax_sediment
K8_tet_sedimen
K7_cip_water
K8_ery_water
K8_chromo_water
T7_tax_water
K2_chromo_water
K8_cip_water
K7_ery_water
T7_tet_water
K11_ery_water
T3_ery_water
K7_cip_sediment
K11_chromo_sediment
T3_ctab_water
T5_ery_water
K7_chromo_water
K7_tax_water
T8_chromo_sediment
T3_chromo_water
T8_ctab_water
K11_ctab_sediment
K2_ery_water
T7_tet_sediment
K8_chromo_sediment
T7_cip_water
K11_cip_sediment
T3_tax_sediment
T8_ctab_sediment
T5_tet_water
K8_tax_sediment
T5_tax_water
K11_ery_sediment
T5_tet_sediment
K11_tet_water
T8_ery_sediment

0 0.05 0.1 0.15
Value

0
2
0
0

4
0
0

6
0
0

Color Key
and Histogram

C
o
u
n
t

inti1 qnrS qacE ermF tetM blactx-m-1 E.	coli

(b)

sediment

water

sediment

water

sediment

sediment

sediment

water

water

i
n
t
i
1

q
n
r
S

q
a
c
E

e
r
m
F

t
e
t
M

c
t
x
.
m

E
_
c
o
l
i

T5_chromo_water
K11_ctab_water
T8_tet_sediment
T5_ery_sediment
T3_ery_sediment
T8_tax_water
T3_tet_water
T8_cip_water
T5_cip_water
T5_cip_sediment
T5_tax_sediment
K7_tet_water
K7_tet_sediment
T3_cip_water
K7_ctab_sediment
K7_ery_sediment
K8_ery_sediment
T3_chromo_sediment
T3_tax_water
T3_tet_sediment
K11_tet_sediment
T7_ctab_sediment
K2_ctab_sediment
K8_ctab_sediment
T3_cip_sediment
K2_ctab_water
T8_cip_sediment
T8_chromo_water
T5_ctab_sediment
K11_tax_sediment
K11_chromo_water
K2_cip_sediment
T7_cip_sediment
T7_ery_sediment
K8_tet_sedimen
K2_chromo_sediment
K8_cip_sediment
T8_tax_sediment
T3_ctab_sediment
T8_ery_water
K2_ery_sediment
T7_chromo_sediment
T5_ctab_water
T5_chromo_sediment
T7_tax_sediment
K7_chromo_sediment
K11_tax_water
K11_cip_water
T8_tet_water
T7_chromo_water
K7_ctab_water
T7_ctab_water
T7_ery_water
K2_tet_water
K2_tax_water
K2_cip_water
K7_tax_sediment
K8_ctab_water
K8_tax_water
K2_tet_sediment
K2_tax_sediment
K8_tet_sedimen
K7_cip_water
K8_ery_water
K8_chromo_water
T7_tax_water
K2_chromo_water
K8_cip_water
K7_ery_water
T7_tet_water
K11_ery_water
T3_ery_water
K7_cip_sediment
K11_chromo_sediment
T3_ctab_water
T5_ery_water
K7_chromo_water
K7_tax_water
T8_chromo_sediment
T3_chromo_water
T8_ctab_water
K11_ctab_sediment
K2_ery_water
T7_tet_sediment
K8_chromo_sediment
T7_cip_water
K11_cip_sediment
T3_tax_sediment
T8_ctab_sediment
T5_tet_water
K8_tax_sediment
T5_tax_water
K11_ery_sediment
T5_tet_sediment
K11_tet_water
T8_ery_sediment

0 0.05 0.1 0.15
Value

0
2
0
0

4
0
0

6
0
0

Color Key
and Histogram

C
o
u
n
t

sediment

water

water

water

sediment

sediment

sediment

water

water
sediment

sediment

water

intI1 qnrS qacE ermF tetM blactx-m-1
E.	coli

(c)



	 148	

The	distribution	of	target	prevalence	was	highly	variable	across	sites	within	the	same	

rivers	(Figures	4.6	and	Figure	4.7).	The	sediment	samples	showed	larger	prevalence	

of	most	gene	targets	at	Thame	sites	3	and	5	with	the	greatest	prevalence	of	 intI1	

observed	 in	 phenotypic	 erythromycin-resistant	 communities.	 Surprisingly	 the	

prevalence	of	 the	ESBL	blaCTX-M-1	 did	not	 appear	 to	 correlate	with	 the	phenotypic	

cefotaxime	 communities	 from	 sediment	 and	 appears	 highest	 in	 the	 communities	

presenting	phenotypic	tetracycline	resistance	(Thame	8,	Figure	4.6).	From	Chapter	3	

it	 is	 unclear	 if	 competition	 on	 the	 plates	 may	 result	 in	 resilient	 communities	

predominantly	 of	 Pseudomonas	 rather	 than	 resistant	 communities	 which	 could	

explain	why	a	higher	prevalence	of	blaCTX-M-1	was	recorded	in	communities	where	it	

would	 not	 be	 expected.	 The	 tetracycline-resistant	 CGNF	 communities	 did	 show	 a	

higher	 number	 of	 Enterobacteriaceae	 compared	 to	 cefotaxime-resistant	 CGNF	

(Chapter	 3,	 Figure	 3.16)	 which	 may	 explain	 in	 part	 the	 unexpected	 prevalence,	

particularly	at	Thame	8.		
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The	prevalence	of	target	ARG	within	CGNF	appeared	lower	in	water	than	sediment	

for	the	majority	of	gene	targets	(Figure	4.6	and	Figure	4.7),	however	the	prevalence	

of	 intI1	was	substantially	higher.	In	water	CGNF	communities	the	prevalence	of	all	

genes,	except	qacE	and	intI1,	was	lower	than	5	%	for	most	site	and	conditions	tested.	

Consistent	with	prevalence	in	sediment,	the	prevalence	in	water	of	target	genes	was	

greatest	at	Thame	5.		

	

The	 prevalence	 within	 water	 CGNF	 was	 lower	 than	 expected	 for	 most	 targets	

(excluding	intI1	and	qacE)	and	chosen	targets	were	not	responsible	for	phenotypic	

resistance	 in	most	 instances.	The	choice	of	ARG	targets	 therefore	may	not	be	the	

best	 choice	 for	 monitoring	 purposes	 as	 it	 suggests	 other	 genes	 are	 likely	 to	 be	

involved	in	the	environmental	dissemination	of	phenotypic	resistance.		
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4.3.8	Investigating	the	prevalence	of	targets	in	the	CGNF	

Six	 antimicrobial	 conditions	 (unamended	 HiCA,	 ciprofloxacin,	 cefotaxime,	 CTAB,	

tetracycline	 and	 erythromycin)	 were	 used	 to	 isolate	 the	 CGNF.	 Data	 was	 log	

transformed	to	overcome	the	assumption	 in	ANOVA	of	homogeneity	of	variation.	

Two	way	ANOVAs	were	 fitted	to	 investigate	 the	differences	between	catchments,	

sample	 type,	 sites,	 sites	 within	 catchments	 and	 the	 differences	 between	 these	

factors.		

	

4.3.8.1	Investigating	qnrS	prevalence	in	the	CGNF	isolated	on	HiCA	

Sediment	and	water	samples	showed	no	significant	differences	in	the	prevalence	of	

qnrS	(ANOVA	F	=	0.11,	p	>	0.05)	but	showed	significant	differences	between	the	rivers	

with	 a	 higher	 prevalence	 at	 Thame	 sites	 compared	 to	 Kennet.	 The	 Thame	mean	

prevalence	was	5.6	x	10-5	and	 the	mean	prevalence	 in	 the	Kennet	was	1.4	x	10-6.	

Within	samples	from	the	same	river	samples	significant	differences	were	observed	

between	Thame	sites	5	and	7	and	between	7	and	8	where	site	7	has	significantly	

lower	prevalence	in	each	comparison	(Tukey	HSD	p	<	0.05).	No	significant	differences	

were	observed	between	any	of	the	Kennet	sites	(Tukey	HSD	p	>	0.05).	Individual	site	

comparisons	 showed	 no	 significant	 differences	 in	 the	 CGNF	 prevalence	 of	 qnrS		

between	sediment	and	water	(	ANOVA	F	=	2.16,	p	>	0.05).		

	

4.3.8.2	Investigating	ermF	prevalence	in	the	CGNF	isolated	on	HiCA	

No	significant	differences	were	found	when	investigating	sediment	and	water,	river	

or	 sites	 suggesting	 the	prevalence	of	ermF	 is	 consistent	 throughout	 this	 sampling	

regime.	Most	samples	did	not	carry	any	ermF	so	it	unsurprising	that	no	differences	

were	observed.		

	

4.3.8.3	Investigating	tetM	prevalence	in	the	CGNF	isolated	on	HiCA	

The	sample	type	was	not	important	in	determining	the	prevalence	of	tetM	with	no	

significant	differences	observed	between	water	and	sediment	samples.	Borderline	

significance	(ANOVA	F	=	3.28,	p	=	0.08)	was	recorded	for	prevalence	between	rivers	

with	the	Kennet	presenting	a	higher	prevalence	than	the	Thame	(mean	at	Kennet	=	

1.1	 x	 10-6	 and	 mean	 at	 Thame	 =	 4.4	 x	 10-7).	 Differences	 in	 prevalence	 between	
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samples	taken	from	the	same	river	showed	significant	differences	in	tetM	between	

Kennet	7	and	8	only	with	higher	prevalence	recorded	at	7	seven	(Tukey	HSD	p	<	0.05).	

No	significant	differences	were	observed	between	sites	in	the	Thame	catchment	or	

between	sediment	and	water	samples	recorded	for	each	site.		

	

4.3.8.4	Investigating	E.	coli	prevalence	in	the	CGNF	isolated	on	HiCA	

The	prevalence	of	E.	coli	 isolated	on	HiCA	was	not	 significantly	different	between	

sediment	 and	 water	 samples.	 The	 river	 from	 which	 the	 sample	 was	 taken	 was	

borderline	significant	in	determining	the	prevalence	of	E.	coli	(F=	3.25,	p	=	0.08),	the	

mean	prevalence	in	Kennet	samples	was	lower	than	the	mean	prevalence	in	Thame	

samples	(mean	in	Kennet	samples	=	3.2	x	10	-4	and	the	mean	in	Thame	samples	=	1.9	

x	10	-3).		

	

There	were	no	significant	differences	recorded	in	the	prevalence	of	E.	coli	between	

sites	 of	 the	 same	 river	 and	 no	 differences	 between	 sediment	 and	water	 at	 each	

individual	sites	were	observed.		

	

4.3.8.5	Investigating	intI1	prevalence	in	the	CGNF	isolated	on	HiCA	

The	prevalence	of	 intI1	 in	the	CGNF	was	significantly	different	between	water	and	

sediment	 samples	 with	 a	 higher	 prevalence	 in	 sediment	 compared	 with	 water	

samples	(F	=	36.47,	p	<	0.05).	In	sediment	samples	the	mean	prevalence	was	1.7	x	

103	and	in	water	the	mean	prevalence	was	substantially	lower	at	6.5	x	10-5.		

	

The	 Thame	was	 found	 to	 have	 a	 significantly	 higher	 prevalence	 of	 intI1	 than	 the	

Kennet	(Thame	mean	=	1.1	x	10-3	and	Kennet	mean	=	1.0	x	10-4)	(F=	19.31,	p	<	0.05).	

There	were	also	substantial	differences	observed	across	the	sites	within	each	river	

with	significant	variation	between	Kennet	11	and	7,	Kennet	11	and	8	(Tukey	HSD	p	<	

0.05)	and	borderline	significance	(p	=0.08)	between	Kennet	11	and	2.	Comparisons	

between	the	prevalence	of	intI1	in	the	sediment	and	water	between	rivers	was	made	

and	found	that	there	were	significant	differences	between	water	sample	prevalence	

between	 the	 Kennet	 and	 Thame	with	 a	 substantially	 higher	 prevalence	 in	 Thame	

water	samples	compared	to	Kennet	(mean	in	Thame	=	2.7	x	10-4,	mean	in	Kennet	=	
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1.6	 x	 10-5).	 Significant	 differences	were	 also	 recorded	 for	 prevalence	 in	 sediment	

between	 rivers	 with	 a	 higher	 prevalence	 again	 found	 in	 the	 Thame	 samples	

compared	with	Kennet	(mean	Thame	=	4.0	x	10	-3,	mean	Kennet	=	6.3	x	10-4).	

	

Individual	site	analysis	revealed	significant	differences	between	sediment	and	water	

at	Kennet	sites	2	and	7	with	a	higher	prevalence	recorded	in	sediment,	and	at	Thame	

site	7	which	had	a	significantly	higher	prevalence	in	water	samples	(Tukey	HSD	p	<	

0.05).		

	

4.3.8.6	Investigating	qacE	prevalence	in	the	CGNF	isolated	on	HiCA	

The	prevalence	of	qacE	was	found	to	be	significantly	higher	in	the	CGNF	of	sediment	

than	water	(ANOVA	F	=	12.98,	p	<	0.05).	The	mean	prevalence	of	qacE	in	sediment	

samples	was	2.1	x	10-4	and	the	mean	prevalence	in	water	was	3.2	x	10-5.	Significant	

differences	were	also	recorded	for	samples	taken	from	the	river	Kennet	and	samples	

from	 the	 Thame	with	 a	 higher	mean	 prevalence	 in	 samples	 from	 the	 Thame	 (F=	

23.58,	p	<	0.05).		

	

Within	the	Kennet	samples	significant	differences	in	qacE	prevalence	were	observed	

between	site	11	and	all	other	Kennet	sites.	The	prevalence	at	site	11	was	substantially	

higher	than	the	prevalence	recorded	across	the	other	sites	with	a	mean	prevalence	

of	1.3	x	10-3	and	an	average	mean	prevalence	at	sites	2,	7	and	8	of	1.00	x	10-5.		

	

The	 only	 site	 to	 have	 significant	 differences	 between	 sediment	 and	 water	 CGNF	

prevalence	of	qacE	was	Kennet	2	which	had	a	higher	prevalence	 in	 the	 sediment	

(Tukey	HSD	p	<	0.05)	with	a	mean	of	2.2	x	10-3	in	sediment	and	mean	of	2.6	x	10-7	in	

water	samples	from	this	site.	All	other	sites	showed	similar	prevalence	in	sediment	

and	water	samples.		

	

4.3.8.7	Investigating	blaCTX-M-	(group	1.)	prevalence	in	the	CGNF	isolated	on	HiCA	

The	 prevalence	 of	 blaCTX-M-1	 	 was	 not	 significantly	 different	 between	 water	 and	

sediment	 CGNFs	 but	 was	 different	 between	 rivers	 with	 the	 Thame	 presenting	 a	

significantly	higher	prevalence	 than	 the	Kennet	 (ANOVA,	F=	11.23,	 	p	<	0.05).	 the	
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mean	prevalence	at	the	Thame	sites	was	7.1	x	10-6	and	the	mean	at	the	Kennet	was	

9.7	x	10-7.		

	

There	 was	 no	 significant	 difference	 between	 sites	 in	 the	 Kennet	 but	 there	 was	

differences	in	the	Thame,	between	sites	8	and	5	and	also	between	8	and	3	(ANOVA	

F	=	3.89,	p	<	0.005	and	post	hoc	Tukey	HSD	<	0.05).	Site	8	presented	a	much	higher	

prevalence	of	blaCTX-M-1			than	sites	3	and	5	with	a	mean	of	1.1	x	10-4	compared	to	the	

means	1.6	x	10-6	and	2.2	x	10-6	of	sites	3	and	5	respectively.		

	

Individual	site	analysis	showed	that	no	site	displayed	significant	differences	 in	the	

prevalence	 of	 blaCTX-M-1	 	 	 between	 water	 and	 sediment	 samples.	 Thame	 7	 was	

borderline	significant	(Tukey	HSD	p	=	0.059)	with	a	higher	prevalence	in	water	CGNF	

samples	compared	with	sediment	from	the	same	site.		

	

4.3.8.8	Summary	of	ARG	prevalence	in	site	CGNF	

In	 comparison	 with	 the	 total	 community	 analysis	 of	 ARG	 prevalence	 (Table	 4.2),	

fewer	 significant	 differences	were	 recorded.	 In	 the	 total	 community	 both	 sample	

type	and	river	were	important	in	determining	differences	in	prevalence	of	most	ARG	

targets	(excluding	intI1)	but	analysis	of	the	CGNF	showed	river	was	more	important	

in	ARG	prevalence	with	significant	differences	in	sample	type	recorded	for	only	intI1	

and	 qacE	 (Table	 4.3).	 This	 suggests	 that	 the	 resistant	 CGNF	 is	 the	 same	 within	

sediment	 and	 water	 samples	 (consistent	 with	 Chapter	 3)	 and	 therefore	 will	 be	

affected	by	the	same	environmental	factors.		

	

Consistent	with	the	observations	made	for	the	total	community	(Table	4.2)	the	CGNF	

isolated	on	unamended	HiCA	showed	that	Kennet	8	carried	low	prevalence	of	ARG.	

However,	Thame	5	did	not	present	the	highest	prevalence	for	most	gene	targets	as	

with	the	total	community	analysis.	Instead	the	sites	with	the	highest	prevalence	of	

ARG	 within	 the	 CGNF	 was	 variable	 and	 was	 dependant	 on	 the	 specific	 target	

investigated	 suggesting	 that	 although	 the	 communities	 are	 likely	 similar	 between	

water	and	sediment,	the	resistance	carried	in	this	communities	is	dependent	on	the	

surrounding	environment.	
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The	Thame	sites	generally	presented	higher	 carriage	of	ARG	compared	 to	Kennet	

sites	which	may	 be	 indicative	 of	 the	 urbanisation	 surrounding	 the	 river	 sampling	

sites.	 Consistent	with	 total	 community	 analysis	 this	 suggests	 that	WWTP	 effluent	

impacts	 are	 more	 important	 in	 determining	 the	 resistant	 CGFN	 than	 agricultural	

effects.		

	

Table	4.3	Summary	of	the	CGNF	communities	ARG	prevalence.	Sites	with	the	highest	
and	lowest	prevalence	of	chosen	gene	target	and	summarising	the	river	and	sample	
type	with	highest	prevalence.	K2	=	Kennet	2,	K7	=	Kennet	7,	K8	=	Kennet	8,	K11	=	
Kennet	11,	T3	=	Thame	3,	T7	=	Thame	7,	T8	=	Thame	8.	.	Significant	differences	are	
marked	 for	 Thame/Kennet	 and	 Sediment/Water	 comparisons	 with	 an	 asterisk.	
Borderline	significant	(0.05	>	0.1)	are	marked	with	a	tilde.	

	

	

4.3.9	Correlation	analysis	of	ARG	and	E.	coli	in	the	CGNF	of	sediment	and	water	

Correlation	analysis	was	carried	out	for	all	combinations	of	ARG	targets	and	E.	coli	

for	cultured	DNA	extractions	from	both	water	and	sediment	(Figure	4.8).	Significant	

correlations	in	water	and	sediment	culturable	fraction	were	different	with	the	only	

pair	of	ARG	targets	correlating	in	both	water	and	sediment	being	intI1	and	qacE.		

	

	

	

Target

River

Sediment/Water

Kennet Thame
Site	with	highest	

prevalence
Site	with	lowest	

prevalence
Thame/Kennet

Highest	 Lowest Highest Lowest

qnrS K7 K8 T5 T7 T5 K8 Thame* Water

tetM K7 K8 T3 T5 K7 T5 Kennet ~ Water

ermF K2 K7/K8/K11 T3 T5/T7 K2 K7/K8/K11/T5/T7 Kennet Water

intI1 K11 K8 T3 T6 T3 K8 Thame* Sediment*

E. coli K2 K7 T8 T97 T8 T7 Thame ~ Sediment

qacE K11 K7 T5 T7 K11 K7 Thame* Sediment*

blactx-m-1 K7 K8 T8 T5 T8 K8 Thame* Sediment
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Figure	4.8	Correlations	between	AMR	target	prevalence	(blaCTX-M-1	refers	to	group	1)	
in	 CGNF	 from	 planktonic	 and	 sediment	 communities.	 (a)	 Sediment	 (b)	 Water.	
Correlogram	 is	 coloured	 by	 the	 strength	 of	 the	 correlation	 where	 dark	 red=	 -1,	
white=0	and	dark	blue=1.	Significant	relationships	are	marked	with	an	asterisk.		
	

Significant	correlations,	calculated	using	the	Pearson’s	correlation	analysis,	showed	

that	statistically	significant	(p	<	0.05)	correlations	in	sediment	CGNF	existed	between	

qnrS	and	blaCTX-M-1,	init1	and	qacE	and	intI1	and	blaCTX-M-1	and	significant	correlations	

in	water	existed	between	qnrS	and	qacE,	ermF	and	E.	coli,	ermF	and	blaCTX-M-1,	E.	coli	

and	intI1,	E.	coli	and	blaCTX-M-1,	intI1	and	qacE.	This	provides	a	complex	picture	of	the	

large	number	of	variables	that	may	be	affecting	 individual	sites	and	demonstrates	

the	clear	association	of	E.	coli	and	ESBLs	and	integrons	with	qacE	and	suggests	that	

E.	coli	entering	the	environment	through	anthropogenic	contamination	 is	 likely	 to	

carry	 to	 clinically	 relevant	 ARG	 genes	 which	would	 therefore	make	 treatment	 of	

infection	difficult	if	this	E.	coli	were	to	be	ingested.	

	

4.3.10	Investigating	the	prevalence	of	phenotypic	resistant	E.	coli	within	the	CGNF	

Investigating	 the	prevalence	of	E.	 coli	within	each	 resistant	 culturable	 community	

was	carried	out	to	determine	if	different	rivers	and	different	sites	carried	the	same	

phenotypic	number	of	resistant	E.	coli.		

	

4.3.10.1	Prevalence	of	phenotypic	ciprofloxacin-resistant	E.	coli	

Ciprofloxacin-resistant	E.	coli	were	equally	prevalent	in	samples	taken	from	sediment	

and	water	(ANOVA	F	=	1.81,	p	>	0.05)	but	were	different	between	rivers.	The	river	

Thame	had	a	significantly	higher	prevalence	than	the	river	Kennet	(F	=	5.00,	p	<	0.05).	
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The	mean	prevalence	in	the	Thame	was	4.7	x	10-4	and	the	mean	in	Kennet	CGNF	was	

4.2	x	10-5.	Across	sites,	there	were	no	significant	difference	in	prevalence	recorded	

in	either	river	suggesting	although	prevalence	differs	between	rivers	it	does	not	differ	

within	the	same	river.	There	were	no	significant	differences	recorded	for	individual	

site	analysis.		

	

4.3.10.2	Prevalence	of	phenotypic	cefotaxime-resistant	E.	coli	

There	were	borderline	significant	differences	between	the	prevalence	of	phenotypic	

cefotaxime-resistant	E.	coli	detected	 in	sediment	and	water	 (ANOVA	F	=	3.07,	p	=	

0.089)	with	a	mean	prevalence	of	1.44	x	10-4	in	sediment	CGNF	and	4.9	x	10-5	in	water.	

Significant	 differences	 were	 recorded	 between	 rivers	 with	 the	 Thame	 carrying	 a	

significantly	 larger	 prevalence	 in	 the	 CGNF	 than	 the	 Kennet	 (F	 =	 16.55,	 p	 <	 0.05)	

(Thame	mean	=	3.0	x	10-4	and	Kennet	mean	=	2.3	x	10-5).	The	site	prevalence	across	

the	Kennet	was	consistent	with	no	significant	variation	recorded.	Differences	were	

observed	between	sites	in	the	Thame	between	Thame	3	and	7,	3	and	8,	and	5	and	7.	

Within	the	Thame	samples	site	7	had	the	lowest	prevalence	at	9.2	x	10-6	and	site	3	

had	 the	 highest	 at	 5.2	 x	 10-3.	 Sediment	 sample	 prevalence	 was	 borderline	

significantly	 (Tukey	 HSD	 p	 =	 0.071)	 higher	 in	 the	 Thame.	 Water	 samples	 were	

significantly	different	(p	<	0.05)	and	again	showed	higher	prevalence	in	the	Thame	

CGNF.	Therefore,	the	variation	was	found	to	be	greatest	in	the	Thame	but	also	on	

average	was	reported	to	have	a	higher	prevalence	than	Kennet	samples.		

	

When	individual	site	analysis	was	performed	only	Kennet	site	8	showed	significant	

differences	in	the	prevalence	of	cefotaxime-resistant	E.	coli	in	water	and	sediment	of	

the	CGNF	(Tukey	HSD	p	<	0.05).	Prevalence	was	higher	in	sediment	than	the	water	

(mean	sediment	=	1.4	x	10-3	and	mean	of	water	=	1.1	x	10-6.		

	

4.3.10.3	Prevalence	of	phenotypic	erythromycin-resistant	E.	coli	

Phenotypic	erythromycin	resistant	E.	coli	was	significantly	higher	in	sediment	CGNF	

than	 water	 CGNF	 (ANOVA	 F=	 13.39	 p	 <	 0.05),	 but	 there	 were	 no	 significant	

differences	in	prevalence	between	the	Kennet	and	the	Thame	and	no	individual	site	

variation.	
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4.3.10.4	Prevalence	of	phenotypic	tetracycline-resistant	E.	coli	

Significant	differences	in	the	prevalence	of	phenotypic	tetracycline-resistant	E.	coli	

were	observed	between	sediment	and	water	CGNF	communities	(ANOVA	F	=	9.70,	p	

<	 0.05).	 with	 sediment	 presenting	 a	 significantly	 higher	 prevalence	 compared	 to	

water.	The	mean	prevalence	of	E.	coli	in	sediment	samples	cultured	on	tetracycline	

was	1.5	x	10-3	and	1.0	x	10-4	in	communities	cultured	from	water.	No	difference	was	

recorded	between	river	with	similar	overall	prevalence,	however	within	each	river	

site	variation	was	significant	for	some	sites	(F	=	5.50,	p	<	0.05).	Pairwise	comparisons	

between	sites	showed	that	prevalence	was	significantly	different	between	Kennet	

sites	only	with	differences	between	sites	2	and	7,	2	and	11,	7	and	8	and	8	and	11	

(Tukey	 HSD	 p	 <	 0.05).	 Within	 the	 Kennet	 samples	 site	 11	 reported	 the	 highest	

prevalence	 of	 tetracycline-resistant	 E.	 coli	 which	 was	 comparable	 to	 site	 7.	 The	

lowest	prevalence	was	at	site	8	and	was	similar	to	the	prevalence	at	site	2	(mean	

prevalence	at	site	two	=	1.5	x	10-5,	site	seven	=	9.5	x	10-3,	site	eight	=	1.5	x	10-5	and	

site	 eleven	 =	 1.00	 x	 10-2.)	 No	 individual	 site	 comparisons	 between	 water	 and	

sediment	were	significant.		

	

4.3.10.5	Prevalence	of	phenotypic	CTAB-resistant	E.	coli	

The	 prevalence	 of	 CTAB-resistant	 E.	 coli	 within	 water	 and	 sediment	 CGNF	 was	

significantly	different	(ANOVA,	F	=	11.84,	p	<0.05).	A	higher	prevalence	was	found	in	

sediment	samples	(mean	=	3.0	x	10-3)	compared	to	water	sample	(mean	=	3.5	x	10-4).	

There	 was	 borderline	 significance	 (F=	 3.77,	 p	 =	 0.061)	 reported	 for	 differences	

between	rivers	with	the	Kennet	carrying	a	higher	prevalence	of	E.	coli	compared	with	

the	Thame.		

	

No	significant	differences	were	recorded	for	differences	in	prevalence	of	E.	coli	within	

the	same	rivers	and	no	differences	between	sediment	and	water	existed	between	

the	river	Thame	and	Kennet.			

	

4.3.10.6	Summary	of	E.	coli	prevalence	in	site	CGNF	

Phenotypic	 resistant	E.	coli	prevalence	was	different	between	sites	with	a	varying	

level	of	E.	coli	 found	 in	 resistant	communities	at	each	site.	 	There	are	no	obvious	
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determinants	 of	 resistant	 E.	 coli	 prevalence	 with	 some	 communities	 displaying	

significant	differences	between	sediment	and	water	and	some	dependent	upon	river.		

Interestingly,	 site	prevalence	varied	according	 to	 the	 condition	used	 to	 isolate	on	

with	 CTAB-resistant	 E.	 coli	 isolates	 most	 prevalent	 at	 Thame	 seven	 and	 least	

prevalent	at	Thame	3	contrasting	to	ciprofloxacin-resistant	E.	coli	and	cefotaxime-

resistant	E.	coli	which	were	most	prevalent	at	Thame	3	and	least	prevalent	at	Thame	

7.	 Lower	 prevalence	 at	 Thame	 7	 is	 consistent	 with	 the	 total	 community	 analysis	

(Table	4.2).	Overall,	CTAB-resistant	E.	coli	were	more	prevalent	at	Kennet	sites	than	

Thame,	 with	 borderline	 significance,	 suggesting	 agricultural	 impact	 is	 potentially	

more	 important	 in	 determining	 the	 prevalence	 of	 CTAB-resistance	 in	 river	

communities	than	WWTP	effluent	impact.		

	

The	large	variation	observed	between	phenotypic	resistance	of	the	same	bacterial	

strain	suggests	massive	environmental	diversity	which	 is	not	simply	dependant	on	

sample	type	or	location.	Investigating	the	prevalence	of	phenotypic	E.	coli	from	the	

CGNF	has	highlighted	the	importance	of	determining	host	in	relation	to	determining	

the	 effects	 of	 environmental	 factors	 and	 has	 shown	 that	 factors	 affecting	 gene	

prevalence	 in	 total	 communities	 do	 not	 necessarily	 correlate	 with	 differences	 in	

important	human	pathogens.		
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Table	4.4	Summary	of	phenotypic	resistant	E.	coli	from	CGNF	communities.	Sites	with	
the	highest	and	lowest	prevalence	of	chosen	gene	target	and	summarising	the	river	
and	sample	type	with	highest	prevalence.	K2	=	Kennet	2,	K7	=	Kennet	7,	K8	=	Kennet	
8,	K11	=	Kennet	11,	T3	=	Thame	3,	T7	=	Thame	7,	T8	=	Thame	8.	Significant	differences	
are	marked	for	Thame/Kennet	and	Sediment/Water	comparisons	with	an	asterisk.	
Borderline	significant	(0.05	>	0.1)	are	marked	with	a	tilde.		

	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Phenotypic	
resistance

River

Sediment/Water

Kennet Thame
Site	with	highest	

prevalence
Site	with	lowest	

prevalence
Thame/Kennet

Highest	 Lowest Highest Lowest

HiCA K2 K7 T8 T7 T8 T7 Thame ~ Sediment

Ciprofloxacin K7 K11 T3 T7 T3 K11 Thame* Sediment	~

Cefotaxime K8 K2 T3 T7 T3 K2 Thame* Sediment*

CTAB K2 K8 T7 T3 K2 T3 Kennet ~ Sediment*

Erythromycin K7 K2 T8 T7 T8 T7 Thame Sediment*

Tetracycline K7 K2 T3 T5 K7 K2 Kennet Sediment*
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4.4	Discussion	

Studies	investigating	ARG	prevalence	in	the	environment	have	previously	focussed	

on	either	water	or	sediment	samples	(Amos	et	al.,	2014,	Caucci,	2016b).	In	this	study,	

both	 water	 and	 sediment	 samples	 were	 taken	 to	 evaluate	 the	 relative	 ARG	

prevalence	in	each	sample	type.	ARG	abundance	was	found	to	be	higher	in	sediment	

than	water	 and	 consistent	with	 the	 results	 in	 Chapter	 3,	 the	work	 here	 suggests	

sediment	presents	a	greater	reservoir	of	ARB	than	water.	There	was	no	significant	

variation	in	gene	prevalence	between	the	CGNF	from	water	or	sediment	suggesting	

that	 prevalence	 in	 this	 population	 does	 not	 vary	 with	 sample	 type	 and	 that	 in	

accordance	 with	 findings	 in	 Chapter	 3,	 population	 similarity	 results	 in	 similar	

prevalence	of	ARG.	

	

The	 prevalence	 of	 selected	 AMR	 targets	was	 significantly	 different	 in	 all	 samples	

collected,	with	variation	between	river	and	sample	type.	There	were	fewer	significant	

differences	in	water	samples	which	may	be	due	to	dilution	effects	resulting	in	similar	

prevalence	observed	in	water	samples	suggesting	that	sediment	is	a	more	suitable	

method	of	monitoring	resistance	in	rivers.	This	contrasts	to	the	majority	of	studies	

which	have	sampled	WWTP	effluent	impacts	on	the	surrounding	rivers	water	rather	

than	sediment	aiming	to	investigate	the	direct	effects	of	the	treatment	plant	effluent	

on	 the	 river	 (Tang	 et	 al.,	 2016,	Drury	 et	 al.,	 2013)	 .The	 cumulative	 effects	 of	 the	

treatment	plant	on	the	environment	are	likely	to	be	more	notable	in	river	sediment	

however	due	to	floc	formation	and	settlement	that	may	allow	bacteria	to	persist	in	

the	sediment	longer	compared	to	water	communities	which	are	likely	diluted	with	

river	 flow.	 The	 sediment	 samples	 show	 large	 numbers	 of	 viable	 Gram-negative	

coliforms	within	the	sediment	community	which	would	normally	not	be	present	in	

the	indigenous	population	(Munck	et	al.,	2015).		

	

The	most	 prevalent	 gene	was	 intI1	which	was	 detected	 at	 levels	 consistent	with	

previous	 studies	 (Berglund	 et	 al.,	 2014,	 Zhang	 et	 al.,	 2009b).	 There	 were	 no	

differences	 in	 prevalence	 between	 water	 and	 sediment	 samples	 but	 there	 were	

significant	 differences	 in	 abundance	 between	 these	 sample	 types	 with	 sediment	

carrying	a	higher	number	of	 intI1	genes	than	the	water	 (comparison	between	per	
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gram	 wet	 weight	 sediment	 and	 per	 ml	 water).	 Significant	 differences	 were	 not	

recorded	between	rivers	however	the	Thame	did	present	higher	prevalence	which	

might	be	related	to	the	larger	urban	impact.	Previous	studies	have	demonstrated	the	

association	 with	 integrons	 and	 anthropogenic	 impacts;	 one	 study	 showed	

enrichment	of	integron-associated	genes	during	the	WWTP	processes	reporting	high	

levels	of	the	intI1	gene	and	other	studies	have	demonstrated	the	association	of	this	

gene	with	E.	 coli	 isolates	 from	WWTP	effluent	 impacted	 rivers	 (Bengtsson-Palme,	

2016,	 Kotlarska	 et	 al.,	 2015).	 The	 association	 of	 class	 1	 integrons	 at	 sites	 with	

anthropogenic	 impacts	 has	 led	 to	 the	 assumption	 that	 the	 integrase	 gene	 may	

provide	a	suitable	marker	gene	to	evaluate	the	extent	of	human	pollution	(Gillings	et	

al.,	2015).		Although	this	gene	is	commonly	detected	in	environmental	samples,	the	

detection	of	 the	 intI1	 gene	does	not	 necessarily	 infer	 detection	of	 clinical	 class	 1	

integrons	(which	are	characterised	by	the	possession	of	the	sul1	and	qacED1		genes	

)(Deng	et	al.,	2015).	In	the	current	study,	although	the	qacE	gene	(primers	amplify	

both	qacED1	and	qacE)	was	 shown	 to	 correlate	with	 intI1	 gene	 (suggesting	 some	

clinical	 class	 1	 integrons	 are	 present	 in	 the	 environment),	 the	 prevalence	 and	

abundance	of	this	gene	was	different,	often	with	the	intI1	gene	at	much	higher	levels	

than	the	qacE	gene.	The	higher	levels	of	the	intI1	gene	suggest	that	integrons	without	

the	qacED1	are	likely	to	be	present	in	the	environment.	If	the	clinical	integrons	are	

to	be	used	as	a	measure	of	anthropogenic	pollution,	measuring	 intI1	alone	 is	not	

sufficient	to	evaluate	pollution	and	therefore	alternative	primer	sets	should	be	used	

that	capture	the	3’	conserved	region,	measuring	sul1	and	qacED1	genes	to	ensure	

measurements	reflect	clinical	integrons	and	not	environment-associated	ones.	The	

qacED1	gene	has	only	been	found	on	clinical	class	1	integrons	and	therefore	primers	

designed	to	capture	this	gene	in	association	with	the	sul1	gene	would	provide	a	more	

accurate	measure	of	contamination	from	these	MGEs	(Paulsen,	1993).	Correlation	

analysis	showed	that	the	intI1	gene	did	not	correlate	with	any	other	ARG	target	in	

water	or	sediment.	Combined	with	the	higher	prevalence	of	intI1,	this	work	suggests	

that,	 in	 contrast	 to	 previous	 work	 that	 intI1	 is	 not	 a	 suitable	 predictor	 of	

environmental	ARG	(a	point	which	 is	 further	discussed	 in	Chapter	5)	 (Amos	et	al.,	

2015).		
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Correlations	between	qnrS	and	blaCTX-M-1,	and	blaCTX-M-1	and	E.	coli	were	observed.	The	

association	between	qnrS	and	blaCTX-M-1has	previously	been	observed	in	the	emerging	

human	pandemic	strain	of	E.	coli	ST131	which	has	been	detected	both	the	clinic	and	

environment	(Matsumura	et	al.,	2013,	Coque	et	al.,	2008,	Can	et	al.,	2015,	Dhanji,	

2011).	Although	it	cannot	be	concluded	that	the	correlation	between	qnrS	and	blaCTX-

M-1	is	caused	by	E.	coli	strains	carrying	these	genes,	it	is	notable	that	this	correlation	

does	occur	in	the	environment	and	is	an	association	that	is	further	investigated	in	

Chapter	6.	

	

The	prevalence	of	ARG	did	not	correlate	with	the	antimicrobial	used	to	isolate.	The	

chosen	 ARG	 targets	 were	 picked	 based	 on	 the	 likelihood	 that	 they	 would	 be	

important	 environmental	 markers	 of	 phenotypic	 resistance	 as	 suggested	 by	

Berendonk	et	al.,	however	low	prevalence	of	each	expected	resistance	gene	target	

was	observed	under	each	selective	condition	(Berendonk	et	al.,	2015).	The	ermF	gene	

was	not	detected	in	many	samples	and	when	it	was	detected	it	was	at	considerably	

low	levels,	suggesting	this	gene	is	unlikely	to	play	an	important	role	in	environmental	

dissemination	of	erythromycin	resistance.	Further	work	investigating	key	genes	must	

be	carried	out	to	determine	if	they	are	suitable	markers	for	environmental	resistance	

levels	and	if	other	sites	display	higher	prevalence.	Many	environmental	factors	are	

important	in	determining	prevalence	of	ARG	therefore	it	is	important	to	investigate	

another	catchment	to	elucidate	if	ermF	and	other	ARG	are	prevalent	(and	therefore	

suitable	markers)	in	different	rivers.	It	was	recently	found	by	Forsberg		et	al.	that	soil	

resistomes	are	distinct	suggesting	that	monitoring	resistance	in	another	river	would	

likely	give	a	different	resistance	profile	(Forsberg	et	al.,	2014).		

	

Investigating	the	differences	in	prevalence	of	ARG	targets	between	sites	showed	that	

Thame	7	was	often	the	least	impacted	site	with	respect	to	ARG	pollution	which	was	

unsurprising	 considering	 it	was	 the	 furthest	 away	 from	WWTP	effluent	 impact	 at	

approximately	~10	km	downstream	of	effluent	release.	This	suggests	that	it	is	not	the	

size	 of	 the	 population	 served	 by	 the	 WWTP	 plant	 that	 contributes	 to	 the	

dissemination	but	the	location,	with	sampling	sites	less	than	500m	from	the	effluent	
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release,	 presenting,	 often	 significantly,	 higher	 prevalence	 of	 ARG	 compared	 to	

samples	taken	further	downstream	from	the	effluent	release	site.	Although,	dilution	

factor	therefore	plays	a	role	 in	prevalence	of	ARG	in	water	and	sediment,	all	ARG	

(except	ermF)	were	found	at	all	sampling	points	in	both	rivers	in	both	sediment	and	

water.	Dilution	of	effluent	clearly	does	play	a	role	in	reducing	the	prevalence	of	ARG	

further	away	from	the	release	point	(Jalliffier-Verne	et	al.,	2015),	however	it	is	not	

sufficient	to	reduce	it	below	the	detection	limit.		

	

The	combination	of	WWTP	and	agricultural	impact	contributes	to	ARG	prevalence	in	

both	sediment	and	water.	Although	the	effects	of	WWTP	may	be	more	important,	

with	Thame	sites	often	presenting	higher	prevalence	compared	to	Kennet	sites	(due	

to	 the	 impact	of	 larger	populations	 served	by	WWTPs).	The	presence	of	different	

animals	near	sites	clearly	plays	a	role,	however	 it	 is	not	possible	from	the	current	

study	to	determine	which	agricultural	impacts	were	most	important	in	determining	

prevalence.	 The	 presence	 of	 fish	 farms	 at	 Kennet	 7,	 8	 and	 11	 however	 is	 likely	

involved	 in	 the	 higher	 prevalence	of	 resistance	 genes	 at	 these	 sites	 compared	 to	

Kennet	2	(which	was	also	recorded	to	have	high	animal	impact	but	did	not	have	the	

direct	impact	of	fish	farms).		Fish	farm	effluents	are	released	directly	in	to	the	river,	

therefore	 any	 antimicrobial	 that	 is	 used	 in	 the	 treatment	 of	 disease	 in	 fish	 is	

consequently	released	in	to	the	surrounding	river	creating	large	selection	pressures	

in	water	and	sediment	(Schmidt,	2000).	Studies	have	demonstrated	the	association	

of	AMR	with	aquaculture	with	ARB	isolated	from		the	surrounding	ecosystem	even	

when	there	has	been	no	recent	antimicrobial	use	(Huang	et	al.,	2015).	Schmidt	et	al.	

investigated	 rainbow	 trout	 farms	and	 the	 surrounding	environmental	effects	with	

respect	to	ARB	recovered	from	the	streams	impacted	by	fish	farms	(Schmidt,	2000).	

Consistent	with	the	current	study	they	discovered	high	levels	of	resistance	among	

the	culturable	fraction	of	bacteria	in	water	and	sediment	samples	(Schmidt,	2000).			

	

Many	studies	have	investigated	agriculture	as	a	route	of	ARG	dissemination	in	the	

environment	showing	different	factors,	such	as	antimicrobial	usage	in	treatment,	and	

in	some	countries,	as	growth	promoters,	contribute	to	ARG	levels	in	manure	which	

is	often	spread	to	land	(Gantzhorn	et	al.,	2014,	Chantziaras	et	al.,	2013,	Byrne-Bailey	
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et	al.,	2011,	VMD,	2016).	The	use	of	manure	as	fertilizer	is	primarily	responsible	for	

ARG	and	ARB	dissemination	in	to	the	environment	due	to	run-off	resulting	in	river	

contamination.	The	application	of	manure	to	land	in	the	surrounding	area	was	not	

known	in	the	current	study	so	it	cannot	be	determined	if	this	did	contribute	to	the	

prevalence	of	ARB	in	the	environment	however,	previous	studies	have	demonstrated	

that	this	is	likely	to	occur	in	agricultural	regions		(Udikovic-Kolic	et	al.,	2014,	Chee-

Sanford,	2009).	

	

ARG	 prevalence	 in	 the	 total	 community	 and	 the	 CGNF	 were	 not	 significantly	

determined	by	the	same	factors.	Within	the	total	communities	both	the	sample	type	

(water	or	sediment)	and	the	river,	carried	significantly	different	prevalence	whereas	

in	the	CGNF	the	prevalence	of	ARG	was	not	reliant	on	sample	type	and	in	only	a	few	

cases	was	significant	regarding	river.	 	The	resistant	CGNF	therefore	appears	to	be	

determined	by	other	environmental	factors	that	were	not	evaluated	in	the	current	

study.	For	example,	river	flow	(which	will	reduce	prevalence	with	faster	rate),	climate	

and	seasonal	impacts,	and	type	of	treatment	plant	which	should	all	be	investigated	

in	future	studies	attempting	to	evaluate	environmental	ARG	prevalence.		

	

Chemistry	data	was	provided	by	Centre	the	Centre	of	Ecology	and	Hydrology	(Table	

4.5)	showing	some	significant	differences	in	chemistry	between	the	two	rivers	which	

may	be	 important	 in	determining	the	ARG	prevalence	at	sites.	Significantly	higher	

concentrations	 (p	 <	 0.05)	 of	 soluble	 reactive	 phosphorus	 (SRP),	 total	 dissolved	

phosphorus	 (TDP),	 total	 phosphorus	 (TP),	 dissolved	 fluorine	 and	 chlorine,	 nitrate,	

sulphate,	 total	 dissolved	 nitrogen,	 dissolved	 organic	 carbon,	 sodium,	 potassium,	

magnesium	and	boron	were	all	 observed	 in	 the	Thame	samples	 compared	 to	 the	

Kennet.	The	largest	differences	were	recorded	for	SRP	and	TDP	which	were	both	on	

average	11	times	higher	at	the	Thame	sites	than	the	Kennet	sites.	High	phosphorus	

levels	can	be	indicative	of	sewage	and	agricultural	pollution	and	each	of	the	Thame	

sites	was	considered	‘poor’	with	respect	to	phosphorus	 levels,	whereas	all	Kennet	

sites	were	classed	as	 ‘high’	or	 ‘good’	(DEFRA,	2014).	The	high	 level	of	phosphorus	

may	correlate	with	high	ARB	levels	as	a	direct	consequence	of	sewage	and	manure	

entering	the	river	and	may	explain	why	Thame	sites	showed	higher	ARG	levels	than	
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Kennet	sites.	The	significant	differences	in	chemistry	between	the	Thame	and	Kennet	

highlights	diversity	between	these	two	rivers	which	may	be	important	in	explaining	

differences	of	ARG	prevalence.	

	

	

Table	4.5	Chemistry	data	from	the	Thames	catchment	sites.	Data	was	provided	by	
Centre	of	Ecology	and	Hydrology.	SRP	=	Soluble	reactive	phosphorus,	TDP	=	Total	
dissolved	phosphorus,	TP	=	Total	phosphorus,	NH4	=	Dissolved	ammonium	(NH4),	F	
=	Dissolved	fluoride	(F),	Cl	=	Dissolved	chloride	(Cl),	NO2	=	Dissolved	nitrite	(NO2),	
NO3	=	Dissolved	nitrate	(NO3),	SO4	=	Dissolved	sulphate	(SO4),	TDN	=	Total	
dissolved	nitrogen,	DOC	=	Dissolved	organic	carbon,	detection	limit	of	Na	and	K	is	
0.01	mg/L	and	detection	limit	of	Boron	is	0.5ug/L.	Other	detection	limits	were	not	
provided.	

	
	

The	presence	of	ARG	in	the	environment	is	no	doubt	a	consequence	of	human	impact	

which	has	consequently	accelerated	the	rate	of	dissemination	from	the	clinic	to	the	

environment	 through	 misuse	 and	 overuse	 of	 antibiotics	 both	 in	 clinical	 and	

agricultural	settings.	It	has	been	established	in	the	current	study	that	faecal	coliforms	

isolated	 from	both	water	 and	 sediment	present	 substantial	 source	of	AMR	genes	

which	 are	 carried	 in	 species	 likely	 able	 to	 colonise	 the	 human	 gut.	Many	 of	 the	

families	 identified	 from	 the	 CGNF	 (Chapter	 3)	 are	 associated	 with	 human	

pathogenesis	and	likely	originated	from	the	human	gut.	The	characterisation	of	these	

viable	potential	pathogens	demonstrates	that	these	bacteria	are	able	to	persist	 in	

Site	
name

Measured element/compound	

SRP	
(µg/L-P)

TDP	
(µg/L-P)

TP	
(µg/L-P)

NH4	
(mg/L)

F
(mg/L)

Cl	
(mg/L)

NO2	
(mg/L)

NO3	
(mg/L)

SO4	
(mg/L)

TDN	
(mg/l-N)

DOC	
(mg/L-
C)

Na	
(mg/l)

K
(mg/l)

Ca	
(mg/l)

Mg	
(mg/l)

B	
(ug/l)

Fe	
(ug/l)

Mn
(ug/l)

Zn
(ug/l)

Cu	
(ug/l)

Al
(ug/l)

Thame3 466 483 519 0.083 0.14 82.34 0.05 68.24 66.17 17.96 6.55 66.06 14.17 94.71 4.77 68.24 27.62 10.58 9.46 7.20 3.14

Thame5 295 339 380 0.083 0.19 56.58 0.11 49.62 82.17 12.06 6.13 38.13 8.19 135.50 5.62 68.70 10.78 6.97 5.34 -0.35 -3.70

Thame7 812 812 864 0.051 0.17 76.35 0.00 45.39 67.17 12.4 5.4 55.59 12.42 110.04 4.73 77.68 18.48 3.76 5.34 7.06 3.65

Thame8 816 914 952 0.067 0.17 74.98 0.00 45.21 66.39 11.48 5.74 56.20 12.67 111.50 4.74 77.76 15.21 3.12 6.90 5.21 7.81

Kennet2 75 73 104 0.136 0.11 21.76 0.04 38.64 27.13 10.04 3.89 3.92 1.94 38.02 0.99 11.42 655.56 85.31 61.56 13.24 424.15

Kennet7 77 75 83 0.103 0.11 20.55 0.09 33.40 16.94 8.68 2.35 10.65 2.07 114.82 1.76 16.91 33.18 4.04 3.70 0.28 8.69

Kennet8 36 46 47 0.004 0.12 17.83 0.05 24.62 13.23 6.5 1.93 9.24 1.63 115.47 1.79 16.05 37.10 5.16 5.95 -0.06 19.24

Kennet11 16 23 125 0.021 0.11 18.72 0.03 8.80 20.91 2.8 4.63 8.70 2.37 90.09 2.08 23.85 151.02 13.53 5.82 -0.47 44.32
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the	environment,	potentially	disseminating	ARG	through	HGT.	Although	the	review	

by	Forsberg	et	al.	suggested	HGT	is	not	likely	to	occur	in	the	environment	the	CNCF	

of	river	communities	is	likely	able	to	transfer	genes	due	to	the	high	level	of	intI1	genes	

carried	 in	 this	 population,	 which	 are	 likely	 to	 carry	 resistance	 gene	 cassettes	

(Forsberg	et	al.,	2014,	Roe	et	al.,	2003).	

	

	

The	 work	 presented	 here	 suggests	 that	 one	 of	 the	 most	 important	 factors	 in	

determining	ARG	prevalence	in	the	environment	is	the	influence	of	WWTP	effluent	

suggesting	 that	distance	 from	effluent	 release	 reduces	ARG.	However,	although	 it	

can	be	concluded	that	WWTP	impact	and	agriculture	are	involved	in	environmental	

ARG,	it	is	obvious	that	there	are	other	environmental	factors	involved	that	have	not	

been	considered	in	this	study.	For	example,	seasonal	effects	may	be	involved	in	the	

prevalence	of	genes	as	well	as	cumulative	effects	of	WWTPs	along	a	river.	It	was	not	

possible	to	evaluate	the	cumulative	effects	in	this	study	but	it	can	be	concluded	that,	

despite	some	dilution,	WWTPs	do	contribute	to	ARG	in	river	communities	at	least	10	

km	away	from	the	nearest	effluent	release	contrasting	to	the	study	by	Munck		et	al.	

which	suggested	the	WWTP	effluent	impact	is	not	significant	on	the	receiving	river	

but	 consistent	 with	 many	 other	 studies	 which	 have	 recovered	 AMR	 E.	 coli	 from	

effluent	 receiving	 rivers	 (Munck	 et	 al.,	 2015,	 Korzeniewska	 and	 Harnisz,	 2013,	

Olayemi,	1987,	Dhanji,	2011,	Amos	et	al.,	2014).		
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Chapter	5	

The	impact	of	seasonal	wastewater	release	from	

WWTPs	 including	 treated	 effluent	 and	 CSO	

release	events.	
	

5.1	Introduction	

In	 times	 of	 heavy	 rainfall	WWTPs	 are	 unable	 to	 cope	with	 very	 large	 volumes	 of	

surface	runoff	therefore	CSOs	collect	this	runoff	from	both	industrial	and	domestic	

sources	and	bypass	treatment	discharging	directly	in	the	river	with	the	assumption	

that	 dilution	 effects	 will	 result	 in	 minimal	 disruption	 and	 pollution	 of	 the	

environment	(Jalliffier-Verne	et	al.,	2015,	Jalliffier-Verne,	2016,	DEFRA,	2012).	The	

volume	of	untreated	water	that	can	be	released	via	CSO	spills	is	defined	by	the	EA	to	

be	 any	 quantity	 over	 the	 “pass	 forward	 flow”,	 which	 is	 the	 required	 volume	 of	

wastewater	 that	 must	 flow	 to	 the	 treatment	 plant	 for	 full	 treatment.	 The	 pass	

forward	flow	is	defined	by	litres/day	=	(PG+I+E)	+	1360	P	+	2E	where	P	=	population	

served G	=	water	consumption	per	head	per	day I	=	infiltration	(maximum)	and E	=	

trade	effluent	 flow	to	sewer.	Alternatively,	operators	can	model	discharge	effects	

and	if	they	can	prove	the	spill	will	not	result	in	‘significant	deterioration’	release	can	

occur	 (EA,	 2014).	 The	 number	 of	 spills	 is	 monitored	 by	 the	 Government	
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environmental	 agency	 (EA),	 however	 no	monitoring	 took	 place	 at	 the	 CSO	 in	 the	

current	study	(Robert	Huxham,	SevernTrent	Water,	personal	correspondence,	13th	

July	 2016).	We	 hypothesise	 flocs	 are	 likely	 to	 form	 allowing	 biomass	 to	 sink	 and	

persist	 in	 sediment	 accounting	 for	 higher	 levels	 of	 ARB	 and	 ARG	 at	 CSO	 event	

impacted	sites.	

	

The	 impact	 of	 CSO	 release	 events	 on	 rivers	 has	 primarily	 focussed	 on	 examining	

water	samples	(Jalliffier-Verne,	2016,	Wang,	2014).	The	release	of	 faecal	 indicator	

bacteria	was	determined	reporting	E.	coli	concentrations	varied	by	several	orders	of	

magnitude	 during	 overflow	 events	 (Madoux-Humery,	 2015).	 Chapters	 3	 and	 4	

reported	that	river	sediment	poses	a	significant	reservoir	of	ARB	and	ARG	with	higher	

numbers	in	sediment	compared	with	water.	In	the	current	study	river	sediment	was	

investigated	to	determine	WWTP	effluent	release	and	CSO	release	event	impact.	It	

was	previously	recorded	that	samples	upstream	of	WWTPs	show	little	ARG	and	ARB	

impact,	 therefore	 it	was	 the	 aim	of	 the	 current	 study	 to	 evaluate	 the	 impacts	 of	

different	plant	releases	(Amos	et	al.,	2014).		

	

The	 Finham	WWTP	was	 selected	 for	 seasonal	monitoring	 because	 previous	work	

identified	 it	 as	 a	 source	 of	 intI1	 and	 ARB	 (Gaze	 et	 al.,	 2011,	 Amos	 et	 al.,	 2014).	

Sediment	was	sampled	at	two	sites	downstream	of	a	CSO;	one	site	was	impacted	by	

CSO	release	events	only	and	the	other	was	downstream	of	treated	WWTP	effluent	

release	 and	 was	 therefore	 impacted	 by	 both	 diluted	 CSO	 release	 and	 treated	

effluent.		The	aim	was	to	see	if	sites	are	similarly	affected	and	determine	if	they	were	

equally	affected	by	season.	The	hypothesis	was	that	higher	numbers	of	ARB	would	

be	 present	 in	 Winter/Autumn	 compared	 to	 Spring/Summer.	 The	 Finham	WWTP	

serves	450000	people	with	an	average	intake	of	120	million	litres	per	day	of	sewage	

from	two	inlets,	the	Sowe	and	Sherbourne	(Figure	5.1).	There	are	two	detritors	at	the	

inlets	which	 function	 to	 remove	 large	objects	 and	 rubbish	before	 treatment	with	

three	storm	tanks	which	are	used	when	necessary	(the	Sherbourne	storm	tank	alone	

can	hold	up	to	28	million	litres).		The	treatment	plant	is	of	the	tertiary	type,	consisting	

of	six	primary	settlement	tanks,	three	activated	sludge	plants	and	tertiary	treatment	

involving	sand	filter	to	further	remove	suspended	solids	(Figure	5.1).		



	 171	

	

Figure	5.1	 Finham	WWTP	 layout,	modified	 from	B2682	Sewage	pack	 from	Severn	
Trent	(SevernTrent).	Red	star	shows	CSO	outlet	(Site	1)	sampled	in	this	study	which	
is	permitted	to	spill	in	to	the	River	Sowe,	Yellow	star	indicates	CSO	permitted	to	spill	
in	to	Finham	Brook	and	Orange	star	represents	main	WWTP	effluent	outlet	(Site	2).	
	

There	are	currently	no	regulations	on	the	release	of	biocides,	antibiotics	or	metals	

(except	 mercurial	 compounds)	 to	 rivers	 (Agency,	 2014).	 Co-selection	 of	 ARG	 has	

previously	been	 suggested	due	 to	 co-carriage	of	ARG,	BRG	and	MRG	on	plasmids	

(Popowska	and	Krawczyk-Balska,	2013,	Pal	et	al.,	2015).	It	was	found	that	BRB	often	

carried	more	ARG	 than	biocide-susceptible	 bacteria	 (Pal	 et	 al.,	 2015).	 The	 class	 1	

integron	 integrase	 gene,	 intI1,	may	 be	 an	 accurate	 marker	 for	 determining	 ARG	

contamination	 with	 models	 generated	 to	 predict	 the	 resistome	 based	 on	 intI1	

prevalence	(Gillings	et	al.,	2015,	Amos	et	al.,	2015).	In	the	current	study	the	aim	was	

to	investigate	the	seasonal	variation	of	ARG	and	intI1	to	further	elucidate	if	the	class	

River	flow	direction



	 172	

1	 integrase	gene	 is	a	suitable	proxy	for	determining	antibiotic	resistance	pollution	

and	consider	 if	 shifts	 in	ARG	correlate	with	changes	 in	 intI1	abundance.	The	gene	

targets	chosen	for	monitoring	were	used	previously	in	Chapter	4	and	were	chosen	

based	on	proposals	outlined	by	Berendonk	et	al.	 	who	 listed	ARGs	believed	 to	be	

important	in	both	clinical	and	environmental	settings	(Berendonk	et	al.,	2015).		

	

Culture	dependant	methods	were	used	to	record	3GC	resistant,	biocide	resistant	and	

fluoroquinolone	resistant	E.	coli	and	PCE	as	well	as	total	counts	on	plates	without	

amendment.	Conditions	selected	 in	this	study	were	based	upon	the	risk	posed	by	

3GC	and	fluoroquinolone	antibiotic	resistance	which	has	been	previously	detected	in	

river	 sediment	 samples	 and	 has	 been	 considered	 a	 threat	 by	 several	 reports	

regarding	Enterobacteriaceae	with	acquired	resistances	(WHO,	2014,	England,	2014,	

The	Center	for	Disease	Dynamics,	2009).	

	

Prescription	increases	during	the	Winter	months	resulting	in	increased	clinical	ARB	

(Achermann	et	al.,	2011,	Caucci,	2016b,	EXASOL,	2015,	Suda	et	al.,	2014,	Sun	et	al.,	

2012,	Lopez-Lozano,	2000,	Lepper	et	al.,	2002,	Hay	et	al.,	2005,	Gottesman	et	al.,	

2009).	The	extent	of	ARG	selection	in	the	human	gut	as	a	result	of	antibiotic	use	is	

unknown	but	studies	have	demonstrated	HGT	events	occur	 in	the	gut	resulting	 in	

excretion	 of	 ARB	 and	 non-metabolized	 antibiotics	 which	 accumulate	 in	 sewage	

entering	WWTPs		(Sun	et	al.,	2012,	Lester	et	al.,	2006,	Trobos	et	al.,	2009,	Cremet	et	

al.,	2012,	Karami	et	al.,	2007,	Goren	et	al.,	2010,	Marx	et	al.,	2015,	Coutu	et	al.,	2013).	

The	accumulation	of	antibiotics,	ARB,	metallic	compounds	and	biocides	in	influent,	

from	domestic,	agricultural	and	industrial	wastes,	provide	optimal	conditions	for	ARG	

selection	and	dissemination	(Zhang	et	al.,	2011).		

		

A	range	of	studies	in	different	countries	have	investigated	WWTP	effluent	impact	on	

the	environment	but	less	than	five	studies	have	explored	seasonal	effects	on	effluent	

and	CSO	release	events	 (Kotlarska	et	al.,	2015,	 Li	et	al.,	2015a,	Korzeniewska	and	

Harnisz,	2013,	Atashgahi	et	al.,	2015,	Munck	et	al.,	2015,	Amos	et	al.,	2014,	Garcia-

Armisen	et	al.,	2014,	Knapp	et	al.,	2012,	Caucci,	2016a).	Investigations	of	seasonal	

effects	 have	 primarily	 focussed	 on	 treated	 and	 untreated	 wastewater	 through	



	 173	

monitoring	changes	in	ARG	and	BRG	over	the	period	of	a	year.	Work	investigating	

CSO	impact	is	very	limited	and	studies	have	focussed	on	changes	in	the	number	faecal	

indicator	bacteria	recovered	from	water	(Jalliffier-Verne	et	al.,	2015,	Scheurer	et	al.,	

2015)	.		
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5.2	Aims	

The	current	study	hypothesised	that	seasonal	changes	resulting	in	increased	rainfall	

might	impact	sediment	ARG	and	ARB	numbers	with	higher	counts	in	Winter	months	

compared	to	Summer.		The	aim	was	therefore	to	take	samples	over	a	year	from	two	

sites	on	the	Sowe;	one	impacted	by	WWTP	effluent	and	CSO,	and	one	CSO	only,	to	

evaluate	impacts	of	one	CSO	and	compare	the	cumulative	effects	of	WWTP	effluent	

and	CSO.		

	

1. Determine	if	there	are	significant	changes	in	bacterial	composition	between	

sites.	

2. Conduct	a	culture	based	study	of	CGNF	to	determine	viability	and	phenotype	

of	resistant	strains	between	season	and	site.		

3. Investigate	 the	 variation	 in	 ARG	 prevalence	 and	 abundance	 with	 site	 and	

season.	
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5.3	Results	

5.3.1	Culture	dependant	variation	in	AMR	E.	coli	and	PCE	with	season		

Monthly	 rainfall	 data	 was	 recorded	 (Figure	 5.2),	 (taken	 from	 the	 Met	 Office;	

http://www.metoffice.gov.uk/climate/uk/summaries)	 to	 investigate	 changes	 in	

precipitation	with	respective	changes	in	count	data	which	was	recorded	at	seasonal	

intervals	 between	 Winter	 2015	 and	 Winter	 2016.	 Sampling	 took	 place	 at	 two	

locations	near	the	Finham	WWTP:	Site	1	was	defined	as	the	CSO	release	site	and	site	

2	was	defined	by	combined	CSO	and	WWTP	effluent	release	(defined	in	Figure	5.1	by	

the	red	and	orange	stars	respectively).	Sediment	samples	were	plated	on	HiCA	plates	

with	and	without	antimicrobial	selection	and	counts	for	each	site	and	antimicrobial	

condition	were	 recorded	 (Figure	5.3	and	5.4)	The	antibiotic	meropenem	was	also	

used	HiCA	plates	but	no	bacterial	growth	was	recorded	at	any	point	in	the	sampling	

regime.		

	

	

Figure	5.2	Monthly	rainfall	between	January	2015	–	March	2016.	Data	taken	from	
Met	office	http://www.metoffice.gov.uk/climate/uk/summaries	
	

5.3.1.1	Seasonal	variation	of	phenotypic	resistant	E.	coli	from	site	1	and	site	2	

Site	1	and	Site	2	counts	were	not	significantly	different	for	any	antimicrobial	tested	

(Mann-Whitney;	HiCA	p	 =	 0.7491,	 ciprofloxacin	 p	 =	 0.3749,	 CTAB	p	 =	 0.1142	 and	

cefotaxime	p	=	0.2039).	The	highest	E.	coli	counts	were	in	Winter	2016	for	both	sites	

(Figure	5.3)	correlating	with	the	highest	rainfall	(Figure	5.2).	The	lowest	counts	were	
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recorded	in	Spring	which	correlates	with	the	lowest	rainfall	in	the	sampling	regime	

(Figure	 5.3)	 but	 contrastingly	 reported	 the	 highest	 number	 of	 phenotypic	

ciprofloxacin	resistant	E.	coli	at	both	sites	(Figure	5.3).	In	Spring,	Site	1	had	higher	E.	

coli	counts	on	ciprofloxacin	amended	HiCA	than	on	unamended	HiCA	(most	likely	as	

a	result	of	competition	on	the	plate).	 	Differences	in	counts	between	Winter	2016	

and	Spring	2015	were	significant	for	HiCA	alone,	CTAB	and	cefotaxime	plate	counts	

(Dunn’s	test	p	<	0.05)	at	both	sites	(Table	5.1).	

	

Both	Sites	1	and	2	presented	a	significant	increase	in	E.	coli	counts	over	the	period	of	

the	 year	 (Table	 5.1)	with	 significant	 differences	between	 Spring	 2015	 and	Winter	

2016	(p	<	0.05).	The	counts	of	E.	coli	at	Site	1	were	higher	in	Spring	2015,	Summer	

2015,	Autumn	2015	and	Winter	2016	compared	with	Site	2	(Site	1	Winter	2015-time	

point	was	missed	because	Site	was	inaccessible).	Phenotypically	cefotaxime-resistant	

E.	coli	counts	were	highest	 in	Winter	2016	at	both	Sites	1	and	2	and	CTAB	counts	

were	 consistently	 high	 throughout	 the	 year.	 Surprisingly,	 Summer	 presented	 the	

highest	count	at	Site	1	and	Winter	(2016)	presented	the	highest	at	Site	2.	The	levels	

of	phenotypic	CTAB	resistant	E.	coli	was	consistently	higher	at	the	treated	effluent	

Site	2	over	the	year	with	the	exception	of	the	Summer	time	point	which	may	be	a	

direct	result	of	coselective	effects	of	biocide	accumulation	in	the	WWTP.		
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Figure	 5.3	 Viable	 E.	 coli	 counts	 from	 seasonal	 sampling	 between	Winter	 2015	 –	
Winter	2016.	(a)	Site	1,	(b)	Site	2		
	

Non-parametric	statistical	tests	determined	season	significantly	affected	counts	of	E.	

coli	at	Site	1	for	HiCA	(Kruskall-Wallis	p	=	0.00034),	ciprofloxacin	(p	=	0.0025),	CTAB	

(p	=	0.00021)	and	cefotaxime	(p	=	0.00032).	Individual	comparisons	can	be	seen	in	

Table	5.1.	At	Site	2,	season	significantly	affected	E.	coli	HiCA	counts	(p	=	0.00031),	

ciprofloxacin	(p	=0.00015),	CTAB	(p	=	5.925	x	10	-5)	and	cefotaxime	(5.382	x	10	-5).	
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5.3.1.2	 Seasonal	 variation	 of	 phenotypic	 resistant	 PCE	 from	 CSO	 and	 WWTP	

impacted	sites	

PCE	 counts	were	not	 significantly	 different	 between	 sites	when	 isolating	on	HiCA	

media	 (Mann-Whitney	 p	 =	 0.5771),	 but	 showed	 significant	 differences	 for	 all	

antibiotic	and	biocide	conditions	used	 (p	<	0.05).	The	phenotypic	 fluoroquinolone	

and	 biocide	 resistant	 PCE	 population	 was	 significantly	 higher	 at	 Site	 2	 but	 the	

phenotypic	cefotaxime	resistant	PCE	population	was	higher	at	Site	1.		

	

Significant	 differences	 between	 season	 for	 culture	 dependant	 PCE	 counts	 were	

determined	using	non-parametric	tests.	PCEs	isolated	from	Site	1	and	2	presented	

significant	 differences	 between	 Season	 (for	 all	 antimicrobial	 conditions	 tested)	

(Kruskall-Wallis	p	<	0.05,	posthoc	Dunn’s	test	shown	in	Table	5.1).		
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PCE	counts	displayed	variable	numbers	at	both	sites	 (Figure	5.4).	Counts	at	Site	1	

were	greatest	 in	Autumn	and	demonstrated	 significantly	higher	 counts	 compared	

with	Winter	2015,	Spring	2015	and	Winter	2016	for	all	conditions	except	HiCA	(Table	

5.1,	Dunns	test	p	=	<0.05).	Equally	high	counts	at	Site	2	were	recorded	in	Winter	2015	

and	 2016	 (no	 significant	 difference,	 as	 determined	 by	 Dunn’s	 test	 was	 observed	

between	the	two	Winter	samplings,	see	Table	5.1).	Antibiotic	and	biocide	resistant	

PCE	 counts	 were	 higher	 at	 Site	 1	 than	 Site	 2	 consistent	 with	 E.	 coli	 count	 data,	

however	rather	than	showing	a	gradual	accumulation	as	observed	for	E.	coli,	counts	

of	PCEs	were	highly	variable	(Figure	5.4)	suggesting	this	subpopulation	is	not	as	stable	

as	E.	coli.		
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Figure	5.4	PCE	count	data	from	seasonal	sampling	between	Winter	2015	–	Winter	
2016.	(a)	Site	1,	(b)	Site	2		
	

5.3.2	Culture	independent	study	to	investigate	ARG	at	Site	1	and	Site	2	

The	 total	 sediment	 bacterial	 load	was	 consistent	 over	 the	 year	 (Table	 5.2).	 Some	

change	was	observed	at	Site	1	with	an	increase	from	Spring	to	Autumn	of	~	1.8	times	

but	 an	 overall	 decrease	 of	 ~2.9	 times	 from	 Spring	 2015	 to	 Winter	 2016.	 Site	 2	

exhibited	a	gradual	increase	in	bacterial	number	over	the	period	of	the	year	with	an	

approximate	increase	in	16S	copies	of	~3.8	times	that	of	Winter	2015	in	Winter	2016.	
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Increase	in	16S	copies	at	Site	2	number	may	be	reflective	of	accretion	within	the	river	

from	WWTP	effluent	release.				

	
Table	5.2	16S	copy	number	per	gram	wet	weight	sediment	

Season	 Sample	 16S	copies	
Winter	 WWTP	 1.75	x	108	

Spring	 CSO	 3.73	x	108	
WWTP	 2.00	x	108	

Summer	 CSO	 4.66	x	108	
WWTP	 4.41	x	108	

Autumn	 CSO	 6.66	x	108	
WWTP	 5.23	x	108	

Winter	 CSO	 1.30	x	108	
WWTP	 6.70	x	108	

	
Culture	independent	methods	were	used	(Methods	2.12)	to	determine	if	ARG,	intI1	

and	E.	coli	levels	varied	according	to	seasonal	change	at	both	Site	1	and	Site	2.	qPCR	

data	was	generated	(Primers	can	be	found	in	Methods	Table	2.4)	for	each	site	and	

season	over	the	year	to	evaluate	if	site	or	season	was	more	important	in	determining	

resistance	gene	and	potential	pathogen	prevalence	and	evaluate	if	intI1	provides	a	

suitable	marker	of	anthropogenic	pollution	by	investigating	ARG	prevalence.	

	

The	relative	prevalence’s	of	ARG,	biocide	resistance	gene	(qacE)	and	E.	coli	results	

showed	 clustering	 of	 samples	 collected	 at	 the	 same	 sites	 (Figure	 5.6)	 suggesting	

sample	 site	 is	 more	 important	 than	 season.	 The	 only	 season	 showing	 clustering	

according	to	ARG	prevalence	was	Winter	2016	which	showed	separate	clustering	of	

samples	 from	 all	 others.	 Interestingly,	 the	Winter	 2016	 sampling	 time	 point	 was	

taken	in	January	2016	which	had	the	largest	level	of	precipitation	recorded	over	the	

sampling	regime	(Figure	5.2).	ARG	prevalence	of	blaCTX-M-1	and	E.	coli	was	highest	at	

Site	1	in	the	Winter	2016	suggesting	CSO	release	events	may	have	contributed	to	the	

high	 number	 of	 faecal	 coliforms	 entering	 the	 environment.	 ARG	 prevalence	 was	

lowest	in	the	Spring/Summer	months	(Figure	5.6)	but	clustering	was	based	primarily	

on	 site	 of	 sampling	 with	 site	 clusters	 clearly	 showing	 differences	 between	 sites	

impacted	by	CSO	release	events	and	sites	impacted	by	both	CSO	release	events	and	

continual	release	of	WWTP	effluent.	
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Figure.	5.6	Prevalence	(relative	to	16S	gene	copies)	of	AMR	targets	and	E.	coli	at	Site	
1	and	Site	2	over	the	year.	Yellow	=	low,	Red	=	high		
	

The	prevalence	of	intI1	was	significantly	higher	than	all	other	gene	targets	(p	<	0.05)	

investigated.	 Site	2	presented	higher	proportions	of	 resistance	genes	 consistently	

throughout	 the	 sampling	 period	 compared	 with	 Site	 1	 and	 showed	 substantially	

higher	intI1	prevalence	with	some	samples	presenting	45	%	carriage	compared	to	15	

%	at	 Site	 1.	 This	 high	 level	 of	 carriage	 is	 likely	 due	 to	 accretion	of	 clinical	 class	 1	

integrons	in	the	environment	combined	with	environmental	background	of	class	1	

integrons.		There	are	clear	differences	exhibited	between	Site	1	and	Site	2	in	Winter	

2016	where	tetM	prevalence	at	Site	2	is	greater	and	E.	coli	and	blaCTX-M-1	are	greater	

at	Site	1,	which	may	be	a	direct	result	of	raw	human	sewage	entering	Site	1	through	

CSO	release	events.	ermF	was	detected	at	very	low	prevalence	at	all	sampling	time	

points	except	for	Winter	2016	where	Site	2	showed	a	larger	increase	in	prevalence	

compared	to	all	other	samples.	E.	coli	prevalence	was	constant	over	the	year	with	a	

slight	increase	presented	in	Winter	2016	at	Site	1.	The	prevalence	of	qacE,	qnrS	and	

tetM	was	typically	higher	compared	to	E.	coli	23S,	ermF	and	blaCTX-M-1	(Figure	5.6).	
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Figure	5.7	AMR,	intI1	and	E.	coli	percentage	carriage	(relative	to	16S).	(a)	Site	1,	(b)	
Site	2		
	

ARG	prevalence	data	was	not	normally	distributed	(Shapiro-Wilk	p	<	0.05)	 for	any	

target	and	 followed	an	over-dispersed	Poisson	distribution.	 	Non-parametric	 tests	

were	conducted	to	determine	if	ARG	populations	were	significantly	different.	All	ARG	

were	 found	 to	 be	 independent	 (Mann-Whitney-Wilcoxon	 p	 <	 0.05)	 for	 each	

comparison	 made.	 ARGs	 levels	 were	 not	 significantly	 different	 between	 season	

(Adonis	 p	 =	 0.324,	 R2	 =	 0.14),	 but	 when	 separated	 in	 to	 individual	 ARG	 targets	
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significant	differences	were	observed	between	season	suggesting	that	some	target	

prevalence’s	can	be	explained	by	seasonal	change.		

	

No	significant	differences	in	qnrS	prevalence	were	observed	between	site	(Kruskal-

Wallis	p	>	0.05,	prevalence	at	Site	1	=	3.74	%	and	Site	2	=	3.98	%),	however,	when	

samples	were	split	according	to	site	significant	differences	were	recorded	between	

seasons	at	Site	1	(Spring	2015	and	Autumn	2015	(Dunn’s	test	p	=	0.045),	Spring	2015	

and	Winter	 2015	 (p	 =	 0.0016)	 and	 Summer	 2015	 and	Winter	 2015	 (p	 =	 0.0271)).	

Seasonal	variation	did	not	account	for	variation	in	qnrS	prevalence	at	Site	2	(Kruskall-

Wallis	p	=	0.36).	The	seasonal	release	from	overflow	drains	may	be	responsible	for	

the	shifts	in	qnrS	abundance	observed	only	at	Site	1.		

	

The	prevalence	of	ermF	was	significantly	different	between	Site	1	and	Site	2	(Kruskall-

Wallis	p	=	0.013,	Site	1	prevalence	=	0.18	%	and	Site	2	prevalence	=	0.60	%).	When	

samples	 were	 separated	 according	 to	 site,	 seasonal	 variation	 was	 significant	

(Kruskall-Wallis	p	=	0.03)	and	significant	differences	were	observed	between	Spring	

2015	and	Autumn	2015	(Dunn’s	test	p	=	0.045),	Winter	2015	and	Spring	2015	(p	=	

0.0016)	and	between	Winter	2015	and	Summer	2015	(p	=	0.027)	at	Site	1.	Seasonal	

variation	was	not	significant	at	explaining	the	prevalence	of	ermF	at	Site	2	(Kruskall-

Wallis	p	=	0.07).		

	

The	 prevalence	 of	 tetM	 was	 significantly	 different	 (Kruskall-Wallis	 p	 =	 0.0497)	

between	sites	with	a	higher	prevalence	recorded	at	site	2	(2.91	%	)	compared	to	site	

1	(0.59	%	).	When	samples	were	separated	by	site,	no	overall	difference	was	recorded	

for	tetM	prevalence	according	to	season	at	site	1	(Kruskall-Wallis	p	=	0.35),	however	

significant	differences	in	seasonal	prevalence	were	observed	at	site	2	(Kruskall-Wallis	

p	 =	 0.02).	 Site	 2	 significant	 differences	were	observed	between	Winter	 2015	 and	

Summer	2015	(Dunn’s	test	p	=	0.02),	Winter	2016	and	Autumn	2016	(p	=	0.0053),	

Winter	2016	and	Summer	2015	(p	=	0.0013).	

	

Site	 1	 and	 site	 2	 intI1	 prevalence	 was	 significantly	 different	 (Kruskall-Wallis	 p	 =	

0.00034)	with	a	greater	prevalence	of	intI1	recorded	at	site	2	compared	with	site	1	
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(33.55	%	and	15.3	%	respectively).	Seasonal	variation	did	not	affect	intI1	prevalence	

at	site	1	(p	=	0.74)	or	Site	2	(p	=	0.35)	suggesting	seasonal	variation	does	not	account	

for	variation	of	environmental	levels	intiI1.	

	

The	proportion	of	qacE	was	significantly	(Kruskall-Wallis	p	=	0.0018)	greater	at	site	2	

than	site	1	with	gene	carriage	at	8.72	%	at	site	2	and	3.7	%	at	site	1.		Seasonal	variation	

was	borderline	significant	at	p	=	0.05	with	significant	differences	observed	between	

prevalences	recorded	at	Winter	2015	and	Autumn	2015	(Dunn’s	test	p	=	0.0064)	and	

Winter	 2015	 and	 Spring	 2015	 (p	 =	 0.0118).	 There	 was	 no	 significant	 difference	

between	 seasonal	 prevalence	of	qacE	at	 site	 2	 suggesting	 that	 seasonal	 variation	

doesn’t	contribute	to	relative	abundance	of	qacE.		

	

Prevalence	of	blaCTX-M-1	was	significantly	different	between	site	(Kruskall-Wallis	p	=	

0.45)	 with	 higher	 prevalence	 at	 site	 1	 (1.09	%)	 than	 at	 site	 2	 (0.09	%).	 Seasonal	

variation	did	not	significantly	explain	changes	in	prevalence	at	either	site	(p	>	0.05)	

suggesting	other	factors	are	involved	in	determining	the	higher	prevalence	at	site	1.		

	

The	prevalence	of	E.	coli	was	not	significantly	different	between	sites	(Kruskall-Wallis	

p	=	0.45,	0.68	%	at	Site	1	and	0.20	%	at	Site	2).	Seasonal	variation	was	important	in	

significantly	determining	the	prevalence	of	E.	coli	(Kruskall-Wallis	p	=	0.03	for	Site	1	

and	 p	 =	 0.04	 for	 Site	 2).	 Significant	 differences	 at	 site	 1	were	 observed	 between	

Spring	2015	and	Autumn	2015	(Dunn’s	test	p	=	0.045),	Winter	2015	and	Spring	2015	

(p	=	0.0016)	and	Winter	2015	and	Summer	2015	(p	=	0.271).	Seasonal	variation	at	

Site	2	was	significant	for	Winter	2016	and	Autumn	2015	(p	=	0.0053),	Winter	2016	–	

Spring	2015	(p	=	0.0276)	and	Winter	2016	–	Summer	2016	(p	=	0.0041).	

	

5.3.2.1	Correlation	analysis	of	ARG	in	sediment	

A	 key	 element	 of	 investigating	 ARG	 prevalence	was	 to	 determine	 correlations	 to	

elucidate	if	the	presence	of	one	can	predict	the	presence	of	another	(Figure	5.8).	The	

genes	qnrS	and	blaCTX-M-1	are	frequently	detected	in	E.	coli	isolates	therefore	it	was	

expected	that	significant	positive	correlations	would	be	detected	between	qnrS	and	

blaCTX-M-1,	qnrS	and	E.	 coli	and	blaCTX-M-1	and	E.	 coli.	 The	 strongest	 correlation	was	
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observed	between	E.	coli	and	blaCTX-M-1,	which	had	a	cor	value	of	0.97	(p	=	1.096	x10-

5).	Significant	correlations	were	identified	between	ermF	and	intI1,	ermF	and	qacE,	

tetM	 and	 init1,	 tetM	 and	 qacE	 and	 init1	 and	 qacE	 (Figure	 5.8).	 	 No	 negative	

correlations	were	significant.		

	

Figure	5.8	Correlations	between	AMR,	intI1	and	E.	coli.	Correlogram	is	coloured	by	
the	 strength	 of	 the	 correlation	 where	 dark	 red=	 -1,	 white=0	 and	 dark	 blue=1.	
Significant	 correlations	 were	 calculated	 using	 the	 Pearson’s	 correlation	 analysis	
showed	that	statistically	significant	(p	<	0.05)	correlations	existed	between	qnrS	and	
blaCTX-M-1	,	qnrS	and	E.	coli	(23S),	ermF	and	tetM,	ermF	and	intI1,	ermF	and	qacE,	tetM	
and	 init1,	 tetM	 and	 qacE,	 E.	 coli	 (23S)	 and	 blaCTX-M-1	 ,	 init1	 and	 qacE.	 Significant	
correlations	are	marked	with	a	white	asterisk.	
	

Correlation	analysis	between	the	intI1	gene	and	the	number	of	3GC-resistant	E.	coli	

and	PCE	(count	data)	were	carried	out	to	 investigate	 if	the	results	from	this	study	

supported	 the	 results	 from	Amos	et	al	who	similarly	 investigated	 the	 relationship	

between	this	integrase	gene	and	3GC	resistance	in	river	isolates.	In	contrast	to	the	

study	 by	 Amos	 et	 al,	 the	 current	 study	 did	 not	 find	 any	 significant	 correlations	

between	the	number	of	3GC-resistant	PCEs	or	3GC-resistant	E.	coli	at	either	site	(p	>	

0.05)	suggesting	that	 initI1	 is	not	a	suitable	predictor	for	monitoring	3GC-resistant	

coliforms.			

	

The	current	study	investigated	the	correlation	of	the	intI1	gene	with	the	other	ARG	

targets	to	investigate	if	this	gene	may	be	a	more	suitable	predictor	of	other	targets	

qnrS

ermF

tetM

ctx.m

inti1

qacE

E_coli*

*

*

*

*

*

*

*

qnrS

ermF

tetM

blactx-m-1

intI1

qacE

E.	coli



	 188	

in	the	river.	Significant	correlations	were	observed	between	the	intI1	gene	and	ermF,	

tetM	and	qacE	suggesting	this	integrase	gene	may	play	some	role	in	disseminating	

these	genes,	however	the	abundance	of	intI1	was	significantly	higher	than	any	other	

gene	target	and	would	therefore	overestimate	the	abundance	of	these	genes	if	used	

as	a	predictor.		

	

5.3.3	Community	analysis	of	sites	1	and	2	over	the	period	of	a	year	

16S	 amplicon	 sequencing	 was	 carried	 out	 to	 determine	 if	 there	 were	 significant	

changes	in	the	bacterial	diversity	at	the	sampling	sites	over	the	year.	Samples	were	

split	according	to	season,	site,	temperature,	sunshine	hours	and	rainfall	to	evaluate	

the	importance	of	these	factors	in	determining	community	diversity.		

	

The	medium	and	mean	number	of	 sequences	per	 sample	was	28172	and	189418	

respectively.	Rarefaction	was	chosen	at	7775	because	the	smallest	sample	sequence	

number	was	203	was	too	low	to	retain	significant	species	diversity	(Figure	5.9a).	The	

Simpsons	 reciprocal	 diversity	 measure	 in	 non-rarefied	 communities	 ranged	 from	

2.52-421.38.		Communities	rarefied	to	203	Simpsons	reciprocal	diversity	ranged	from	

2.52	to	166.84	and	for	communities	rarefied	to	7775	Simpsons	reciprocal	diversity	

ranged	from	111.97	to	411.97,	therefore	justifying	the	rarefaction	at	7775	with	very	

little	loss	in	diversity	according	to	Simpsons	reciprocal	diversity	measure.		

	

Chao1	species	richness	measure	was	used	to	confirm	7775	as	a	suitable	number	to	

rarefy	at	(Figure	5.9b).	Chao1	determines	species	richness	based	on	the	number	of	

rare	species.	In	the	current	study,	one	of	the	aims	was	to	investigate	abundance	of	

Enterobacteriaceae	 in	 sediment	 communities,	many	 of	 which	 are	 not	 indigenous	

sediment	bacteria.		Rarefying	at	7775	did	result	in	some	species	diversity	loss	but	the	

implications	of	 increasing	sequence	number	would	have	 resulted	 in	omission	of	a	

high	number	of	samples	from	the	analysis	(Figure	5.9).	
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(a) 																																																																			(b)	

	

Figure	 5.9	 Number	 of	 species	 observed	 per	 sample.	 (a)	 observed	 species	 in	 non-
rarefied	 communities	 and	 (b)	 number	 of	 rare	 species	 (as	 determined	 by	 Chao1	
species	richness	measure)	of	communities	rarefied	at	7775.		
	

5.3.3.1	Investigating	alpha	diversity	of	site	1	and	site	2	

The	dominant	phyla	at	both	Site	1	and	Site	2	was	Proteobacteria	(47.99	%	at	Site	1	

and	45.01	%	at	Site	2).	Other	dominant	phyla	included	Bacteroidetes	(11.83	%	at	CSO	

and	13.50	%	at	Site	2),	Actinobacteria	(8.82	%	at	CSO	and	9.85	%	at	Site	2),	Chloroflexi	

(7.70	%	at	CSO	and	8.24	%	at	WWTP)	and	Acidobacteria	(4.76	%	at	CSO	and	2.75	%).	

The	largest	difference	in	phyla	was	observed	between	abundance	of	the	Firmicutes	

(3.1	%	at	Site	1	and	7.3	%	at	Site	2).	Higher	prevalence	of	all	dominant	phyla	(except	

Proteobacteria)	was	observed	at	Site	2.	Small	differences	were	observed	between	

site	with	respect	to	the	prevalence	of	Gammaproteobacteria	(11.14	%	at	Site	1	and	

10.11	%	at	Site	2)	(Figure	5.11).		

	

There	 was	 no	 significant	 difference	 in	 alpha	 diversity	 in	 rarefied	 communities	

between	 site	 (t	 =	 -0.76,	 p	 =	 0.49).	 Enterobacteriaceae	 populations	 were	 not	

significantly	different	between	sites	(p	>	0.05).	

	

The	 core	microbiome	of	 sites	was	determined	 to	 investigate	 if	 core	diversity	was	

consistent	between	the	two	sites.	90	%	of	samples	had	a	core	microbiome	of	787	

OTUs	at	Site	1	and	752	OTUs	at	Site	2	the	majority	of	which	were	present	in	both	

sample	types	suggesting	highly	similar	communities	at	both	sites.		
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Figure	5.10	Relative	abundance	of	the	top	15	most	abundant	OTUs	from	sites	1	and	
2.	(a)	phyla	and	(b)	order.		
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5.3.3.2	 Investigating	 alpha	 diversity	 to	 compare	 seasonal	 effects	 on	 community	

structure	

The	dominant	phyla	recorded	for	each	season	was	Proteobacteria	(Spring	43.43	%,	

Summer	48.98	%,	Autumn	48.56	%	and	Winter	46.87	%).	Other	Phyla	with	relatively	

high	prevalence’s	were	Bacteroidetes	 (Spring	13.02	%,	 Summer	11.33	%,	Autumn	

14.31	%,	Winter	14.00	%),	Actinobacteria	(Spring	9.65	%,	Summer	9.09	%),	Autumn	

8.01	%,	Winter	11.32	%),	Chloroflexi	(Spring	9.10	%,	Summer	8.73	%,	Autumn	6.28	%,	

Winter	6.08	%)	and	Acidobacteria	(Spring	2.61	%,	Summer	4.43	%,	Autumn	4.6	%,	

Winter	2.90	%).	The	most	significant	difference	in	Phyla	when	investigating	seasonal	

change	 was	 for	 Firmicutes	 prevalence	 with	 Spring	 showing	 over	 double	 the	

prevalence	 compared	 to	 Autumn	 (Spring	 7.78%,	 Summer	 3.83	%,	Winter	 6.89	%,	

Autumn	3.00	%).	The	prevalence	of	the	dominant	Phyla	showed	no	obvious	pattern	

with	 some	 increasing	 in	 Winter	 and	 some	 greatest	 in	 Summer.	 Within	 the	

Proteobacteria,	 the	 Gammaproteobacteria	 did	 not	 vary	 greatly	 (Spring	 9.8	 %,	

Summer	11.7	%	Autumn	10.6	%	and	Winter	10.5	%)	(Figure	5.12).	

	

	

Figure	5.11	Relative	abundance	of	the	top	15	most	abundant	phyla	recorded	at	each	
season.	
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Rarefied	 communities	 displayed	 no	 significant	 difference	 between	 alpha	 diversity	

with	season,	rainfall,	sunshine	hours	or	temperature	for	each	pair	of	samples	(p	>	

0.05).		

	

5.3.3.3	 Investigating	 changes	 in	 beta	 diversity	 with	 site,	 season,	 temperature,	

rainfall	and	sunshine	hours	

Unweighted	PCoA	plots,	generated	using	rarefied	(at	7775	sequences)	communities,	

showed	samples	clustered	based	on	sample	site	only,	suggesting	sample	differences	

are	likely	due	to	differences	in	taxa	between	sites	(Figure	5.13).		

	

Weighted	communities	showed	clustering	based	on	season	and	rainfall	suggesting	

differences	in	samples	are	related	to	taxa	abundance	than	different	taxa	(Figure	5.14)	

prevalence.	Site	also	showed	separation	 in	weighted	communities	suggesting	that	

both	prevalence	of	taxa	and	taxa	abundance	are	important	factors	between	site	1	

and	site	2.		

	

ANOSIM	analysis	of	unweighted	communities	showed	that	in	rarefied	communities	

there	were	significant	differences	between	site	communities	(R	=	0.17,	p	=	0.016),	

although	difference	is	considerably	small.	For	samples	separated	according	to	season	

(R	=	0.076,	p	=	0.132)	and	temperature	(R	=	-0.104,	p	=	0.776),	rainfall	(R	=	0.077,	p	=	

0.137)	and	sunshine	hours	(R	=	0.077,	p	=	0.162)	there	was	no	significant	variation	in	

community	structure	as	determine	by	ANOSIM	analysis.	
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(a) 																																																								(b)	

	

Figure	 5.12	 Unweighted	 PCoA	 plots	 for	 samples	 separated	 according	 to	 site	 and	
season.	(a),	red	=	Site	1,	blue	=	Site	2;	and	season	(b)	blue	=	Spring,	Orange	=	Summer,	
Red	=	Autumn	and	Green	=	Winter	
	

Investigating	 the	 weighted	 community	 difference	 due	 to	 changes	 in	 the	 relative	

taxon	abundance	using	ANOSIM	 revealed	 significant	difference	between	 site	 (R	 =	

0.3444,	p	=	0.001),	season	(R	=	0.1646,	p	=	0.028),	rainfall	(R	=	0.1646,	p	=	0.035)	and	

sunshine	hours	(R	=	0.1646,	p	=	0.023),	however	only	site	clustered	most	substantially	

with	 only	 a	 small	 level	 of	 clustering	 according	 to	 different	 factors.	 No	 significant	

difference	was	found	for	temperature	(R	=	-0.133,	p	=	0.8777).	
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(a) 																																																									(b)	

	  

Figure	5.13	Weighted	PCoA	plots	for	samples	separated	according	to	site	and	season.	
(a)	 blue	 =	 Site	 2,	 red	 =Site	 1;	 season	 (b)	 blue	 =	 Spring,	Orange	 =	 Summer,	 Red	 =	
Autumn	and	Green	=	Winter;	Temperature		
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5.4	Discussion	

Studies	 investigating	 seasonal	 impacts	 on	ARB	 and	ARG,	 resulting	 from	 increased	

precipitation	 and	 consequent	 CSO	 spills,	 are	 underrepresented	 in	 the	 literature	

(Caucci,	2016b,	Dealtry	et	al.,	2014,	Knapp	et	al.,	2012,	Sui	et	al.,	2015).	Most	of	the	

published	 work	 investigating	WWTPs	 as	 a	 source	 of	 ARG	 and	 ARB	 pollution	 has	

focussed	 on	 the	 prevalence	 in	 bio-solids	 from	 digesters	 and	 effluents,	 usually	

overlooking	CSOs	as	a	reservoir	(Amos	et	al.,	2014).	In	the	current	study	sediment	

was	 investigated	to	examine	the	prevalence	of	ARG,	the	AMR	CGNF	and	the	total	

bacterial	community	to	evaluate	differences	between	two	sites;	one	impacted	by	raw	

sewage	 release	 from	 a	 CSO	 (site	 1)	 and	 the	 other	 impacted	 by	 treated	 effluent	

release	(site	2).		The	current	study	hypothesised	that	site	1	would	have	a	higher	ARG	

and	ARB	prevalence	than	site	2	and	that	prevalence	would	be	influenced	by	increased	

precipitation	in	Winter	months.		

	

The	only	gene	target	found	at	significantly	higher	prevalence	at	site	1	than	site	2	was	

blaCTX-M-1	 which	 correlated	 with	 the	 prevalence	 of	 E.	 coli	 and	 qnrS	 however	 no	

significant	differences	between	site	were	recorded	for	these	two	targets.	Although	

site	was	not	an	important	factor	in	determining	prevalence,	season	was	important	

with	 significantly	 higher	 numbers	 of	 E.	 coli	 and	 qnrS	 in	 Autumn/Winter	 months	

compared	to	Spring/Summer.	The	number	of	fluoroquinolone	antibiotics	detected		

in	 sludge	 has	 previously	 been	 shown	 to	 correlate	 with	 season	 presenting	 higher	

numbers	in	Winter	months	than	Summer	which	will	select	for	qnrS	(Baquero	et	al.,	

2008,	Sun	et	al.,	2012,	Suda	et	al.,	2014,	EXASOL,	2015,	Caucci,	2016b).	The	increased	

selection	pressures	may	indirectly	select	blaCTX-M-1	in	strains	of	E.	coli.	The	association	

of	E.	coli	carrying	qnrS	and	blaCTX-M-1	has	been	increasingly	prevalent	in	the	clinic	due	

to	 carriage	 of	 fluoroquinolone	 and	 3GC	 resistance	 conferring	 genes	 on	 MGEs,	

particularly	 in	 the	 human	 pandemic	 strain	 ST131	 O25:H4	 (discussed	 further	 in	

Chapter	6)	(Ewers	et	al.,	2010,	Dhanji,	2011,	Can	et	al.,	2015,	Zhang	et	al.,	2011).		

	

Detecting	E.	coli	as	a	result	of	CSO	spills	and	WWTP	effluent	release	has	previously	

been	recorded	with	spikes	of	E.	coli	after	CSO	release	events	and	frequent	detection	

of	E.	coli	occurring	downstream	of	WWTP	effluent	release	(Madoux-Humery,	2015,	
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Kotlarska	et	al.,	2015,	Amos	et	al.,	2014).	Season	significantly	influenced	abundance	

of	E.	coli,	both	in	plate	counts	and	qPCR	for	sites	1	and	2	which	further	reinforces	the	

impact	of	WWTP	discharges	on	the	river	environment	suggesting	new	measures	must	

be	 reinforced	 to	 prevent	 further	 contamination	 and	 consequent	 dissemination	of	

clinically	important	ARGs.		

	

MGE	often	carry	additional	accessory	genes	enabling	 long-term	persistence	which	

may	in	part	explain	why	seasonal	variation	was	not	responsible	for	variations	in	gene	

abundance	of	some	gene	targets	(Cohen	et	al.,	2013,	Marcusson	et	al.,	2005,	Fricke	

et	al.,	2009,	Gelens	et	al.,	2013,	EXASOL,	2015).	Investigating	MGE	carried	by	E.	coli	

isolated	from	river	sediment	will	ultimately	aid	the	understanding	of	the	potential	

mechanisms	 involved	 in	 the	 possible	 long-term	 persistence	 of	 non-indigenous	

multidrug-resistant	species	in	the	environment	and	is	further	investigated	in	Chapter	

6.		

	

The	number	of	ARB	as	a	result	of	accretion	and	constant	inflow	in	the	environment	

must	be	considered	when	investigating	the	river	as	a	potential	reservoir	of	AMR.	The	

current	study	demonstrated	that	seasonal	effects	were	more	important	at	site	1	than	

site	2	suggesting	that	the	constant	flow	of	treated	effluent	in	to	the	river	maintains	

a	stable	population	of	ARB	whereas	the	CSO	release	events	resulting	from	seasonal	

spikes	of	high	rainfall	result	in	changes	at	site	1.	

	

	It	is	unknown	to	what	extent	sediment	taken	directly	downstream	of	effluent	release	

is	actually	attributable	to	this	release	or	if	the	diluted	effects	from	CSO	release	events	

are	 in	 fact	more	 important.	WWTPs	do	not	monitor	the	release	of	antibiotics	and	

biocides	in	to	the	rivers,	consequently	they	are	frequently	detected	in	receiving	rivers	

and	will	induce	selective	effects	(Bengtsson-Palme,	2016,	DEFRA,	2012).	Further	to	

this,	 the	 EA	 specifies	 that	 CSO	 release	 events	 are	 monitored	 (Robert	 Huxham,	

,SevernTrent	Water,	personal	correspondence,	13th	July	2016)	yet	the	WWTP	in	the	

current	study	has	no	records	of	the	number	of	release	events	occurring	within	the	

sampling	regime	so	it	cannot	be	concluded	from	this	current	study	which	factors	are	

most	important	in	determining	ARG	and	ARB	numbers.	
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Significantly	greater	prevalence	of	ermF	and	tetM	was	recorded	at	site	2	than	site	1	

with	 correlations	 between	 these	 two	 genes	 also	 reported.	 Erythromycin	 and	

tetracycline	 resistance	 genes	 are	 often	 carried	 on	 broad	 host	 range	 conjugative	

elements	 however	 previous	 correlations	 between	 erythromycin	 and	 tetracycline	

resistance	genes	are	typically	between	ermF	and	tetQ	and	ermB	and	tetM	and	no	

studies	investigating	wastewater	have	previously	found	an	association	between	ermF	

and	tetM	(Roberts,	1999a,	Sui	et	al.,	2015,	Zhou	et	al.,	2009).		

	

Seasonal	variation	was	important	in	explaining	prevalence	of	ermF	at	site	1	but	not	

site	 2	 suggesting	 CSO	 release	 events	 are	 likely	 involved	 in	 contributing	 to	 the	

prevalence.	Consistent	with	Chapter	4,	the	prevalence	of	ermF	was	low	throughout	

the	sampling	regime	further	supporting	the	suggestion	made	in	Chapter	4	that	ermF	

may	not	be	primarily	responsible	for	the	dissemination	of	erythromycin	resistance.		

	

Seasonal	 changes	 explained	prevalence	of	 tetM	 at	 site	 2.	 Tetracyclines	 are	highly	

stable	and	not	readily	metabolised	resulting	in	up	to	60	%	excreted	and	consequently	

found	 in	WWTPs	 (Agwuh	and	MacGowan,	2006).	The	stability	of	 these	antibiotics	

results	in	detection	in	effluent	which	may	increase	tetM	prevalence	from	constant	

selective	pressures	(Agwuh	and	MacGowan,	2006,	Gao,	2012).			

	

It	has	previously	been	suggested	that	the	class	1	integron	integrase	gene,	intI1,	may	

be	 a	 suitable	 marker	 for	 anthropogenic	 pollution	 and	 might	 predict	 the	

environmental	 resistome	(Gillings	et	al.,	2015,	Amos	et	al.,	2015).	Consistent	with	

previous	studies	a	high	prevalence	of	intI	was	reported	at	both	sites	in	the	current	

study	with	significantly	higher	prevalence	of	intI1	than	all	other	gene	targets	(Table	

5.3).	No	significant	differences	were	identified	in	 intI1	prevalence	or	abundance	in	

river	sediments	from	site	1	and	site	2	and	no	correlations	between	intI1	prevalence	

and	3GC-resistant	coliforms	were	identified	inconsistent	with	findings	by	Amos	et	al	

who	predicted	3GC-resistant	coliforms	based	on	the	prevalence	of	intI1	(Amos	et	al.,	

2015).	 The	 only	 significant	 correlation	 with	 intI1	 was	 qacE	 	 which	 was	 expected	

considering	clinical	class	1	integrons	are	characterised	by	carriage	of	qacED1	(Barraud	
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and	Ploy,	2015).	The	current	study	suggests	that	the	class	1	integrase	gene	is	not	a	

suitable	marker	for	anthropogenic	pollution	or	a	predictor	of	the	resistome	as	it	will	

overestimate	contamination.		The	same	sites	tested	by	Amos	et	al	were	tested	in	the	

current	study	so	it	is	surprising	that	correlations	that	were	previously	detected	were	

not	detected	presently.	However,	the	results	presented	in	the	current	chapter	are	

consistent	with	Chapter	4	and	suggest	that	intI1	cannot	be	used	as	a	predictor	within	

the	three	rivers	tested	to	determine	AMR.	

	

Table	5.3	Prevalence	of	intI1	in	water	and	sediment	samples	taken	WWTP	effluent	
impacted	rivers		

	

There	have	been	contrasting	reports	of		changes	in	ARG	prevalence	with	season	with	

some	 reporting	 prevalence	 is	 greatest	 in	 the	 dry	 season	 and	 some	 in	 the	wetter	

months	(Su	et	al.,	2014a,	Knapp	et	al.,	2012).	Seasonal	variation	of	AMR	E.	coli	has	

Source	 Copies	 Reference	

Downstream	WWTP	 ~107	per	litre	 	(Stalder	et	al.,	
2014)	

WWTP	Effluent		 ~109	per	litre	 (Stalder	et	al.,	
2014)	

WWTP	effluent	 ~106	per	ml	 (Ma	et	al.,	2013)	
WWTP	effluent	 ~107	per	ml	 (Du	et	al.,	2014)	
Sediment		 ~107	per	ml	 (Zhang	et	al.,	

2009a)	
Tertiary	 treated	 Water	
sample	

~104	per	ml	 (LaPara	et	al.,	
2011)	

River	sediment		 3.8	x	104	copies/106	16S	rRNA	
gene	copies	

(Berglund	et	al.,	
2014)	

Water	samples	 106./106	16S	rRNA	gene	copies	 (Khan	et	al.,	2013)	

WWTP	sludge	 106.95	-107.85	copies	per	gram	 (Wen,	2016)	
River	sediment	 10-3	-		10-2	/16S	rRNA	gene	

copies	
(Wright	et	al.,	
2008)	

CSO	impacted	river	
sediment	

~106	copies	per	gram	
~10-2	copies/16S	rRNA	gene	
copies	

This	study	

WWTP	impacted	river	
sediment	

~107	copies	per	gram	
~10-2	copies/16S	rRNA	gene	
copies	

This	study	
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been	observed	to	increase	in	Autumn/Winter	months	compared	to	Spring/Summer	

consistent	with	results	presented	in	the	current	study	(Sun	et	al.,	2012,	Wertheim	et	

al.,	2009).	Increased	prescription	in	the	Winter	months	is	likely	to	be	involved	in	the	

increased	AMR	E.	coli	(December	2014	saw	a	59	%	increase	in	prescription	compared	

to	July	2014	in	the	UK)	due	to	increasing	levels	of	ARG	from	direct	selection	in	the	

human	gut	(EXASOL,	2015,	Achermann	et	al.,	2011,	Caucci,	2016b,	Elseviers	et	al.,	

2007,	 Suda	 et	 al.,	 2014,	 Sun	 et	 al.,	 2012,	 Lester	 et	 al.,	 2006,	 Trobos	 et	 al.,	 2009,	

Cremet	et	 al.,	 2012,	Karami	et	 al.,	 2007,	Goren	et	al.,	 2010,	Hu	et	al.,	 2016).	 The	

combination	of	increased	ARG	and	precipitation	in	the	Winter	months	(resulting	in	

CSO	release	of	raw	sewage)	will	result	in	higher	environmental	ARB	(Jalliffier-Verne,	

2016).	 Closer	 stewardship	 of	 prescription	 and	monitoring	 of	 storm	drains	 release	

should	therefore	be	performed	to	reduce	environmental	resistance.		

	

Community	 structure	 was	 remarkably	 similar	 in	 both	 sites	 and	 not	 significantly	

impacted	with	exception	of	the	elevated	Proteobacteria	prevalence	at	site	1.	 	The	

most	 dramatic	 difference	 was	 observed	 in	 the	 Firmicutes,	 with	 the	 greatest	

difference	within	the	class	Clostridia	with	a	3.4	%	increase	at	site	2	compared	to	site	

1	which	may	be	attributable	to	the	process	of	anaerobic	digestion	in	the	wastewater	

treatment	process	selecting	for	spore	forming	bacteria	(Yutin	and	Galperin,	2013).		

	

This	study	shows	that	community	structure,	presence	of	resistant	coliforms	and	ARG	

levels	 in	 river	 sediment	 varies	with	 season	 and	 site.	 Seasonal	 variation	 therefore	

must	 be	 considered	 in	 future	 sampling	 regimes	 which	 may	 currently	 under	 or	

overestimate	 resistant	 pathogens	 depending	 on	 sampling	 time.	 Previous	 studies	

monitoring	seasonal	change	due	to	WWTP	 impact	have	primarily	 focussed	on	the	

water	 column	 which	 presents	 a	 measureable	 risk	 but	 work	 here	 suggests	 that	

exposure	and	risk	assessments	should	take	in	to	account	the	river	sediment	as	it	may	

provide	a	more	substantial	risk	(Leonard	et	al.,	2015,	Giannoulis	et	al.,	2005,	Coffey	

et	al.,	2007,	Yillia	et	al.,	2009,	Jacob	et	al.,	2015).		Current	estimates	predict	8	%	of	E.	

coli	within	 river	samples	are	pathogenic	sequence	 types	and	 that	 resuspension	of	

sediment	 in	 to	 river	 water	 increases	 total	 E.	 coli	 count	 by	 up	 to	 2	 log	measures	

(Garcia-Armisen	et	al.,	2014,	Muirhead	et	al.,	2004).	The	shifts	in	abundance	of	ARB	
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and	 ARG	 observed	 between	 season	 are	 important	 in	 future	 predictions	 of	

anthropogenic	effects	of	environmental	contamination	induced	by	CSO	and	WWTP	

effluent	impact.	

To	summarise,	this	study	provided	insight	in	to	seasonal	variation	of	ARG	and	ARB	

and	highlighted	the	importance	of	monitoring	the	release	of	untreated	wastewater	

from	CSOs.	It	provides	useful	understanding	of	the	importance	of	seasonal	release	

from	 CSOs	 and	 suggests	 further	 work	 in	 this	 area	 is	 required	 to	 understand	 full	

implications	of	release	events.		
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Chapter	6	

Diversity	within	genomes	of	selected	E.	

coli	isolates	
	

6.1	Introduction	

E.	 coli	 is	 a	 commensal	 inhabitant	 of	 the	 gastrointestinal	 tract,	 however	 there	 are	

several	pathotypes	responsible	for	one	of	the	most	important	nosocomial-acquired	

and	community-acquired	human	infections	of	the	21st	century	(Kaper	et	al.,	2004,	

Prevention,	2013).	The	acquisition	of	the	IncF	type	plasmids	has	allowed	E.	coli	 to	

develop	 resistance	 to	 an	 extensive	 range	 of	 antibiotics	 and	 due	 to	 their	 highly	

promiscuous	 nature	 had	 aided	 the	 rapid	 dissemination	 of	 clinically	 important	

resistance	genes	resulting	in	untreatable	infections	(McGann	et	al.,	2016,	Yang	et	al.,	

2015,	Phan	et	al.,	2015,	Partridge	et	al.,	2011b).	The	rise	of	ESBL	producing	E.	coli	as	

a	direct	result	of	the	global	dissemination	of	the	blaCTX-M-15	gene	on	the	IncF	plasmids	

has	 led	 to	an	accelerated	 level	of	 resistance	within	 this	 species	also	acquiring	 the	

recently	 reported	mobilisable	mcr-1	 gene	 conferring	 resistance	 to	 the	 last-resort	

colistin	antibiotics	(Prevention,	2013,	McGann	et	al.,	2016).	

	

Virulence	between	E.	coli	strains	is	highly	variable	with	some	strains	able	to	cause	

infection	with	a	dose	as	low	as	10	and	some	requiring	108	(Kaper	et	al.,	2004).	There	

are	an	extensive	number	of	virulence	genes	found	in	E.	coli,	some	associated	with	
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specific	pathotypes	(such	as	Shiga-toxin	producing	EHEC	strains)	and	some	are	found	

commonly	in	most	E.	coli,	for	example	siderophore	encoding	genes.		One	of	the	most	

important	 human	 pathotypes	 of	 E.	 coli	 are	 the	 opportunistic	 UPEC	 strains	 which	

cause	UTI	infections	and	have	become	increasingly	difficult	to	treat	due	to	plasmid	

acquired	AMR.	The	acquisition	of	AMR	and	increased	virulence	factors	within	E.	coli,	

allowed	 widespread,	 difficult-to-treat	 infections	 in	 the	 clinic.	 The	 acquisition	 of	

virulence	factors	in	E.	coli	has	arisen	from	pathogenicity	islands,	phage	and	plasmids.	

Virulence	factors	that	have	been	acquired	through	these	MGE	include	intimin	(eae)	

which	is	encoded	on	a	~35	kb	pathogenicity	island,	Shiga	toxins	(stx1	and	stx2)	which	

are	 carried	 on	 phage,	 and	 enterohaemolysin	 (ehly)	 	 and	 catalase	 katP	 which	 are	

carried	on	a	~90	kb	plasmid	(Reid,	2000).	The	carriage	of	virulence	encoding	plasmids	

is	 a	 typical	 characteristic	 of	 APEC	 strains	 which	 typically	 carries	 increased	 serum	

resistance,	temperature-sensitive	haemagglutination,	adhesins	and	iron	scavenging	

and	transport	mechanisms	(Tivendale	et	al.,	2009).		

	

Environmental	AMR-E.	coli	has	previously	been	reported	in	water	samples	and	at	the	

sampling	sites	investigated	in	the	current	study	(Anastasi	et	al.,	2012,	Kotlarska	et	al.,	

2015,	Roe	et	al.,	2003,	Koczura	et	al.,	2013,	Bonetta	et	al.,	2016,	Dhanji,	2011,	Franz	

et	al.,	2015,	Amos	et	al.,	2014).	Despite	the	many	reports	of	E.	coli		prevalence,	the	

pathogenic	 potential	 of	 these	 environmental	 resistant	 E.	 coli	 has	 not	 been	 well	

studied	(Franz	et	al.,	2015).	One	study	however	did	reported	60	%	of	ESBL-producing	

E.	coli	isolated	from	a	river	were	potential	pathogens	highlighting	the	potential	threat	

the	environment	may	pose	to	human	health	(Jang	et	al.,	2013).		

	

The	 aim	 was	 to	 investigate	 resistance	 and	 virulence	 profiles	 from	 potentially	

pathogenic	E.	coli	isolated	from	the	river	sediment	taken	seasonally.	Samples	were	

taken	at	the	same	time	points	specified	in	Chapter	5	from	the	river	Sowe	with	the	

aim	 to	 determine	 if	 population	 increased	 from	 seasonal	 variation	 resulted	 in	

different	 ST	 types	of	E.	 coli	 in	 sediment.	77	 E.	 coli	 isolates	were	purified	on	HiCA	

media	by	picking	blue	colonies	and	streaking	to	purity.	Whole	genome	sequencing	

was	carried	out	and	strains	were	 investigated	for	ARG,	plasmid	carriage,	virulence	
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genes	and	associated	persistence	genes	to	attempt	to	evaluate	the	possible	impacts	

of	these	E.	coli	in	sediment.		
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6.	2	Aims	

The	aim	of	the	current	study	was	to	investigate	AMR	profiles	and	virulence	profiles	

of	77	E.	coli	isolates	from	river	sediment	to	evaluate	the	potential	risk	associated	with	

ingestion.	 Investigating	 the	 extent	 of	 AMR	 within	 potentially	 clinically	 important	

pathogens	will	improve	the	understanding	of	WWTP	effluent	impact	on	the	river	and	

elucidate	 if	 disruption	of	 sediment	 could	 lead	 to	 difficult-to-treat	 infections.	 	 The	

transmissibility	of	resistance	genes	was	also	evaluated	by	investigating	MGE	carriage	

to	determine	the	potential	dissemination	that	could	occur	within	the	sediment.		

	

1. Evaluate	 if	E.	coli	 isolates	are	of	the	same	sequence	type	at	each	sampling	

time	point	and	whether	strains	are	more	associated	with	human	or	animal	

infection.	

2. Identify	ARG	and	virulence	factors	within	each	strain.	

3. Determine	 which	 plasmids	 are	 present	 within	 strains	 and	 other	 MGE	

including	transposons	and	integrons.	
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6.3	Results	

6.3.1	Phenotypic	testing	of	77	E.	coli	isolates		

Each	isolate	was	tested	for	phenotypic	antibiotic	resistance	against	6	different	classes	

of	 antibiotics;	 b-lactam	 (ampicillin,	 cefotaxime	 and	 imipenem),	 tetracycline,	

macrolide	 (erythromycin),	 chloramphenicol,	 sulphonamide	 (sulphafurazole)	 and	

quinolone	(nalidixic	acid)	using	disc	diffusion	assays.		

	

Of	the	77	isolates	91	%	were	phenotypically	resistant	to	ampicillin,	77	%	resistant	to	

cefotaxime,	 81	 %	 tetracycline,	 63	 %	 chloramphenicol,	 97	 %	 erythromycin,	 91	 %	

sulphafurazole,	81	%	resistant	to	nalidixic	acid	and	none	were	resistant	to	imipenem.	

51	%	of	isolates	were	resistant	to	all	antibiotics	tested	except	imipenem.	Individual	

strain	phenotypic	profiles	can	be	found	in	Appendix	1.		

	

There	were	22	isolates	that	were	isolated	with	no	antimicrobial	selective	agent.	Only	

one	isolate	showed	no	phenotypic	resistance	to	any	of	the	antibiotics	tested.	67	%	of	

these	isolates	were	phenotypically	resistant	to	at	least	six	of	the	antibiotics	tested.		

	

6.3.2	Illumina	sequencing,	summary	statistics	for	initial	sequencing	

Genome	 size	 of	 the	 77	E.	 coli	 isolates	 ranged	 from	 4400792	 to	 6098924	with	 an	

average	 of	 5096399	 bp.	 Rough	 assemblies	 were	 generated	 using	 the	 A5-miseq	

pipeline	and	were	carried	out	at	UTS.	The	number	of	contigs	for	each	rough	assembly	

ranged	from	55	to	1199	with	N50	ranging	from	10025	to	566858.	The	average	median	

coverage	 was	 48.5.	 Summary	 statistics	 for	 each	 strains	 sequences	 are	 found	 in	

Appendix	2.		

	

6.3.3	Phylogenetic	analysis	of	Sowe	E.	coli	isolates	

The	A5-pipeline	was	used	to	provide	rough	assemblies	for	each	genome	from	the	raw	

Illumina	data.	The	pipeline	 involves	5	steps:	1)	 read	cleaning	 involving	 removal	of	

sequence	adapters	and	low-quality	regions	by	Trimmomatic	and	correction	of	errors	

using	SGA’s	algorithm;	2)	contig	assembly	 involving	paired	and	unpaired	reads	for	

assembly	 using	 the	 IDBA-UD	 algorithm,	 3)	 crude	 scaffolding;	 4)	 missassembly	

correction	to	detect	read	pairs	that	do	not	map	with	expected	distance	and	5)	final	



	 206	

scaffolding	to	repair	any	previously	broken	contigs	from	step	4	(Coil,	2015).		Using	

the	 assemblies	 generated	 by	 the	 A5-pipline,	 phylogenetic	 analysis	 using	 the	

phylotyping	 method	 updated	 by	 Clermont	 et	 al.	 was	 performed	 to	 investigate	

evolutionally	 relationships	 based	 on	 phylogenetic	 inferences	 of	 strains	within	 the	

River	 Sowe	 (Clermont	 et	 al.,	 2013).	 Phylogrouping	 is	 based	on	 the	 screening	of	 4	

genes;	arpA	 (encodes	 a	Ankyrin-like	 regulatory	protein),	 chuA	 (encoding	an	outer	

membrane	haemoglobin	receptor),	yjaA	(conserved	protein	with	unknown	function)	

and	 TspE4.C2	 (encodes	 a	 putative	 lipase	 esterase	 gene),	 differential	

presence/absence	 of	 these	 genes	 defines	 the	 phylogroup	 to	which	 E.	 coli	 strains	

belong	 to	 (Clermont	 et	 al.,	 2013).	 	MLST	 was	 also	 carried	 out	 to	 determine	 the	

sequence	type	of	E.	coli	isolate.	MLST	of	E.	coli	is	based	on	seven	housekeeping	genes:	

adk,	fumC,	gyrB,	icd,	mdh,	recA	and	purA.	Different	polymorphisms	in	these	seven	

genes	determine	the	sequence	type	(Wirth	et	al.,	2006).		Serotyping	of	strains	was	

conducted	through	BLAST	searches	for	O	and	H	antigens.	Best	hit	was	recorded	as	

true	antigen	type.	These	combined	methods	of	identification	were	used	the	E.	coli	

isolates	to	ensure	best	characterisation	of	species	was	made.		

	

32	different	ST	types	were	isolated	over	the	year.	The	most	prevalent	ST	types	were	

ST940,	ST3202	and	ST744	(14,	14	and	11	isolates	respectively).	Other	ST	types	isolates	

included	ST46,	ST69,	ST1421,	ST73.	The	most	common	phylogroups	were	A	and	B1	

(25	and	22	isolates	respectively).		

	

To	investigate	relatedness	of	strains,	PhyloSift	analysis	was	performed	to	generate	

phylogenetic	relationships	(Darling	et	al.,	2014).	PhyloSift	combines	LAST,	HMMER,	

and	 pplacer	 to	 investigate	 phylogenetic	 relationships	 through	 analysis	 of	 protein	

coding	 and	 RNA	 sequences.	 It	 used	 37	 “elite”	 (nearly)	 universal	 single-copy	 gene	

families	representing	approximately	1	%	of	the	average	bacterial	genome	(Darling	et	

al.,	 2014).	 In	 addition	 to	 these	 37,	 16S	 and	 18S	 rRNA	 genes,	mitochondrial	 gene	

families,	Eukaryote-specific	gene	families	and	viral	gene	families	are	included	in	the	

Phylosift	 database	 (Darling	 et	 al.,	 2014).	 	 FastTree	 was	 used	 to	 generate	 the	

phylogenetic	 tree	 (Price,	 2010)(Figure	 6.1).	 FastTree	 generates	 trees	 based	 on	
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minimum-evolution	 subtree-pruning-regrafting	 and	 maximum	 likelihood	 (Price,	

2010).			

	

Four	main	clusters	of	E.	coli	were	observed	 (Figure	6.1	designated	A,	B,	C	and	D).	

Strains	carrying	the	blaCTX-M-1	clustered	together	in	two	groups	(Figure	6.1,	groups	A	

and	C),	with	clusters	predominantly	consisting	of	ST940	and	ST131.	Predominantly	

strains	 carrying	 blaCTX-M-1	 were	 isolated	 from	 the	 February	 2015	 and	 May	 2015	

sampling	(14	and	10	isolates	respectively)	with	2	isolates	from	July	2015	and	1	from	

December	2015.	No	blaCTX-M-1	carrying	strains	were	isolated	from	the	February	2016	

sampling	 time	 point.	 	 Cluster	 A,	 which	 consisted	 of	 the	 ST940	 strains	 clustered	

separately	 from	 all	 other	 strains	 in	 the	 current	 study	 and	 did	 not	 show	 any	

relationship	with	the	reference	strains	(Figure	6.1	and	Table	2.7).		

	

Cluster	B	consisted	of	human	related	opportunistic	strains	such	as	ST46,	ST1421	and	

ST10	(also	associated	with	animal	infections).	This	cluster	was	diverse	in	ST	types	but	

showed	sequences	of	the	same	ST	generally	clustered	together.	Some	strains	were	

identified	to	carry	the	ESBL	blaCTX-M-15	gene	but	prevalence	of	this	gene	was	not	as	

high	in	isolates	compared	to	Cluster	A.		

	

No	isolates	in	Cluster	D	were	characterised	to	carry	the	blaCTX-M-15	gene	and	many	of	

the	ST	types	in	this	cluster	were	unknown.	Interestingly	this	cluster	did	contain	an	

ST46	which	was	clustered	away	from	the	other	ST46	identified	in	this	study,	which	

was	grouped	in	cluster	B	with	other	pathogenic	strains.	Cluster	D	did	not	contain	any	

other	 known	 pathogenic	 ST	 types	 demonstrating	 the	 relationship	 between	

pathogenic	ST	types	and	the	carriage	of	blaCTX-M-15.		
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6.3.4	Plasmid	carriage		

To	 determine	 if	E.	 coli	 strains	 had	 the	 potential	 to	 transfer	 ARG,	 the	 plasmid	 Inc	

groups	were	 investigated	 to	determine	carriage	 in	 strains.	The	 IncF	 type	plasmids	

were	 found	 in	 ~75%	 of	 isolates.	 Other	 plasmids	 detected	 included	 IncI,	 IncH	 and	

unexpectedly	IncN,	IncP	and	IncU	(Figure	6.2).	

	

	

Figure	6.2	Prevalence	of	plasmids	identified	in	the	77	E.	coli	isolates		

	

6.3.5	Investigating	blaCTX-M	carrying	E.	coli	isolates	

35	%	of	the	E.	coli	strain	sequences	possessed	the	3GC	resistance	conferring	genes	

blaCTX-M-14	 (1	 isolate)	 and	 blaCTX-M-15	 (27	 isolates).	 These	 28	 strains	 were	 further	

investigated	 to	 evaluate	what	 resistance	 genes,	 virulence	 genes	 and	 persistence-

associated	genes	were	carried	in	these	strains	to	evaluate	the	potential	of	these	ESBL	

producing	strains.	The	most	common	phylogroup	detected	was	B1	(Table	6.1).		

	

From	the	77	isolates,	six	of	them	were	typed	as	ST131.	Three	of	these	isolates	carried	

blaCTX-M	genes,	 two	of	which	carried	blaCTX-M-15	(strains	48	and	66)	and	one	carried	

both	blaCTX-M-14	and	blaCTX-M-99	(strain	61).	 	 The	ST	 type	most	 commonly	associated	
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with	blaCTX-M-15	was	ST940.	From	the	77	isolates	fourteen	of	these	were	ST940	and	

thirteen	of	these	carried	the	blaCTX-M-15	gene.		

	
Table	6.1	MLST	 identification,	 serotyping	and	phylogrouping	of	blaCTX-M	positive	E.	
coli	strains	
Strain	identifier	 Sequence	type	 O	type	 H	type	 Phylogroup	

29	 ST46	 O8	 H4	 A	
41	 ST1421	 O9	 H4	 A	
42	 ST940	 O9	 H5	 B1	
47	 ST38	 O1	 H15	 D	OR	E	
48	 ST131	 O25	 H4	 B2	
50	 ST3202	 O8	 H21	 A	
51	 ST940	 NO	HIT	 H5	 B1	
61	 ST131	 O25	 H4	 B2	
62	 ST1421	 O9	 H4	 A	
63	 ST1421	 O9	 H4	 A	
66	 ST131	 O25	 H4	 B2	
67	 ST940	 NO	HIT	 H5	 B1	
72	 ST940	 NO	HIT	 H5	 UNKNOWN	
75	 ST940	 NO	HIT	 H5	 B1	
77	 ST940	 NO	HIT	 H5	 B1	
78	 ST1421	 O9	 H4	 A	
79	 ST940	 NO	HIT	 H5	 B1	
87	 ST3202	 O8	 H21	 A	
89	 ST940	 NO	HIT	 H5	 B1	
92	 ST940	 NA	 H5	 B1	
95	 ST940	 NO	HIT	 H5	 B1	
96	 ST940	 NO	HIT	 H5	 B1	
98	 ST1421	 O68	 H4	 A	
99	 ST940	 NO	HIT	 H5	 B1	
101	 ST940	 NO	HIT	 H5	 B1	
109	 ST940	 NO	HIT	 H5	 B1	
140	 ST46	 O9	 H4	 A	
142	 ST73	 O6	 H1	 B2	
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6.3.6	MGE,	including	plasmid,	transposon	and	integron,	carriage	in	ESBL	producing	

E.	coli		

The	most	abundant	plasmids	within	strains	carrying	blaCTX-M-15	and	blaCTX-M-14	were	

IncF	 type	 plasmids.	 100	 %	 of	 ESBL	 producing	 strains	 possessed	 IncFII	 and	 IncFIB	

(Figure	 6.4).	 Other	 plasmids	 frequently	 detected	 were	 IncHI1B	 and	 IncX.	 	 IncI	

plasmids	were	less	commonly	detected	than	expected	in	the	ESBL	producing	strains.	

A	 summary	 of	 MGEs	 carried	 by	 each	 strain	 can	 be	 found	 in	 Appendix	 3.	 BLAST	

searches	were	performed	to	identify	MGE	within	isolates.	100	%	of	isolates	carried	

IS26	and	the	intI1	and	intI2	genes	were	found	in	50	%	of	isolate	(Figure	6.4).	All	strains	

carried	one	 integrase	gene	which	was	either	 the	 intI1	or	 the	 intI2	with	no	strains	

identified	to	carry	both	types	of	integron.	ST940	and	the	closely	related	ST455	were	

responsible	 for	 the	high	prevalence	of	 the	 intI2	gene	 in	 the	 current	 study.	Genes	

associated	with	the	Tn6029	(strA,	strB,	sul2	and	aphA1)	were	detected	in	two	isolates	

carrying	 ESBL	 genes	 (Table	 6.2	 strains	 63	 and	 98),	 however	 due	 to	 the	 repetitive	

sequences	of	the	IS26	which	result	in	sequence	breaks,	it	could	not	be	determined	if	

these	strains	did	carry	this	transposon.		
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Figure	6.4	Plasmid	Inc	group	and	other	MGE	prevalence	in	the	28	isolates	carrying	
the	ESBL	blaCTX-M	genes	
	

6.3.7	Additional	ARG	in	blaCTX-M	positive	isolates	

ARG	 were	 investigated	 in	 the	 28	 strains	 carrying	 ESBL	 genes	 to	 determine	 ARG	

profiles	for	each	strain	sequenced.	All	strains	carried	multiple	resistance	genes	to	a	

variety	 antimicrobial	 classes	 including	 quinolone,	 macrolide,	 tetracycline,	

sulphonamide,	 chloramphenicol,	 vancomycin,	 aminoglycoside,	 polymyxin	 and	

various	multidrug	efflux	pumps.	Antibiotic	resistance	genes	investigated	are	shown	

in	Appendix	4	and	strain	summaries	for	each	gene	identified	are	found	in	Appendix	

5.		

	

6.3.7.1	Quinolone	and	fluoroquinolone	resistance	

All	28	blaCTX-M-15	carrying	strains,	except	isolate	42,	were	phenotypically	resistant	to	

nalidixic	 acid.	 100	 %	 carried	 the	 mutated	 gyrA	 gene	 conferring	 resistance	 to	

fluoroquinolones	and	50	%	also	carried	parC.	Six	strains	carried	additional	quinolone	

resistance	genes.	qnrS,	qepA,	qnrB	(strains	47,	48,	50,	61,	87,	140	and	142).		
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6.3.7.2	Macrolide	resistance	

All	isolates	were	phenotypically	resistant	to	erythromycin	(8	µg/ml)	however	the	only	

macrolide	conferring	resistant	gene	identified	in	this	study	was	the	macB	gene	which	

was	 identified	 in	 21	 of	 the	 28	 isolates.	macB	 encodes	 an	 ATP	 binding	 cassette	

transporter	 which	 forms	 a	 complex	 with	 MacA	 and	 TolC	 to	 export	 14-	 and	 15-	

membered	lactones	from	the	cell.	The	marker	gene	ermF	was	not	identified	in	any	of	

the	isolates	analysed	in	the	current	study.		

	

6.3.7.3	Tetracycline	resistance	

Tetracycline	genes	detected	included	tetA,	tetB,	tetG,	tetC	and	tetD	(found	in	75	%,	

71	%,	25	%,	4	%	ad	54	%	of	isolates	respectively).	All	28	isolates	carried	at	least	one	

tet	 gene	 explaining	 phenotypic	 resistance	 to	 tetracycline	 (10	 µg/ml)	 which	 was	

recorded	for	all	strains.	The	suggested	marker	gene	tetM	gene	was	not	carried	in	any	

of	the	ESBL	producing	strains.		

	

6.3.7.4	Sulphonamide	resistance	

The	28	 isolates	 showed	phenotypic	 resistance	 to	 sulphafurazole	 (300	µg/ml).	 The	

sul2	gene	was	the	most	prevalent	sulphonamide	resistance	gene	with	26	of	the	28	

strains	carrying	this	gene.	Three	strains	carried	the	sul1	gene.	All	isolates	carried	at	

least	one	of	the	sul	genes,	explaining	the	phenotypic	resistance.		

	

6.3.7.5	Beta-lactam	resistance	

Isolate	92	showed	resistance	to	ampicillin	(25	µg/ml)	but	did	not	present	phenotypic	

resistance	to	cefotaxime(5	µg/ml).	The	remaining	27	isolates	displayed	phenotypic	

resistance	to	ampicillin	and	cefotaxime.	Strain	61	was	the	only	isolate	to	carry	blaCTX-

M-14,	 the	other	27	carried	blaCTX-M-15.	Additionally,	blaoxa	blatem	blaDHA2	blaCRP	blaACT-7	

blaCMY-63	 and	 blaCTX-M-99	 genes	 were	 identified.	 Within	 the	 blaoxa	 genes	 the	

predominant	gene	was	blaoxa-1,	a	narrow	spectrum	D-class	beta-lactamase	and	blaoxa-

31.	A	diverse	 range	of	blatem	genes	were	 found	 including	blatem-1,	blatem-22,	blatem-116,	

blatem-154	and	blatem-190.	All	isolates	carried	at	least	3	beta-lactamase	genes	with	some	
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strains	 carrying	 6:	 blaoxa	 blatem	 blaDHA2	 blaCRP	 blaACT-7	 and	 blaCTX-M-15.	 The	 median	

number	of	beta-lactamase	genes	carried	in	one	strain	was	5.		

	

6.3.7.6	Chloramphenicol	resistance	

Eighteen	isolates	were	phenotypically	resistant	to	chloramphenicol	(30µg/ml).	Of	the	

ten	 that	 did	 not	 show	phenotypic	 resistance,	 eight	 carried	 genes	 associated	with	

chloramphenicol	 resistance.	 Overall	 21	 isolates	 carried	 genotypic	 resistance	 to	

chloramphenicols.	The	most	prevalent	of	the	chloramphenicol	resistance	genes	was	

cat	which	was	carried	in	thirteen	of	the	28	strains	in	the	current	study.		

	

6.3.7.7	Polymyxin	resistance	

22	isolates	carried	polymyxin	resistance	genes.	The	mobilisable	mcr-1	gene	was	not	

detected	in	any	strain	but	the	chromosomal	arnA,	pmr	and	phoPQ	genes	were	found	

in	64	%,	68	%	and	4	%	of	isolates	respectively.		

	

6.3.7.8	Vancomycin	resistance	

Most	Gram-negatives	are	intrinsically	resistant	to	glycopeptides	due	to	the	inability	

to	permeate	their	outer	membrane,	however	the	vanG	gene	was	detected	in	ten	of	

the	28	isolates.		

	

6.3.7.9	Aminoglycoside	resistance	

Sixteen	aminolgycoside	resistance	genes	were	identified	in	the	28	strains.	The	most	

commonly	 detected	 amininoglycoside	 resistance	 genes	were	 strA	 and	 strB	which	

were	 identified	 in	 27	 isolates	 (Figure	6.6).	 Isolates	 carried	 at	 least	 three	different	

aminoglycoside	 resistance	 genes	 with	 a	 median	 value	 of	 eight	 aminoglycoside	

conferring	resistance	genes.	Four	strains	carried	ten	genes.	The	carriage	of	the	aac	

(6’)-lb-cr	 gene	 is	 notable	 as	 it	 confers	 resistance	 to	 both	 aminoglycosides	 and	

fluoroquinolones.		
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Figure	6.5	Percentage	of	isolates	carrying	aminoglycoside	resistance	genes		

	

6.3.7.10	Trimethoprim	resistance	

Trimethoprim	 resistance	 genes	 were	 found	 in	 27	 of	 the	 28	 isolates.	 The	 most	

prevalent	was	the	dfrA5	gene	which	was	found	in	50	%	of	isolates	followed	by	dfrA1	

which	was	 present	 in	 46	%	 of	 isolates.	 Additionally,	 dfrA14	 and	 dfrA17	 was	 also	

present	 in	 isolates	 (in	 25	 %	 and	 4	 %	 respectively).	 	 The	 only	 strain	 not	 to	 carry	

trimethoprim	 resistance-associated	 genes	 was	 strain	 61	 which	 was	 also	 the	 only	

strain	to	carry	the	blaCTX-M-14.		The	association	of	the	dfr	genes	and	the	blaCTX-M-15	gene	

may	be	indicative	of	co-carriage	of	resistance	on	the	same	MGE.	

	

6.3.7.11	Additional	AMR	and	MDR		

Bacitracin	 resistance	was	 identified	 in	27	of	 the	28	E.	coli	 isolates	and	novobiocin	

resistance	in	26	isolates.	All	strains	carried	multidrug	efflux	pumps	alongside	all	the	

other	 resistance	mechanisms	 (Figure	 6.7).	 The	 tolC	 pump	was	 identified	 in	 all	 28	

strains	as	was	mdtD	and	emrA.		
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Figure	6.6	Multidrug	efflux	pumps	identified	in	strains	carrying	blaCTX-M-15	

	

Ten	 key	 strains	were	 investigated	 for	 carriage	 of	 ARG	 and	MGEs	 (Table	 6.2)	 and	

showed	extensive	carriage	of	ARG	to	a	diverse	range	antibiotic	classes.	These	strains	

were	 chosen	 based	 on	 the	 resistance	 and	 virulence	 profiles	 exhibited.	 It	 is	 not	

possible	to	determine	which	plasmids	were	involved	in	the	carriage	of	ARG,	however	

the	 presence	 of	 the	 IncF	 plasmids	 in	 all	 but	 one	 strain	 (142,	 which	 displayed	 no	

plasmid	carriage)	suggests,	consistent	with	previous	observations,	that	this	group	of	

plasmids	is	likely	responsible	for	dissemination	of	the	blaCTX-M-15	gene.	Numerous	ARG	

were	 detected	 in	 strains	 conferring	 resistance	 to	 the	 same	 antibiotic	 class,	 for	

example,	up	to	six	different	genes	associated	with	aminoglycoside	resistance	were	

identified	 in	 individual	 strains	 suggesting	 a	 possible	 cumulative	 role	 in	 conferring	

resistance	to	this	class	of	antibiotics.		
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6.3.7.12	Stress,	acid	response	genes	and	metal	resistance	genes		

The	stress	response	genes	cpxAR	were	identified	in	26	isolates	and	acid	resistance	

associated	 genes	 were	 found	 in	 eighteen	 strains.	 	 As	 well	 as	 additional	 stress	

response	genes,	71	%	of	strains	carried	merA	conferring	resistance	to	mercury	and	

one	 strain	 carried,	 terA	 and	 cusA	 conferring	 resistance	 to	 tellurium	 and	 copper	

respectively.		

	

6.3.8	blaCTX-M-14	and	blaCTX-M-15	and	associated	MGEs	

Consistent	 with	 previous	 studies	 the	 blaCTX-M-15	 was	 associated	 with	 the	 ISEcp1	

genetic	element	(Partridge	et	al.,	2011a,	Zong	et	al.,	2015,	Tian	et	al.,	2011).	In	strains	

50,	 87	 and	 142	 an	 interrupted	 Tn2/3	 carrying	 blaCTX-M-15,	was	 associated	 with	 a	

Tn6029-like	 genetic	 element	 carrying	 sul2,	 strA	 and	 strB.	 This	 one	 MGE	 carries	

resistance	to	ampicillin,	3GCs,	sulphonamides	and	streptomycin	(Figure	6.8).	

	

	

Figure	 6.7	Genetic	 arrangement	 of	 an	 interrupted	 Tn2/3	 carrying	 the	 ESBL	 gene	
blaCTX-M-15	identified	in	3	strains	
	

The	blaCTX-M-14	gene	was	found	associated	with	the	ISEcp1,	IS903C	and	IS26	consistent	

with	previous	records	of	genetic	context	of	this	gene	(Figure	6.8).	No	other	resistance	

genes	were	found	on	this	MGE.		

	
Figure	 6.8	 IS-associated	blaCTX-M-14	gene	 identified	 from	 strain	 61,	 consistent	with	
previous	reports	of	this	ESBL	gene	
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6.3.9	Class	1	and	class	2	integron	structure	

The	class	1	and	class	2	integrons	identified	in	the	study	using	BLAST	searches	were	

investigated	regarding	structure	(Figure	6.9	and	Figure	6.10).	Only	one	structure	of	

the	 class	 2	 integron	 was	 found	 which	 carried	 the	 dfrA1,	 sat2	 and	 assfA1	 genes	

consistent	with	previous	reports	of	this	integron	(Figure	6.9).		

	

None	 of	 the	 class	 1	 integrons	 carried	 the	 qacED1	 gene	 characteristic	 of	 clinical	

integrons.	All	integrons	identified	carried	trimethoprim	resistance	cassettes	(Figure	

6.	10)	

	

	

Figure	6.9	Class	2	integron	structure	identified	in	isolates	carrying	blaCTX-M-15	

	

Figure	6.10	Class	1	integron	structures	identified	in	strains	carrying	ESBL	gene	

	

6.3.10	Virulence	genes	from	strains	carrying	blaCTX-M		

E.	coli	isolated	in	the	current	study	carried	a	number	of	virulence	genes	(Figure	6.11).	

Virulence	 genes	 included	 genes	 for	 toxin	 production	 including	 hlyE	 and	 sheA	

producing	a	haemolysin	gene	and	in	one	isolate	carrying	cnf1,	a	cytotoxic	necrotizing	

factor.	No	Shiga	toxins	were	found	in	any	of	the	strains	in	the	current	study.		
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100	%	carried	at	least	one	siderophore,	copper	acquisition	genes	(copA	and	cue0),	a	

genetic	island	associated	with	new-born	meningitis	(gimB)	and	a	porcine-associated	

virulence	gene	(paa)	(Figure	6.11).		
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6.3.11	Comparison	of	ST131	E.	coli	isolates		

E.	 coli	 identified	 as	 ST131	 was	 further	 investigated	 to	 determine	 comparative	

resistance	profiles	between	the	5	strains	identified	from	the	complete	77.	Strains	40	

and	102	did	not	carry	blaCTX-M	genes	(Figure	6.12).		As	expected	all	strains	carried	the	

mutated	gyrA	 conferring	 resistance	 to	quinolones	 and	 the	multidrug	 efflux	pump	

tolC.	 The	mutated	gyrA	 was	 one	 of	 the	 first	 identified	mechanisms	 of	 quinolone	

resistance	so	it	not	surprising	that	all	strains	investigated	carried	this	gene	conferring	

low	level	resistance.	The	TolC	pump	 is	a	chromosomally	encoded	resistance	efflux	

mechanisms	and	therefore	would	be	expected	to	be	found	in	all	strains	identified	in	

the	present	study.		

	

Genes	that	have	recently	emerged	(within	 the	 last	~20	years)	such	as	 the	blaCTX-M	

genes	would	be	expected	not	to	be	carried	by	all	strains.	The	carriage	of	these	genes	

in	3	of	the	5	identified	ST131s	is	concerning	and	suggests	a	substantial	dissemination	

of	this	ESBL	gene	in	the	environment.	This	gene,	although	believed	to	have	originated	

in	 an	 environmental	 bacteria	 is	 predominantly	 associated	 with	 clinical	 infections	

(Canton,	2012).	It	is	also	interesting	that	strains	carrying	these	ESBL	genes	also	carry	

additional	b-lactamases	(blaTEM-1		and	blaOXA-1)	providing	extensive	resistance	to	the		

b-lactam	 antibiotics	 as	 well	 as	 streptomycin	 resistance	 conferring	 genes,	

sulphonamide	resistance	genes,	tetracycline	resistance	genes	and	metal	resistance	

genes,	the	majority	of	which	are	likely	carried	on	the	same	MGE	due	to	structure	of	

integrons	and	transposons	which	often	carry	these	genes.		
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Figure	6.12	Comparison	of	AMR	genes,	metal	resistance	genes	and	integrase	genes	
from	ST131	E.	coli.	Generated	using	BRIG	(Alikhan,	2011).		
	

6.3.12	Comparative	genomics	of	ST131		

Relatedness	between	blaCTX-M	carrying	strains	of	ST131	and	ST940	were	separately	

investigated	using	MAUVE.	Reference	strains	were	compared	with	river	isolates	to	

determine	 potential	 regions	 of	 interest	 for	 further	 analysis.	 Strains	 identified	 as	

ST131	by	MLST	and	confirmed	by	phylogenetic	analysis,	were	aligned	against	closest	

related	reference	strain:	48	was	alignment	to	JJ1897.	MAUVE	analysis	showed	that	

48	had	multiple	scaffolds	unable	to	align	with	the	reference	strain	suggesting	large	

number	of	accessory	genes,	presumably	plasmid-borne.	The	alignment	returned	46	

LCBs	with	a	minimum	weight	of	39.	Alignments	between	ST131	between	61	and	66	

were	 also	 run	 showing	 high	 conservation.	 The	 number	 of	 LCBs	 for	 the	 alignment	

between	 strain	61	and	ST131	 JJ897	was	nineteen	with	 a	minimum	weight	of	 479	

bla
shv

 
catA1 
dfrA5 
aad1 
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(Figure	6.13)	and	the	alignment	between	strain	66	returned	30	LCBs	with	a	minimum	

weight	136.	Alignments	between	66	and	JJ897	and	48	and	JJ897	can	be	found	in	the	

Appendix	6	and	Appendix	7.		

	

	

Figure	 6.13	MAUVE	 alignment	 between	 strain	 61	 identified	 as	 ST131	 and	 known	
ST131,	 JJ897.	High	 level	of	 conservation	 shown	between	 the	 reference	 strain	and	
strain	 61.	Multiple	 scaffolds	 unaligned	 on	 the	 right	 suggesting	 additional	 genetic	
elements	 not	 in	 the	 reference	 strain	 aligned	 suggesting	 either	 plasmid	 or	 phage	
acquisition.	Coloured	blocks	represent	genome	sequences	that	align	free	of	genomic	
rearrangement:	locally	collinear	blocks	(LCBs).	The	height	of	the	profile	within	each	
LCB	represented	the	degree	of	conservation	within	the	aligned	region.	For	most	LCBs	
the	conservation	is	high	between	strain	61	and	ST131.	
	

6.3.13	Genetic	comparison	of	three	blaCTX-M	carrying	ST131		

Progressive	MAUVE	alignments	were	carried	out	between	the	three	ST131	strains	

(48,	61	and	66)	to	investigate	sequence	conservation	between	isolates	of	the	same	

sequence	type.	High	levels	of	conservation	were	shown	between	all	three	isolates,	

particularly	61	and	66	(Figure	6.14).	61	had	a	large	inversion	compared	to	strains	61	

and	66	and	had	comparatively	fewer	MGEs.	
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Figure	 6.14	 Alignment	 between	 ST131	 strains	 48,	 61	 and	 66	 using	 progressive	
MAUVE.		
	

6.3.14	Investigating	ST940	closest	related	E.	coli	

No	reference	strain	could	be	found	for	E.	coli	ST940	so	strains	identified	as	ST940	by	

MLST	were	aligned	to	the	closest	relative	(Figure	6.15)	E24377A,	an	ETEC	isolate.	The	

alignment	between	strain	79	returned	50	LCB	with	a	minimum	weight	of	210	showing	

a	high	level	of	similarity	between	these	two	strains	of	E.	coli	with	a	large	number	of	

additional	MGE	elements	 in	the	ST940	strain	(Figure	6.15).	All	other	ST940	strains	

were	aligned	to	E24377A	showing	a	high	conservation	of	sequence	excluding	MGEs.	

All	other	alignments	between	ST940	strains	and	E24377A	can	be	found	in	Appendix	

8-19.		
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Figure	6.15	Alignment	between	strain	79	(ST940)	and	reference	strain	E24377A	

	

Progressive	 MAUVE	 alignments	 were	 also	 performed	 to	 compare	 ST940	 strains	

showing	a	high	level	of	conservation	between	strains	(Appendix	20).	72	was	excluded	

from	 the	 analysis	 due	 the	 high	 number	 of	 scaffolds	 generated	 during	 genome	

sequencing.	 All	 strains	were	 aligned	 to	 the	 reference	 sequence	 E24377A	 prior	 to	

aligning.		

	

6.3.15	Toxin-antitoxin	systems	in	isolates	carrying	blaCTX-M-15	

Isolates	were	searched	for	possible	TA	systems	using	the	TAfinder	(Shao	et	al.,	2011).	

TA	systems	have	been	implicated	in	many	cellular	processes	and	may	be	involved	in	

the	persistence	of	bacterial	cells.	Persister	cells	are	defined	here	as	those	cells	able	

to	enter	a	dormant	like	state	in	order	to	evade	killing	through	stress,	such	as	that	

induced	by	antibiotic	presence.	Of	the	28	strains	 investigated	in	the	current	study	

100	%	carried	the	relEBE	TA	pair	which	has	previously	been	associated	with	persister	

cell	formation	(Gelens	et	al.,	2013).	In	addition,	96	%	of	strains	also	carried	the	hipBA	

TA	system	and	78	%	carried	the	hicBA	and	14	%	higBA	TA	systems	both	of	which	have	

also	been	associated	with	persister	function	(Li	et	al.,	2016).	Isolates	also	carried	TA	

systems	which	have	been	identified	in	plasmid	maintenance	including	the	PemKSa	

TA	which	was	found	in	32	%	of	isolates.	MazEF	which	was	present	in	100	%	of	isolates	

and	has	previously	been	associated	with	SOS	response	(Sauert	et	al.,	2016).		
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TA	 systems	 are	 associated	 with	 numerous	 roles,	 not	 exclusively	 persister	 cell	

formation	which	has	only	recently	been	elucidated	(Page	and	Peti,	2016).	They	were	

first	 identified	 as	 meditating	 plasmid	 maintenance	 through	 post-segregationally	

killing	 (Gerdes,	 1986,	 Ogura,	 1983).	 The	 pemK/I	 	 genes	 were	 one	 of	 the	 first	 TA	

systems	identified	to	play	a	role	in	plasmid	maintenance,	in	the	current	study	from	

the	blaCTX-M	carrying	strains	32	%	carried	this	TA	system	(Tsuchimoto,	1988).		
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6.4	Discussion	

A	range	of	diverse	E.	coli	were	characterised	with	an	impressive	array	of	ARG,	MGE	

and	virulence	genes	showing	enormous	ability	to	adapt	and	evolve	in	to	aggressive	

pathogens.	 The	 majority	 (72	 %)	 of	 isolates	 were	 recovered	 from	 antimicrobial	

containing	plates	showing	extensive	recovery	from	environmental	stresses.	The	28	%	

that	were	 isolated	 on	HiCA	 only	 one	 isolate	 showed	 no	 phenotypic	 antimicrobial	

resistance	 to	 any	 of	 the	 antimicrobials	 tested.	 Of	 the	 28	 %,	 25	 %	 presented	

phenotypic	to	seven	of	the	eight	antimicrobials	tested	and	21	%	presented	resistance	

to	six	of	the	eight	antimicrobials.	The	isolation	process	of	E.	coli	required	plating	to	

purity	 over	 five	 times,	 the	 extensive	 resistance	 exhibited	 by	 isolates	 from	 non-

antimicrobial	 selective	 plates	 suggests	 resistance	 mechanisms	 are	 not	 easily	 lost	

even	 in	 favourable	 conditions.	 The	viability	of	 these	potentially	pathogenic	E.	 coli	

isolates	 is	 particularly	 concerning	 and	 highlights	 the	 need	 for	 more	 efficient	

wastewater	 treatment.	 The	 association	 between	 ST	 types	 and	 human	 infection	

suggests	a	strong	WWTP	impact	and	an	important	reservoir	of	pathogenic,	resistant	

E.	coli.		

	

The	hylA	 toxin	was	 the	most	 frequently	 detected	 toxin.	 This	 toxin	 encodes	 an	a-

hemolysin	which	is	specific	to	ExPEC	pathotypes	and	an	important	toxin	in	human	

and	 other	 mammalian	 infections	 (Lai,	 2000).	 The	 increased	 serum	 survival	 (iss)	

virulence	gene	was	found	in	25	%	of	blaCTX-M	carrying	strains.	This	gene	is	involved	in	

resistance	to	extreme	acid	conditions	of	the	intestines,	enabling	survival	against	the	

complement	 system	 and	 resulting	 in	 kidney	 epithelium	 damage	 (Johnson	 et	 al.,	

2008).	Although	these	genes	are	also	associated	with	animal	infections	they	have	the	

capability	 to	cause	human	 infection	highlighting	 the	potential	 risk	associated	with	

these	 environmental	 isolates.	 All	 strains	 also	 carried	 genes	 related	 to	 copper	

translocation	(Vignaroli	et	al.,	2012).	The	cueO	gene	is	a	chromosomal	encoded	gene	

whereas	copA	is	plasmid-borne.	Both	function	as	copper	oxidases	and	are	involved	

in	 copper	 translocation	 and	 may	 be	 involved	 in	 protection	 against	 host	 copper	

toxicity	 as	 a	 method	 of	 innate	 immunity	 (Ladomersky	 and	 Petris,	 2015).	 Genes	

responding	to	copper	toxicity	are	likely	a	defensive	mechanism	and	have	been	shown	

to	be	induced	during	phagocytosis	by	macrophages	(Ladomersky	and	Petris,	2015).		
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This	study	did	not	detect	any	Shiga	toxin	producing	E.	coli	(STEC)	consistent	with	the	

study	by	Franz	et	al	who	similarly	investigated	the	presence	of	ESBL	producing	E.	coli	

in	 surface	 water	 impacted	 by	 wastewater.	 This	may	 be	 because	 STEC	 are	 a	 rare	

phenomenon	but	 is	possibly	a	result	of	 the	 isolation	technique	used	(Hebbelstrup	

Jensen	et	al.,	2014).	The	method	used	to	culture	E.	coli	is	based	on	ability	to	produce	

β-D-glucuronidase	 and	 break	 down	 X-glucuronide.	 The	 combined	 cleavage	 of	 X-

glucuronide	and	Salmon-GAL	results	 in	blue/purple	colonies.	The	majority	of	STEC	

O157	are	β-glucuronidase-negative	E.	coli	and	would	therefore	not	form	blue/purple	

colonies	(Hayes,	1995,	Doyle,	1984).	Although	O157:H7	has	not	yet	been	found	in	

WWTPs,	Shiga-like	toxin	I	has	been	found	in	influent	and	effluents	and	the	stx1	and	

stx2	phage	have	been	detected	in	wastewater	and	river	water	suggesting	STECs	are	

also	likely	to	be	present	(Bonetta	et	al.,	2016,	Dumke	et	al.,	2006,	Martinez-Castillo	

et	al.,	2012).				

	

Five	strains	of	E.	coli	O25:H4	ST131	were	identified	in	the	current	study	with	three	of	

these	 carrying	blaCTX-M	genes,	 two	blaCTX-M-15	and	 one	blaCTX-M-14.	 	 O25:H4	 ST131	 is	

considered	a	highly	virulent	human	pandemic	strain	responsible	for	the	widespread	

dissemination	of	blaCTX-M-15	and	is	commonly	associated	with	ciprofloxacin	resistance	

(Woodford	 et	 al.,	 2009,	 Can	 et	 al.,	 2015).	 It	 is	 the	 predominant	 ST	 among	 ExPEC	

(Nicolas-Chanoine	 et	 al.,	 2014).	 Human	 commensal	 carriage	 of	 ST131	 remains	

unknown	but	has	been	found	in	healthy	individuals	from	China	that	between	7-51	%	

of	 faecal	 samples	 tested	 carried	 drug-resistant	 ST131,	 however	 these	 reports	 are	

inconsistent	with	large	variation	in	percentage	carriage	(Zhong	et	al.,	2015,	Tian	et	

al.,	2011,	Li,	2011).	ST131	is	generally	regarded	as	a	truly	pathogenic	E.	coli	therefore	

the	number	of	healthy	individuals	carrying	multidrug-resistant	ST131	suggests	that	

the	blaCTX-M	genes	are	widespread	in	both	clinical	infections	and	in	healthy	individuals	

and	 exist	 in	 pathogenic	 backgrounds	which	 are	 able	 to	 cause	 infections	 (Nicolas-

Chanoine	et	al.,	2014).	In	Europe,	one	study	reported	commensal	carriage	at	40.5	%	

in	 a	 care	 home	 in	 Belfast	 which	 although	 is	 consistent	with	 the	 studies	 in	 China	

presents	an	unrealistic	estimate	for	the	entire	population	where	resistance	is	not	as	

disseminated	in	Europe	compared	to	Asian	countries,	however	it	highlights	the	high	

carriage	 of	 this	 strain	 and	 its	 extensive	 dissemination	 (Rooney	 et	 al.,	 2009).	 The	
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recent	emergence	of	O25:H4	ST131	carrying	blaCTX-M-14		has	been	frequently	detected	

in	Europe	and	is	also	linked	to	clinical	outbreaks	in	Japan	(Suzuki	et	al.,	2009).	In	the	

UK	the	blaCTX-M-14	gene	is	not	as	prevalent	as	the	blaCTX-M-15	gene	and	has	mainly	been	

associated	with	animal	 infection	 (Ewers	et	al.,	2010).	O25b:H4	with	blaCTX-M-14	has	

previously	been	detected	in	the	River	Thame	in	2011	when	river	water	samples	were	

taken.	The	first	report	of	a	ST131	carrying	blaCTX-M-15	in	UK	rivers	was	in	2014	from	

the	same	sites	as	the	current	study	suggesting	an	increasing,	or	at	least	consistent,	

reservoir	of	this	pathogenic	ST	type	(Ewers	et	al.,	2010,	Dhanji,	2011,	Amos	et	al.,	

2014).		

	

Inconsistent	 with	 the	 study	 by	 Amos	 et	 al	 the	 ST	 type	 ST131	 was	 not	 the	 most	

dominant	ST	type	in	the	current	study.	Instead	the	ST940	was	the	dominant	ST	type.	

There	have	been	no	 studies	 investigating	 the	 importance	of	 ST940,	with	 the	only	

study	mentioning	prevalence	which	was	coincidently	the	same	study	conducted	by	

Amos	 et	 al	 (which	 investigated	 sites	 near	 the	 Finham	 WWTP)	 suggesting	 a	

persistent/recurrent	ST	in	the	River	Sowe	sediment	most	likely	as	a	consequence	of	

the	Finham	WWTP	effluent.	The	Finham	WWTP	is	a	tertiary	treatment	WWTP	which	

is	 the	most	 effective	 type	 of	wastewater	 treatment.	 The	 high	 counts	 of	E.	 coli	 in	

Chapter	5	and	 the	variety	of	E.	 coli	 ST	 types	 in	 the	 current	 study	 suggest	 a	more	

vigorous	wastewater	process	is	required	to	reduce	potentially	pathogenic	strains	in	

UK	rivers.	In	this	study,	fourteen	isolates	of	ST940	were	found	with	thirteen	of	these	

carrying	blaCTX-M-15,	suggesting	that	this	ST	is	understudied	and	may	play	an	important	

role	in	the	dissemination	of	the	blaCTX-M-15	gene	in	the	environment.		

	

Other	notable	pathogenic	ST	types	identified	in	this	study	include	ST69,	ST73,	ST38	

and	ST453	all	of	which	can	cause	human	UTI	infections	(Coque	et	al.,	2008,	Hertz	et	

al.,	2016,	Lau	et	al.,	2008,	Alghoribi	et	al.,	2015,	Minarini	et	al.,	2007,	Wu	et	al.,	2013,	

Adbdallah,	2011,	Sankar	et	al.,	2009).	The	diversity	of	ST	types	was	reduced	when	

investigating	the	blaCTX-M	genes	with	a	reduction	from	32	different	ST	types	in	the	77	

isolates	to	eight.	Within	the	28	blaCTX-M	containing	strains,	there	were	notable	human	

strains	including	the	previously	mentioned	ST73,	ST38	and	ST131.	ST46,	a	clinically	

related	ST	type	was	also	identified	in	the	current	study.	This	ST	type	has	previously	
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been	identified	displaying	the	AmpC	phenotype	(Jorgensen	et	al.,	2010).	There	has	

been	emerging	evidence	reporting	 the	widespread	dissemination	of	ST38	carrying	

blaCTX-M	 associated	 with	 UTI	 infections	 further	 highlighting	 the	 importance	 of	

isolating	this	ST	type	from	the	river	sediment	(Chattaway	MA,	2014).	

Consistent	 with	 previous	 studies	 investigating	 E.	 coli	 isolated	 from	 non-host	

environments,	the	dominant	phylogroups	associated	with	AMR	E.	coli	in	the	current	

study	were	B1	and	A	(Meric	et	al.,	2013,	Walk	et	al.,	2007),	inconsistent	however	was	

the	 association	 between	 blaCTX-M-15	 carrying	 strains	 which	 have	 previously	 been	

strongly	associated	with	the	A	phylogroup	(Franz	et	al.,	2015).	The	study	by	Franz	et	

al	presented	a	similar	sample	number	of	69	with	5	%	of	blaCTX-M-15	carrying	strains	

from	the	B1	phylogroup	and	50	%	of	isolates	from	the	A	phylogroup.	In	the	current	

study	48.15	%	were	from	the	B1	phylogroup	and	33	%	were	from	A.	This	difference	

in	phylogroup	prevalence	within	isolates	is	due	to	the	high	number	of	ST940	isolated.		

	

Forsberg	et	al	found	MGE	were	rare	in	soil	communities	suggesting	transfer	is	not	

likely	to	occur	(Forsberg	et	al.,	2014).	Although	it	cannot	be	determined	in	this	study	

whether	the	overall	prevalence	of	MGE	was	low,	there	was	a	high	prevalence	of	MGE	

recorded	for	each	of	the	77	E.	coli	isolates.	There	were	thirteen	isolates	that	did	not	

carry	 any	 plasmids,	 however	 the	 majority	 carried	 at	 least	 two	 with	 the	 highest	

number	 found	 in	one	strain	being	 four.	Strain	36	carried	 IncHI1A,	 IncX4,	 IncR	and	

IncA/C	 and	 strain	 42	 carried	 IncF,	 IncI1,	 IncHIB	 and	 IncX1	 plasmids.	 Typically,	 the	

carriage	of	multiple	plasmids	within	one	strain	is	limited	to	two	or	three	plasmids,	

but	 the	 strains	 identified	 in	 the	 current	 study	 demonstrated	 a	 large	 diversity	 of	

plasmids	within	 single	 strains	 (Carattoli,	2009).	 	All	 strains	were	 reported	 to	carry	

multiple	IS	and	Tn	suggesting	a	highly	mobilisable	resistome.	Although,	the	rate	of	

transfer	from	indigenous	sediment	communities	 is	unknown,	 it	 is	evident	that	the	

multidrug	 resistant	 E.	 coli	 reported	 here	 are	 capable	 of	 transferring	 ARG	 in	 the	

environment.	The	previous	study	by	Amos	et	al	demonstrated	that	isolates	of	E.	coli	

from	river	sediment,	carrying	blaCTX-M,	were	able	to	transfer	this	gene	to	a	mutated	

lab	strain	of	E.	coli	on	the	IncF	type	plasmids	(Amos	et	al.,	2014).	Further	studies	to	

investigate	the	rate	of	these	transfers	in	the	environment	is	important	in	furthering	
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the	 understanding	 the	 environmental	 resistome	 plays	 in	 disseminating	 clinically	

related	ARG.			

	

Upon	viewing	the	literature,	the	interrupted	Tn2	arrangement	carrying	blaCTX-M-15	had	

not	previously	been	identified	and	therefore	highlights	the	importance	of	WWTPs	as	

a	 possible	 hotspot	 for	 gene	 movement	 and	 rearrangement.	 WWTPs	 have	 been	

suggested	 to	 promote	HGT	 due	 to	 the	 selective	 pressures	 from	 collective	wastes	

from	hospitals,	 households	 and	 animal	 production	 farms	often	 carrying	 antibiotic	

residues	 and	 biocides	 as	 well	 as	 a	 myriad	 of	 microorganisms	 providing	 optimal	

conditions	for	high	levels	of	HGT	(Renew	and	Huang,	2004,	Yang	et	al.,	2005,	Brown	

et	al.,	2006,	Bollmann,	2014,	Munck	et	al.,	2015,	Schluter	et	al.,	2007).	The	hybrid	

arrangement	between	the	interrupted	Tn2/3	and	Tn6029-like	element	(lacking	the	

aphA1	gene)	was	found	in	3	of	the	blaCTX-M-15	carrying	strains	and	may	have	resulted	

as	a	direct	consequence	of	high	selective	pressures	within	 the	 treatment	plant.	 It	

carries	 resistance	 to	 sulphonamides,	 streptomycin,	 ampicillin	 and	 cefotaxime	

allowing	selection	of	all	 these	resistances	on	one	MGE	and	 links	 the	Tn2/3	hybrid	

MGE	carrying	ISEcp1-blaCTX-M-15-orf477D	with	sul1,	strA	and	strB.		

	

It	 could	 not	 be	 conclusively	 determined	 if	 the	 Tn6029	was	 present	 in	 the	 E.	 coli	

isolates	 due	 to	 the	 sequence	 breaks	 resulting	 from	 the	 repetitive	 IS26	 element.	

However,	 26	 of	 the	 28	 isolates	 carrying	 the	 blaCTX-M-15	 gene	 carried	 elements	

suggesting	Tn6029	presence.	These	included	the	carriage	of	the	strA	and	strB,	sul2	

and	blaTEM-1	but	excluded	the	aphA1	gene	which	was	only	found	in	2	strains.	Although	

it	could	not	be	concluded	if	these	isolates	carry	this	transposon,	the	importance	of	

the	Tn6029	in	disseminating	ARG	is	increasingly	evident	from	previous	studies	which	

have	discovered	a	wide	range	of	resistance	genes	carried	on	these	transposons	(Reid	

et	 al.,	 2015).	 They	 have	 been	 identified	 on	 a	 variety	 of	 different	 plasmid	

incompatibility	groups	 including	 IncI,	 IncH,	 IncZ	and	 IncF	and	often	 found	 in	close	

proximity	 to	 class	 1	 integrons,	 however	 unlike	 class	 1	 integrons,	 the	 role	 of	 the	

Tn6029	is	understudied	in	the	environment	(Roy	Chowdhury	et	al.,	2015,	Cain	and	

Hall,	2012).		
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Consistent	with	previous	studies	no	intI3	genes	were	detected	in	the	E.	coli	isolates	

(Laroche	et	al.,	2009).	Unexpectedly,	the	current	study	recorded	equal	prevalence	of	

intI1	and	intI2	within	the	blaCTX-M-15	carrying	strains.	This	result	contrasts	to	the	study	

conducted	 by	 Laroche	 et	 al	 who	 similarly	 invested	 E.	 coli	 isolates	 from	 water	

impacted	by	WWTP	effluent	and	recorded	fewer	intI2		genes	than	intI1	(present	in	

1.4	%	and	8.9	%	of	isolates	respectively)	(Laroche	et	al.,	2009).	The	study	by	Amos	et	

al	proposed	a	model	to	predict	the	prevalence	of	3GC	resistant	bacteria	in	the	river	

sediment	based	upon	 intI1	prevalence	(Amos	et	al.,	2015).	The	current	study	does	

not	 support	 this	 approach	 considering	 only	 half	 of	 the	 blaCTX-M-15	 carrying	 strains	

carried	intI1	and	no	integrons	carried	ESBL	genes.	Combined	with	Chapters	4	and	5,	

these	results	suggest	intI1	should	not	be	used	as	proxy	for	environmental	ARG.		

	

The	class	2	integron	was	found	in	14	strains	(in	addition	to	the	blaCTX-M-15	gene)	with	

the	 same	 genetic	 structure	 identified	 in	 each	 strain.	 The	 class	 2	 integron	 carried	

resistance	to	trimethoprim,	streptothricin,	spectinomycin	and	streptomycin	and	had	

previously	been	identified	in	other	studies	(Ramirez	et	al.,	2010)	.	The	class	2	integron	

is	not	usually	functional	due	to	the	intrinsic	stop	codon	which	prevents	expression	of	

genes	on	this	MGE	which	has	been	suggested	to	explain	why	generally	these	MGE	

are	not	frequently	detected,	however	the	number	of	isolates	carrying	this	integron	

in	the	current	study	suggests	widespread	dissemination.	The	lack	of	data	available	

on	class	2	integrons	is	not	necessarily	due	to	limited	dissemination	and	may	be	due	

to	the	few	studies	which	investigated	the	prevalence	of	this	MGE.	In	fact,	studies	that	

have	investigated	prevalence	have	similarly	found	a	relatively	high	number	of	isolates	

carrying	this	element	suggesting	this	element	is	understudied	and	may	contribute	to	

ARG	 dissemination	more	 frequently	 than	 currently	 reported	 (McIver	 et	 al.,	 2002,	

Crespo	et	al.,	2005,	Gonzalez,	1998).	

	

As	expected	the	most	common	plasmid	type	was	IncF	plasmid.	Of	the	27	Inc	groups	

that	exist	within	Enterobacteriaceae,	the	IncF	plasmids	are	the	predominant	

plasmid	incompatibility	type	in	Enterobactericeae	and	are	primarily	responsible	for	

the	global	dissemination	of	the	ESBL	blaCTX-M	genes	(Carattoli,	2009,	Hawkey,	2015).	

Often,	the	IncF	plasmids	will	additionally	carry	blaTEM-1,	blaOXA-1	and	aac(6	)-Ib-cr		
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and	have	consequently	been	detected	in	many	clinical	isolates	but	have	also	been	

recovered	from	animals	(Carattoli,	2009).	The	highly	virulent	ST131	O25:H4	has	

been	isolated	from	companion	animals	carrying	IncF	plasmids	with	blaCTX-M-15	and	

the	recent	emergence	of	the	mobilisable	colistin	resistance	gene	mcr-1	was	first	

identified	from	pig	isolates	and	has	since	been	detected	on	IncF	plasmids	encoding	

this	last-resort	antibiotic	resistance	gene	(Ewers	et	al.,	2010,	Liu,	2015,	McGann	et	

al.,	2016).		IncF	plasmids	were	identified	in	84	%	of	the	77	E.	coli	isolates	in	the	

current	study.	In	the	3GC	resistant	strains	IncF	plasmid	carriage	was	100	%.	The	

blaCTX-M	are	commonly	found	on	IncF	plasmids	(Carattoli,	2009,	Yang	et	al.,	2015,	

Phan	et	al.,	2015).	IncF	plasmids	are	low-copy	highly	promiscuous	plasmid	types	

which	often	carry	an	array	of	antibiotic	resistance	genes	conferring	resistance	to	

most	classes	of	antibiotics.	IncFII	plasmids	carrying	blaCTX-M-15	are	often	associated	

with	ST131	but	are	not	exclusively	present	in	this	E.	coli	sequence	type;	they	have	

also	been	found	present	within	ST405,	ST354,	ST28	and	ST695.	E.	coli	strains	

possessing	the	IncFII	plasmid	and	blaCTX-M-15	gene	were	of	sequence	types	ST46	

(strain	29),	ST38	(strain	47),	ST131	(strain	48	and	61	carrying	blaCTX-M-14),	ST940	

(strains	72,	75,	79	and	96)	and	ST1421(strain	98).	Although	other	plasmids	were	

carried	in	these	strains,	the	association	between	blaCTX-M-15	and	IncFII	plasmids	is	

likely	to	be	responsible	for	the	presence	of	this	ESBL	gene	(Partridge	et	al.,	2011b).	

Determining	which	plasmid	this	gene	is	present	on	requires	further	work	to	

elucidate	involving	transfers	experiments.	The	current	work	is	limited	by	the	

sequencing	read	lengths	which	make	plasmid	assembly	difficult.	Further	sequencing	

using	long-read	sequencing	techniques	should	be	performed	to	provide	complete	

plasmid	maps.		

The	3	ST131	strains	carrying	blaCTX-M	showed	a	large	level	of	conservation.	Strain	61	

had	a	large	rearrangement	compared	to	48	and	66	but	overall	genes	were	conserved.	

The	plasmids	carried	by	these	3	strains	did	vary	however	with	all	strains	carrying	IncF	

plasmids	but	48	and	66	carrying	in	addition	IncB/O/K	and	48	carrying	IncI	(which	has	

also	been	linked	to	carriage	of	blaCTX-M-15		(Zong	et	al.,	2015)).		
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IncX	plasmids	were	present	in	56	%	of	blaCTX-M-15	carrying	strains,	IncX	plasmids	are	

narrow	spectrum	plasmids	found	in	Enterobacteriaceae	able	to	undergo	conjugative	

transfer.	 The	 abundance	 of	 this	 particular	 plasmid	 group	 is	 likely	 underestimated	

(Johnson	 et	 al.,	 2012)	 however	 there	 are	 an	 increasing	 number	 of	 studies	

demonstrating	the	variability	of	resistance	genes	carried	by	this	group	with	ESBL	and	

fluoroquinolone	genes	identified	on	these	plasmids	(Partridge	et	al.,	2011a,	Bae	et	

al.,	2015,	Sumrall	et	al.,	2014).	

	

Only	3	isolates	carried	the	IncA/C	plasmids,	none	of	which	were	in	strains	carrying	

ESBL	genes.	 IncA/C	have	previously	been	associated	with	3GC	resistance	so	 it	was	

surprisingly	that	none	of	isolates	carrying	the	ESBL	carried	these	plasmids	however	it	

suggests	that	these	plasmids	are	not	yet	widely	disseminated	at	these	sites	(Harmer	

and	Hall,	2015).		

Polymyxin	 resistance	 has	 recently	 received	 a	 lot	 of	 attention	 due	 to	 the	 recent	

publication	in	November	2015	of	mobilisable	mcr-1	gene	(Liu,	2015).	In	April	2016,	

the	first	human	case	was	recorded	in	USA	on	a	novel	IncF	plasmid	also	carrying	blaCTX-

M	(McGann	et	al.,	2016)	and	in	June	2016	mcr-1	was	reported	for	the	first	time	in	the	

UK	from	pigs	(VMD,	2016,	Anjum	et	al.,	2016).	The	clinical	use	of	colistin	was	stopped	

in	 the	 1970s	 due	 to	 nephrotoxic	 side	 effects	 (Spapen	 et	 al.,	 2011).	 Increasing	

multidrug	resistance	in	Gram-negatives	however	has	led	to	an	increase	of	colistin	in	

the	clinic	after	first-line	antibiotics	fail	(Spapen	et	al.,	2011).	The	widespread	use	of	

these	antibiotics	in	farming	has	led	to	a	large	level	of	intrinsic	resistance	(Catry	et	al.,	

2015).	Although	 the	mobilisable	mcr-1	was	not	 found	 in	 this	 current	 study,	many	

other	polymyxin	genes	were	discovered	with	82	%	of	strains	resistance	to	3GC	also	

carried	at	least	one	gene	conferring	polymyxin	resistance.	The	pmrA	and	pmrB	genes	

were	 the	 most	 prevalent	 and	 are	 involved	 in	 the	 modification	 of	 lipid	 A	 with	

aminoarabinose	 and	 phosphoethanolamine	 which	 in	 turn	 confers	 resistance	 to	

polymyxin	 B.	 The	 precise	 mechanisms	 behind	 polymyxin	 B	 action	 are	 not	 fully	

understood	but	is	thought	to	involve	the	interaction	between	the	anionic	surfaces	of	

Gram-negative	 bacteria	 allowing	 entry	 in	 to	 cells.	 Resistance	 arises	 through	

modification	of	the	lipopolysaccharide	through	neutralisation	of	the	negative	charge	

preventing	initial	binding	of	polymyxin	B	(Lee	et	al.,	2004).	the	mechanisms	involved	
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in	resistance	consequently	provides	resistance	to	antimicrobial	peptides	and	proteins	

from	human	neutrophils	 (Shafer,	1984).	This	high	 level	of	resistance	suggests	that	

polymyxins	are	not	likely	to	be	an	effective	last-resort	antibiotic.		

Gram-negative	bacteria	are	intrinsically	resistant	to	vancomycin,	however	the	vanG	

gene	was	 found	 in	10	of	 the	28	ESBL	producing	 strains	possibly	as	a	 result	of	 co-

carriage	on	plasmids	(O'Brien	et	al.,	2015,	Garcia-Solache	and	Rice,	2016)	which	may	

have	been	selected	for	in	the	WWTP	process	(Amos	et	al.,	2014).		

Aminoglycoside	 antibiotics	 have	 broad	 spectrum	 and	 potent	 bactericidal	 activity.	

Historically	they	have	been	underused	in	the	clinic	due	to	their	toxicity	levels	but	due	

to	 the	 imminent	 post-antibiotic	 era	 the	 interest	 in	 use	 of	 these	 antibiotics	 is	

remerging	 (Ramirez	 and	 Tolmasky,	 2010).	 In	 the	 current	 study	 multiple	

aminoglycoside	 genes	 were	 found	 in	 the	 28	 ESBL	 producing	 strains	 which	 is	

consistent	 with	 previous	 environmental	 studies	 investigating	 aminoglycoside	

resistance	prevalence	(Heuer,	2002).	The	accumulation	of	multiple	mechanisms	of	

resistance	including	modifying	enzymes	such	as	the	N-acetyltransferases	(aac)	and	

phopshotransferases	(aph)	is	commonly	found	within	clinical	isolates	and	suggests	a	

cumulative	effect	of	resistance	within	cells	(Ramirez	and	Tolmasky,	2010)	.	

	

The	 b-lactamase	 genes	 are	 arguably	 the	 most	 well-studied	 ARGs	 due	 to	 the	

worldwide	use	of	the	b-lactam	antibiotics	(Canton,	2012).	The	class	A	b-lactamases	

conferring	resistance	to	3GCs	such	as	cefotaxime,	ceftazidime	and	ceftriaxone	are	

considered	an	urgent	public	health	 threat	by	 the	Centres	 for	Disease	Control	and	

Prevention	 (CDC)	 .	 Particular	 ESBLs	 found	 in	 this	 study	 include	blaTEM,	 blaSHV,	 and	

blaCTX-M.		 In	addition	to	the	blaCTX-M	gene,	100	%	of	strains	carried	additional	beta-

lactamases,	the	most	prevalent	of	these	being	blaCRP	and	blaTEM	which	were	present	

in	the	26	of	 the	28	blaCTX-M-15	carrying	strains.	This	high	 level	of	beta-lactamase	 in	

river	sediment	is	not	surprising	and	previous	reports	have	consistently	found	these	

genes	 in	 the	 environment	 (Zhang	 et	 al.,	 2011,	 Korzeniewska	 and	 Harnisz,	 2013,	

Dhanji,	2011,	Tennstedt	et	al.,	2003,	Franz	et	al.,	2015,	Jang	et	al.,	2013).		
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Multidrug-resistance	 conferring	 efflux	 pumps	 pose	 a	 significant	 threat	 to	 the	

increased	 resistance	 levels	 and	 multidrug	 resistance	 phenotype.	 The	 resistance-

nodulation-division	(RND)	superfamily	of	pumps	play	a	major	role	in	this	phenotype	

and	is	important	in	virulence	and	biofilm	formation	in	Gram-negative	pathogens.	One	

of	the	most	important	multidrug	RND	efflux	pumps	within	E.	coli	is	the	AcrAB-TolC	

transporter	 system	 and	 represents	 an	 important	 target	 for	 new	 developmental	

compounds.	This	system	was	detected	in	the	majority	of	the	isolates	so	far	(100	%	

possessing	 tolC	 ).	 Targeting	 this	 system	 would	 ultimately	 lead	 to	 a	 reduction	 in	

antibiotic	resistance	as	well	as	decreased	virulence.	However	so	far,	there	have	been	

no	successful	reports	of	an	AcrAB-TolC	inhibitor	(Aron	and	Opperman,	2016).		

	

The	 association	 between	 toxin-antitoxin	 systems	 and	 persister	 cell	 formation	 has	

previously	been	assessed	(Page	and	Peti,	2016).	The	HipBA	and	RelBE	systems	have	

been	linked	to	persister	formation	(Wen	et	al.,	2014,	Wang	and	Wood,	2011).	In	the	

current	study	genomes	were	investigated	to	determine	if	persister	formation	could	

provide	a	possible	explanation	for	the	high	environmental	levels	of	E	coli	that	was	

detected	in	Chapter	5	during	the	sampling	regime	and	consequently	the	high	level	of	

potentially	pathogenic	E.	coli	isolated	in	the	current	study.	96	%	of	blaCTX-M	carrying	

strains	 carried	 persistence	 related	 genes	 which	 may	 in	 part	 explain	 why	 it	 was	

possible	 to	 isolate	 viable	multidrug-resistant	E.	 coli	 from	 the	 river	 sediment.	 It	 is	

currently	unknown	if	E.	coli	is	active	in	the	environment	but	the	presence	of	these	

genes	presumably	allows	them	to	remain	in	a	dormant-like	state.		

Although	 it	 cannot	be	determined	 for	 certain	where	 these	potentially	pathogenic	

strains	originated	 from,	 it	 is	evident	 that	 the	 river	sediment	provides	a	significant	

reservoir	of	potentially	virulent,	multidrug-resistant,	persistent	E.	coli.	Many	of	the	

strains	 carrying	 the	blaCTX-M-15	gene	 conferring	 resistance	 to	 3GCs	 also	 carry	 large	

numbers	 of	 virulence	 genes,	 additional	 ARG	 and	persistence	 related	 genes	which	

allow	 increased	 survival	 and	 tolerance	 to	 antibiotics.	 The	 expected	 correlation	 of	

(probable)	pathogenic	strains	with	AMR	was	evident	in	this	study	and	demonstrated	

the	dissemination	of	these	strains	in	to	the	environment.		It	cannot	be	determined	in	

this	study	alone	to	what	extent	and	how	virulent	these	strains	are,	but	by	association	
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of	what	is	known	about	the	ST	types,	it	can	be	assumed	that	these	strains	do	possess	

the	potential	 to	 cause	 infection.	 The	 isolation	of	multidrug	 resistant	 ST131,	 ST69,	

ST38	and	ST73	is	concerning	due	to	their	association	with	UTI	infections	(Alghoribi	et	

al.,	2015,	Wiles	et	al.,	2008,	Hertz	et	al.,	2016).	

Environmental	 surveillance	 is	 therefore	 important	 considering	 the	 wide	 array	 of	

pathogenicity	determinants	 found	 in	 these	 isolates	 from	the	river	Sowe.	Methods	

involved	in	understanding	transmission	routes	will	ultimately	aid	in	the	reduction	of	

the	overall	ARG	and	pathogen	levels	seen	here	in	the	environment	

	

Berendonk	et	al.		(Berendonk	et	al.,	2015)	suggested	key	genes	that	may	be	involved	

in	 the	 dissemination	 of	 resistance.	 Consequently,	 these	 genes	 were	 chosen	 for	

monitoring	proposed	 in	 the	Thame	and	Sowe	 (Chapter	4	and	5	 respectively).	 The	

current	study	did	not	detect	any	tetM	or	ermF	 in	the	isolates	sequenced	here	and	

only	found	qnrS	 in	one	isolate.	Although,	this	study	investigated	E.	coli	 it	suggests,	

consistent	with	Chapter	4	and	5,	that	these	genes	may	not	be	suitable	marker	genes	

for	environmental	monitoring.	Instead,	tetA	or	tetB	may	provide	a	more	informative	

measure	of	tetracycline	resistance,	macA	or	macB	may	be	a	more	suitable	measure	

of	macrolide	resistance	and	aac(6’)-lb-cr	as	a	combined	measure	of	fluoroquinolone	

and	aminoglycoside	resistance.	
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Chapter	7	

Final	discussion	and	conclusions	
	

Antibiotic	resistance	presents	one	of	the	greatest	challenges	of	the	21st	century.	It	is	

estimated	that	by	2050,	there	will	be	10	million	death	per	year	as	a	direct	result	of	

AMR	 infections	 (O'Neill,	2016).	There	 is	an	urgent	 requirement	 to	understand	the	

mechanisms	 involved	 in	 the	 rapid	 dissemination	 and	 evolution	 of	 ARG,	 and	 to	

evaluate	the	extent	to	which	ARG	and	ARB	contribute	to	environmental	pollution.	

From	approximately	the	year	2000,	studies	began	to	report	the	extent	of	ARG	spread	

in	the	environment	(Amos	et	al.,	2014,	Li	et	al.,	2015a,	Li	et	al.,	2015b).	In	addition	

the	recent	report	by	Lord	O’Neil	commissioned	by	the	government	on	AMR	identified	

the	environment	as	one	of	key	factors	driving	ARG	dissemination	(O'Neill,	2016).			

	

Effluent	from	WWTPs	is	considered	an	important	route	of	potential	AMR,	ARG	and	

ARB	 in	 the	 environment.	 The	mixing	 of	 large	 numbers	 of	 bacteria	with	 potential	

selective	 agents	 has	 resulted	 in	 WWTPs	 being	 referred	 to	 as	 HGT	 “hotspots”.	

Previous	work	in	our	lab	has	demonstrated	that	WWTPs	are	important	reservoirs	of	

clinically	relevant	ARG	contributing	to	the	dissemination	of	the	blaCTX-M-15	gene	(Amos	

et	 al.,	 2014).	 The	 current	 study	 aimed	 to	 further	 this	 research	 to	 investigate	 the	

effects	of	WWTPs	on	 river	water	and	sediment	and	determine	 the	effects	of	CSO	

release	events	on	sediment	with	respect	to	prevalence	and	abundance	of	ARG	and	
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ARB	as	well	 as	 investigate	ARB	diversity	 through	culture	and	culture	 independent	

methods.	

	

The	 CGNF	 investigated	 to	 determine	 the	 ARG	 levels	 within	 this	 sub	 population	

hypothesising	that	important	(clinically	and	agriculturally)	ARG	would	reside	within	

this	clinically	important	group	of	bacteria.	Although	metagenomics	is	a	powerful	tool	

able	to	identify	known	and	novel	ARG	it	provides	no	context	and	cannot	deduce	if	

ARG	are	actively	expressed	or	are	even	in	a	viable	host.	Using	selective	plates,	the	

current	study	proved	a	significant	number	of	culturable	Gram-negative	bacteria,	with	

the	capacity	to	express	phenotypic	resistance	could	be	retrieved	from	the	river.	This	

work	identified	that	the	ARB	resistant	to	ciprofloxacin	formed	a	distinct	community	

compared	 with	 the	 other	 antimicrobial	 conditions,	 which	 may	 be	 as	 a	 result	 of	

mutations	increasing	survival	of	these	ARB	(Fuzi,	2016).			It	was	also	found	that	the	

targets	chosen	to	explain	phenotypic	resistance	(i.e	qnrS	for	ciprofloxacin	resistance,	

tetM	for	tetracycline	resistance,	ermF	for	erythromycin	resistance,	blaCTX-M-1	for	3GC	

resistance	and	qacE	 for	biocide	 resistance)	were	not	primarily	 responsible	 for	 the	

AMR	observed	and	therefore	the	observed	phenotypic	resistance	was	attributed	to	

other	 unknown	 mechanisms.	 The	 use	 of	 culture	 based	 techniques	 relying	 on	

phenotypic	resistance	is	limited	by	this	as	it	cannot	be	determined	which	genes	are	

responsible	 for	 resistance,	 however,	 the	 diversity	 of	 bacteria	 highlights	 the	

widespread	 AMR	 in	 the	 river	 environment	 and	 suggests	 further	 work	 should	

investigate	which	key	genes	are	responsible	for	the	resistant	phenotype.		

	

Investigating	the	culturable	fraction	presents	numerous	problems	with	inconsistent	

counts	and	overestimation	of	coliforms	(McLain	et	al.,	2011).	 In	the	current	study	

HiCA	media	was	used	to	isolate	the	culturable	fraction.	This	medium	is	designed	to	

isolate	coliforms	and	E.	coli,	however	16S	analysis	showed	that	Pseudomonas	spp.	

were	the	most	dominant	in	cultured	water	and	sediment	samples.	It	has	previously	

been	reported	that	chromogenic	media	can	lead	to	errors	in	culturability	with	non-

specificity	 resulting	 in	 false	 positives	 up	 to	 ~48	 %	 (McLain	 et	 al.,	 2011).	 It	 was	

therefore	expected	that	other	bacteria	would	grow	on	the	HiCA	plates	resulting	in	a	

high	level	of	OTU	abundance	from	non-coliform	bacteria.	The	sediment	culturable	
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fraction	consisted	of	61	%	Pseudomonas	species	compared	to	33	%	in	water	samples	

highlighting	the	extent	of	non-specificity	of	HiCA	plates	which	may	also	be	due	to	the	

culture	process	which	involved	an	incubation	period	of	2	days	without	purification	

before	DNA	extraction.	It	was	not	the	primary	aim	of	the	current	study	to	investigate	

Pseudomonas	spp.	within	the	river	however	it	is	an	important	clinical	pathogen	and	

the	large	abundance	of	species	within	the	river	is	concerning		(Wright	et	al.,	2014).	

Due	to	the	phenotypic	mucoid	growth	on	antibiotic	plates	it	cannot	be	determined	

whether	Pseudomonas	spp.	carried	ARG	or	 if	phenotypic	 resistance	was	 instead	a	

protective	property	(Pritt	et	al.,	2007,	Owlia,	2014).	The	ability	to	grow	on	antibiotic	

containing	plates	 is	 of	 interest	 and	 relevance	 considering	 the	 level	 in	 the	 current	

study	 and	 subsequent	 experiments	 should	 investigate	 the	 importance	 of	

Pseudomonas	spp.	and	characterise	phenotypic	resistance.			

	

A	drawback	of	using	16S	to	 identify	bacteria	 is	that	within	the	Enterobacteriaceae	

16S	sequences	are	very	similar	and	so	determining	the	species	present	in	samples	

was	 not	 possible	 for	most	 Enterobacteriaceae	 (Pham	 et	 al.,	 2007).	 Other	 targets	

should	be	optimised	for	targeted	sequencing	to	potentially	include	dnaJ	to	identify	

down	to	species	level	of	the	Enterobacteriaceae	to	determine	key	species	showing	

antibiotic	resistance	(Pham	et	al.,	2007).		

	

As	 part	 of	 the	 current	 study	 it	was	 hypothesised	 that	 increased	 prescription	 and	

rainfall	 in	 the	Winter	 months	 would	 drive	 selection	 of	 ARG	 in	 the	 environment,	

therefore	one	of	the	aims	was	to	evaluate	temporal	effects	on	river	sediment	at	sites	

impacted	by	CSO	release	events	and	WWTP	effluent.	The	changes	in	ARG	and	ARB	

abundance	with	 season	were	 consistent	with	 previous	 studies	 reporting	 a	 higher	

abundance	 in	 the	Autumn/Winter	months	 and	 a	 higher	 prevalence	 of	E.	 coli	and	

blaCTX-M-1	at	 the	site	 impacted	by	CSO	release	events	 (Garcia-Armisen	et	al.,	2014,	

Caucci,	2016b).	The	higher	number	of	E.	coli	detected	in	Autumn/Winter	may	be	due	

to	 of	 large	 volumes	 of	 untreated	 human	 waste	 entering	 the	 river	 via	 the	 CSO.	

Although	 it	cannot	be	conclusively	determined	 if	spikes	 in	E.	coli	abundance	are	a	

direct	result	of	CSO	release	events	due	to	the	unmonitored	amount	of	release	events	
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occurring	 from	 this	 WWTP	 (Robert	 Huxham,	 Severn	 Trent	 Water,	 personal	

correspondence,	13th	July	2016),	previous	studies	have	reported	a	significantly	higher	

number	of	release	events	in	Winter	months	(Jalliffier-Verne,	2016).	If	true	seasonal	

effects	are	to	be	determined	with	respect	to	changes	in	ARG	and	ARB	within	river	

systems,	the	number	of	CSO	release	events	must	be	more	rigorously	monitored	by	

the	water	authorities	to	investigate	the	volume	of	water	released	and	the	frequency	

of	events	during	the	year.	The	current	guidelines	on	CSO	release	from	the	EA	state	

that	 spills	 can	only	 take	place	when	 the	 flow	 to	 the	 treatment	exceeds	 the	 “pass	

forward	 flow”	which	 is	defined	as	 the	 volume	of	water	 that	must	proceed	 to	 full	

treatment	 at	 the	WWTP.	 The	 formula	 defining	 the	 pass	 forward	 flow	 takes	 in	 to	

account	the	population	served,	water	consumption	per	head	per	day,	infiltration	and	

trade	effluent	(EA,	2014).	The	guidelines	also	state	that	the	operator	may	model	the	

effects	of	discharge	on	the	environment	to	justify	CSO	release	events	by	modelling	

the	 frequency	and	volume	 to	be	 released	and	 to	 confirm	 that	 it	will	not	 result	 in	

‘significant	deterioration’	(EA,	2014).	These	guidelines	are	modified	for	release	in	to	

bathing	waters	which	stipulate	that	no	more	than	three	spills	can	occur	within	one	

bathing	season	(specified	as	between	May-September)	where	a	single	spill	is	defined	

as	any	discharge	within	a	12-hour	period	and	spills	lasting	longer	than	12	(up	to	36	

hours)	count	as	two	spill	events	and	thereafter	additional	release	up	to	additional	24	

hours	 counts	 as	 one	 spill	 (EA,	 2014).	 There	 are	 no	 guidelines	 stating	 how	much	

untreated	wastewater	 can	 be	 released,	 only	 that	 the	 number	 of	 spills	 should	 be	

recorded.	Clearly,	the	number	of	spills	is	not	always	monitored	however	so	unknown	

quantities	are	released	in	the	river	at	an	unknown	frequency	(Robert	Huxham,	Severn	

Trent	Water,	personal	 correspondence,	13th	 July	2016).	 The	water	 authorities	 are	

responsible	for	the	prevention	of	CSO	spill	events	and	this	issue	has	been	addressed	

by	Thames	water	in	London	with	the	development	of	the	Thames	Tideway	which	is	

currently	underway	but	there	are	no	known	plans	to	improve	the	sewage	treatment	

by	Severn	Trent	(ThamesWater,	2015b,	Amos	et	al.,	2014).			

Class	 1	 integrons	 have	 previously	 been	 suggested	 as	 suitable	 markers	 for	

anthropogenic	pollution	(Gillings	et	al.,	2015)	and	have	more	recently	been	used	in	

models	in	an	attempt	to	predict	3GC	resistance	based	on	intI1	as	a	proxy	(Amos	et	
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al.,	 2015).	 The	 widespread	 distribution	 of	 intI1	 was	 investigated	 in	 a	 number	 of	

studies	and	was	detected	at	high	levels	in	all	river	samples	in	the	current	study	(Table	

5.3).	Integrons	may	be	marker	of	anthropogenic	inputs	but	using	them	to	precisely	

predict	 ARG	 will	 overestimate	 contamination.	Whilst	 the	 levels	 of	 intI1	 detected	

matched	a	wide	range	of	studies	of	polluted	environments,	it	is	clear	from	the	current	

work	that	in	UK	rivers	carriage	of	~10	%	is	common	and	therefore	substantially	higher	

than	carriage	of	ARG	which	generally	less	than	5	%.	No	reports	of	the	prevalence	of	

intI1	 in	 pristine	 environments	 could	 be	 found,	 therefore	 evaluating	 the	 extent	 of	

anthropogenic	contamination	based	solely	on	this	gene	cannot	be	determined	(Table	

5.3).	 The	 suggestion	 that	 this	 gene	may	 be	 suitable	 as	 a	 proxy	 is	 based	 only	 the	

observation	that	the	class	1	integrons	are	associated	with	clinical	infections,	however	

the	carriage	of	intI1	is	not	necessarily	indicative	of	carriage	of	clinical	integrons	with	

a	diverse	range	of	integrons	carrying	this	gene	recently	reported	carrying	additional	

ARG	but	not	the	characteristic	sul1		and	qacED1	(Amos	et	al,	in	press)	(Gillings	et	al.,	

2015).	 Furthermore,	 intI1	 prevalence	 did	 not	 show	 any	 variation	 with	 seasonal	

effects	contrasting	to	other	ARG	targets	and	the	class	2	integrons	integrase	gene	was	

found	within	equal	numbers	of	 ESBL	producing	 strains	 in	Chapter	6	with	50	%	of	

strains	carrying	intI1	and	50	%	carrying	the	intI2	gene.	Although	class	1	integrons	are	

primarily	associated	with	clinical	infections	the	fact	that	they	were	detected	at	the	

same	 frequency	 as	 class	 2	 integrons	 (which	 have	 previously	 been	 found	 at	

comparatively	 low	abundances	 in	 clinical	 and	environmental	 strains)	 suggests	 the	

class	 2	 integron	may	 be	 an	 under	 represented	marker	 of	 resistance	 and	may	 be	

equally	important	in	disseminating	resistance	in	the	environment	and	clinic	(Deng	et	

al.,	 2015,	 Ramirez	 et	 al.,	 2010,	Mirnejad	 et	 al.,	 2013,	 Stange	 et	 al.,	 2016).	 It	 also	

suggests	that	rather	than	using	the	intI1	gene	as	a	marker	of	pollution	and	predictor	

of	 resistance,	 key	 AMR	 should	 instead	 be	monitored	 to	 represent	 the	 important	

clinical	classes	of	antibiotics	still	used	in	the	treatment	of	human	infection	or	if	clinical	

class	1	integrons	are	of	interest	then	primers	designed	to	capture	the	3’	conserved	

region	 consisting	 qacD1	 (which	 is	 exclusively	 characterised	 to	 occur	 on	 class	 1	

integrons)	and	sul1	genes	may	be	more	effective	in	evaluating	the	true	dissemination	

of	these	MGE.		
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Berendonk	 et	 al.	 set	 out	 key	 ARG	 targets	 that	 should	 be	 monitored	 in	 the	

environment	 consistently	 to	 gain	 a	 cohesive	 picture	 of	 AMR	 between	 research	

studies.	These	targets	were	not	supported	in	the	current	study.	Combined,	results	

showed	very	low	levels	of	the	ermF	and	tetM	genes	at	sample	sites	in	both	in	the	

Thames	and	Sowe	sampling	regimes	and	WGS	did	not	identify	these	genes	in	E.	coli	

strains	 in	 Chapter	 6	 where	 tetA	 and	 ereA	 were	 detected	 suggesting	 a	 lack	 of	

importance	in	these	clinically	important	strains.	Of	course,	it	cannot	be	concluded	if	

erythromycin	 and	 tetracycline	 resistance	 genes	 were	 not	 present	 in	 the	

environments	tested,	but	given	the	extensive	use	of	these	antibiotics	in	veterinary	

medicine	 and	 aquaculture	 combined	 with	 the	 frequent	 detection	 of	 tetracycline	

antibiotics	 in	the	environment,	resistance	was	expected	 	 (Chantziaras	et	al.,	2013,	

Harnisz	et	al.,	2015,	Qiao	M,	2012,	Sarmah	et	al.,	2006,	Singer	et	al.,	2014).		Many	tet	

genes	 were	 sequenced	 from	 the	 E.	 coli	 carrying	 blaCTX-M-14/15	 isolates	 suggesting	

clinical	 relevance	 of	 tetracycline	 resistance	 is	 not	 related	 to	 tetM	 and	 that	more	

suitable	 targets	 to	 evaluate	 clinically	 important	 ARG	 dissemination	 in	 the	

environment	should	include	tetA	(to	monitor	tetracycline	resistance)	and	macB	(for	

erythromycin	 resistance).	 Previous	 studies	 have	 demonstrated	 these	 genes	 are	

present	in	the	environment	with	metagenomic	studies	showing	higher	levels	of	tetA	

in	soils	and	sediments	than	tetM	(Li	et	al.,	2015b).	Although	tetA	and	macB	may	be	

more	 important	 in	 the	 dissemination	 of	 resistance	 within	 clinically	 important	

bacteria,	the	choice	to	monitor	only	a	select	few	genes	clearly	won’t	work	with	the	

variation	 of	 resistance	 genes	 between	 sites	 based	 on	 geographical	 differences.	

Instead,	if	monitoring	of	environmental	contamination	is	properly	evaluated	a	more	

extensive	list	of	genes	must	be	considered	to	capture	all	diversity	of	ARG	within	the	

environment.		

	

WGS	of	E.	coli	was	performed	to	elucidate	the	full	resistance	and	virulence	profiles	

of	 exotic	E.	 coli	 found	 in	 the	 river	 sediment	 and	 allowed	 an	 insight	 in	 to	 the	 full	

genomic	 potential	 of	 strains	 to	 characterise	 isolates	 based	 on	 resistance	 and	

virulence	profiles	(Dahms	et	al.,	2015).	It	was	previously	reported	that	13	%	of	E.	coli	

in	 the	 river	 were	 pathogenic	 STs	 but	 the	 current	 study	 found	 a	 much	 higher	

percentage	of	pathogenic	STs	with	72	%	of	the	total	77	E.	coli	strains	of	pathogenic	
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STs	(both	human	and	animal)	and	63	%	human-associated	pathogenic	STs	(Gomi	et	

al.,	2015)	.	The	current	study	is	however	biased	by	the	selection	process	used	which	

isolated	E.	coli	based	on	antimicrobial	properties.	The	association	between	AMR	and	

pathogenic	 STs	 is	 obvious	 therefore	 it	was	 expected	 that	most	E.	 coli	 isolated	on	

antimicrobial	 agents	 would	 be	 pathogenic	 STs.	 There	 were	 a	 number	 of	 strains	

however	that	were	not	isolated	on	antimicrobial	agents	and	of	these	21	isolates	~20	

%	were	pathogenic	ST	types	 including	ST131	and	ST69	strains	associated	with	UTI	

infections	which	was	higher	than	the	13	%	reported	in	Japan	by	Gomi	et	al.	who	used	

a	similar	method	of	isolation	(using	XM-G	coliform	selecting	agar)	but	focussed	on	

water	as	a	source	of	pathogenic	E.	coli	(Gomi	et	al.,	2014,	Gomi	et	al.,	2015).		

	

E.	coli	ST940	was	the	most	frequently	 isolated	ST	and	all	but	one	carried	the	ESBL	

blaCTX-M-15	gene	yet	there	are	no	published	reports	of	this	ST	type	so	determining	its	

importance	 in	 the	 dissemination	 of	 3GC	 resistance	 is	 currently	 unknown.	 The	

majority	(92	%)	carried	the	K99	fimbriae	virulence	determinant	which	is	associated	

with	 animal	 ETEC	 infection	 suggesting	 animal	origin.	 ST940	may	 therefore	have	a	

significant	role	in	disseminating	blaCTX-M-15	within	animals	and	may	present	a	risk	in	

the	food	chain	(Kaper	et	al.,	2004).	Other	important	ST	types	isolated	from	the	river	

sediment	 included	 the	 human	pandemic	 ST131	O25:H5	 strain	 and	other	 clinically	

important	UPEC	strain	causing	UTI	infections	(ST73	and	ST46).	UTI	infections	are	the	

most	commonly	presented	bacterial	 infection	in	women	in	the	UK	in	primary	care	

and	approximately	40-50	%	of	women	will	experience	at	 least	one	episode	during	

their	 lifetime	 (Flower	 et	 al.,	 2016).	 As	 a	 direct	 result	 of	 this	 high	 prevalence	 of	

infection,	between	1-3	%	of	all	consultations	in	general	practise	are	related	to	UTI	

infections	and	frequently	result	in	prescription		of	antibiotics	(Flower	et	al.,	2016).	

Recurrent	UTI	 infections	are	particularly	problematic	and	often	result	 in	antibiotic	

prophylaxis	which	is	not	always	effective	with	50	–	60	%	of	women	suffering	from	

recurrent	infection	between	3	–	6		months	after	treatment	is	completed	(Flower	et	

al.,	2016).	The	frequent	prescription	of	antibiotics	and	prophylaxis	for	UTI	infections	

has	consequently	led	to	the	widespread	dissemination	of	pathogens	such	as	ST131	

and	 no	 doubt	 contributes	 to	 the	 environmental	 pathotypes	 recovered	 from	 the	

sediment	 in	 the	 current	 study	 (Dhanji,	 2011,	 Can	 et	 al.,	 2015).	 The	 first	 line	 of	
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treatment	 is	 normally	 trimethoprim	 and	 sulphamethoxazole,	 if	 this	 fails	 then	

nitrofurantoin	and	 cephalexin	are	prescribed	and	as	a	 last	 resort,	quinolones	and	

fluoroquinolones	 are	 used	 (NHS,	 2015).	 In	 the	 clinic,	 trimethoprim	 resistance	 is	

predicted	at	~20	%,	in	the	ESBL	producing	E.	coli	 isolates	presented	in	the	present	

study	100	%	carried	ARG	conferring	resistance	to	trimethoprim,	sulphonamides	and	

quinolones	and	21	%	carried	 fluoroquinolone	resistance	genes	which	would	make	

treatment	difficult	if	infection	with	any	of	these	E.	coli	strains	occurred	(Flower	et	al.,	

2016).	

	

Of	the	77	E.	coli	isolates	presented	in	the	current	study	35	%	of	these	carried	the	ESBL	

blaCTX-M-15	gene	in	addition	to	other	clinically	important	ARG	conferring	resistance	to	

quinolones,	 streptomycin,	 sulphonamides,	 aminoglycosides,	 polymyxins,	

tetracyclines	and	additional	beta-lactams.	This	represents	one	of	the	first	reports	to	

investigate	the	full	ARG	profile	of	ESBL	producing	E.	coli	from	a	UK	river	and	defines	

extensive	resistance	in	opportunistic	pathogenic	strains.	Although	no	pan-resistant	

strains	 were	 detected	 in	 the	 current	 study,	 resistance	 to	most	 clinically	 relevant	

antimicrobials	 was	 reported	 with	 multiple	 genes	 conferring	 resistance	 to	 beta-

lactams	in	each	strain.	Consistent	with	previous	studies	investigating	E.	coli	from	the	

environment	no	carbapenem	resistance	was	detected	in	any	of	the	isolates	(Ferreira	

da	Silva	et	al.,	2007).	The	use	of	carbapenems	in	the	clinic	 is	restricted	due	to	the	

accelerated	 resistance	 dissemination	 of	 primarily	 blaNMD-1	 and	 blaOXA-48	 genes	

however,	 this	 study	 concludes	 that	 carbapenems	 are	 still	 effective	 against	 the	

majority	of	E.	coli	infections	that	could	result	from	environmental	exposure.		

	

The	 blaCTX-M-14	 gene	 was	 present	 in	 one	 E.	 coli	 isolate	 and	 is	 the	 second	 most	

prevalent	 blaCTX-M	 gene	 worldwide.	 It	 is	 predominantly	 associated	 with	 human	

infection	and	 is	 the	primary	ESBL	 in	Spain	and	China	but	has	been	detected	more	

frequently	in	animals	than	humans	in	the	UK	with	approximately	only	10	%	of	UK	E.	

coli	isolates	from	clinical	infections	carry	blaCTX-M-14	(Tyrrell	et	al.,	2016,	Hawkey	and	

Jones,	 2009,	 Carattoli	 et	 al.,	 2005).	 Consistent	 with	 most	 reports	 in	 the	 UK,	 the	

current	 study	 found	 the	 most	 prevalent	 ESBL	 was	 the	 blaCTX-M-15	 gene	 clearly	

supporting	the	UK	trends	of	3GC	resistance	gene	dissemination.	The	ESBL	genes	have	
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been	 increasing	 in	 prevalence	 over	 the	 last	 20	 years	 with	 increasing	 studies	

demonstrating	up	to	65	%	carriage	in	faecal	samples	in	South	East	Asian	communities	

(Woerther	et	al.,	2013).	The	dissemination	of	genes	conferring	3GC	resistance	are	

most	 widespread	 in	 developing	 countries	 but	 have	 been	 detected	 worldwide	

(Woerther	 et	 al.,	 2013).	 Molecular	 tracking	 of	 certain	 genotypes	 may	 help	

understanding	of	local	and	global	dissemination	trends	and	is	required	if	the	rate	of	

spread	is	to	be	decreased.		

	

The	study	of	WGS	in	Chapter	6	found	the	majority	of	E.	coli	isolates	recovered	from	

sediment	carried	multiple	plasmids.	The	IncF	and	IncK	have	been	associated	with	the	

dissemination	of	the	blaCTX-M	genes,	although	due	to	the	sequencing	method	used,	it	

is	 not	 possible	 to	 elucidate	which	 plasmids	 carried	 these	 ESBL	 genes	 	 (Perry	 and	

Wright,	 2013,	 Dhanji	 et	 al.,	 2012,	 Yang	 et	 al.,	 2015,	 Dhanji,	 2011).	 All	 strains	

characterised	as	ESBL-producing	strains	carried	IncF	plasmids	and	therefore	are	likely	

to	 be	 responsible	 for	 gene	 presence.	 The	 global	 dissemination	 of	 blaCTX-M-15	 has	

previously	 been	 attributed	 to	 the	 association	 with	 ISEcp1	which	 has	 resulted	 in	

mobilisation	on	to	IncF	plasmids.	It	was	therefore	expected	that	the	blaCTX-M-15	genes	

would	 be	 associated	 with	 this	 IS	 element	 and	 would	 be	 mobilised	 to	 the	 IncF	

plasmids.	The	IncF	plasmids	are	highly	promiscuous	plasmids	which	have	acquired	a	

wide	array	of	ARG	resulting	 in	the	global	dissemination	of	many	clinically	relevant	

ARG	(Carattoli,	2009).		

	

One	of	the	major	limitations	of	Illumina	sequencing	is	the	short	read	lengths	which	

arise	 due	 to	 repetitive	 stretches	 of	 DNA,	 	 (often	 in	multiple	 copies)	 which	make	

assemblies	 difficult	 and	 sometimes	 unreliable	 (Forde	 et	 al.,	 2014,	 Salzberg	 et	 al.,	

2012,	Nagarajan,	2010,	Kingsford	et	al.,	2010).	This	is	particularly	problematic	when	

trying	to	 investigate	plasmid	gene	carriage	because	numerous	repetitive	elements	

including	 IS	and	 transposons	 result	 in	 sequencing	breaks	producing	many	contigs.	

The	 strains	 identified	 in	 the	 current	 study	 in	 Chapter	 6	 carried	multiple	 plasmids	

(some	as	many	as	4)	and	therefore	identifying	gene	carriage	on	specific	plasmids	was	

not	 possible.	 To	 determine	 the	 plasmid	 associated	 with	 specific	 ARG	 carriage,	

transfer	 experiments	 should	 be	 carried	 out,	 although	 this	 is	 still	 limited	 by	 the	
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potential	 transfer	 of	 multiple	 plasmids.	 Sequencing	 with	 PacBio	 may	 provide	 an	

alternative	and	due	to	the	long	reads	may	provide	full	plasmids	maps	which	will	allow	

ARG	location	to	be	determined.	In	the	current	study,	associations	with	transposons	

and	IS	elements	were	elucidated	but	full	MGE	could	not	be	determined.	The	presence	

of	 integrons	(class	1	and	2),	 IS26	and	Tn21	were	prevalent	within	this	sample	set,	

combined	 with	 the	 high	 frequency	 of	 plasmids	 suggests	 a	 highly	 mobilisable	

resistome	with	these	viable,	potentially	pathogenic	E.	coli.	Previous	work	in	our	lab	

has	 demonstrated	 that	 isolates	 from	 the	 same	 sites	 show	 transferable	 antibiotic	

resistance,	 with	 blaCTX-M-15	 shown	 to	 transfer	 from	 environmental	 isolates	 to	 a	

mutated	lab	strains	of	E.	coli	with	frequencies	ranging	from	10-4	to	10-6	(Amos	et	al.,	

2014).	 Strains	 in	 the	 study	 by	Amos	et	 al.	were	 not	 characterised	 extensively	 for	

carriage	of	plasmids	and	it	cannot	be	determined	if	the	plasmids	transferred	from	

the	environmental	strains	were	of	the	IncF	group,	however	all	strains	that	were	able	

to	transfer	plasmids	did	carry	plasmids	of	this	incompatibility	group.		

	

Individual	 strain	 analysis	 has	 provided	 useful	 information	 for	 potential	 of	

mobilisation	of	ARG	and	 the	 carriage	of	plasmids	 already	 implicated	 in	ARG	gene	

transfer.	In	addition,	many	of	the	surviving	strains	recovered	from	sediment	showed	

virulence	factors	that	could	be	hypothesised,	when	considering	ST	type	as	well,	to	

contribute	to	pathogenesis	of	these	strains.	Although	these	ST	types	are	primarily	

commensals	(with	very	few	true	pathogenic	E.	coli	strains	known),	the	high	numbers	

of	 opportunistic	 pathogens	 recovered	 suggests	 a	 high	 commensal	 carriage	 in	 the	

community	served	by	the	Finham	WWTP.	There	are	only	a	limited	number	of	studies	

that	have	 investigated	the	commensal	carriage	of	opportunistic	pathogenic	E.	coli	

but	 figures	 suggest	 ~	60	%	of	healthy	 individuals	 carry	potentially	pathogenic	 STs	

highlighting	the	potential	for	infection	from	commensal	carriage	(Rooney	et	al.,	2009,	

Zhong	et	al.,	2015,	Leflon-Guibout	et	al.,	2008).	Although	infection	from	E.	coli	most	

commonly	 presents	 as	 UTI	 infections,	 most	 cases	 of	 septicaemia	 are	 from	 host	

microbiota,	which	in	this	case,	septicaemia	resulting	from	the	strains	in	this	current	

study	would	result	in	severe	infections	that	would	not	respond	to	many	antimicrobial	

agents	(Lobo	et	al.,	2016).	The	transfer	of	resistance	has	previously	been	investigated	

in	the	human	gut	showing	that	it	is	likely	to	occur,	further	highlighting	the	importance	
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of	commensal	carriage	of	these	MDR	bacteria	which	are	able	to	transfer	ARG	allowing	

movement	 of	 genes	 between	 potential	 pathogens	 and	 commensals	 within	 the	

human	gut	(Karami	et	al.,	2007,	Trobos	et	al.,	2009).	One	study	demonstrated	that	

the	gut	microbiota	 can	harbour	up	 to	53	different	ARG	highlighting	 the	extensive	

carriage	of	 resistance	and	vast	potential	 for	HGT	 in	 the	human	gut	 (Ghosh	et	 al.,	

2013).	The	potential	for	HGT	is	something	that	needs	to	be	addressed	both	in	the	

human	gut	and	in	the	environment	with	studies	of	the	plasmidome.	Investigating	the	

plasmidome	 to	 elucidate	 only	 the	 mobilisable	 fraction	 of	 the	 resistome	 is	 an	

important	area	of	research	that	is	only	just	starting	to	emerge.	The	first	studies	were	

focussed	on	the	culturable	fraction	and	movement	of	gene	within	this	subpopulation	

however	studies	are	progressing	to	 investigate	the	 full	plasmid	metagenome	with	

the	most	recent	study	by	Li	et	al.	investigating	the	plasmidome	from	WWTPs	(Li	et	

al.,	2015a).	This	study	discovered	a	substantial	diversity	of	resistance	genes	that	were	

missed	in	the	total	metagenome	highlighting	the	importance	of	studies	in	this	new	

field	 of	 research.	 Currently	 however,	 the	 technique	 requires	 considerable	

optimisation	as	recent	papers	have	reported	that	large	plasmids	and	linear	plasmids	

(which	may	play	 important	roles	 in	Gram-negative	pathogens)	were	omitted	from	

plasmid	 specific	 extraction	 (Dib	 et	 al.,	 2015,	 Szczepanowski	 et	 al.,	 2009,	 Li	 et	 al.,	

2015a,	 Zhang	 et	 al.,	 2011).	 Large	 plasmids	 (over	 150	 kb)	 cannot	 be	 purified	 and	

plasmids	 around	 45-50	 kb	 are	 not	 readily	 eluted	 (Li	 et	 al.,	 2015a).	 Therefore	 the	

IncA/C	plasmids,	 known	 to	 carry	extensive	AMR,	 including	blaTEM	 -3,	 	blaTEM	–21	and	

blaTEM	-24,	qnrA	,	are		typically	between	128-130	kb	in	size	will	therefore	not	be	isolated	

on	their	own,	and	only	with	chromosomal	DNA	(Harmer	and	Hall,	2015).		

	

A	 number	 of	 studies	 by	Wright	 and	 others	 have	 aimed	 to	 provide	 evidence	 that	

resistance	genes	are	highly	prevalent	in	the	environment	and	are	generally	borne	on	

the	chromosome	suggesting	that	they	are	therefore	unlikely	to	be	mobilisable	and	

do	not	provide	any	threat	to	human	health	(Bhullar,	2012,	D'Costa	et	al.,	2011).		The	

study	 by	 Forsberg	 et	 al.	 reported	 that	 HGT	 does	 not	 occur	 at	 high	 levels	 in	 the	

environment	 and	 instead	 phylogeny	 is	 more	 important	 in	 the	 spread	 of	

environmental	resistance	(D'Costa	et	al.,	2011,	Forsberg	et	al.,	2014).	Of	course,	the	

majority	 of	 the	 soil	 and	 sediment	 microbiome	 will	 not	 undergo	 extensive	 HGT,	
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however	it	is	the	presence	of	exotic	clinically	relevant	species,	such	as	E.	coli	that	are	

hypothesised	to	carry	out	gene	transfer	in	the	environment	and	although	they	do	not	

predominate	these	environments	they	no	doubt	contribute	to	environmental	levels	

of	ARG.		Many	of	the	E.	coli	isolates	identified	in	the	current	study	were	reported	to	

carry	 multiple	 plasmids	 which	 will	 accelerate	 gene	 exchange	 between	 these	

mobilisable	 elements	 via	 transposons	 which	 allow	 intra-	 and	 inter-	 species	

movement	of	 genes	 therefore	 allowing	 gene	movement	between	plasmids	 in	 the	

host	 (Bennett,	 2008).	 Some	 strains	 carried	 four	 different	 plasmids	 and	 therefore	

possess	a	large	potential	for	gene	exchange.	It	remains	to	be	investigated	whether	

these	plasmids	can	and	will	transfer	to	indigenous	bacteria	but	it	is	evident	that	the	

plasmids	in	exotic	species	have	accumulated	large	numbers	of	resistance	and	may	

undergo	 conjugation	 when	 bacterial	 hosts	 enter	 more	 favourable	 environments,	

such	as	the	human	gut	(Kurokawa	et	al.,	2007,	Huddleston,	2014).	This	method	of	

gene	movement	is	particularly	concerning	when	considering	the	IncF	carrying	blaCTX-

M	genes	(McGann	et	al.,	2016,	Smillie	et	al.,	2011).		

	

The	process	 of	 co-selection	was	 not	 evaluated	 in	 the	 current	 study,	 however	 the	

carriage	of	multiple	genes	conferring	resistance	to	metals	and	biocides	was	observed	

using	WGS.	The	carriage	of	both	ARG	and	BRGs/MRG	suggests	a	large	potential	for	

co-selective	effects.	Biocides	are	present	in	a	wide	range	of	environmental	locations	

and	 are	 particularly	 prevalent	 in	 WWTPs	 which	 has	 resulted	 in	 a	 recent	 study	

reporting	BRG	and	MRG	 levels	of	30-300	 times	more	 than	ARG	 in	WWTP	 influent	

(Bengtsson-Palme,	2016).		Although	BRG	are	reported	to	be	substantially	higher	than	

ARG	in	the	WWTP	process,	the	carriage	of	BRG	and	ARG	is	commonly	associated	on	

the	 same	MGE	 which	 would	 result	 in	 selection	 of	 BRG/MRG	 from	 biocide/metal	

selective	pressures	and	consequently	 select	 for	ARG	 (Deng	et	al.,	2015,	Pal	et	al.,	

2015).	No	studies	could	be	found	investigating	the	occurrence	of	co-selective	events	

in	 the	 environment,	 however	 the	 study	 by	 Whitehead	 et	 al.	 demonstrated	 that	

biocide	exposure	could	select	for	multidrug	resistance	using	in	vitro	experiments	in	

Salmonella	enterica	Serovar	Typhimurium	through	the	selection	of	a	multidrug	efflux	

pump	therefore	highlighting	the	selective	effects	of	biocides	that	will	occur	 in	the	

environment	(Whitehead	et	al.,	2011).	The	co-selective	effects	of	separate	ARG	and	
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BRG	has	yet	to	be	conclusively	shown	in	the	environment	because	multiple	selective	

pressures	 will	 occur	 and	 the	 cumulative	 effects	 of	 these	 pressure	 are	 evidently	

important	 in	 sustaining	 resistance	 metals,	 biocides	 and	 antibiotics	 ,	 but	 co-

occurrence	has	been	documented	and	it	is	widely	accepted	to	occur	(Pal	et	al.,	2015).		

	

The	current	work	compared	the	sediment	and	water	to	determine	which	carried	a	

greater	load	of	resistant	Gram-negatives.	It	found	that	although	the	prevalence	was	

comparable	when	investigating	the	viable	plate	counts,	the	absolute	abundance	in	

the	sediment	(per	g)	was	greater	than	water	(per	ml)	with	a	higher	number	of	ARG	

and	ARB	in	samples	tested,	suggesting	that	sampling	should	focus	on	sediment	but	

should	aim	to	sample	both	to	determine	the	risk	to	animals	and	humans.	Previous	

risk	assessments	have	taken	in	to	account	water	or	sediment	but	in	most	scenarios,	

both	 sediment	 and	 water	 will	 contribute	 to	 the	 risk	 of	 colonisation	 with	 the	

disruption	of	sediment	leading	to	increased	numbers	in	the	water.	Assessing	the	risk	

of	ARB	exposure	from	the	river	is	however	difficult	and	will	depend	on	the	treatment	

plant,	the	population	it	serves,	the	type	of	treatment	plant	and	the	number	of	CSO	

releases.	These	factors	will	all	vary	according	to	location	and	season	as	evidenced	by	

the	 current	 study.	 The	 risk	 of	 colonisation	 will	 vary	 with	 each	 person	 based	 on	

numerous	 factors	 including	weight,	 age,	 gender	and	microbiota	 (Wijetunge	et	al.,	

2015,	Pasche	et	al.,	2005,	Round	and	Mazmanian,	2009).	Determining	risk	associated	

with	river	ARB	should	therefore	be	undertaken	with	caution	not	to	overestimate	risk	

which	will	vary	considerably	across	river	catchments.	The	ST	type	of	E.	coli	is	also	an	

important	consideration	when	determining	risk	where	EHEC	strains	typically	have	an	

infectious	dose	of	between	10-100	whereas	EPEC	strains	require	between	108	–	1010	

to	cause	infection	(Kaper	et	al.,	2004,	Mellies	et	al.,	2007).	Risk	will	relate	to	the	type	

of	recreational	use	of	water	and	clearly	swimming	is	less	likely	in	the	Autumn/Winter	

months	therefore	it	is	important	that	future	studies	take	in	to	account	all	possible	

factors	when	evaluating	the	risk	posed	by	ARB	in	the	environment	and	to	assess	the	

likelihood	 of	 human	 contact	 at	 a	 contaminated	 site.	 The	 risk	 of	 ARB	 in	 the	

environment	 has	 previously	 been	 assumed,	 however,	 it	 is	 unlikely	 that	 direct	

transmission	is	a	frequent	occurrence	(Amos	et	al.,	2014).	Instead,	it	is	more	likely	
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that	infection/colonisation		is	via	indirect	transmission	from	the	river	to	animals	and	

via	 zoonotic	 transmission	 to	humans	 (Verraes	et	 al.,	 2013,	McEwen	and	Fedorka-

Cray,	2002,	Dahms	et	al.,	2015,	Guardabassi	et	al.,	2004).	The	likelihood	of	animals	

being	colonised	by	pathogenic	ARB	from	the	river	is	inevitably	higher	than	the	risk	of	

human	colonisation	due	to	drinking	of	water	 from	rivers.	 It	will	be	 important	and	

useful	 to	 understand	 the	 exact	 relationship	 between	 prevalence,	 abundance	 and	

transmission	to	establish	risk	presented	by	environmental	ARB	and	although	this	is	

difficult	to	study	it	is	very	important	to	understand	the	transmission	routes	to	fully	

understand	 the	 risk.	 	As	 an	 initial	 study	 faecal	 samples	 from	animals	near	WWTP	

effluent	and	CSO	spill-polluted	rivers	should	be	tested	for	ARG	to	determine	whether	

this	presents	a	viable	route	of	transmission	from	river	to	animal	and	then	further	to	

this	 if	 the	same	environmental	ARB	are	present	 in	animal	 faeces	the	transmission	

between	animals	and	humans	should	be	researched.	

	

Abstraction	from	rivers	for	the	irrigation	of	farm	land	is	another	potential	route	of	

transmission	of	ARB	from	effluent	and	CSO	event	polluted	sites.	Current	laws	state	

that	licences	must	be	obtained	if	more	than	20m3	of	water	is	to	be	abstracted	per	

day	(EA,	2013).	Despite	the	large	population	and	heavy	industrial	impacts,	90	%	of	

landuse	in	Warwickshire	is	for	agriculture	and	from	the	River	Sowe	licenses	can	be	

obtained	to	extract	a	total	of	5.6	Ml/d	which	is	available	to	take	over	153	days	of	the	

year	as	long	as	143	Ml/d	of	water	is	flowing	in	the	river	(EA,	2013).	The	irrigation	of	

polluted	water	will	disseminate	ARB	and	can	consequently	end	up	in	the	food	chain	

with	numerous	reports	having	recorded	outbreaks	of	pathogenic	E.	coli	O157	with	

consumption	 of	 food	 contaminated	 from	 water	 irrigation	 sources.	 For	 example	

outbreaks	 in	 2006,	 from	 contaminated	 spinach	 occurred	 in	 California,	 in	 2005	 in	

Sweden	from	contaminated	lettuces	and	in	2013	in	the	UK,	were	all	traced	back	to	

polluted	water	used	for	irrigation	purposes	(Gelting	et	al.,	2011,	Söderström	A,	2008,	

Jenkins	et	al.,	2015).	If	water	is	abstracted	from	the	sites	samples	in	the	current	study,	

ARB	will	result	in	the	food	chain.		

	

Most	 reports	present	prevalence	 (ARG	relative	 to	16S	count)	as	a	measure	of	 the	

resistome	however	the	work	presented	here	suggests	that	abundance		(absolute	ARG	
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count)	 is	 likely	more	 important	 in	 determining	 the	overall	 risk	 (Gaze	 et	 al.,	 2011,	

Byrne-Bailey	 et	 al.,	 2011).	 Investigations	 attempting	 to	 evaluate	 the	 river	 as	 a	

potential	 source	 of	 ARB	 use	 a	 relative	 measure	 for	 comparisons	 between	 sites	

however	using	16S	will	not	give	a	suitable	measure	due	to	the	varying	copy	number	

between	each	bacterial	strain	which	ranges	from	1-15	(Klappenbach	et	al.,	2001).	In	

the	current	study	2.5	copies	was	chosen	based	on	the	previous	publication	by	Gaze	

et	al.,	however	from	the	rrnDB	the	mode	is	2,	median	is	4	and	the	mean	number	of	

copies	is	4.12	therefore	justifications	for	any	of	these	chosen	numbers	would	be	valid	

(Gaze	et	al.,	2005).	No	other	studies	could	be	found	specifying	the	number	of	16S	

copies	used	to	standardise	results	so	it	is	unclear	if	all	studies	use	2.5	and	therefore	

whether	results	are	in	fact	comparable.	In	addition	to	this,	environmental	samples	

will	vary	in	their	mode,	mean	and	median	number	of	16S	with	populations	due	to	

different	dominant	bacteria	in	different	environments.	A	standard	set	of	16S	copies	

should	be	determined	for	each	site	investigated	if	16S	is	to	be	used.	Alternatively,	

abundance	 should	 be	 used	 for	 comparisons	 to	 provide	 a	 better	 indication	 of	

environmental	 contamination.	 Not	 all	 indigenous	 bacteria	 will	 carry	 ARG	 and	

therefore	environmental	ARG	levels	will	be	more	attributed	to	a	subpopulation	of	

exotic	 species.	 Measuring	 ARG	 prevalence	 with	 respect	 to	 the	 total	 bacterial	

communities	does	not	provide	any	insight	to	what	is	occurring	in	the	environment	

and	is	a	misleading	way	of	presenting	ARG	contamination	as	 it	suggests	a	random	

percent	 of	 the	 total	 community	 will	 carry	 ARG	 whereas	 it	 is	 in	 fact	 only	 a	

subpopulation	that	are	likely	to	carry	these	genes.	

	

In	 the	 current	 study	 high	 levels	 of	 viable	 ARB	 were	 reported	 in	 all	 samples.	

Determining	whether	 high	 abundance	 is	 due	 to	 accretion	 or	 persistence	 requires	

further	investigations.	An	important	part	of	the	study	was	to	evaluate	the	extent	of	

accretion	of	exotic	species	such	E.	coli	in	sediment	and	the	potential	of	these	strains	

to	persist	in	the	environment.	The	level	of	accretion	cannot	be	determined	due	to	

the	 unknown	 amount	 of	 CSO	 events	 that	 took	 place	 during	 the	 sampling	 regime	

however	It	can	be	hypothesised	that	the	possession	of	certain	TA	genes,	including	

hipA,	may	allow	the	exotic	bacteria	that	enter	the	environment	to	form	persister	cells	

in	the	environment	with	little	replication,	surpassing	environmental	stressors	(Kussell	
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et	al.,	2005,	Nierman	et	al.,	2015).	E.	coli	has	previously	been	shown	to	persist	in	soils	

for	up	to	9	years	and	mechanisms	of	persister	cell	formation	have	previously	been	

associated	with	TA	systems	in	E.	coli	(Brennan	et	al.,	2010,	Dorr	et	al.,	2010,	Sauert	

et	al.,	2016,	Schumacher	et	al.,	2009,	Li	et	al.,	2016).	TA	systems	which	had	previously	

been	associated	with	persister	cell	formation	were	present	in	all	28	E.	coli	 isolates	

carrying	the	ESBL	blaCTX-M	genes	and	may	play	a	role	in	the	survival	of	these	exotic	

species	 in	 the	 river	 sediment.	 Previous	 studies	 have	 	 demonstrated	 the	 ability	 of	

persister	cells	to	form	in	water	and	under	environmental	stressors	including	nutrient	

restriction,	sub	inhibitory	levels	of	antibiotics	and	metal	oxyanions	(Nierman	et	al.,	

2015,	Harrison	et	al.,	2005).	Studies	demonstrate	 the	possibility	of	E.	coli	 forming	

persister	cells	in	an	environment	contaminated	with	WWTP	effluent	which	is	likely	

to	carry	sub	inhibitory	levels	of	antibiotics,	biocides	and	metals.	No	studies	could	be	

found	definitively	demonstrating	the	formation	of	persister	cells	in	the	environment	

but	 the	 stresses	 induced	 in	 the	WWTP	 process	 suggest	 they	 are	 likely	 to	 occur.	

Investigations	 in	 to	 persister	 occurrence	 should	 determine	 if	 possession	 of	 TA	

systems	contributes	in	the	environment.	This	will	determine	whether	persistence	is	

more	 important	 in	 the	 recovery	of	E.	 coli	 from	 sediment	or	 if	 accretion	 from	 the	

WWTP	is	more	important.		

	

The	current	study	evaluated	the	ARG	and	ARB	potential	in	rivers	contaminated	with	

WWTP	effluent	and	raw	sewage	released	from	CSOs.	A	diverse	range	of	E.	coli	ST	

types	were	isolated	in	sediment	communities	and	these	had	attributes	of	virulence	

and	 resistance.	 It	 is	 evident	 that	 WWTPs	 contribute	 to	 the	 environmental	

contamination	 of	 river	 systems	 which	 consequently	 can	 be	 detected	 8	 km	

downstream	of	effluent	release.	For	all	gene	targets	(except	ermF)	WWTP	effluent	

contributed	to	the	prevalence	of	genes	detected	at	the	sampling	site	as	well	as	the	

surrounding	 agricultural	 impact.	 This	 study	 concludes	 that	 the	 intI1	 gene	 is	 not	 a	

suitable	predictor	of	3GC-resistant	bacteria	and	was	 found	at	 substantially	higher	

numbers	 contrasting	 to	 all	 other	 gene	 targets.	 The	 current	 study	 suggests	 the	

wastewater	 treatment	 process	 should	 be	 more	 efficient	 in	 removing	 ARB	 and	

selective	 (antibiotics)	 and	 non-selective	 agents	 (metals	 and	 biocides)	 from	 the	

effluent	and	highlights	the	damaging	effects	of	CSO	release	events	highlighting	the	
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importance	 of	 monitoring	 (and	 regulating)	 spills	 to	 prevent	 further	 ARG	

dissemination.		

Inferences	from	the	current	study	are	limited	by	the	fact	it	consisted	of	2	sites	located	

near	one	WWTP	along	one	river	system.	To	determine	conclusively	the	contribution	

of	CSO	release	in	ARG	dissemination,	different	sites	must	be	investigated	to	cover	

different	 treatment	 plants	 using	 different	 levels	 of	 wastewater	 treatment	 (i.e	

primary	 and	 secondary),	 different	 population	 sizes	 served	 and	 different	 locations	

(such	as	agricultural	regions).	These	factors	are	all	assumed	to	influence	levels	of	ARG	

and	 ARB,	 with	 some	 studies	 demonstrating	 differences	 in	 gene	 prevalence	 with	

different	 treatment	 plants	 however	 there	 are	 few	 comparative	 studies	 that	

conclusively	 report	 differences	 in	 prevalence	 and	 abundance	 of	 ARG	 and	 ARB	 as	

studies	are	primarily	focussed	on	assessing	impact	at	one	WWTP	(presumably	chosen	

based	on	accessibility)	(Li	et	al.,	2015a).	Monitoring	of	other	river	catchments	must	

also	be	included	to	determine	whether	at	different	sites	there	are	factors,	other	than	

season,	 which	 may	 predominate	 changes	 in	 river	 sediment	 populations.	 Other	

studies	have	previously	shown	variable	OTU	number	based	on	the	type	of	treatment	

for	 example,	 so	 investigating	 changes	 in	 treatment	 type	 with	 season	 will	 be	 of	

interest	to	determine	which	factors	are	most	important	(Hu	et	al.,	2012).	

	

In	conclusion,	the	work	presented	demonstrates	widespread	environmental	ARG	and	

ARB	dissemination	consistent	with	previous	studies.	What	is	evident	from	this	study	

is	that	viable	potentially	pathogenic	E.	coli	carrying	extensive	AMR	are	able	to	survive	

in	the	environment	with	the	ability	to	cause	infection	if	a	suitable	host	is	present.	The	

extensive	 AMR	 demonstrated	 has	 been	 documented	 in	 many	 other	 studies	 and	

emphasises	the	importance	of	finding	new	antimicrobial	agents	with	activity	against	

Gram-negative	bacteria.	Predominantly	the	work	on	antibiotic	discovery	is	focussed	

on	the	discovery	of	compounds	based	on	peptide	antibiotics,	however	due	to	the	

Gram-negative	cell	wall	these	antibiotics	are	unlikely	to	be	effective	(Donadio	et	al.,	

2007).	The	recent	discovery	of	teixobactin	was	the	first	new	antibiotic	class	discovery	

using	the	promising	iChip	technology	which	uses	a	membrane	to	allow	diffusion	of	

antimicrobial	 products	 but	 so	 far	 has	 only	 identified	 antimicrobials	 with	 activity	

against	Gram-positive	bacteria	(Ling	et	al.,	2015).	Between	2000-2015	only	30	new	
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antibiotics	and	antibiotic-inhibitor	combinations	were	introduced	and	predominantly	

these	were	active	against	Gram	positives	(Butler,	2015).	If	the	10	million	deaths	per	

year	 predicted	 by	 the	 recent	 report	 on	 AMR	 are	 to	 be	 prevented	 then	 novel	

antibiotics	 need	 to	 be	 discovered	 with	 activity	 against	 Gram-negative	 bacteria	

(O'Neill,	2016).		

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	



	 258	

Appendix	
	
Chapter	6	Diversity	within	genomes	of	selected	E.	coli	isolates	
	
Appendix	1	Phenotypic	resistance	profiles	of	the	77	E.	coli	isolates	from	the	river	
Sowe	sediment		
Isolat
e	

Sequenc
e	Type	

Ampicilli
n	(25ug)	

Cefotaxim
e	(5ug)	

Imipene
m	(10ug)	

Tetracyclin
e	(10ug)	

Chlorampenico
l	(30ug)	

Erythromyci
n	(8ug)	

Sulfurazol
e	(300ug)	

Nalidixi
c	acid	
(30ug)	

4	 ST1286	 Yes	 Yes	 No	 Yes	 Yes	 Yes	 Yes	 Yes	
25	 Unknown	 Yes	 Yes	 No	 Yes	 Yes	 Yes	 Yes	 Yes	
26	 ST453	 Yes	 Yes	 No	 Yes	 Yes	 Yes	 Yes	 Yes	
27	 ST3727	 Yes	 No	 No	 No	 No	 Yes	 No	 No	
28	 Unknown	 No	 No	 No	 No	 No	 Yes	 Yes	 No	
29	 ST46	 Yes	 Yes	 No	 Yes	 No	 Yes	 Yes	 Yes	
30	 ST212	 Yes	 No	 No	 Yes	 No	 Yes	 Yes	 Yes	
31	 ST4105	 Yes	 Yes	 No	 Yes	 Yes	 Yes	 Yes	 Yes	
32	 ST162	 Yes	 No	 No	 No	 No	 Yes	 Yes	 Yes	
33	 ST3576	 No	 No	 No	 No	 No	 No	 No	 No	
34	 ST295	 Yes	 Yes	 No	 Yes	 No	 Yes	 Yes	 No	
35	 ST1431	 Yes	 No	 No	 Yes	 No	 Yes	 Yes	 Yes	
36	 ST607	 Yes	 Yes	 No	 Yes	 Yes	 Yes	 Yes	 Yes	
37	 ST69	 Yes	 No	 No	 Yes	 No	 Yes	 Yes	 Yes	
38	 ST399	 No	 No	 No	 No	 No	 Yes	 No	 No	
39	 ST399	 No	 No	 No	 No	 No	 Yes	 No	 No	
40	 ST131	 Yes	 Yes	 No	 Yes	 Yes	 Yes	 Yes	 Yes	
41	 ST1421	 Yes	 Yes	 No	 Yes	 No	 Yes	 Yes	 Yes	
42	 ST455	 Yes	 Yes	 No	 Yes	 Yes	 Yes	 Yes	 No	
47	 ST38	 Yes	 Yes	 No	 Yes	 Yes	 Yes	 Yes	 Yes	
48	 ST131	 Yes	 Yes	 No	 Yes	 No	 Yes	 Yes	 Yes	
50	 ST3202	 Yes	 Yes	 No	 Yes	 No	 Yes	 Yes	 Yes	
51	 ST940	 Yes	 Yes	 No	 Yes	 No	 Yes	 Yes	 Yes	
59	 ST607	 Yes	 Yes	 No	 Yes	 No	 Yes	 Yes	 Yes	
60	 ST4105	 Yes	 Yes	 No	 Yes	 Yes	 Yes	 Yes	 Yes	
61	 ST131	 Yes	 Yes	 No	 Yes	 Yes	 Yes	 Yes	 Yes	
62	 ST1421	 Yes	 Yes	 No	 Yes	 Yes	 Yes	 Yes	 Yes	
63	 ST1421	 Yes	 Yes	 No	 Yes	 Yes	 Yes	 Yes	 Yes	
64	 ST3202	 Yes	 Yes	 No	 Yes	 Yes	 Yes	 Yes	 Yes	
65	 ST1421	 Yes	 Yes	 No	 Yes	 Yes	 Yes	 Yes	 Yes	
66	 ST131	 Yes	 Yes	 No	 Yes	 Yes	 Yes	 Yes	 Yes	
67	 ST940	 Yes	 Yes	 No	 Yes	 No	 Yes	 Yes	 Yes	
70	 ST154	 Yes	 No	 No	 No	 Yes	 Yes	 No	 Yes	
71	 ST716	 Yes	 No	 No	 No	 No	 Yes	 Yes	 Yes	
72	 ST940	 Yes	 Yes	 No	 Yes	 Yes	 Yes	 Yes	 Yes	
75	 ST940	 Yes	 Yes	 No	 Yes	 No	 Yes	 Yes	 Yes	
76	 ST58	 No	 No	 No	 Yes	 No	 Yes	 Yes	 Yes	
77	 ST940	 Yes	 Yes	 No	 Yes	 No	 Yes	 Yes	 Yes	
78	 ST1421	 Yes	 Yes	 No	 Yes	 Yes	 Yes	 Yes	 Yes	
79	 ST940	 Yes	 Yes	 No	 Yes	 No	 Yes	 Yes	 Yes	
80	 ST1421	 Yes	 Yes	 No	 Yes	 Yes	 Yes	 Yes	 Yes	
81	 ST940	 Yes	 Yes	 No	 Yes	 Yes	 Yes	 Yes	 Yes	
85	 ST69	 No	 No	 No	 Yes	 No	 Yes	 Yes	 No	
86	 ST3568	 Yes	 Yes	 No	 Yes	 Yes	 Yes	 Yes	 Yes	
87	 SST3202	 Yes	 Yes	 No	 Yes	 Yes	 Yes	 Yes	 Yes	
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89	 ST940	 Yes	 Yes	 No	 Yes	 Yes	 Yes	 Yes	 Yes	
92	 ST940	 Yes	 No	 No	 Yes	 No	 Yes	 Yes	 Yes	
95	 ST940	 Yes	 Yes	 No	 Yes	 Yes	 Yes	 Yes	 Yes	
96	 ST940	 Yes	 Yes	 No	 Yes	 Yes	 Yes	 Yes	 Yes	
98	 ST1421	 Yes	 Yes	 No	 Yes	 Yes	 Yes	 Yes	 Yes	
99	 ST940	 Yes	 Yes	 No	 Yes	 Yes	 Yes	 Yes	 Yes	
101	 ST940	 Yes	 Yes	 No	 Yes	 Yes	 Yes	 Yes	 Yes	
102	 ST131	 Yes	 No	 No	 No	 No	 Yes	 Yes	 Yes	
103	 ST3202	 Yes	 Yes	 No	 Yes	 Yes	 Yes	 Yes	 Yes	
104	 ST155	 Yes	 Yes	 No	 Yes	 No	 Yes	 Yes	 No	
106	 Unknown	 Yes	 Yes	 No	 No	 Yes	 Yes	 Yes	 No	
109	 ST940	 Yes	 Yes	 No	 Yes	 Yes	 Yes	 Yes	 Yes	
112	 Unknown	 Yes	 Yes	 No	 Yes	 Yes	 Yes	 No	 Yes	
115	 ST80	 Yes	 Yes	 No	 Yes	 Yes	 Yes	 Yes	 Yes	
117	 ST3747	 Yes	 Yes	 No	 Yes	 Yes	 Yes	 Yes	 Yes	
119	 ST10	 Yes	 Yes	 No	 Yes	 Yes	 Yes	 Yes	 Yes	
120	 ST5128	 Yes	 Yes	 No	 Yes	 Yes	 Yes	 Yes	 Yes	
121	 ST46	 Yes	 Yes	 No	 No	 ny	 Yes	 Yes	 No	
122	 ST46	 Yes	 Yes	 No	 No	 Yes	 Yes	 Yes	 No	
123	 ST46	 Yes	 Yes	 	 Yes	 Yes	 Yes	 Yes	 No	
124	 ST399	 Yes	 Yes	 No	 Yes	 Yes	 Yes	 Yes	 Yes	
125	 ST3574	 Yes	 Yes	 No	 Yes	 Yes	 Yes	 Yes	 Yes	
127	 ST69	 Yes	 Yes	 No	 Yes	 Yes	 Yes	 Yes	 Yes	
128	 ST582	 Yes	 Yes	 No	 Yes	 Yes	 Yes	 Yes	 No	
129	 ST2302	 Yes	 Yes	 No	 No	 Yes	 Yes	 Yes	 Yes	
130	 ST3574	 Yes	 Yes	 No	 No	 Yes	 Yes	 Yes	 Yes	
131	 ST744	 Yes	 No	 No	 Yes	 Yes	 Yes	 Yes	 Yes	
134	 Unknown	 No	 No	 No	 No	 No	 No	 No	 Yes	
135	 ST46	 Yes	 Yes	 No	 Yes	 Yes	 Yes	 Yes	 Yes	
140	 ST46	 Yes	 Yes	 No	 Yes	 Yes	 Yes	 Yes	 Yes	
142	 ST73	 Yes	 Yes	 No	 Yes	 Yes	 Yes	 Yes	 Yes	
143	 Unknown	 Yes	 Yes	 No	 Yes	 Yes	 Yes	 Yes	 Yes	

	
	
	
	
Appendix	2	Illumina	sequencing	statistics	summary		
Isolate	 Contigs	 Genome	Size	 N50	 Median	cov	 %	GC	
4	 522	 5380207	 91724	 61	 50.7	
25	 451	 4860083	 22473	 21	 50.2	
26	 177	 4921132	 186677	 57	 50.2	
27	 175	 5062444	 73668	 37	 50.2	
28	 423	 4943308	 52968	 38	 50.7	
29	 162	 5195975	 156992	 54	 50.6	
30	 595	 5259020	 144469	 62	 50.5	
31	 145	 5031929	 193417	 52	 50.6	
32	 104	 4718644	 88662	 43	 50.7	
33	 264	 5165913	 43919	 29	 50.7	
34	 137	 4952054	 154683	 65	 50.7	
35	 679	 5819703	 119015	 41	 50.2	
36	 260	 5317249	 56030	 37	 50.7	
37	 267	 5278234	 70773	 60	 50.5	
38	 696	 5416568	 56989	 39	 49.8	
39	 192	 5074375	 157554	 40	 50.7	
40	 276	 5105125	 79288	 56	 50.6	
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41	 776	 5889234	 73518	 45	 50	
42	 1199	 6098924	 65093	 45	 51.3	
47	 167	 5509356	 88846	 49	 50.6	
48	 290	 4958431	 41920	 53	 50.9	
50	 231	 5280782	 106592	 38	 50.3	
51	 237	 5576739	 156267	 49	 50.7	
59	 162	 4847688	 127892	 60	 50.5	
60	 117	 5005130	 138943	 40	 50.7	
61	 353	 5160759	 79288	 59	 50.6	
62	 259	 5105185	 82184	 43	 50.6	
63	 286	 4958474	 41415	 88	 50.9	
64	 272	 5103727	 79288	 47	 50.6	
65	 194	 5504245	 159178	 39	 50.6	
66	 330	 5264737	 43808	 15	 50.3	
67	 103	 4645868	 209822	 75	 50.5	
70	 294	 5216878	 33724	 27	 50.8	
71	 858	 5114859	 10025	 13	 50.3	
72	 204	 5295516	 70252	 48	 50.3	
75	 297	 5047152	 32268	 24	 50.5	
76	 238	 5286544	 106592	 44	 50.4	
77	 264	 5103188	 69051	 36	 50.6	
78	 167	 5311527	 95622	 76	 50.3	
79	 263	 5102908	 71683	 39	 50.6	
80	 235	 5281842	 104347	 36	 50.3	
81	 68	 4842182	 566858	 50	 50.5	
85	 63	 4400792	 308073	 79	 50.7	
86	 298	 4961041	 41920	 76	 50.9	
87	 236	 5281588	 106592	 50	 50.3	
89	 228	 5280641	 103941	 53	 50.3	
92	 236	 5282915	 103995	 56	 50.3	
95	 187	 5307968	 88085	 47	 50.3	
96	 218	 5131883	 60569	 41	 50.6	
98	 226	 5278604	 117998	 50	 50.3	
99	 228	 5280743	 103952	 52	 50.3	
101	 126	 5012714	 239922	 82	 50.7	
102	 259	 4759293	 45637	 35	 50.7	
103	 139	 4807979	 133537	 55	 50.7	
104	 175	 4911813	 144492	 39	 50.5	
106	 225	 5279146	 103918	 39	 50.3	
109	 225	 5279146	 103918	 39	 50.3	
112	 477	 5155942	 18371	 17	 50.2	
115	 105	 4867718	 222456	 91	 50.3	
117	 156	 4592101	 120802	 37	 50.7	
119	 115	 5590136	 198820	 42	 51.3	
120	 206	 4774778	 81344	 66	 50.7	
121	 210	 4774140	 81344	 88	 50.7	
122	 216	 4778594	 81344	 89	 50.7	
123	 315	 5357216	 54003	 64	 50.4	
124	 146	 4803883	 73724	 25	 50.7	
125	 195	 5104403	 146638	 42	 50.7	
127	 98	 4756764	 219158	 53	 50.5	
128	 55	 4806836	 469368	 59	 50.8	
129	 159	 4817980	 218129	 82	 50.3	
130	 138	 4761349	 119201	 50	 50.6	
131	 204	 4748758	 89414	 35	 50.7	
134	 280	 4825041	 112945	 28	 61	
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135	 253	 4726903	 55347	 79	 50.8	
140	 200	 5274466	 68343	 30	 50.3	
142	 242	 4817822	 47219	 25	 50.4	
143	 242	 4817822	 185779	 25	 50.4	

	
	
Appendix	3	MGE	and	plasmid	incompatibility	groups	identified	in	ESBL	producing	
strains	
Isolat
e	

Sequenc
e	Type	

IS2
6	

intI
1	

intI
2	

incb/o/
k	

IncFI
A	

IncFI
A	

(HI1)	

IncFI
I	

IncFI
B	

IncFIC(FII
)	

IncI
1	

IncHI1
B	

IncX
1	

IncX
4	

IncQ
1	

Inc
N	

Inc
R	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

29	 ST46	 Yes	 Yes	 	 	 Yes	 Yes	 Yes	 	 Yes	 	 	 	 	 	 	 	

41	 ST1421	 Yes	 Yes	 	 	 Yes	 	 Yes	 Yes	 	 Yes	 	 	 	 Yes	 	 	

42	 ST455	 Yes	 	 Yes	 	 	 	 Yes	 Yes	 	 Yes	 Yes	 Yes	 	 	 	 	

47	 ST38	 Yes	 Yes	 	 	 Yes	 	 Yes	 Yes	 Yes	 	 	 	 Yes	 	 	 	

48	 ST131	 Yes	 Yes	 	 Yes	 Yes	 	 Yes	 Yes	 Yes	 Yes	 	 	 	 	 	 	

50	 ST3202	 Yes	 Yes	 	 	 	 	 Yes	 Yes	 	 	 	 	 	 	 	 Yes	

51	 ST940	 Yes	 	 Yes	 	 	 	 Yes	 Yes	 	 	 Yes	 Yes	 	 	 	 	

61	 ST131	 Yes	 Yes	 	 	 Yes	 Yes	 Yes	 Yes	 Yes	 	 	 	 	 	 	 	

62	 ST1421	 Yes	 Yes	 	 	 Yes	 	 Yes	 Yes	 	 Yes	 	 	 	 Yes	 	 	

63	 ST1421	 Yes	 Yes	 	 	 Yes	 	 Yes	 Yes	 	 Yes	 	 	 	 Yes	 	 	

66	 ST131	 Yes	 Yes	 	 Yes	 Yes	 	 Yes	 Yes	 	 	 	 	 	 	 	 	

67	 ST940	 Yes	 	 Yes	 	 	 	 Yes	 Yes	 	 	 Yes	 Yes	 	 	 	 	

72	 ST940	 Yes	 	 Yes	 	 	 	 Yes	 Yes	 Yes	 	 	 Yes	 	 	 	 	

75	 ST940	 Yes	 	 Yes	 	 	 	 Yes	 Yes	 Yes	 	 Yes	 Yes	 	 	 	 	

77	 ST940	 Yes	 	 Yes	 	 	 	 Yes	 Yes	 	 	 Yes	 Yes	 	 	 	 	

78	 ST1421	 Yes	 Yes	 	 	 Yes	 	 Yes	 Yes	 	 Yes	 	 	 	 Yes	 	 	

79	 ST940	 Yes	 	 Yes	 	 	 	 Yes	 Yes	 Yes	 	 Yes	 Yes	 	 	 	 	

87	 SST3202	 Yes	 Yes	 	 	 	 	 Yes	 Yes	 	 	 	 	 	 	 	 Yes	

89	 ST940	 Yes	 	 Yes	 	 	 	 Yes	 Yes	 	 	 Yes	 Yes	 	 	 	 	

92	 ST940	 Yes	 	 Yes	 	 	 	 Yes	 Yes	 	 	 Yes	 Yes	 	 	 	 	

95	 ST940	 Yes	 	 Yes	 	 	 	 Yes	 Yes	 	 	 Yes	 Yes	 	 	 	 	

96	 ST940	 Yes	 	 Yes	 	 	 	 Yes	 Yes	 Yes	 	 Yes	 Yes	 	 	 	 	

98	 ST1421	 Yes	 Yes	 	 Yes	 Yes	 	 Yes	 Yes	 Yes	 Yes	 	 	 	 Yes	 	 	

99	 ST940	 Yes	 	 Yes	 	 	 	 Yes	 Yes	 	 	 Yes	 Yes	 	 	 	 	

101	 ST940	 Yes	 	 Yes	 	 	 	 Yes	 Yes	 	 	 Yes	 Yes	 	 	 	 	

109	 ST940	 Yes	 	 Yes	 	 	 	 Yes	 Yes	 	 	 Yes	 Yes	 	 	 	 	

140	 ST46	 Yes	 Yes	 	 	 	 	 	 Yes	 	 	 	 	 	 	 Yes	 	

142	 ST73	 Yes	 Yes	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
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Appendix	4	Antibiotic	class	and	associated	genes	identified	in	WGS	of	E.	coli	isolates	
from	the	Sowe	sediment.	
Class	 Gene	
Beta-lactamase	
		
		
		
		
		
		
		
		

blaoxa	
blatem	
blaDH2	
blaCRP	
blaACT-7	
	blaCMY-63	
blacxt-m-15	
blacxt-m-14	
blacxt-m-99	

bacitracin		 bacA	
novobiocin	and	deoxycholate		
		

baeR	
baeS	

stress	response	
		
		

cpxA	
cpxR	
evgA	

acid	resistance	
		
		
		

evgS	
marA	
gadX	
macA	

macrolide	
		
		

macB	
mphA	
qepA	

fluoroquinolone		
		
		
		
		

qnrB1	
qnrS1	
gyrA	
K.pneu	acrR	
parC	

polymyxin	
		
		
		
		
		
		
		

arnA	
pmrA	
pmrB	
pmrC	
pmrE	
pmrF	
phoP	
phoQ	

vancomycin		
		

vanG	
TriC	

streptothricin		
		

sat-1	
cat	

chloramphenicol	
		

cat1	
catA1	

trimethoprim	 drfA1	
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dfrA5	
dfrA14	
dfrA17	

aminoglycoside	
		
		
		
		
		
		
		
		
		
		
		
		
		
		

aada	
aadA1	
aadA2	
aadA5	
aadA25	
aacC4	
aac(6')-lb-cr	
aac(3)-lla	
aac(3)-I	
aph(3")-lb	
aph(3')-la	
aphA1	
aphA1-IAB	
aph(6)-id	
kdpE	

streptomycin		
		

strA	
strB	

streptothricin		 sat-1	
tetracycline		
		
		
		
		

tetA	
tetB	
tetG	
tetc	
tetD	

sulphonamide	
		

sul1	
sul2	
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	Iso
late

Seq
uen

ce	
Typ

e	
OX

A
TEM

DH
A-2

ctx-
m- 15

CR
P

ctx-
m- 99

ctx-
m- 14

AC
T-7

cmy
-

63
bac

A
bae

R
bae

S
cpx

A
cpx

R
evgA

evgS
mar

A
K.p

neu
	

acrR
gad

X
mac

A
mac

B
mp

hA
s.au

r	
rpo

B
m.t

b	
rpo

B
m.	

tb	 katG
qep

Aq
nrB

1q
nrS

1
gyrA

par
C

arn
A

pm
rA

pm
rB

pm
rC

pm
rE

pm
rF

ph
oP

ph
oQ

van
G

TriC
kdp

E
sat-

1
cat

cat1
catA

Id
rfA

1d
frA

5d
frA

14d
frA

17
aad

aa
adA

1a
adA

2a
adA

5aad
A2 5

aacC
4aac(

6')
-

lb-
cr

aac(
3)- lla

aac(
3)- I

aph
(3" )-lb

aph
(3') -la

aph
A1

aph
A1- IAB

aph
(6)- id

strA
strB

tetA
tetB

tetG
tetc

tetD
sul

1
sul

2
emr

A
emr

B
emr

D
emr

Ee
mrK

emr
R

emr
Y

md
tC

md
tD

md
tE

md
tG

md
tH

md
tK

md
tL

md
tM

md
tN

md
tO

md
tP

md
tF

md
tA

mfd
tol

C
mar

R
rob

A
sox

R
sme

A
cus

A
mer

A
terA

cus
A

29
ST4

6
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
41

ST1
42

1
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
42

ST4
55

/94
0

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

47
ST3

8
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

48
ST1

31
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes
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Appendix	6	MAUVE	alignment	between	strain	48	identified	as	ST131	and	known	
ST131,	JJ897	
	

	
	
Appendix	7	MAUVE	alignment	between	strain	66	identified	as	ST131	and	known	
ST131,	JJ897	

	
Appendix	8	Alignment	between	strain	51	(ST940)	and	reference	strain	E24377A	
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Appendix	9	Alignment	between	strain	67	(ST940)	and	reference	strain	E24377A	

	
	

	
	
Appendix	10	Alignment	between	strain	75	(ST940)	and	reference	strain	E24377A	

	
	

	
	
Appendix	11	Alignment	between	strain	77	(ST940)	and	reference	strain	E24377A	
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Appendix	12	Alignment	between	strain	79	(ST940)	and	reference	strain	E24377A	

	

	
Appendix	13	Alignment	between	strain	89	(ST940)	and	reference	strain	E24377A	

	

	
	
Appendix	14	Alignment	between	strain	92	(ST940)	and	reference	strain	E24377A	
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Appendix	15	Alignment	between	strain	95	(ST940)	and	reference	strain	E24377A	

	

	
Appendix	16	Alignment	between	strain	96	(ST940)	and	reference	strain	E24377A	

	

	
	
Appendix	17	Alignment	between	strain	99	(ST940)	and	reference	strain	E24377A	



	 270	

	
	

	
	
Appendix	18	Alignment	between	strain	101	(ST940)	and	reference	strain	E24377A	

	
	

	
	
Appendix	19	Alignment	between	strain	109	(ST940)	and	reference	strain	E24377A	
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Appendix	20	Aligned	ST940	strains	using	progressive	MAUVE	
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