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Abstract

This thesis is a collection of three individual works on dynamic economic deci-

sion problems which go beyond expected utility maximisation in complete markets. The

first chapter introduces an asset liquidation model under prospect theory preferences. We

demonstrate that the probability weighting component of the model can predict liquidation

strategies which better fit the empirical patterns of investors’ stock trading behaviours, when

compared to models which do not incorporate probability weighting. The second chapter

explores the role of randomised strategies in an exit-timing problem faced by a prospect

theory agent. Several new insights are o↵ered: in a discrete model, access to randomisation

can strictly improve the economic value to the agent; in a continuous time counterpart,

allowing randomisation will significantly alter the prediction of an agent’s behaviours and

more realistic exit-strategies would be observed in contrast to the results from the existing

literature. The final chapter studies an extension to the Merton’s optimal investment and

consumption problem under transaction costs, where the agent can also dynamically invest

in a liquid hedging asset without a trading fee. We provide a complete solution. Important

properties of the problem such as well-posedness conditions and comparative static results

are derived.
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Preface: an overview of the

thesis

In a typical mathematical model of investment, it is commonly assumed that the under-

lying agent is an expected utility maximiser with trading access to a frictionless market.

Whilst the assumptions of an expected utility criteria and a perfect market help simplify

the analysis, these specifications are not always good descriptions of the real world. On the

one hand, the paradigm of expected utility hypothesis is under constant challenges by both

designed experiments in laboratories and empirical anomalies in financial markets. On the

other hand, trading can be costly in view of transaction fees. It may thus be ine�cient

to implement the optimal strategies advocated by standard economic models which often

involve continuous portfolio rebalancing.

This thesis attempts to expand the classical theory by studying three di↵erent dy-

namic economic decision problems featuring behavioural preferences and market imperfec-

tions. The unifying goal is to investigate whether the extra features introduced can better

reconcile the model predictions and real world phenomena. Ultimately, the results docu-

mented in this thesis will be useful for advancing our understanding to individuals’ decisions

in di↵erent economic contexts such as stock trading, exit-timing of casino gambling and port-

folio choice. The first two chapters share a common theme involving an optimal stopping

problem under prospect theory (PT), arguably the most popular behavioural model of de-

cision making under risk proposed by Tversky and Kahneman (1992). The final chapter

considers a separate topic on market friction where trading in a certain asset class incurs

a proportional transaction cost. While each chapter is structured in a rather self-contained

manner and thus can be read in any order in principle, readers might find Chapter 1 a useful

prerequisite to Chapter 2.

In Chapter 1, we investigate the implications of PT preferences in an asset liqui-

xii



dation model. In the literature of empirical finance, the price disposition e↵ect is a well-

documented anomaly which refers to the tendency that investors hold losing stocks for too

long but sell winning stocks too early. However, standard models of asset sale often fail to

calibrate the strength of the price disposition e↵ect satisfactorily. Very often they either do

not predict voluntary sale at losses, or the price disposition e↵ect implied is too extreme

in comparison to the empirical data. We focus on the probability weighting component of

PT which is typically omitted in the existing literature. On the theoretical side, we apply

and extend the recent mathematical results regarding optimal stopping with probability

weighting. A few extra but mild su�cient conditions on the agent’s preference functions

are provided which can lead to an optimal trading strategy with simple structure. We then

explain with theoretical justifications how to extract di↵erent measures of the price disposi-

tion e↵ect within our modelling framework and provide some numerical results. It is found

that the inclusion of probability weighting can produce much more reasonable levels of the

disposition e↵ect under a range of asset performance, and this serves as an improvement

over the existing asset sale models.

Chapter 2 considers the impact of allowing PT agents to follow randomised strategies

in an exit-timing decision task. We demonstrate a feature which has not been considered to

date. In presence of probability weighting, an agent may benefit from adopting a randomised

strategy. In a finite horizon discrete model of casino gambling of Barberis (2012), we show

that allowing an agent to follow randomised strategies can lead to strict improvement in the

game value. Allowing randomised strategies also leads to drastic change in prediction in an

infinite horizon continuous time setup. In an optimal stopping model under a general PT

framework, Ebert and Strack (2015) show that a naive agent can always find a non-trivial

gambling strategy at every wealth level which is strictly preferred to stopping immediately.

From this, it is inferred that a naive agent will never stop voluntarily, and this casts doubts

over the applicability of PT in a dynamic context. When randomised strategies are allowed,

however, we show that the optimal strategy of a naive agent may involve stopping with

positive probability. Through detailed analysis of two stylised examples as well as numerical

studies on a more general model, we show that voluntary cessation of gambling with naive

agents is possible which is a more realistic prediction.

A multi-asset Merton’s investment and consumption problem with transaction costs

is studied in Chapter 3. In general it is di�cult to make analytical progress towards a

solution in such a problem, but we specialise to a case where transaction costs are zero

except for sales and purchases of a single asset which we call the illiquid asset. Leveraging

xiii



the analysis of Hobson et al. (2016) for the model with a single risky asset only, we show

that the underlying HJB equation can be transformed into a first order boundary value

problem. The optimal strategy is to trade the illiquid asset only when the fraction of the

total portfolio value invested in this asset falls outside a fixed interval. Important properties

of the multi-asset problem (including when the problem is well-posed, ill-posed, or well-posed

only for large transaction costs) can be inferred from the behaviours of a quadratic function

of a single variable and another algebraic function. We also discuss some comparative static

results and their financial interpretations.

xiv



Chapter 1

Probability weighting and price

disposition e↵ect in an asset

liquidation model

“Take care to sell your horse before he dies. The art of life is passing

losses on.”
— Robert Frost, The Ingenuities of Debt

1.1 Introduction

Despite the attractiveness of the principles of expected utility theory (EUT), it has long

been recognised that it fails to fully explain individuals’ attitudes towards risk. One of

the most prominent alternatives to EUT is prospect theory (PT), originally proposed by

Kahneman and Tversky (1979) and extended later by Tversky and Kahneman (1992). PT

features the following key ingredients. First, utilities or values are derived in terms of gains

and losses relative to a reference point rather than the final wealth level. Second, the value

function exhibits concavity in the domain of gains and convexity in the domain of losses,

and is steeper for losses than for gains to capture a phenomenon known as loss aversion.

Finally, the most distinctive feature of PT is that cumulative probabilities are re-weighted

such that individuals overweight tail events.

In recent years, probability weighting has been successfully linked, both theoreti-

1



cally and empirically, to a wide range of financial phenomena.1 Barberis and Huang (2008)

show that, in a financial market where investors evaluate risk according to prospect the-

ory, probability weighting leads to the prediction that the skewness in an asset’s return

distribution will be priced. This idea has been used to explain low average returns of IPO

stocks (Green and Hwang (2012)), the apparent overpricing of out-of-the-money options

and the variance premium (Polkovnichenko and Zhao (2013), Baele et al. (2014)), the lack

of diversification in household portfolios (Polkovnichenko (2005)), why riskier firms grant

more stock options to non-executive employees (Spalt (2013)), and many other puzzles. On

an aggregate scale, De Giorgi and Legg (2012) show that probability weighting is useful

in generating a large equity premium - and can do so independently of loss aversion (Be-

nartzi and Thaler (1995)). Probability weighting has also been helpful in understanding

betting behaviour - the favourite long-shot bias (see Schneider and Spalt (2016) who show

CEOs allocate capital with a long-shot bias) and the popularity of casino gambling (Bar-

beris (2012)). In this chapter, we contribute to this broad agenda by showing that in the

setting of dynamic models of investor trading, probability weighting can, in combination

with the other elements of prospect theory, generate more realistic trading behaviour and

satisfactorily explain an empirical anomaly known as the price disposition e↵ect.

The disposition e↵ect is one of the most robust e↵ects in the empirical literature on

investors’ behaviours. It refers to the stylised fact that investors have a higher propensity to

sell risky assets with capital gains compared to risky assets with capital losses (Shefrin and

Statman (1985), Odean (1998), Genesove and Mayer (2001), Grinblatt and Keloharju (2001),

Feng and Seasholes (2005), Dhar and Zhu (2006), Kaustia (2010), Jin and Scherbina (2011),

Ben-David and Hirshleifer (2012), Birru (2015)). Odean’s well known study computes the

frequency with which individual investors sell winners and losers relative to opportunities

to sell each and finds gains are realised at a rate around 50% higher than losses. Although

prospect theory provides a leading explanation of the disposition e↵ect (Odean (1998),

Shefrin and Statman (1985)),2 the literature linking the two is largely silent on the impact

of the probability weighting feature of prospect theory. We fill this gap in the current

chapter.

1See Barberis (2013) for a discussion and overview.
2Odean (1998) explicitly considers expected utility explanations for the asymmetry across winners and

losers based on richer specifications of the investor’s problem, finding that portfolio rebalancing, transaction

costs, taxes, and rationally anticipated mean reversion cannot explain the observed asymmetry. Weber and

Camerer (1998) find that incorrect beliefs concerning mean reversion cannot explain the disposition e↵ect

either.

2



The well known intuition from Shefrin and Statman (1985) linking PT to the dis-

position e↵ect argues that PT’s risk seeking over losses encourages investors to continue

gambling when losing, whilst risk aversion over gains means investors tend to sell assets

which have increased in value. Since this is a static argument, there has been a recent

program in the literature attempting to build rigorous models formalising this link in a dy-

namic setting. Despite the intuition, it is a challenge for existing prospect theory models to

explain the disposition e↵ect (Kyle et al. (2006), Kaustia (2010), Barberis and Xiong (2009),

Barberis and Xiong (2012), Henderson (2012), Li and Yang (2013)).3 Indeed, the jury is still

out. The di�culty is that although the convexity over losses and loss aversion do indeed act

to encourage the investor to continue gambling in the domain of losses, this e↵ect tends to

be too strong. In many models the investor rarely (or even never) stops voluntarily, giving

an extreme disposition e↵ect.4 Progress has been made by Ingersoll and Jin (2013) who

study a realisation utility model with reference dependent S shaped preferences and show

that consideration of reinvestment improves the range of parameters over which losses are

taken. The model of Ingersoll and Jin (2013) gives an improved fit to the disposition e↵ect,

but requires considerable adjustments on the Tversky-Kahneman (TK) value functions and

how they are applied.5

In this chapter we show the inclusion of probability weighting makes it easier for

prospect theory to deliver a realistic level of the disposition e↵ect. Intuitively, overweighting

of extremely poor outcomes encourages the investor to stop-loss earlier in the loss region,

while overweighting of extremely good outcomes provides him the incentive to let the profit

run when winning. In isolation, therefore, probability weighting would work in the opposite

direction to the disposition e↵ect. When used in tandem with the other ingredients of PT

(S shaped value function, loss aversion), probability weighting moderates the level of the

disposition e↵ect predicted by the model to give values which are much closer to observed

3There are other theories of the reference point that can potentially generate a disposition e↵ect, such as

a reference point given by a weighted average of recent prices (Weber and Camerer (1998), Odean (1998)),

or by investors’ expectations (Kőszegi and Rabin (2006), Meng and Weng (2016), Magnani (2015)).
4Most of this literature finds the investor never sells at a loss. An exception is Henderson (2012), who

shows that under the Tversky and Kahneman (1992) value function, there is a loss threshold at which

the investor will sell, but this only occurs for ranges of parameters where the stock has very poor expected

returns, ie. where the investor gives up despite her loss aversion and convex preferences. For higher expected

returns, an extreme disposition e↵ect still emerges as loss aversion and convexity are dominant forces.
5First, the value function is applied over rates of return rather than dollar changes. Second, the TK

value function is altered so that the marginal utility at the origin is finite. Further, an implausibly high risk

seeking parameter is needed to obtain a good fit. To obtain a better fit for plausible parameters Ingersoll

and Jin (2013) mix 50-50 realisation utility investors with random Poisson traders.

3



empirical levels. Indeed, we show the model can match Odean’s measure of the disposition

e↵ect with realistic parameters.

Researchers studying the disposition e↵ect have also recently examined how the rate

of sale of stocks depends upon the relative magnitude of gains or losses (Feng and Seasholes

(2005), Seru et al. (2010), Ben-David and Hirshleifer (2012), Barber and Odean (2013)

and An (2016)). There is broad agreement amongst researchers that the estimated hazard

rate, as a function of returns since purchase, is higher on gains than on losses. This is an

evidence in favour of a disposition e↵ect amongst investors because the higher level over

gains means that the average propensity to sell is higher for gains than for losses. In our

model we derive a trading rule - expressed as a price-level dependent selling rate per unit

time - which is consistent with the optimal behaviour of a PT investor. We generalise this

model-based selling intensity to multiple heterogeneous investors with di↵erent preferences.

We demonstrate that with heterogeneous investors with TK value and weighting functions,

and di↵ering loss aversion levels, the model’s implied selling rate matches the qualitative

features of the empirical data including the disposition e↵ect. Furthermore, the model is

able to get reasonably close on magnitudes - including the daily probabilities of sale in the

empirical data.

Probability weighting has two main impacts on the optimal trading strategy of a

PT investor. First, the PT investor no longer aims for a simple threshold strategy on

gains. Instead, probability weighting on gains encourages the investor to aim for a long-

tailed distribution, placing some probability mass on extremely high gains precisely because

these are the outcomes that are overweighted by the investor under probability weighting.

Second, overweighting of extreme losses encourages the investor to stop - and thus we see

a finite stop-loss threshold for a wider range of parameters than those found in the absence

of probability weighting. Taken together, we show that the optimal target distribution of

asset sale price for a PT investor consists of a single stop-loss threshold and a continuous

distribution over gains. The distribution over gains is long right tailed, because the investor

wishes to gamble on the very best returns, which he overweights. This can be contrasted to

investor behaviour in PT models without probability weighting (Ingersoll and Jin (2013),

Henderson (2012) and Barberis and Xiong (2012)) which produce two-sided thresholds.

The new solution structure could explain two other well documented phenomena: the use of

trading strategies which are of stop-loss form but not stop-gain and the gambling preferences

implicit in the investment choices of retail investors for right-skewed asset returns.

Underpinning our results on the disposition e↵ect is the important technical progress
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we make on the form of the optimal prospect for a PT investor. We work in a continuous

time, infinite horizon, dynamic optimal stopping model of asset trading where investors have

PT preferences and probability weighting. A mathematical building block for our work is

Xu and Zhou (2013) who also focus on characterising the optimal strategy for a PT investor

who can precommit but most of their results are for gains (or losses) separately.6 Our results

are proved under a condition on the value function and the weighting function applied to

losses which we call the elasticity condition. Under this assumption, and with general asset

price processes, we characterise the investor’s optimal prospect or distribution as a single

loss threshold together with a continuous distribution over gains.7 This characterisation is

valid for all of the popular functions in the literature, including the value and weighting

functions of Tversky and Kahneman (1992) since each of these specifications satisfies the

elasticity hypothesis.

This chapter is structured as follows. In Section 1.2 we formulate our problem of

asset liquidation under PT preferences and state the main result. We take the Tversky and

Kahneman value and weighting functions as the base model in Section 1.3 and provide some

numerical results to highlight the features of the optimal trading strategies. To measure the

disposition e↵ect within our theoretical model, we present two approaches in Section 1.4

and Section 1.5 respectively based on the Odean’s disposition ratio and a selling intensity

function. Finally, we give our closing remarks in Section 1.6. Proofs and some supplementary

results are given in an appendix.

1.2 Model of asset liquidation under prospect theory

preferences

1.2.1 Elements of prospect theory

Under prospect theory, utility is evaluated in terms of gains and losses relative to a reference

point, rather than over final wealth. Denote by Z a random variable and by R the reference

6Although Xu and Zhou (2013) consider a variety of shapes of value and weighting functions, they do not

treat Tversky and Kahneman (1992) inverse-S shaped weighting functions together with S shaped utility.

Furthermore, although we can deduce from their results that the optimal prospect on losses places mass on

at most three points, they do not obtain a single loss threshold, and they do not consider implications for

the disposition e↵ect. Thus, they cannot speak to the questions we answer in this chapter.
7We believe this structure for the solution holds more generally, but the elasticity condition provides a

simple su�cient condition which can be checked on the value function and probability weighting function

separately. This decoupling makes the su�cient condition relatively simple to check.
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point or level and let Y = Z � R denote the gain or loss relative to the reference level.

Let U be the (continuous, strictly increasing, twice di↵erentiable away from zero) utility or

value function defined over the range of Y such that U(0) = 0. Under prospect theory, U is

concave over gains and convex over losses. It also exhibits loss aversion, whereby a loss has

a larger impact than a gain of equal magnitude.

Kahneman and Tversky (1979) propose power functions of the form

U(y) =

8

>

<

>

:

y↵+ , y > 0,

�k(�y)↵� , y < 0,
(1.1)

where 0 < ↵± < 1. The parameters 1 � ↵
+

and 1 � ↵� represent the coe�cients of

risk aversion and risk seeking, respectively. The parameter k > 1 governs loss aversion,

introducing an asymmetry about the origin. Experimental results of Tversky and Kahneman

(1992) give estimates of ↵
+

= ↵� = 0.88 and k = 2.25.

The final ingredient of prospect theory is that the probabilities of extreme events

are overweighted where the degree of distortion can di↵er for gain and loss outcomes. Let

w± : [0, 1] 7! [0, 1] be a pair of (continuous, strictly increasing, di↵erentiable) probability

weighting functions with w±(0) = 0, w±(1) = 1. Then the prospect theory value of Z is

given by (see Kothiyal et al. (2011))

E(Z) =

Z 1

0

w
+

(P(U(Z �R) > y))dy �
Z

0

�1
w�(P(U(Z �R) < y))dy. (1.2)

Many experimental studies (e.g. Camerer and Ho (1994), Wu and Gonzalez (1996),

Tversky and Kahneman (1992)) and recent empirical estimates (Polkovnichenko and Zhao

(2013)) find that individuals typically overweight the events in the tails of the distribution.

Overweighting of small probabilities on extreme events suggests the probability weighting

functions w± should be inverse-S shaped functions. In particular there exist q± such that

w± is concave on [0, q±] and convex on [q±, 1]. Moreover, experimental studies typically

demonstrate that w±(1/2) < 1/2. Tversky and Kahneman (1992) propose the probability

weighting functions

w±(p) =
p�±

(p�± + (1� p)�±)1/�±
(1.3)

for 0.28 < �± 6 1.8 Median estimates of �± are reported to be �
+

= 0.61 and �� = 0.69.

Alternative forms of w± proposed in the literature include Goldstein and Einhorn (1987)

and Prelec (1998).9

8A lower bound on �± is required to ensure monotonicity of w±.
9The Goldstein and Einhorn (1987) and Prelec (1998) weighting functions are given by:

wGE
± (p) =

�±pd±

�±pd± + (1� p)d±
, wP

±(p) = exp(�b±(� ln p)a± ) (1.4)
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1.2.2 Model formulation

Our model is a partial equilibrium framework with an infinite horizon. An investor holds an

asset whose price at time t is given by Pt. He can sell or liquidate the asset at any time in

the future. At the liquidation time ⌧ of his choice,10 he receives the price P⌧ and compares it

to his reference level R, which may be the breakeven level or price paid for the asset.11 The

realised gain or loss to the investor at the sale time is the di↵erence between the asset price

and reference level, P⌧ �R, which he evaluates at the outset by (1.2) on setting Z = P⌧ .

The goal of the investor is to choose the best time ⌧ to sell the asset to maximise

the PT value:12

sup
⌧

✓

Z 1

0

w
+

(P (U (P⌧ �R) > y)) dy �
Z

0

�1
w� (P (U (P⌧ �R) < y)) dy

◆

. (1.5)

Note that if w±(p) = p so that there is no probability weighting, we recover the model of

Henderson (2012) (see also Kyle et al. (2006)).

In general, we can model the asset price P = (Pt)t>0

by a time-homogeneous di↵u-

sion with state space J , given by

dPt = P (Pt)dt+ �P (Pt)dBt. (1.6)

Here B = (Bt)t>0

is a standard Brownian motion and P : J ! R and �P : J ! (0,1) are

Borel functions. We assume J is an interval with endpoints �1  aJ < bJ  1 and that

P is regular in (aJ , bJ). We will later specialise to the most popular asset price specification

where P is a geometric Brownian motion (or equivalently P is lognormal). In that case

J = (0,1), P (p) = p and �P (p) = �p for constants  and �.

Following Henderson (2012) it is convenient to reformulate the objective (1.5) by

transforming the asset price into a martingale. We define Xt := s(Pt) where the scale

function s ensuresX is a (local) martingale.13 We are free to normalise s such that s(R) = 0,

respectively, for parameters 0 < �± < 1, 0 < d± < 1 and a± > 0, 0 < b±  1.
10The liquidation time ⌧ must be a stopping time.
11In common with the prospect theory models we compare to, we consider a fixed reference level.
12In common with Kyle et al. (2006), Henderson (2012), we take zero interest rate for tractability reasons.

If we were to include time discounting, the discounting of losses will encourage sale delay, but this will not be

due to the prospect theory preferences or probability weighting. Indeed, Barberis and Xiong (2012) show a

piecewise linear realisation utility investor with positive time discounting will never sell at a loss voluntarily.
13The scale function of P can be identified as the increasing, non-degenerate solution (which is unique

up to positive a�ne transformation) to the ordinary di↵erential equation

1

2
�2
P (p)s00(p) + P (p)s0(p) = 0.

Then X = (Xt)t�0 defined by Xt := s(Pt) is a (local) martingale. We assume that P (.) and �P (.) are
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and hence Xt > 0 when Pt > R and Xt 6 0 when Pt 6 R. Then Xt represents the

transformed gains and losses relative to the reference level. If we take the reference level to

be the initial asset price R = P
0

, then X
0

= 0.

The state space of X is an interval with endpoints L = s(aJ) and M = s(bJ). Then

L < 0 represents the potential maximum loss. We assume L > �1 to ensure the problem

is non-degenerate or well-posed. Define

v(x) := U
�

s�1(x)�R
�

= U (p�R) .

Then the investor’s objective (1.5) can be rewritten as

sup
⌧

 

Z v(M)=U(b
J

�R)

0

w
+

(P (v(X⌧ ) > y)) dy �
Z

0

U(a
J

�R)=v(L)

w� (P (v(X⌧ ) < y)) dy

!

.

(1.7)

One of the insights of Xu and Zhou (2013) is that the argument in (1.7) only depends on

the law of X⌧ . Hence, (1.7) can in turn be rewritten as

sup
⌫2A

 

Z v(M)

0

w
+

�

1� F⌫(v
�1(y))

�

dy �
Z

0

v(L)

w�
�

F⌫(v
�1(y))

�

dy

!

(1.8)

where A is the set of attainable laws of X⌧ and F⌫ is the cumulative distribution function of

the law ⌫. The set of attainable laws A can be characterised by A = {⌫ :
R

y⌫(dy) = X
0

}.14

Our investor evaluates (1.8) at the outset and commits today to achieve the desired target

distribution or prospect.

1.2.3 Tversky and Kahneman (1992) value and weighting func-

tions: the base model

Our aim, once we have some general characterisations to guide us, is to apply our results

to study the most popular value and weighting functions. We will consider the Kahneman

and Tversky (1979) value function in (1.1), which is of piecewise power S shape together

su�ciently regular that there exists a weak solution to the stochastic di↵erential equation (1.6) and that

the scale function s exists (see Revuz and Yor (1999)).
14At this point the fact that X is a local martingale is important since it allows us to give a simple

characterisation of the space of attainable laws. Since L > �1 such that X is bounded below, it is a

supermartingale and any attainable law ⌫ must satisfy
R
y⌫(dy) = E[X⌧ ]  X0 = s(P0); conversely the

theory of Skorokhod embeddings tells us that for every law ⌫ with
R
y⌫(dy)  X0 there is a stopping rule

⌧ such that X⌧ ⇠ ⌫. Finally, since U is increasing, in searching for the supremum in (1.8) we may restrict

attention to laws satisfying
R
y⌫(dy) = X0. Hence we may set A = {⌫ :

R
y⌫(dy) = X0}. If ⌫⇤ is the

optimal law arising in (1.8), so that the optimal prospect for the process in natural scale is ⌫, then the

optimal prospect for P has law µ⇤ where Fµ⇤ (p) = F⌫⇤ (s(p)).
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with the Tversky and Kahneman (1992) inverse-S shaped weighting functions given in (1.3).

In the base model we will take the price to follow a geometric Brownian motion, so that

P = (Pt)t�0

solves

dPt = Pt(dt+ �dBt) (1.9)

for constant expected return  and volatility � with  < �2/2. The hypothesis that  < �2/2

ensures the price does not reach arbitrarily high levels with probability one. (The case

 � �2/2 leads to a degenerate problem whereby the investor never sells.)

Define the constant parameter � := 1 � 2
�2 which involves the return-for-risk-per-

unit-variance /�2 and thus reflects the expected performance of the asset. We assume

 � 0 so that in expectation P is non-decreasing and then �  1. Our assumption  < �2/2

implies that � > 0. The scale function is given by s(p) = p� � R� . Then, since � > 0 we

have L = s(aJ) = s(0) = �R� > �1, consistent with our non-degeneracy assumption, and

the scaled value function is given by

v(x) = U(s�1(x)�R) =

8

>

<

>

:

�

(x+R�)1/� �R
�↵+

, x > 0,

�k
�

R� (x+R�)1/�
�↵�

, �R�  x < 0,
(1.10)

where we use M = s(1) = 1.

In addition to � > 0 we require some further restrictions on parameter values to

avoid situations leading to infinite PT value and to obtain a well defined optimal strategy.

First, if the growth rate or Sharpe ratio on the asset is too large relative to risk aversion, the

investor simply waits indefinitely to take advantage of the favourable asset. To rule this out,

we need that ↵
+

< �.15 Under this assumption (together with the condition that � 6 1) it

can be checked by di↵erentiation that v is concave on [0,1) and convex on [L, 0]. In fact,

the following result shows that for well-posedness we require a slightly stronger condition

incorporating the strength of probability weighting on gains. The proof is given in Appendix

1.C.

Proposition 1.1. In our base case model with Tversky and Kahneman (1992) value and

weighting functions, ↵
+

/�
+

< � is a su�cient condition for there to be a finite value function

and a well defined optimum. On the other hand, if ↵
+

/�
+

> � then the problem is ill-posed.

The inclusion of probability weighting over gains has increased the set of scenarios

whereby the investor waits indefinitely. Rewriting the condition for a non-degenerate solu-

15A similar condition also arises in standard infinite horizon portfolio problems.
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Figure 1.1: A graphical illustration of the elasticity measure E(x; f, c). The left and right sketch

correspond to cases with x > c and x < c respectively. Consider a reference point on f given by

(c, f(c)). Then f(x)�f(c)
x�c

is the slope of the straight line L2 joining the reference point and (x, f(x)),

while f

0(x) is the slope of the tangent to f at x denoted by L1. Hence, for a fixed c, E(x; f, c) can

be interpreted as the ratio of slope of L1 and L2 as x varies.

tion as �
+

> ↵
+

/�, we see that we cannot have probability weighting over gains to be too

strong, as this will cause the investor to simply continue waiting.

1.2.4 Elasticity measure

We end this section by introducing an elasticity measure which will be useful in allowing us

to characterise the optimal solution.

Definition 1.2. For a monotonic and continuously di↵erentiable function f : S ! R, the

elasticity measure (parameterised by x) relative to a reference point c is defined as

Ef,c(x) = E(x; f, c) =
(x� c)f 0(x)

f(x)� f(c)
=

f 0(x)
f(x)�f(c)

x�c

where x, c 2 S and x 6= c. At x = c, and provided f 0(c) 6= 0, we define E(c; f, c) = 1 by

L’Hôpital’s rule.

For a graphical interpretation of this measure, see Figure 1.1.
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The elasticity measure in Definition 1.2 has several useful properties, the derivations

of which are straightforward, but are given in Appendix 1.D.

Proposition 1.3. Let ◆ denote the identity function ◆(x) = x, and suppose f and g are

monotonic and continuously di↵erentiable. Let a 6= 0 and b be constants. Then E(x; a◆ +

b, c) = 1 and E(x; g � f, c) = E(x; f, c)E(f(x); g, f(c)).

The above results are key in proving the following.

Proposition 1.4. 1. Suppose 0 < ↵� < 1 and 0 < �  1. If v(x) = �k
�

R� (x+R�)1/�
�↵�

for �R� = L  x  0 then E(x; v, c) is increasing in x for x 2 [L, 0] for fixed c 2 [L, 0).

2. If the weighting function w is of the form proposed by Tversky and Kahneman (1992),

Goldstein and Einhorn (1987) or Prelec (1998) and has inflexion point q then E(p;w, r)

is decreasing in p for 0  p  min{r, q} for any r in [0, 1].

1.2.5 The main result

In what follows we assume that U is S shaped, w± is inverse-S shaped with inflexion point

q±, L = s(aJ) > �1 and M = s(bJ) = 1. Recall the definition v(x) := U(s�1(x)�R).

Assumption 1.5 (S shaped assumption on v). v is concave on [0,1) and convex on [L, 0].

Further, v0(0+) = 1 and limx"1 v0(x) = 0.

Note that this assumption is satisfied in our base case, and more generally whenever

U 0(0+) = 1, limp"b
J

=1 U 0(p) = 0 and P is a martingale whence the scale function is the

identity function. More generally it depends on the interplay between the value function U

and the dynamics of the price process.

Assumption 1.6 (Elasticity assumption). E(x; v, L) is increasing in x for x 2 [L, 0] and

E(p;w�, r) is decreasing in p for 0  p  min{r, q�} for any r in [0, 1].

By Proposition 1.4 both parts of the Elasticity Assumption are satisfied in the base

case model. They are satisfied for a range of other probability weighting and value functions

as well.

Our main theoretical result is the following where a full proof is presented in Ap-

pendix 1.B.

Proposition 1.7. Suppose Assumptions 1.5 and 1.6 hold. Then the optimal prospect has

a distribution which consists of a point mass in the loss regime and a point mass at some
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point a in the gains regime, together with a continuous distribution on the unbounded interval

(a,1).

More precisely, the quantile function of the optimal prospect P⌧ is given by GP :=

s�1�GX where GX represents the quantile function of the optimal scaled prospect X⌧ = s(P⌧ )

taking the form

GX(u) =

8

>

>

>

<

>

>

>

:

� 1

1��

h

R �
0

(v0)�1

⇣

�
w0

+( ^y)

⌘

dy �X
0

i

, u  1� �,

(v0)�1

⇣

�
w0

+( )

⌘

, 1� � < u  1�  ,

(v0)�1

⇣

�
w0

+(1�u)

⌘

, 1�  < u  1,

(1.11)

for some � > 0, � 2 [0, 1],   q
+

^ � such that

X+

0


Z �

0

(v0)�1

✓

�

w0
+

( ^ y)

◆

dy  X
0

� (1� �)L.

It follows that the optimal strategy for a PT investor is a stop-loss combined with

a strategy yielding a long-tailed distribution on gains.

1.3 Numerical results under the base model

We now examine the optimal sales strategies for the investor with Tversky and Kahneman

value and weighting functions. Tversky and Kahneman (1992) estimated the preference

parameters as: ↵
+

= ↵� = 0.88, loss aversion k = 2.25. The TK parameters arise from

experimental settings with small gamble sizes and we would expect higher levels of risk

aversion in a financial trading setting. Wu and Gonzalez (1996) estimate ↵
+

= 0.5 when

they use the TK parameterisation. Furthermore, Ingersoll and Jin (2013) consider ↵
+

=

0.5,↵� = 0.9 as one of their base parameter sets. For consistency, we will also adopt

↵
+

= 0.5, ↵� = 0.9 as our base case. Our base loss aversion parameter level is k = 1.25.

For all parameters we will consider a range of values when we look at comparative statics.

Estimates of the TK probability weighting parameters have been quite consistent across

experimental and empirical studies. TK estimate the probability weighting parameters

as �
+

= 0.61, �� = 0.69. Wu and Gonzalez (1996) find experimentally that �
+

= 0.71.

Recently Baele et al. (2014) estimate the degree of probability weighting from S&P 500

equity and option data and report a range of 0.72-0.79. Reflecting these findings, we take

base parameters of �
+

= �� = 0.7.

As described in Proposition 1.7, the optimal prospect consists of a single loss thresh-

old together with a distribution over gains. Figure 1.2 illustrates the results for our base

set of parameters. Note the reference level is taken to be R = P
0

= 1, so prices above 1
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represent gains and below 1, losses. In panel (a), we display the optimal quantile function.

The distribution on losses is a point mass. The investor places just over 0.4 of the proba-

bility mass onto the single loss threshold of about 0.7, which is a 30% loss relative to the

reference level. The remainder of the probability mass is distributed over the gains, starting

just above the reference level of one, and tailing o↵ at around 2.4. (More precisely, the level

2.4 represents the upper 99th percentile of the distribution.) We see the distribution over

gains is highly positively skewed, in that the investor puts most weight on the value of the

stock close to the reference level, and the distribution has a long right tail. We will take a

closer look at skewness measures in Section 1.3.2.

We first recap the form of the solution in the absence of probability weighting, when

�
+

= �� = 1. In this case (see Henderson (2012)), the optimal strategy is a threshold sale

strategy. There will be a gain threshold level and a loss threshold level, and the optimal

strategy is to stop the first time the price process leaves this interval. The corresponding

prospect is a distribution on exactly two points. Typically the gain threshold is very close to

the reference level. For some price parameters, the loss threshold is at zero, and it is never

optimal to sell at a loss. (Instead, sale is postponed indefinitely). For other parameters,

there will be a loss threshold, which is usually much further from the reference level than the

gain threshold. Thus, if losses are realised, they are much larger in size than gains. Why?

The marginal utility of a gain or loss is decreasing with size, so small gains and large losses

are preferable. When the asset price parameters are such that �  1, there is no lower loss

threshold and the investor avoids voluntary losses. This is the case in panel (b) of Figure

1.2 for �
+

= �� = 1. In this case, the convexity of the utility and loss aversion together

mean that the investor prefers to continue to gamble and delay any losses.

Now we can look at the impact of probability weighting on the distribution. In panel

(b), the probability weighting parameter �
+

= �� is varied on the x-axis. For varying values

of �
+

= ��, we display the single loss threshold together with the lower bound and upper

99th percentile of the distribution over the gains regime. Note that a loss threshold of zero

in the figure e↵ectively represents the situation where the investor never voluntarily realises

losses. The vertical dashed line on the figure represents the base parameters for probability

weighting and thus corresponds to the values used in panel (a).

We can now see the key impact of probability weighting. As we introduce probability

weighting by reducing the values of �
+

, ��, we see the optimal prospect on gains completely

changes character and switches from a point mass to a distribution with unbounded support.

The tail of this distribution gets larger as probability weighting increases in strength. Why
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is this the case? Risk aversion alone makes small gains attractive. However now the investor

overweights extreme events - in particular extreme gains - and this encourages him to place

some probability mass on these extreme wins. His distribution over gains is right-skewed in

that most mass is still concentrated on lower gain levels, but probability weighting causes

him to want to gamble on the best wins by placing some mass there. As probability weighting

becomes stronger, the investor places mass on more and more extreme wins and hence the

upper 99th percentile increases as �
+

decreases.

As probability weighting becomes su�ciently large (�± below about 0.75 in panel (b)

thus including our base parameter of 0.7), we see that there will also be a strictly positive

lower loss threshold at which the investor voluntarily takes losses. There are two forces

driving this. First, the convexity and loss aversion are encouraging the investor to wait and

avoid taking a loss. But now the investor overweights extreme events - in particular - extreme

losses - which encourages him to cut-losses at some threshold. Importantly, the parameter

region where a non-trivial loss threshold is present includes the levels of probability weighting

commonly estimated in experimental and empirical studies.

We now return to the optimal distribution generated by our model and perform

some comparative statics. We focus on the analogs of Panel (b) in Figure 1.2, and the

location of the threshold on losses, together with the location of point mass on gains, and

the 99% upper quantile of the distribution. In Figure 1.3 we investigate the impact of the

probability weighting on gains and losses separately, the e↵ect of risk aversion on gains and

risk seeking on losses, and the impact of loss aversion on the investor’s behaviour. Panels

(a)-(e) plot the investor’s optimal distribution as we vary each of the parameters in turn.

In each panel, we indicate the location of the base parameter with a vertical dashed line.

Panels (a) and (b) vary one of the probability weighting parameters whilst keeping

the other fixed. We see that it is �� that is governing whether there is a lower loss threshold

and that we need enough weighting but not too much. If probability weighing on losses is

not su�ciently strong, then the investor never takes a loss. However, panel (b) also shows

that if �� is too low, ie. weighting on losses is too strong, then again, the investor never

stops at a loss threshold.

Panels (c) and (d) vary the risk aversion and seeking parameters separately, whilst

holding all other parameters fixed at their base values. In panel (c) we observe that higher

levels of risk aversion results in the distribution over gains being pulled down closer to the

reference level. If risk aversion over gains is su�ciently strong, below about 0.4 in the panel,

the investor no longer realises losses. At the other extreme, we know that if risk aversion over
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gains is not strong enough, it violates the condition in Proposition 1 and the investor instead

waits indefinitely. For the parameters in the graph, this would occur for values of ↵
+

> 0.63.

In particular, we see that under the original TK parameters ↵
+

= ↵� = 0.88 (particularly

low levels of risk aversion/seeking), the investor violates the condition in Proposition 1.1 and

thus waits forever to sell, unless the expected return on the asset is unrealistically large and

negative. A similar observation has been made by Ingersoll and Jin (2013) in the absence

of probability weighting.

In panel (d) we see that as we increase the risk seeking parameter on losses (decrease

↵�) the convexity of the utility becomes stronger and encourages the investor to avoid taking

a loss. Precisely where the convexity becomes the dominant force will depend upon other

parameters. If the asset was less attractive, then the investor would sell at a loss threshold

for a larger range of ↵�, and if the probability weighting on losses was stronger (but not

too strong), the investor would again stop at a loss threshold for a larger range of ↵�.

In panel (e) we vary loss aversion. As loss aversion becomes stronger, the investor

chooses a loss threshold which is closer to the reference level as he is less willing to wait in

the domain of losses. Larger values of k also reduce the long right-tail on gains.

1.3.1 PT trading and stop-loss strategies

We have shown that a prospect theory investor with S shaped utility, loss aversion and

probability weighting will trade to achieve a distribution over gains but will desire a stop-

loss threshold over losses. This di↵erence in how the investor trades gains and losses matches

very well how investors behave in financial markets. Stop-loss strategies are in widespread

usage in practice but stop-gain or take-gain strategies are much rarer.

Despite the popularity of stop-loss strategies in financial markets, they are not that

easily justified by financial theory. Kaminski and Lo (2014) derive the impact of a stop-

loss rule on the return characteristics of a portfolio and find stop-loss rules can increase

the expected return if returns are non-random walks. Shefrin and Statman (1985) discuss

stop-loss strategies in the context of self control - a stop-loss allows an investor to make

loss realisation at a predetermined point automatic. Fischbacher et al. (2015) test this idea

by investigating in a laboratory experiment whether the option of automatic selling devices

causally reduces investors’ disposition e↵ect. Investors who had access to the automatic

selling devices had significantly smaller disposition e↵ects, which was driven by a significant

increase in realised losses. They show it is the opportunity to ex ante commit to selling losses,

which reduces the disposition e↵ect. In contrast, neither the proportion of winners realised,
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Figure 1.2: The optimal distribution in the model with Tversky and Kahneman value and weighting

functions. The optimal distribution consists of a single loss threshold together with a distribution

over the gains region. In panel (a), we display the optimal quantile function with asset price P

on the y-axis. In panel (b), the probability weighting parameter �+ = �� is varied on the x-axis.

Displayed are the single loss threshold together with the lower bound and upper 99th percentile

of the distribution over gains. The vertical dashed line indicates the base parameter value of

�± = 0.7 corresponding to panel (a). Base parameters used in both panels are ↵+ = 0.5, ↵� = 0.9,

�+ = �� = 0.7, k = 1.25, � = 0.9, R = 1 and P0 = 1.
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Figure 1.3: Comparative statics with respect to parameters with Tversky and Kahneman value

and weighting functions. The optimal distribution consists of a single loss threshold together with a

distribution over the gains region. In each panel, we display the single loss threshold together with

the lower bound and upper 99th percentile of the distribution over the gains regime. Each panel

varies one parameter at a time, keeping the others fixed at base values. The vertical line marks

the location of the relevant base parameter in each panel. Base parameters used are ↵+ = 0.5,

↵� = 0.9, �+ = �� = 0.7, k = 1.25, � = 0.9, R = 1 and P0 = 1.
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nor the size of realised gains di↵ered significantly across the treatments with automatic

limits or no limits.

Standard expected utility settings can predict a stop-gain threshold at which an

investor should sell but tend to put any lower threshold at �1 (see Viefers and Strack

(2014)). Realisation utility (Barberis and Xiong (2012)) predicts a stop-gain threshold

which resets each time a sale is made. If models do predict a stop-loss, they tend to also

predict a stop-gain. This is the case in several prospect theory models without probability

weighting - for instance, Henderson (2012) and Ingersoll and Jin (2013).

In contrast, we have shown a PT investor with probability weighting finds a stop-loss

desirable but does not want to place a stop-gain. Instead, probability weighting encourages

him to gamble on obtaining extreme (overweighted) gains. This fundamental di↵erence in

behaviour with regard to losses and gains in our model mirrors very well what we see in the

financial markets.

1.3.2 PT trading and skewness

Prospect theory and skewness are heavily linked in the extant literature. Barberis and

Huang (2008) show that in a financial market where investors evaluate risk according to

prospect theory, probability weighting leads to the prediction that skewness in an asset’s

return distribution will be priced. Spalt (2013) argues using probability weighting that

firms can use stock options to benefit from catering to an employee demand for lottery-like

payo↵s. Ebert and Hilpert (2015) show a strong preference for skewness contributes to the

attractiveness of technical trading.

To demonstrate the role of probability weighting on skewness in our model, we

calculate a measure of skewness for the optimal distribution under our base model with

Tversky and Kahneman value and weighting functions. We use the robust, tail or quantile

based measure of skewness of Hinkley (1975) (see Ebert and Hilpert (2015), Green and

Hwang (2012) and Conrad et al. (2013))

�(0.99) =
F�1(0.99) + F�1(0.01)� 2F�1(1/2)

F�1(0.99)� F�1(0.01)

where F is the cumulative distribution function. Note that skewness is an attempt to

summarise the shape of a distribution in a single statistic, which is often a di�cult task.

�(0.99) depends only on the quantiles at 0.01, 0.5 and 0.99.

In Figure 1.4 we plot skewness, as measured by �(0.99), across di↵erent levels of the

probability weighting parameter �±. The corresponding optimal distribution for the same
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Figure 1.4: Skewness measure for the optimal distribution in the model with Tversky and

Kahneman value and weighting functions. The skewness measure �(0.99) is plotted for

varying values of the probability weighting parameter �±. The vertical dashed line indicates

the base parameter value of �± = 0.7. Other base parameters are ↵
+

= 0.5, ↵� = 0.9,

k = 1.25, � = 0.9, R = 1 and P
0

= 1.

parameter choice was displayed earlier in Figure 1.2. We first observe that skewness can be

positive or negative, and can take values over the full range of +1 and -1, depending on the

level of probability weighting.

Without probability weighting, PT investors take small gains frequently, with some

occasional large losses (Henderson (2012), Ingersoll and Jin (2013)). This typically leads

to a left or negatively skewed distribution. In particular, F�1(0.01) is zero, whereas both

F�1(0.5) and F�1(0.99) are equal and both just above P
0

(the agent follows a two-sided

threshold strategy). It follows �(0.99) = �1 when �± = 1. With an S shaped utility and no

probability weighting, investors prefer left skewed return distributions.

Once probability weighting is included, the skewness measure is no longer -1. The

investor does not follow a two-sided threshold and he looks for a long-tailed distribution

on gains. This tail gets larger as �± decreases, although for �± close to one, the return

distribution remains negatively skewed. For �± greater than about 0.75 the optimal prospect

includes an atom at zero and the skewness statistic is negative. However, at �± ⇠ 0.75 the

optimal prospect undergoes a step change and the mass on losses moves from zero to a

strictly positive level. This leads to a jump in the skewness statistic, which now becomes

positive. As �± decreases further, the right tail on the optimal prospect becomes larger and
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the skewness increases further from about 0.2 to 0.6. Now the investor is taking losses of

moderate size, regular small gains, and occasional large gains.

The second jump in the skewness statistic occurs when the total mass on losses

reaches 0.5. For values of �± below about 0.65, F�1(0.01) = F�1(0.5) < P
0

< F�1(0.99)

and �(0.99) = +1. The optimal prospect places more than half of the mass on losses and

the skewness measure simplifies in a way which does not depend on either the location of

this mass, nor on the location of the point F�1(0.99) describing the size of the right tail.

Nonetheless, as probability weighting increases, the size of this right tail increases, even if

this change cannot be captured in the skewness statistic.

To summarise, as the strength of probability weighting increases, the investor’s

return distribution changes from left or negatively skewed to right or positively skewed and

the right tail becomes fatter. Most of this change is captured in the skewness statistic.

1.3.3 Recent experimental evidence

The vast majority of trading models - including those based on expected utility and those

based purely on the S shaped utility function of prospect theory (Henderson (2012), Barberis

and Xiong (2012), Ingersoll and Jin (2013) and Magnani (2016)) - predict investors sell

stocks when the price breaches a threshold or pair of thresholds. For example, if an investor

bought a stock at $100, he should sell when the price rises to say $105, or falls to say, $90.

If investors behaved according to such models, we should see them sell the first time the

price breaches such threshold limits.

In fact, recent evidence of Viefers and Strack (2014) shows that this is very often

not the case and individuals do not behave according to threshold rules. They conduct an

experiment in a sophisticated asset selling task whereby subjects played sixty-five rounds

during which they could sell their stock. In each round they observe a path of the market

price which follows a random walk with positive drift. Viefers and Strack (2014) present

evidence that players do not play cut-o↵ or threshold strategies - they do not behave time-

consistently within rounds 75% of the time, and visit the same price level three times

on average before stopping at it. Their findings are supportive of our model whereby an

investor with PT and probability weighting has an optimal target distribution over gains,

because, as we will show in Section 1.5, our investor stops at a rate at each price level.

Our research also has implications for the design of future experimental studies. Magnani

(2016)’s recent experimental evidence to support the disposition e↵ect is predicated on

the behaviour of subjects being well approximated by threshold rules. Our theoretical
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findings, combined with Viefer and Strack’s experimental observations, point to threshold-

type behaviour providing an incomplete description of individuals’ behaviours.

1.4 Explaining the disposition e↵ect: the Odean’s ratio

The disposition e↵ect is arguably the most prominent trading anomaly in financial economics

- the stylised fact that investors are on average more likely to sell a winner (an asset where

the investor has a gain relative to purchase price) than a loser (where the investor has a

loss). The e↵ect has been documented for individual investors (Odean (1998)), institutional

investors (Grinblatt and Keloharju (2001)) as well as in the real estate market (Genesove

and Mayer (2001)) and options markets (Poteshman and Serbin (2003)). Studies have also

examined the impact of trading experience (Feng and Seasholes (2005), Seru et al. (2010))

and investor sophistication (Dhar and Zhu (2006), Calvet et al. (2009), Grinblatt et al.

(2012)) on the disposition e↵ect. Finally, experimental evidence from the lab (Weber and

Camerer (1998) and more recently, Magnani (2015) and Magnani (2016)) is also supportive.

In this and the next section we present two ways to measure the strength of the

disposition e↵ect within our theoretical model. The first is to construct a disposition measure

based on the Odean (1998) measure, which focuses on the propensity to sell at a gain versus a

loss without consideration of the size of those trades. More recently, researchers have studied

how the sale propensity depends upon the magnitude as well as the sign of returns. Our

second method presented in Section 1.5 is to develop a model-based implied sale intensity

which can be compared to empirical selling schedules as recently documented in Barber and

Odean (2013) and Ben-David and Hirshleifer (2012).

To test whether investors are disposed to selling winners and holding losers, we

need to look at the frequency with which they sell winners and losers relative to their

opportunities to sell each. Odean (1998) compares the proportion of gains realised (PGR)

to the proportion of losses realised (PLR) by 10 000 individual investors with accounts at

a discount brokerage firm over a six year period. Each time a stock is sold, the prices of all

unsold stocks in the investors’ portfolio are checked and it is recorded if they are trading at

a gain, loss or neither on that day. The PGR (PLR) is the number of times a gain (loss)

is realised as a fraction of the total number of times a gain (loss) could have been realised.

Odean (1998) reports PGR=0.148 and PLR = 0.098, giving a disposition ratio of 1.51, or

equivalently, investors realise gains at a 50% higher rate than losses. Using data over a

di↵erent time period, Dhar and Zhu (2006) obtain a slightly higher ratio of 2.06.
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Since we are working in continuous time, to capture the opportunities the investor

had to sell at a gain (loss) we calculate the expected amount of time the price spent in

the gain (loss) regime before a sale. A model-based measure of the rate of selling at gains

(losses), denoted RG (respectively, RL) is found by dividing the probability of selling at a

gain (loss) by the expected amount of time the price spent above (below) the initial price:

RG =
P(P⌧ > P

0

)

E(
R ⌧
0

1
(P

u

>P0)
du)

, RL =
P(P⌧ < P

0

)

E(
R ⌧
0

1
(P

u

<P0)
du)

where ⌧ is an optimal sale time in the model. Then, following Henderson (2012) (see also

Magnani (2015)) we define the disposition ratio D by

D =
RG

RL
=

P(P⌧ > P
0

)

E(
R ⌧
0

1
(P

u

>P0)
du)

E(
R ⌧
0

1
(P

u

<P0)
du)

P(P⌧ < P
0

)
. (1.12)

This is the continuous time analog of Odean’s measure. We say the disposition e↵ect occurs

when the ratio D is in excess of one.

Although the optimal prospect is typically unique there are several stopping rules

or strategies which are optimal in the sense that they attain this optimal prospect. An

important feature of (1.12) is that D does not depend on the stopping rule ⌧ , except through

the resulting prospect (the probability law of P⌧ ).

Proposition 1.8. The disposition ratio D in (1.12) depends on the optimal prospect, but

not on the stopping rule used to generate that prospect. Further, if the reference level R is

equal to the initial price level P
0

,16 then D can be rewritten in the form

D =

R1
0

⌫(dx)
R1
0

1

⇠2(x) (u⌫(x)� x) dx

R

0

L
1

⇠2(x) (u⌫(x) + x) dx
R

0

L ⌫(dx)
(1.13)

where ⌫ is the probability law of the scaled target prospect X⌧ = s(P⌧ ), u⌫(x) := EX⇠⌫ [|X �

x|] is the potential function of ⌫ and ⇠(x) := �P (s�1(x))s0(s�1(x)).

Proof. By construction X satisfies the SDE dXt = ⇠(Xt)dBt with initial value X
0

= 0.

Let LX = (LX
t (x))t�0,s(a

J

)xs(b
J

)

be the local time of X at level x by time t using the

standard normalisation of, say, Revuz and Yor (1999). (No confusion should arise between

L = s(aJ) and the local time LX
t (x) since the former never has any sub- or superscripts.)

By the occupation times formula (Revuz and Yor (1999) [Theorem VI.1.6]), for any Borel

function �,
Z

�(a)LX
t (a)da =

Z t

0

�(Xs)d[X]s. (1.14)

16The choice of the reference level is not crucial and we impose R = P0 purely for the purpose of

expressions simplification.
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Clearly, P(P⌧ > P
0

) = P(X⌧ > 0) =
R1
0

⌫(dx). Similarly P(P⌧ < P
0

) =
R

0

L ⌫(dx).

On the other hand,

E
✓
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1
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u
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◆

= E
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1
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◆
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Z 1

0

E(LX
⌧ (x))

⇠2(x)
dx

where we use (1.14) for the penultimate equality. But, by Tanaka’s formula E(LX
⌧ (a)) =

E|X⌧ � a|� |X
0

� a|. Hence, writing u⌫(x) :=
R

|z � x|⌫(dz)

E
✓

Z ⌧

0

1
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u

>P0)
du

◆

=

Z 1

0

1

⇠2(x)
(E|X⌧ � x|� |X

0

� x|) dx =

Z 1

0
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which is independent of the stopping rule used to realise ⌫. Similarly we can establish

E
✓

Z ⌧

0

1
(P

u

<P0)
du

◆

=

Z

0

L

1

⇠2(x)
(u⌫(x) + x) dx.

The representation (1.13) follows. ⇤

If we assume the investor is a PT value maximiser, then his optimal scaled prospect

can be computed from the optimal quantile function (see (1.11)), and we can calculate

D without making any assumption about how the investor trades to achieve the optimal

distribution.

Figure 1.5 plots the (base-10 logarithm of the) disposition ratio D against the Tver-

sky and Kahneman (1992) weighting parameter in panel (a), loss aversion in panel (b),

and the weighting parameters separately in panels (c) and (d). Other parameters are our

base values. The horizontal dashed line in each panel represents Odean’s PGR/PLR of

log
10

1.51 ⇡ 0.18. Our main finding is that in contrast to PT models without probabil-

ity weighting, the model incorporating weighting can indeed deliver Odean’s estimate. In

panel (a), we see that for a probability weighting parameter �± of about 0.675, we obtain

a disposition ratio of about 1.5. In panel (b), holding other parameters fixed and varying

loss aversion, we see that for a loss aversion of around 2.25, the disposition ratio is again

about 1.5. The lower two panels (c) and (d) look at varying the two probability weighting

parameters separately. In panel (d) we see that values close to Odean’s measure can be

generated by a range of �� between about 0.5 and 0.65, when �
+

= 0.7. It is also worth

noting that Dhar and Zhu (2006)’s disposition measure of 2.06 (log
10

2.06 ⇡ 0.313) can be

obtained with slightly less probability weighting and a lower level of loss aversion.
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Figure 1.5: Base-10 logarithm of the disposition ratio D given in (1.12). Each panel varies

one parameter, keeping others fixed at base values. Other base parameters used are �± = 0.7,

↵
+

= 0.5, ↵� = 0.9, � = 0.9, k = 1.25. The reference level is R = 1, and the current price is

P
0

= 1. The horizontal dashed lines mark Odean’s disposition estimate of log
10

1.51 ⇡ 0.18.
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We see that as the degree of probability weighting becomes small, the measure of

the disposition e↵ect gets very large. As �± ! 1, we recover the case in the absence of

probability weighting studied in Henderson (2012) where the calibrated disposition measure

was much greater than that found in the empirical data. Thus, probability weighting does

indeed help PT explain realistic levels of the disposition e↵ect.

We also comment on the impact of the level of risk aversion and risk seeking on the

disposition ratio. Parameters around the base values deliver Odean’s ratio of about 1.5. If

the investor is more risk averse over gains, then he will shrink the range of price gains over

which he stops, so will take smaller gains more frequently whilst also taking fewer losses,

which increases the disposition ratio. In the extreme, as 1 � ↵
+

gets su�ciently large, the

investor waits indefinitely over losses (see Figure 1.3) and the ratio is infinite. If the investor

is more risk seeking over losses, then the increased convexity in the loss region drives the

disposition ratio higher as the investor delays taking losses. In the extreme as 1 � ↵� is

su�ciently large, the investor waits indefinitely over losses (see the thresholds in Figure 1.3

(d)) and the disposition ratio becomes infinite.

It is worth highlighting that the model has delivered Odean’s estimate of the dis-

position e↵ect even for a single investor - at this point we have not needed to extend to a

mixture over heterogeneous investors.17 In contrast, in the setting of Ingersoll and Jin (2013)

without probability weighting but allowing for reinvestment, heterogeneity was necessary to

obtain a fit with Odean’s measure. They mix reference-dependent realisation utility traders

with random Poisson traders in a 50-50 ratio to obtain a good fit to the empirical data.

Here, in our model, we instead have the impact of probability weighting, which is working

to enable PT to deliver realistic levels of the disposition e↵ect.

1.5 Explaining the disposition e↵ect: implied selling in-

tensity

In this section, we extend our analysis to consider the relative magnitude of gains and losses.

The disposition e↵ect is commonly understood as the preference for selling assets that have

increased in value relative to assets that have decreased in value since purchase. Researchers

have recently studied how the rate of sale depends on the relative magnitude of the gain or

loss. A number of authors estimate proportional hazards models to derive the hazard rate

17Although such an extension is straightforward and would clearly also be able to achieve realistic levels

of the disposition ratio, it is not necessary for a good fit.
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for the sale of stock conditional on return since purchase, see Feng and Seasholes (2005), Seru

et al. (2010) and Barber and Odean (2013). Others, in particular, Ben-David and Hirshleifer

(2012) (see also Kaustia (2010)) document the probability of selling as a function of profits,

whilst allowing for di↵erent prior holding periods to be taken into account.

There is broad agreement amongst researchers that the estimated hazard rate as a

function of returns since purchase is higher on gains than on losses. This is an evidence in

favour of a disposition e↵ect amongst investors because the higher rate over gains means

that the average propensity to sell is higher for gains than losses. For all but very short

holding periods, researchers consistently find the hazard rate or selling schedule on losses is

fairly flat (see Ben-David and Hirshleifer (2012), Barber and Odean (2013) and Seru et al.

(2010)).

There is less consensus over results concerning the overall shape of the hazard rate

or selling schedule in the literature with findings depending upon the length of the holding

period under consideration. For instance, over short holding periods, Ben-David and Hirsh-

leifer (2012) demonstrate a strong asymmetric V shaped pattern in their empirical selling

schedules. Some authors even find that when holding periods are aggregated, the selling

intensity function may exhibit an inverted V shape (Odean (1998), Meng and Weng (2016)).

In the remainder of this section, we will develop a model-based selling intensity for a

single and for many investors, and compare to the findings of the empirical literature. Since

our model gives an intensity over all holding periods, our focus is on achieving the empirical

features coming from the aggregated data.

1.5.1 Model-based implied selling intensity

The empirical measure of the selling rate at price level p can be defined as

�(p) =
number of sales at p

amount of time spent at p
.

The equivalent model-based quantity is

⇣(p) =
P(P⌧ 2 dp)

E
⇥R ⌧

0

du1
(P

u

2[p,p+dp))

⇤ (1.15)

provided this quantity is well defined. Similar to our model-based disposition ratio in (1.12),

it can be shown that ⇣(p) is the same for all stopping times ⌧ such that P⌧ has law µ.

Proposition 1.9. Suppose µ is the law of the target prospect P⌧ and ⌫ is the law of the

scaled prospect X⌧ = s(P⌧ ). Assume a reference point of R = P
0

. If µ has a density � then

⇣(p) =
�P (p)2s0(p)

u⌫(s(p))� |s(p)|�(p). (1.16)
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Proof. Recall the notation we use in the proof of Proposition 1.8. For any arbitrary Borel

function � we have

Z ⌧

0

�(Pu)d[P ]u =

Z ⌧

0

�(s�1(Xu))
�2

P (s
�1(Xu))

⇠2(Xu)
d[X]u =

Z

LX
⌧ (a)�(s�1(a))

da

[s0(s�1(a))]2

=

Z

LX
⌧ (s(u))

�(u)

s0(u)
du.

In particular if we choose �(z) =
1(z2[p,p+dp))

�2
P

(z)
then we have

Z ⌧

0

1
(P

u

2[p,p+dp))du =
LX
⌧ (s(p))

�2

P (p)s
0(p)

dp.

The expected value of the above expression can be computed by Tanaka’s formula, and

(1.16) follows.

⇤

More generally, to allow for optimal prospects which contain atoms we set

�(dp) =
�P (p)2s0(p)

u⌫(s(p))� |s(p)|µ(dp). (1.17)

If µ is absolutely continuous then �(dp) = ⇣(p)dp. Conversely, if the optimal selling rule is a

pure threshold strategy, i.e. a strategy in which it is optimal to sell the asset the first time

the price process leaves an interval (whence the optimal prospect is a pair of point masses)

then we find u⌫(s(p)) = |s(p)| at the ends of the interval and the measure � consists of a

pair of point masses of infinite size. (This is intuitive: we must stop the price process at the

first time it leaves the relevant interval, and the only way we can ensure this is to stop at

an infinite rate.) We have seen an example of this when there is no probability weighting

in the model.

In fact, the optimal selling rule in our asset liquidation model contains a point mass

on losses, and a mixture distribution on gains consisting of a point mass and a continuous

distribution above that point. The corresponding stopping rate � has an atom of infinite

size at the location of the point mass on losses, an atom of finite size at the location of the

point mass on gains, and a continuous density above this point.

Given a non-negative function g = g(p) then we can consider selling at a rate g(Pt)

per unit time. This is equivalent to stopping at the random time ⌧g = inf{u :
R u
0

g(Pv)dv >

T} where T is an independent exponential random variable with unit parameter. Given a

target law, for example the law µ⇤ of the optimal prospect, we can ask if it is possible to

choose a level dependent (but not explicitly time-dependent) function g such that P⌧g has
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the desired target law. This can be done, and makes use of the measure � in (1.17), as

described in the following lemma where the proof is given in Appendix 1.E.

Lemma 1.10. Let ⇤P = (⇤P
t )t�0

be the increasing additive functional ⇤P
t =

R

`Pt (p)�(dp),

where `P = (`Pt (p))p>0,t�0

is an appropriately scaled version of local time process of P .

If T is an independent, exponentially distributed, unit rate random variable and if

⌧ = inf{u : ⇤P
u > T}, then P⌧ ⇠ µ⇤.

This lemma gives a second interpretation of the quantity �(dp): if the investor sells

at a level-dependent rate per unit time given by �, then he will attain the optimal prospect.

Note that we are not arguing that our investors must follow this stopping rule, but rather

this kind of randomised strategy provides a convenient way to interpret the model-based

quantities given in (1.15) and (1.17).

1.5.2 Mixing over heterogeneous investors

We have so far discussed the case of a single investor implementing a stopping rule to

generate a target prospect. However, the typical empirical selling rate estimated from

market data is an amalgamation of liquidation strategies enacted contemporaneously by

multiple investors who may have di↵erent risk preferences. We consider the implied selling

intensity function when we average across individuals.

Let ⇥ denote the space of risk and probability weighting parameters. If the parame-

ters of the typical investor are distributed with prior law ⌘ on ⇥, then we find a model-based

selling rate at price level p of

⇣(p)dp = �(dp) =
µ(dp)�P (p)2s0(p)

u⌫(s(p))� |s(p)| (1.18)

where µ(dp) =
R

⌘(d✓)µ✓(dp) and ⌫ is given by F⌫(x) = Fµ(s�1(x)).

To illustrate the idea, we suppose the price process P follows a geometric Brownian

motion and the expected return is such that P is a martingale. We are free to choose ⇥ the

space of parameters and ⌘, the distribution over this parameter space. For this example, we

suppose investors have a common pair of probability weighting functions (given by TK with

�± = 0.7) and TK value functions (with reference level R = P
0

= 1). We assume ↵
+

= 0.5

and ↵� = 0.9 are fixed across investors but that the loss aversion parameter k varies. We

identify ⇥ with a subset of R
+

corresponding to the value of the loss aversion parameter.

Once we have specified ⌘ we can calculate the implied selling density. Di↵erent choices

of ⌘ will lead to di↵erent model-based predictions for the selling density. We make use of
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the earlier empirical observation that the selling rate on losses is approximately constant

across di↵erent returns. We design ⌘ such that the model-based selling intensity at a loss

is constant, and then consider the implications for the model-based rate of selling at gains.

The construction of such a prior density is given in Appendix 1.F. Barber and Odean (2013)

find hazard ratios of around one for losses in their analysis of the LDB and Finnish datasets.

This motivates our choice of a unit rate of selling on losses, which corresponds to a daily

probability of a loss of 1/250 or 0.4%.

Figure 1.6 displays our model’s implied stopping rate ⇣(p) against price. The model

implied sales rate on gains, given in (1.18) is plotted. Our first goal is to demonstrate

that the disposition e↵ect holds. The implied sales rates are indeed consistent with the

disposition e↵ect as the rate for gains is higher than that for losses and thus implies a

higher propensity to sell at gains than losses. The second goal is to show the model implied

sales rate captures some of the features of the empirical data. Since our focus is on results

for longer holding periods or aggregate data, we compare with the estimated hazard ratios

of Barber and Odean (2013) and the graphs of the probability of selling shares at Day 60,

125, and 250 in Figure 1 of Ben-David and Hirshleifer (2012).

In particular, the graphs in Figure 1 of Ben-David and Hirshleifer (2012) for Day 60

and 250 have very similar qualitative features to our Figure 1.6. Over losses, the probability

of sale is relatively flat. Over gains, the sales probability is slightly humped - first rising

and then falling with the magnitude of returns since purchase. This is also true (perhaps

to a lesser extent) in the graph of the hazard ratio for the Finnish dataset in Barber and

Odean (2013).

The rate of ⇣ between 3.5-5 in Figure 1.6 equates to a daily probability of selling

between 1.4% and 2%. The implied sales rate in our example is slightly higher than those

in Barber and Odean (2013) and Ben-David and Hirshleifer (2012) and thus our disposition

e↵ect is on the strong side.

The presence of probability weighting in our model has had a dramatic impact on

the PT model’s ability to produce realistic sale intensity schedules across di↵erent return

magnitudes. Without probability weighting, recall that the optimal distribution for an

individual is a two point distribution with weight on a single gain and a single loss threshold.

Mixing over investors can improve the fit, but, as Ingersoll and Jin (2013) find, in the absence

of probability weighting, PT investors need to be mixed with random Poisson traders to

yield a reasonable calibration.
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Figure 1.6: Implied stopping rate ⇣(p) against price for a set of heterogeneous investors.

Parameters are �± = 0.7, ↵
+

= 0.5, ↵� = 0.9, � = 0.5. Loss aversion k varies across

investors. The reference level is R = P
0

= 1.

1.6 Conclusion

Despite the recent surge in interest in the implications of prospect theory in dynamic trading

models, very few papers treat the probability weighting element of prospect theory, in part

because of the additional technical challenges probability weighting brings. In this chapter

we argue the understanding of the implications of probability weighting in a dynamic setting

is crucial, as it significantly alters the form of the PT investor’s optimal strategy.

The behaviour of PT investors in the absence of probability weighting has been

studied by Ingersoll and Jin (2013), Henderson (2012) and Barberis and Xiong (2012).

They find that the optimal stopping rule in this setting is a stop-loss, stop-gain strategy.

In fact, although there is some support for stop-loss strategies in empirical and laboratory

data, stop-gain strategies are not widely supported. Moreover, the locations of the stop-loss

and stop-gain thresholds are such that a gain is much more likely than a loss, corresponding

to a target law with a negative skew and an extreme disposition e↵ect (well beyond that

found in empirical data). Further, it is not possible to obtain reasonable patterns for selling

rates at di↵erent price levels even when mixing over PT agents with characteristics based

on di↵erent parameter values.

We show that re-introducing probability weighting improves the predictive power of

models of PT agents in all these aspects. With probability weighting set to levels estimated

in the literature we find the PT investor has an optimal stopping rule which is stop-loss but

not stop-gain. Instead, the investor trades to achieve an optimal prospect which on gains

is a long-tailed distribution chosen to reflect the overweighting of extreme gains. Overall,
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his target prospect can have right skew, and a model-based disposition ratio which matches

the levels predicted by Odean (1998). Finally, by considering mixtures of PT agents we find

model-based level-dependent selling intensities which closely mirror the patterns of level-

dependent selling rates which have been documented in the literature. Both the model-

based rate and the empirical rate are approximately constant on the loss regime, and much

higher on gains, consistent with the disposition e↵ect.
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Appendix to Chapter 1

1.A Existing results on optimal stopping with proba-

bility weighting

Our goal in this and the next section is to prove Proposition 1.7 which characterises the

optimal prospect. The starting point of our results is Xu and Zhou (2013) who have the

important insight that the optimisation over stopping times can be reduced to a problem of

maximising over distributions. However, their results are largely confined to the one-sided

case of gains (or losses) only. We summarise the relevant results in this section.

Recall that the quantile function of a random variable Y , denoted GY (or G if

the random variable is clear), is the (left-continuous) inverse of the cumulative distribution

function.

Proposition 1.11 (Lemmas 3.1 and 3.2 of Xu and Zhou (2013)). Suppose the scaled asset

price process X = (Xt)t>0

is always non-negative and X
0

> 0. Then the probability-weighted

optimal stopping problem

sup
⌧

Z 1

0

w (P (v(X⌧ ) > x)) dx (1.19)

has a dual representation in terms of the quantile function G = GX of X⌧ in the form

sup
G2A

X0

Z

1

0

v(G(x))w0(1� x)dx (1.20)

where

Az = {G| G : (0, 1) ! [0,1) is a left-continuous quantile function,

Z

1

0

G(x)dx = z}.

In particular, if G⇤ is an optimiser of (1.20) with ⌫⇤ being the associated probability

law, then there exists a stopping time ⌧⇤ such that X⌧⇤ ⇠ ⌫⇤, and such ⌧⇤ is optimal for

(1.19).

The optimal prospects in this one-sided problem can be identified under some par-

ticular forms of v and w. The two results below are the most relevant to our current

problem.

Proposition 1.12 (Theorem 5.2 and Lemma 4.1 of Xu and Zhou (2013)). The optimiser

of (1.20) can be characterised under the two cases below:
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1. Suppose the target prospect can take values on [0,1), and that the mean is constrained

to be less than or equal to z. If v is concave and w is inverse-S shaped such that it is

concave on [0, q] and convex on [q, 1], then the optimiser G is of the form

G(x) = a1
(0,1�q] +

✓

a _ (v0)�1

✓

�

w0(1� x)

◆◆

1
(1�q,1) (1.21)

for some a > 0 and � > 0, where a and � are chosen such that they respect the

constraint
R

1

0

G(x)dx = z. The optimal prospect is an atom at a of size at least 1� q

combined with a continuous distribution on (a _ (v0)�1( �
w0

(q) ),1).

2. Suppose the target prospect is bounded such that it can only take values on [0,K] for

some 0 < K < 1, and its mean is constrained to be less than or equal to z. If

v is convex and w is a general probability weighting function, the optimiser G is a

step-function taking values on 0, K and some b 2 (0,K). The optimal prospect is a

three-point distribution with masses at 0, b and K.

Proof. In the first case with a concave v, one can write down the relaxed Lagrangian ob-

jective function and obtain a candidate optimiser as (v0)�1

⇣

�
w0

(1�x)

⌘

for some Lagrangian

multiplier � from the first order condition. This candidate optimiser is not monotonic since

w is inverse-S shaped and thus it cannot be a quantile function. But it can be shown that

the optimal solution is in form of a suitably truncated version of this candidate optimiser.

See Xu and Zhou (2013) for details.

The second case involving a convex v is much more subtle since it is a constrained

convex maximisation problem on a somewhat complicated space. Xu and Zhou (2013)

provide a proof18 based on an approximating sequence with step functions. Here we give an

alternative proof using a more fundamental approach.

Suppose G is the optimiser to the problem in the second case and the image of G

contains more than three distinct elements. Then we can choose (c, b) 2 (0, 1)⇥ (0,K) with

b 2 [G(c), G(c+)] such there exists x
1

2 (0, c) and x
2

2 (c, 1) with 0 < G(x
1

) < b and

b < G(x
2

) < K.

Consider a convex function ⌘
1

(x) = ⌘
1

(x; ✏
1

) := x✏1 and a concave function ⌘
2

(x) =

⌘
2

(x; ✏
2

) := 1� (1� x)✏2 with ✏
1

> 1 and ✏
2

> 1. Define a new quantile function via

G(x) = G(x; ✏
1

, ✏
2

) :=

8

>

<

>

:

b⌘
1

⇣

G(x)
b

⌘

, 0 < x 6 c,

b+ (K � b)⌘
2

⇣

G(x)�b
K�b

⌘

, c < x < 1.

18Although Xu and Zhou (2013) do not directly consider the problem with bounded payo↵, their Lemma

4.1 can be trivially extended to a set of quantile functions with bounded range on [0,K].
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With this definition we have G(x) 6 G(x) on (0, c] and G(x) > G(x) on (c, 1). Moreover,

there exists values of x such that these inequalities are strict.

Then,4
1

(✏
1

) :=
R c
0

G(x)dx�
R c
0

G(x)dx > 0 and4
2

(✏
2

) :=
R

1

c G(x)dx�
R

1

c G(x)dx >

0. Observe that 4
1

and 4
2

are strictly increasing in ✏
1

and ✏
2

respectively, and 4
1

,4
2

# 0

when ✏
1

, ✏
2

# 1. Thus we can choose ✏⇤
1

> 1 and ✏⇤
2

> 1 such that 4
1

(✏⇤
1

) = 4
2

(✏⇤
2

), or

equivalently
R

1

0

G(x; ✏⇤
1

, ✏⇤
2

)dx =
R

1

0

G(x)dx 6 z.

Now fix 0 < �⇤ < min
⇣

1

✏⇤1
, 1

✏⇤2

⌘

< 1. Consider another pair of functions given by

e⌘i(x) :=
x� �⇤⌘i(x; ✏

⇤
i )

1� �⇤

for i = 1, 2. It can be easily checked that e⌘i(0) = 0 and e⌘i(1) = 1, and e⌘
1

(resp. e⌘
2

) is a

strictly increasing concave (resp. convex) function on [0, 1].

Define another quantile function via

eG(x; ✏⇤
1

, ✏⇤
2

) :=

8

>

<

>

:

be⌘
1

⇣

G(x)
b

⌘

, 0 < x 6 c,

b+ (K � b)e⌘
2

⇣

G(x)�b
K�b

⌘

, c < x < 1.

Then from the construction of e⌘ it can be easily verified that
R

1

0

eG(x; ✏⇤
1

, ✏⇤
2

)dx =
R

1

0

G(x; ✏⇤
1

, ✏⇤
2

)dx 6
z and

G(x) = �⇤G(x; ✏⇤
1

, ✏⇤
2

) + (1� �⇤) eG(x; ✏⇤
1

, ✏⇤
2

). (1.22)

Convexity of v now leads to
Z

1

0

v(G(x))w0(1� x)dx 6 max

✓

Z

1

0

v(G(x))w0(1� x)dx,

Z

1

0

v( eG(x))w0(1� x)dx

◆

.

(1.23)

But both G and eG are feasible solutions to the optimisation problem. The strict convexity

of v and the optimality of G implies equality has to hold in (1.23) and in turn in (1.22)

which happens if and only if G(x) = G(x) = eG(x). This means

G(x) =

8

>

<

>

:

b⌘
1

⇣

G(x)
b

⌘

, 0 < x 6 c,

b+ (K � b)⌘
2

⇣

G(x)�b
K�b

⌘

, c < x < 1.

or equivalently
8

>

<

>

:

G(x)
b = ⌘

1

⇣

G(x)
b

⌘

, 0 < x 6 c,

G(x)�b
K�b = ⌘

2

⇣

G(x)�b
K�b

⌘

, c < x < 1.
(1.24)

Given ✏⇤
1

> 1 and ✏⇤
2

> 1, (1.24) implies G(x)
b must take values on 0 or 1 over (0, c],

and G(x)�b
K�b must take values on 0 or 1 over (c, 1). Hence G(x) can only take values on 0 or
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b over (0, c], and b or K over (c, 1). This contradicts the assumption that the image of G

contains more than three distinct elements. Hence the optimal quantile function must be a

three-step function, and moreover it can only take values on 0, K and some interim level

b 2 (0,K).

⇤

The results in the second part of the Proposition 1.12 translate directly to a one-

sided problem involving losses. Thus, we can deduce from the results of Xu and Zhou (2013)

that in the loss regime the optimal prospect consists of up to three point masses.

Our main technical contribution is to solve for the optimal prospect for a wide

class of prospect theory specifications. The results we present are not valid for all set-

ups. Rather, we make some additional assumptions involving our elasticity condition which

are satisfied under our base case, and more widely under many standard formulations of

the problem. Under these additional assumptions we can prove that the optimal prospect

has extra structure beyond that which can be deduced from Proposition 1.12. This extra

structure allows us to solve for the optimal prospect in the general case with probability

weighting and both gains and losses.

First, on the gain regime we show that a and � are such that a � (v0)�1( �
w0

(q) ).

Hence the point a is simultaneously the location of a point mass in the optimal prospect

and the lower limit in the continuous part of the optimal prospect on gains. Second, on the

loss regime, we show that the optimal prospect is a single point mass (and not three point

masses) located at some point b 2 [L, 0). These results are shown in the next section.

1.B General construction of the optimal solution

In this section, we solve (1.7) assuming that the scaled value function v is concave on the

gain regime [0,1) and convex on the loss regime [L, 0]. The probability weighting functions

w± are inverse-S shaped, concave on [0, q±] and convex on [q±, 1]. The starting level of the

scaled price process X
0

is a given fixed constant. Our base case fits into this setting.

Using the same ideas as in Proposition 1.11, (1.7) is equivalent to

sup
X

 

Z

1

1�P(X>0)

v(GX(u))w0
+

(1� u)du+

Z P(X<0)

0

v(GX(u))w0
�(u)du

!

, (1.25)

where the supremum is taken over random variables (or prospects) X with mean X
0

and

support on [L,1). If X⇤ is an optimal prospect, then any stopping time ⌧⇤ constructed

35



such that X⌧⇤ has the same law as X⇤ is optimal.

1.B.1 The problem for gains

Suppose we are given �
+

2 (0, 1] and z
+

> X+

0

which are the probability mass allocated to

gains and the mean of gains. The gain problem is to find

D
+

(�
+

, z
+

) = sup
G2A+

�+,z+

Z

1

1��+

v(G(x))w0
+

(1� x)dx (1.26)

where

A+

�,z = {G| G : (0, 1) ! [0,1) is a quantile function,

Z

1

1��
G(x)dx = z, G(x) = 0 on (0, 1� �]}.

The gain problem involves an optimisation for concave v and inverse-S shaped w
+

.

The first part of Proposition 1.12 can be applied to identify the form of the optimal quantile

function on (1��
+

, 1).19 From (1.21), with q
+

being the point of inflexion of w
+

we deduce

that the optimiser is of the form

G
+

(x) = G
+

(x;�
+

, z
+

; a,�) = a1
(1��+,(1�q+)_(1��+)]

+

✓

a _ (v0)�1

✓

�

w0
+

(1� x)

◆◆

1
((1�q+)_(1��+),1) (1.27)

for some constants a > 0 and � > 0. (Note that G
+

= 0 on (0, 1 � �
+

].) The optimal

values a⇤ and �⇤ of a and � are obtained by maximising the objective function in (1.26)

over A+

�+,z+
.

Lemma 1.13. Suppose v0 is continuous with v0(0+) = 1 and limx"1 v0(x) = 0. Then for

the optimal prospect we have a⇤ � (v0)�1

⇣

�⇤

w0
+(q+^�+)

⌘

.

Proof. We begin by showing that the optimiser (1.21) to the one-sided gain-problem (1.20)

with v concave has its parameter a � (v0)�1( �
w0

+(q+)

).

Let L(x;G,�) = v(G)w0
+

(1�x)��G. This is maximised over G by G = yL(x;�) :=

(v0)�1

⇣

�
w0

+(1�x)

⌘

. If v0(0) = 1 and limx"1 v0(x) = 0, then yL(x;�) is well defined and

strictly positive for all 0 < x < 1. Now suppose G
0

is an optimal solution to (1.20) which

has the form of (1.21) with parameters (a
0

,�
0

). Consider another quantile function G
1

which is in form of (1.21) with parameters (a
1

,�
1

) where a
1

:= (v0)�1

⇣

�1
w0

+(q+)

⌘

> a
0

and

the value of �
1

is implied by the constraint
R

1

0

G
1

(x)dx = z.

19By considering a transformation of eG(x) = G((1��+)(1� x)+ x), one can see (1.26) can be rewritten

in form of (1.20).
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On 0 < x 6 1 � q
+

, G
0

(x) = a
0

< a
1

= G
1

(x) 6 yL(x;�1). As yL( · ;�1) is

the maximiser of L( · ;G,�
1

) we have L(x;G
1

,�
1

) > L(x;G
0

,�
1

). On 1 � q
+

< x < 1,

G
1

(x) = yL(x;�1) and then trivially L(x;G
1

,�
1

) > L(x;G
0

,�
1

). This shows L(x;G
1

,�
1

) >
L(x;G

0

,�
1

) for all 0 < x < 1 (with strict inequality holding for some x). It contradicts the

assumption that G
0

is an optimal solution.

By extension, the optimiser (1.27) for the sub-problem of gains (1.26) must have its

parameter a � (v0)�1

⇣

�
w0

+(q+^�+)

⌘

. ⇤

Two things follow. First, since a > 0 an optimal solution on gains must allocate

all the available probability mass on gains. This also implies the value of the gain problem

D
+

(�
+

, z) is always strictly increasing in the available probability mass �
+

.

Second, a = (v0)�1

⇣

�
w0

+( )

⌘

for some   q
+

^ �
+

and then we can rewrite the

optimal solution in (1.27) as

G
+

(x) = G
+

(x;�
+

, ,�) = (v0)�1

✓

�

w0
+

( ^ (1� x))

◆

1
(1��+,1) (1.28)

where the mean on gains can be written as

z
+

= z
+

(�
+

, ,�) =

Z

1

1��+

(v0)�1

✓

�

w0
+

((1� u) ^  )

◆

du =

Z �+

0

(v0)�1

✓

�

w0
+

(u ^  )

◆

du.

(1.29)

Then G
+

is identically 0 on (0, 1��
+

), equal to a constant on (1��
+

, 1� ) and continuous

on (1 � �
+

, 1). The corresponding distribution has an atom at some a⇤ and a density on

(a⇤,1). The candidate optimiser takes the form in (1.28) parameterised by �
+

, � and

  q
+

^ �
+

subjected to (1.29).

1.B.2 The problem for losses

Suppose now we are given �� and z� such that �� > 0 and X�
0

6 z� 6 K�� where

K = �L and where �� and z� represent the probability mass allocated to losses and the

mean of losses. The loss problem is to find

D�(��, z�) = sup
G2A�

��,z�

Z ��

0

v(G(x))w0
�(x)dx (1.30)

where

A�
�,z = {G| G : (0, 1) ! [L, 0] is a quantile function,

Z �

0

G(x)dx = �z, G(x) = 0 on (�, 1)}.
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The loss problem is a maximisation problem involving a convex v and an inverse-S

shaped w� over quantile functions with fixed mean and a bounded range. Using the second

part of Proposition 1.12, the optimal quantile function on (0,��) is in the form of a step-

function taking values on L, 0 and some b 2 (L, 0). Our main result is that under some

mild extra assumptions on v and w� the solution can be further simplified to a two-point

distribution which has a mass at L or a mass at an interior point, but not both, together

with an atom at 0. Later we will argue that for the problem with gains and losses there

cannot be a mass at zero.

Proposition 1.14. If E(x; v, L) is increasing in x 2 [L, 0] and E(p;w�, c) is decreasing in

p 2 [0,min(q�, c)] for any c 2 [0, 1], then the optimal solution to problem (1.30) is a two-

point distribution with probability mass allocated to 0 and a single further point in [L, 0).

The optimal quantile function is of the form

G�(x;��, z�) = �z�
⌘
1
(0,⌘]

for some ⌘ with � z�
L 6 ⌘ 6 ��.

Proof. Using the second part of Proposition 1.12 we know that on losses, the optimal

prospect consists of masses at up to three points, two of which must be at 0 and L. We

want to show that under Assumption 1.6, the optimal prospect contains a single mass on

the loss regime, with potentially a second mass at the origin. Suppose that the probability

that the prospect takes a positive value and the mean of gains element of the prospect are

given. Then the probability of the prospect taking a value on losses, and the mean loss z

may also be considered as given.

Consider prospects on losses in form20 of P = (L, pL;x, px; 0, p0) with L < x < 0.

We have the relationships pL + px + p
0

= � and LpL + xpx = �z for fixed � 2 (0, 1) and

z 2 (0,�L]. To show that under the stated assumptions the optimal prospect on losses

is a two-point distribution, it is su�cient to show the existence of some feasible two-point

prospects which are at least as good as P.

Recall that w� is an inverse-S shaped function which is concave on [0, q�] and convex

on [q�, 1]. By the Elasticity Assumption, E(p;w�, c) is decreasing in p 2 [0,min(c, q�)] for

any c 2 [0, 1]. The prospect value of P is given by

V = w�(pL)v(L)+(w�(pL+px)�w�(pL))v(x) = w�(pL)v(L)+(w�(��p
0

)�w�(pL))v(x).

20Following Barberis (2012), we write a prospect P corresponding to a discrete random variable with n

atoms at x1 < x2 < ... < xn of sizes p1, p2, ..., pn as P = (x1, p1;x2, p2; ...;xn, pn).
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Since L  x  0 we must have L(�� p
0

)  �z else there is no feasible solution. Fix p
0

and

z and consider varying x, pL and px. The feasible range of x is given by L 6 x 6 � z
��p0

.

From the mean constraint pLL+ pxx = �z and the fact that pL + px = �� p
0

, we have

dpL
dx

= �dpx
dx

=
px

x� L
.

Di↵erentiation of the prospect value function with respect to x gives

@V

@x
= (w�(�� p

0

)� w�(pL))v
0(x)� px

x� L
w0

�(pL)(v(x)� v(L))

=
(w�(�� p

0

)� w�(pL))(v(x)� v(L))

x� L

✓

(x� L)v0(x)

v(x)� v(L)
�

pxw0
�(pL)

w�(�� p
0

)� w�(pL)

◆

=
(w�(�� p

0

)� w�(pL))(v(x)� v(L))

x� L
(E(x; v, L)� E(pL;w�,�� p

0

)).

Case 1: px + pL = �� p
0

6 q�.

Then pL  q� ^ (� � p
0

) and E(pL;w�,� � p
0

) is decreasing in pL and in turn decreasing

in x. Together with the fact that E(x; v, L) is increasing in x, @V@x is either positive for all

x 2 [L,� z
��p0

], negative for all x over the same range, or changes sign from negative to

positive as x increases. Hence, either V is monotonic, or V has a minima, and the maximal

prospect value is attained at either x = � z
��p0

or x = L. The corresponding prospects are

(� z
��p0

,�� p
0

; 0, p
0

) and (L, z
|L| ; 0,��

z
|L| ). Since z  (�� p

0

)|L| we have �� z
|L| > p

0

> 0

and both prospects are feasible two-point solutions with at most one mass at a non-zero

location.

Case 2: �� p
0

> q� and pL  q�.

Then again by the fact that E(pL;w�,��p
0

) is decreasing in pL and E(x; v, L) is increasing

in x, the maximal prospect value (as we let pL range between 0 and q�) is attained at either

pL = 0, whence x = � z
��p0

, or pL = q�, whence x = � z+Lq�
��q��p0

.

The former corresponds to a feasible two-point prospect (� z
��p0

,�� p
0

; 0, p
0

). The

latter corresponds to a prospect (L, q�;� z+Lq�
��q��p0

,�� p
0

� q�; 0, p0). We show in the next

case that is not an optimal prospect, since the prospect value can be further increased by

increasing pL above q�.

Case 3: �� p
0

> q� and pL � q�.

We compare the prospect (L, pL;x, px; 0, p0) with another feasible prospect which places all

its mass at L and 0 and show that the latter has at least as large a PT value as the former.
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We have

V = w�(pL)v(L) + (w�(�� p
0

)� w�(pL))v(x)

6 w�(pL)v(L) + (w�(�� p
0

)� w�(pL))
|x|
|L|v(L)

= v(L)

✓

|x|
|L|w�(�� p

0

) +

✓

1� |x|
|L|

◆

w�(pL)

◆

6 v(L)w�

✓

|x|
|L| (�� p

0

) +

✓

1� |x|
|L|

◆

pL

◆

= v(L)w�

✓

pL +
|x|
|L| (�� p

0

� pL)

◆

where we have used the fact that v is convex on [L, 0] in the second line and the fact that

w� is convex on [q�, 1] in the fourth line. But v(L)w
�

pL + x
L (�� p

0

� pL)
�

is the value of

a feasible two-point prospect
⇣

L, pL + |x|
|L| (�� p

0

� pL); 0, p0 + (1� |x|
|L| )(�� p

0

� pL)
⌘

. ⇤

We saw in Proposition 1.4 that the assumptions of Proposition 1.14 are satisfied by a

large class of value functions and probability weighting functions including those commonly

considered in the literature.

1.B.3 The combined problem for gains and losses

With the solutions from the previous sub-problems for gains and losses, the combined-

problem is to find

sup
(�±,z±)2H

(D
+

(�
+

, z
+

) +D�(��, z�))

where H = {(�±, z±) : �± > 0,�
+

+ �� 6 1, z
+

� z� = X
0

, z
+

> X+

0

, z� 2 [X�
0

,�L��], }.

The optimal prospect can be identified on solving this problem.

Proof of Proposition 1.7. If (�⇤±, z
⇤
±) are the optimisers to the combined problem, then the

optimiser for (1.25) is given by combining the optimisers for the sub-problems of gains and

losses such that the optimal quantile function is given by

G⇤(x) = G�(x;�
⇤
�, z

⇤
�)1(0,�⇤

�]

+G
+

(x;�⇤
+

, ⇤,�⇤)1
(1��⇤

+,1).

where ( ⇤,�⇤) are the optimisers to the sub-problem for gains with z
+

= z⇤
+

and �
+

= �⇤
+

.

Expressing z⇤� in terms of z⇤
+

, we can rewrite the constraint on z⇤± as X+

0

6 z⇤
+

6 X
0

�L��.

Under the assumption that v0(0+) = 1, by the remarks at the end of the proof of

Lemma 1.13 we have �⇤� = 1 � �⇤
+

. Moreover, suppose that a candidate optimal solution

of the problem includes a mass at the origin in the loss-component. We could reclassify
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this mass as part of the gain-distribution. But then, the prospect value could be improved

by redistributing this mass to become strict gains. Hence the candidate solution cannot be

optimal, and there cannot be any mass at zero in the optimal prospect. In particular, the

form of the optimal quantile function is given by (1.11).

⇤

In summary, the optimal prospect does not allocate any probability mass to zero

(which corresponds to the reference level prior to scaling). Moreover, Assumption 1.6 pro-

vides a simple su�cient (and decoupled) condition on the behaviours of v and w� leading

to the feature that there is only one single atom on loss.

1.C Proof of the well-posedness condition under the

base model of Tversky and Kahneman (1992)

Proof of Proposition 1.1. Let bw(p) = p�+ . Then obviously limp#0
bw(p)

w+(p) = 1. Then for some

fixed ✏ > 0 there exists p⇤ > 0 such that bw(p) < (✏+ 1)w
+

(p) for 0 < p < p⇤.

Consider a two-point zero-mean prospect (�a, b
a+b ; b,

a
a+b ) with b being large enough

such that a
a+b < p⇤. Then the prospect value is given by

V (a, b) = w
+

✓

a

a+ b

◆

v(b) + w�

✓

b

a+ b

◆

v(�a)

> 1

✏+ 1
bw

✓

a

a+ b

◆

v(b) + v(�a)

=
1

✏+ 1

✓

a

a+ b

◆�+

((b+R�)
1
� �R)↵+ + v(�a)

! 1

as b ! 1 if �
+

< ↵+

� .

To prove the well-posedness property under �
+

> ↵+

� , it is su�cient to show that

the gain-part value D
+

(�
+

, µ) is finite for any �
+

and µ. Using the cumulative distribution

function formulation (see Lemma 3.1 of Xu and Zhou (2013)), we can rewrite the gain-part

value as

D
+

(�
+

, z) = sup
F2B

�+,z

Z 1

0

w
+

(F (x))v0(x)dx

where

B�,z = {F | F : [0,1) ! [0, 1] is a decreasing function,

Z 1

0

F (x)dx = z, F (0) = �}.
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Since w
+

(p) 6 bw(p) = p�+ for all p, it is su�cient to show that bD
+

(�
+

, z) is finite

where bD
+

(�
+

, z) := supF2B
�+,z

R1
0

bw(F (x))v0(x)dx. Since bw is concave, the optimiser for

bD can be obtained by solving a simple Lagrangian problem where the solution is

F
⇤
(x) = min

✓

�
+

, ( bw0)�1

✓

�

v0(x)

◆◆

= min

0

@�
+

,

 

✓

↵
+

�
+

��

◆

1

(x+R�)
��1
� ((x+R�)

1
� �R)1�↵+

!

1
1��+

1

A

and the optimal value is in form of

bD
+

(�
+

, µ) =

Z 1

0

w
+

(F
⇤
(x))v0(x)dx

= C +

Z 1

K

✓

�
+

�

◆

�+
1��+

 

✓

↵
+

�

◆

1

(x+R�)
��1
� ((x+R�)

1
� �R)1�↵+

!

1
1��+

dx

for some constants C and K. This indefinite integral is convergent if �
+

> ↵+

� . ⇤

1.D On Elasticity measures of popular value and prob-

ability weighting functions

Proof of Proposition 1.3. The fact that E(x; ax+ b; c) = 1 is immediate from the definition.

Also

E(x; f, c)E(f(x); g, f(c)) =
(x� c)f 0(x)

f(x)� f(c)

(f(x)� f(c))g0(f(x))

g(f(x))� g(f(c))
=

(x� c)(g � f)0(x)
(g � f)(x)� (g � f)(c)

= E(x; (g � f), c).

⇤

For several popular classes of convex value functions v and inverse-S shaped proba-

bility weighting functions w, this result allows us to give simple proofs to show that E(x; v, c)

is increasing in x > c for any c, and E(p;w, c) is decreasing on p 2 [0,min(q, c)] for any

c 2 [0, 1] where q is the inflexion point of w. The remainder of this appendix is devoted to

giving such proofs.

1.D.1 Value functions

Power function
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Suppose v has the form of v(x) = x↵ defined on [0,1) and ↵ > 0. Then

E(x; v, c) =
↵(x� c)x↵�1

x↵ � c↵

with c > 0. Di↵erentiation gives

E0(x; v, c) =
↵x↵�2(cx↵ � ↵xc↵ + (↵� 1)c↵+1)

(x↵ � c↵)2
.

Consider H(x) = cx↵ � ↵xc↵ + (↵ � 1)c↵+1 and note that H(c) = 0. We have @H/@x =

H 0(x) = ↵c(x↵�1 � c↵�1) and note that H 0(c) = 0. Then for ↵ > 1 we have H(x) is convex

in x and H � 0. If ↵ < 1 then H is concave in x and H  0. It follows that E is monotonic

increasing in x if ↵ > 1 and monotonic decreasing in x if ↵ < 1.

Exponential function

For v(x) = e↵x on [0,1) and ↵ > 0,

E(x; v, c) =
↵(x� c)e↵x

e↵x � e↵c
=
↵(x� c)e↵(x�c)

e↵(x�c) � 1
.

Note that e↵(x�c) > 1 + ↵(x� c). Then di↵erentiation gives

E0(x; v, c) =
↵e↵(x�c)(e↵(x�c) � ↵(x� c)� 1)

(e↵(x�c) � 1)2
> 0

so that E(x; v, c) is monotonic increasing in x.

Reverse-power function

Consider v(x) = K↵ � (K � x)↵ on x 2 [0,K] for some K > 0 and 0 < ↵ < 1.

Then v is a non-negative convex function with v(0) = 0. For x, c 2 [0,K], we have using

Proposition 1.3 twice,

E(x; v, c) = E(x; (K � x)↵, c) = E(K � x;x↵,K � c).

Since E(y;x↵, z) is decreasing in y we conclude that E(x; v, c) is increasing in x.

Scaled power function from TK value function

Consider v(x) = �k(h � (x + h�)1/�)↵ for �h� < x < 0 with ↵,� > 0. Then, for

�h�  c < 0,

E(x; v, c) = E(x; v(z) = (h� (z + h�)1/�)↵, c)

= E(x+ h� ; v(z) = (h� z1/�)↵, c+ h�)

= E((x+ h�)1/� ; v(z) = (h� z)↵, (c+ h�)1/�)E(x+ h� ; y1/� , c+ h�)

= E((x+ h�)1/� ; v(z) = h↵ � (h� z)↵, (c+ h�)1/�)E(x+ h� ; y1/� , c+ h�).
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Now suppose that 0 < ↵,� < 1. Then 0 < ↵ < 1 < 1/�. From the discussion of the

power and reverse-power functions, both of E(h � (x + h�)1/� ; v(z) = z↵, h � (c + h�)1/�)

and E(x+ h� ; y1/� , c+ h�) are increasing in x. Hence the product is increasing in x.

1.D.2 Probability weighting functions

Let w be an inverse-S shaped weighting function which is concave on [0, q] and convex

on [q, 1]. We want to show that for common families of weighting function E(x;w, c) is

decreasing in x for 0 6 x 6 min(c, q) for any 0 6 c 6 1.

Let G(x, c) = @
@x lnE(x;w, c) = � 1

c�x + w00
(x)

w0
(x) + w0

(x)
w(c)�w(x) . It is necessary and

su�cient to show that G(x, c) 6 0 for all 0 6 x 6 min(c, q) and 0 6 c 6 1. Fix some x with

0 6 x 6 q. Then by a repeated application of l’Hôpital’s rule

lim
c#x

G(x, c) = lim
c#x

✓

� 1

c� x
+

w00(x)

w0(x)
+

w0(x)

w(c)� w(x)

◆

=
w00(x)

2w0(x)
6 0

since w00(x) 6 0 for x 6 q. Then, if one could show that G(x, c) is decreasing in c 2 [x, 1],

then G(x, c) 6 G(x, x) 6 0, and the result will follow.

Hence, for our desired conclusion it is su�cient to show that @
@cG(x, c) = 1

(c�x)2 �
w0

(x)w0
(c)

(w(c)�w(x))2 6 0 for x  c, or equivalently f(x, c) = f(x, c;w) � 0 for x  c where

f(x, c) = w0(c)w0(x)�
✓

w(c)� w(x)

c� x

◆

2

. (1.31)

In the remainder of this section, we use this approach to prove the results for the

Goldstein and Einhorn (1987) and Prelec (1998) weighting functions, and give some analysis

for the Tversky and Kahneman (1992) function.

The Goldstein and Einhorn (1987) weighting function

The Goldstein and Einhorn (1987) weighting function is given by w(x) = �xd

�xd

+(1�x)d

with 0 < �, d < 1.

Di↵erentiation gives

w0(x) =
d

�x2

✓

1

x
� 1

◆d�1

 

1 +
1

�



1

x
� 1

�d
!�2

and in turn, with z = 1

x � 1 and y = 1

c � 1

f(x, c) =
d2

�2x2c2
zd�1yd�1

✓

1 +
zd

�

◆�2

✓

1 +
yd

�

◆�2

� 1

(c� x)2

 

1

1 + zd

�

� 1

1 + yd

�

!

2

=
1

�2(c� x)2

✓

1 +
zd

�

◆�2

✓

1 +
yd

�

◆�2

 

d2
✓

1

x
� 1

c

◆

2

zd�1yd�1 �
�

zd � yd
�

2

!

.
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Since x  c we have y 6 z. The condition for f(x, y) > 0 is then

d2(z � y)2zd�1yd�1 � (zd � yd)2 > 0. (1.32)

On writing z = �y with � > 1, (1.32) is equivalent to d(� � 1)�
d

2�
1
2 � (�d � 1) > 0 and in

turn gd(�) � 0 where

gd(�) := d(�1/2 � ��1/2)� (�d/2 � ��d/2) > 0. (1.33)

Write � = e2✓ for ✓ � 0. Then gd(�) = h(✓) where h(✓) = 2d sinh ✓ � 2 sinh(d✓). But

h(0) = 0 and h0(✓) = 2d[cosh ✓ � cosh(d✓)] � 0 since d < 1. Hence gd is increasing in � for

� � 1. Since gd(1) = 0 the result follows.

The Prelec (1998) weighting function

The Prelec (1998) probability weighting function is given by w(x) = exp(�b(� lnx)a)

for 0 6 x 6 1 where 0 < a < 1 and 0 < b  1. It is su�cient to show that f(x, c;w) � 0

where f is given by (1.31). For the Prelec weighting function, we have

w0(x) =
ab

x
(� lnx)a�1 exp(�b(� lnx)a).

Let y = � lnx > 0 and z = � ln c > 0, then y > z > 0 and f(x, c) = H(y, z) where

H(y, z) := w0(e�z)w0(e�y)�
✓

w(e�z)� w(e�y)

e�z � e�y

◆

2

= (ab)2(yz)a�1ey+z�b(ya

+za

) �
✓

e�bza � e�bya

e�z � e�y

◆

2

=
e�b(ya

+za

)

(e�z � e�y)2

✓

(ab)2(yz)a�1

⇣

e
1
2 (y�z) � e�

1
2 (y�z)

⌘

2

�
⇣

e
b

2 (y
a�za

) � e�
b

2 (y
a�za

)

⌘

2

◆

=
4e�b(ya

+za

)

(e�z � e�y)2

✓

(ab)2(yz)a�1 sinh2
✓

1

2
(y � z)

◆

� sinh2
✓

b

2
(ya � za)

◆◆

.

Hence to show H(y, z) > 0, it is equivalent to show that

(ab)2(yz)a�1 sinh2
✓

1

2
(y � z)

◆

� sinh2
✓

b

2
(ya � za)

◆

> 0

or
sinh

�

1

2

(y � z)
�

sinh
�

b
2

(ya � za)
� > (yz)

1
2 (1�a)

ab
. (1.34)

Let � = z
y such that 0 6 � 6 1. Then the condition in (1.34) becomes

sinh
�y
2

(1� �)
�

sinh
⇣

bya

2

(1� �a)
⌘ > y1�a�

1
2 (1�a)

ab
. (1.35)
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It is known that under b 6 1, the inflexion point of w lies above the diagonal

line. Thus q is smaller than the fixed point of w which is given by exp(�b
1

1�a ), i.e. q 6
exp(�b

1
1�a ). Then �y = lnx 6 ln q 6 �b

1
1�a and in turn y > bya. Also we have 1 � � >

1 � �a, then y
2

(1 � �) > bya

2

(1 � �a). By convexity of the function sinh(·) on the positive

regime,
sinh

�y
2

(1� �)
�

sinh
⇣

bya

2

(1� �a)
⌘ >

y
2

(1� �)
bya

2

(1� �a)
=

y1�a(1� �)

b(1� �a)
.

Hence to show (1.35) it is su�cient to show

y1�a(1� �)

b(1� �a)
> y1�a�

1
2 (1�a)

ab

or equivalently

G(�) := a(1� �)� �
1
2 (1�a)(1� �a) > 0

on 0 6 � 6 1. But ��1/2G(�) = a(��1/2 � �1/2)� (��a/2 � �a/2) = ga(1/�) where ga is the

function given in (1.33) and shown to be positive there.

The Tversky and Kahneman (1992) weighting function

The Tversky and Kahneman (1992) probability weighting function is given in (1.3)

as: w(x) = x�

(x�

+(1�x)�)1/�
. The decreasing elasticity property on the concave regime seems

di�cult to verify analytically. In Figure 1.7 we plot the �G(x, c) = � @
@x lnE(x;w, c) =

1

c�x � w00
(x)

w0
(x) � w0

(x)
w(c)�w(x) for several values of � over 0 6 x 6 min(c, q) and 0 6 c 6 1 where

q is the inflexion point of w. All the plots show positive values which verify the decreasing

elasticity property of w on the required range.

1.E Proofs for the implied rate of selling

Our goal in this section is to prove Lemma 1.10 which can be established by the following

collection of results. To begin with, the key mathematical result which underpins our

analysis is:

Lemma 1.15 (Bertoin et al. (1992)). Let X be a di↵usion process in natural scale with X
0

=

0 and satisfying dXt = ⇠(Xt)dBt. Suppose that ⌫ is a centred target law. Let ⇣ = ⇣⌫ be given

by ⇣(dx) = ⌫(dx)
u
⌫

(x)�|x| and let ⇤X,⇣
t =

R

R ⇣(dx)L
X
t (x) where LX = (LX

t (x))t�0,s(a
J

)xs(b
J

)

is

the local time process of X defined in the same way as in the proof of Proposition 1.8. Set

⌧ = ⌧X,⇣,⇤ = inf{u : ⇤X,⇣
u � T} where T is a standard exponential random variable with

unit rate which is independent of X. Then X⌧ ⇠ ⌫.
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Figure 1.7: Plot of �G(x, c) = � @
@x lnE(x;w, c) with w taken to be the Tversky and

Kahneman (1992) probability weighting function for several values of parameter �. To

conclude that E(x;w, c) is decreasing in x for 0  x  min{c, q} we need �G(x, c) � 0 over

the relevant range.
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For our purposes it is convenient to work with a slightly di↵erent normalisation

of local time which satisfies an occupation time formula for calendar time, rather than

quadratic variation. Set `Xt (a) = LX
t (a)/⇠(a)2. Then, for a Borel function �,

Z t

0

�(Xu)⇠(Xu)
2du =

Z t

0

�(Xu)d[X]u =

Z

LX
t (a)�(a)da =

Z

`Xt (a)�(a)⇠(a)2da

and we have
R t
0

 (Xu)du =
R

`Xt (a) (a)da. Set �X,⌘
t =

R

⌘(dx)`Xt (x). Then ⇤X,⌘
t = �X,⇠2⌘

t

where ⇠2⌘ is the measure ⇠2(x)⌘(dx).

Proposition 1.16. Let � = �⌫ be given by �(dx) = ⇠(x)2⌫(dx)
u
⌫

(x)�|x| . Let ⌧ = ⌧X,�,� = inf{u :
R

�(da)`Xt (a) � T}. Then X⌧ ⇠ ⌫.

Proof. This directly follows from Lemma 1.15 and construction of �. ⇤

Let `P be the local time process of P with the normalisation that
R t
0

�(Ps)ds =
R

�(a)`Pt (a)da.

Proposition 1.17. Suppose P is given as the solution to the SDE dPt = �(Pt)dBt+(Pt)dt.

Let s be a scale function of P chosen such that s(P
0

) = 0. Let µ be a prospect such that

⌫ := µ � s has zero mean.

Let � = �µ be given by �(dp) = �(p)2s0(p) µ(dp)
u
⌫

(s(p))�|s(p)| and let �P,�
t =

R

R �(dp)`
P
t (p).

Set ⌧ = ⌧P,�,� = inf{u : �P,�
u � T} where T is a standard exponential random variable with

unit rate which is independent of P . Then P⌧ ⇠ µ.

Proof. Let X = s(P ). For a Borel function  we have
Z

 (s(p))`Xt (s(p))s0(p)dp =

Z

 (x)`Xt (x)dx =

Z t

0

 (Xu)du

=

Z t

0

( � s)(Pu)du =

Z

( � s)(p)`Pt (p)dp.

In particular, `Xt (s(p))s0(p) = `Pt (p).

From Itô’s formula we have dXu = ⇠(Xu)dBu = �(Pu)s0(Pu)dBu and so ⇠(s(p)) =

s0(p)�(p). Then

�P,�
u =

Z

µ(dp)

u⌫(s(p))� |s(p)|�(p)
2s0(p)`Pu (p) =

Z

µ(dp)

u⌫(s(p))� |s(p)|�(p)
2[s0(p)]2`Xu (s(p))

=

Z

µ(dp)

u⌫(s(p))� |s(p)|⇠(s(p))
2`Xu (s(p)) =

Z

⌫(dx)

u⌫(x)� |x|⇠(x)
2`Xu (x) = �X,�

u

where � is as given in Proposition 1.16. Then ⌧ = ⌧P,�,� = ⌧X,�,� and s(P⌧ ) = X⌧ =

X⌧X,�,� ⇠ ⌫. We conclude that P⌧ ⇠ µ. ⇤
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1.F Distribution of agents’ types and aggregate implied

selling rate

In this section we discuss how to design the distribution of agents’ types to produce a flat

aggregate implied selling rate on losses as in Figure 1.6. We assume the agents in the

economy have homogeneous TK preference parameters except their loss aversion levels k

vary on [k
min

,1). Here k
min

:=
�

R�`1
R

�↵��↵+
with R being the common reference level

and `
1

the target loss threshold of the agent with k = 1. The price process is a martingale

exponential Brownian motion starting at the reference level such that � = 1 and P
0

= R.

We insist ↵� > ↵
+

.

Lemma 1.18 (A scaling property). Let Fk be the CDF of the optimal prospect of the agent

with loss aversion level k. Then Fk(p) = F
1

(R+k
1

↵��↵+ (p�R)) for k > k
min

. Moreover, all

agents allocate a common size ✓� of probability mass to losses, and the target loss threshold

of the agent with loss aversion level k is given by `k = R� k
� 1

↵��↵+ (R� `
1

).

Proof. Under the assumption of � = 1, the scaled value function of the agent with loss

aversion level k is simply given by

vk(x) =

8

>

<

>

:

x↵+ , x > 0,

�k|x|↵� , x 6 0,

and his corresponding PT objective function is

Ek(X) =

Z

1

1�P(X>0)

vk(G(x))w0
+

(1� x)dx+

Z P(X<0)

0

vk(G(x))w0
�(x)dx

with X belonging to a class of random variables with zero mean and lower bound �R, and

G is the quantile function of X. Then we have

Ek(k
� 1

↵��↵+ X) =

Z

1

1�P(k
� 1

↵��↵+ X>0)

vk(k
� 1

↵��↵+ G(x))w0
+

(1� x)dx

+

Z P(k
� 1

↵��↵+ X<0)

0

vk(k
� 1

↵��↵+ G(x))w0
�(x)dx

= k
� ↵+

↵��↵+

Z

1

1�P(X>0)

v
1

(G(x))w0
+

(1� x)dx

+ k
1� ↵�

↵��↵+

Z P(X<0)

0

v
1

(G(x))w0
�(x)dx

= k
� ↵+

↵��↵+ E
1

(X).
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Hence if X⇤
1

is an optimiser to the problem supX E
1

(X), then X⇤
k := k

� 1
↵��↵+ X⇤

1

is

the optimiser to the problem supX Ek(X) (the zero-mean property trivially preserves, and

the lower bound constraint is guaranteed to be satisfied as long as k > k
min

). The result

immediately follows. ⇤

Assume the loss aversion levels of the agents are randomly distributed with a prior

density ⌘ supported on [k
min

,1). The CDF of the aggregate target sale price is given by

Fµ(p) =
R1
kmin

Fk(p)⌘(k)dk where Fk is the CDF of X⇤
k . Note that we have Fµ(R) = ✓�.

Let fµ be the density function of Fµ. We require a constant stopping rate � on the

loss regime p < R = P
0

, then using (1.18) we have fµ(p) =
2�
�2p2

R p
0

(p � u)fµ(u)du and in

turn Fµ is a solution to the ODE

p2F 00(p) + 2pF 0(p)� 2�

�2

F (p) = 0.

Using the boundary conditions of Fµ(0) = 0 and Fµ(R) = ✓�, we conclude Fµ(p) =

✓�
� p
R

�C
� for p 6 R = P

0

, where C� :=
�1+

p
1+8�/�2

2

.

Hence to produce this target CDF on losses, we require

✓�
⇣ p

R

⌘C
�

=

Z 1

kmin

Fk(p)⌘(k)dk = ✓�

Z 1

kmin

1
(p>`

k

)

⌘(k)dk

= ✓�

Z 1

kmin

1⇣
k6(R�`1

R�p

)
↵��↵+

⌘⌘(k)dk

= ✓�

Z (R�`1
R�p

)
↵��↵+

kmin

⌘(k)dk.

Di↵erentiating both side with respect to p gives

C�
R

⇣ p

R

⌘C
�

�1

=
(↵� � ↵

+

)(R� l
1

)↵��↵+

(R� p)1+↵��↵+
⌘

 

✓

R� `
1

R� p

◆↵��↵+
!

and this gives the required form of ⌘ as

⌘(k) =
C�(R� `

1

)

R(↵� � ↵
+

)

 

R� (R� `
1

)k
� 1

↵��↵+

R

!C
�

�1

k
�
⇣
1+

1
↵��↵+

⌘

defined for k > k
min

=
�

R�`1
R

�↵��↵+
.

50



Chapter 2

Randomised strategies and

prospect theory in a dynamic

context

“From here on in, I’ve decided to make all trivial decisions with a

throw of the dice, thus freeing up my mind to do what it does best:

enlighten and amaze.”

— Sheldon Cooper, The Big Bang Theory (Season 5, Episode 4)

2.1 Introduction

In the asset liquidation model under prospect theory (PT) preferences introduced in Chapter

1, the agent solves for an optimal prospect at time zero and adopts a trading strategy

accordingly which attains this target prospect. Implicitly, it is assumed that the agent is a

precommitting one in the sense that he is able to follow the strategy devised at time zero

consistently throughout the rest of the game. This indeed is just one of the several possible

notions of optimality. The main subtlety of predicting an agent’s behaviours in a dynamic

PT model is that its probability weighting component may - and typically will - induce time

inconsistency.1

In presence of time inconsistency, how an individual acts in a state of the world

may di↵er from how he planned to act in that state. It becomes crucial to understand how

1Other types of economic problems featuring time inconsistency include dynamic mean-variance portfolio

optimisation and intertemporal choices with hyperbolic discounting.
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to deal with the time inconsistency - see Machina (1989) - is the agent naive (and thus

unaware of the inconsistency), or is he sophisticated and aware of the inconsistency? And if

he is sophisticated, can he find a way to commit to his initial plan, or must he acknowledge

the fact that his future self will re-optimise, and potentially change strategy? In his recent

discussion paper on the psychology of tail events, Barberis (2013) raises the challenge of

how to best address the time inconsistency induced by probability weighting.

In a model of casino gambling in a multi-period binomial tree setting, Barberis

(2012) observes and investigates the phenomenon of time inconsistency with PT agents.

Three types of agent are considered: an agent with a precommitment mechanism (for short,

a precommitting agent), a naive agent and a sophisticated agent.2 The optimal behaviours

of the three types of agent are solved by exhaustive numerical searches. Barberis (2012)

finds PT can explain observed patterns of gambling behaviour. Each type of agent will,

for certain values of PT preference parameters, gamble in a casino. The first contribution

of Barberis (2012) is to show that PT provides a viable model of gambling behaviour. His

second major contribution is to make a striking observation concerning the behaviour of the

naive agent - that sometimes the naive agent follows a strategy which is the exact opposite

of the one he planned to follow at the outset.3

However, the realistic predictions brought by the discrete, finite horizon model are

not robust to change in the modelling setup. Ebert and Strack (2015) consider a continuous

time, continuous space and infinite horizon analog of the Barberis (2012) model in which

wealth from gambling follows a Brownian motion. They show that for a wide range of PT

specifications (including essentially all versions which have received empirical support) the

agent with commitment would prefer a stopping rule based on the first exit time of the

2The precommitting agent decides his strategy today and has a mechanism for making his future self

follow this strategy; a naive agent is not aware of his time inconsistent preference structure, and he re-

evaluates all possible strategies and takes a new decision about whether to gamble further or to stop at each

point of time; the sophisticated agent is aware of his time inconsistency but is unable to commit his future

self to following any given strategy. See Section 2.3.1 for a more detailed description.
3Suppose parameters are such that the naive agent wants to gamble at time zero. On first entering the

casino, the naive agent typically plans to continue to gamble if his first bet is a success, but to stop if his first

bet is unsuccessful. This is a “loss-exit” strategy. But what happens in practice? If the first gamble results

in a win, then the agent re-evaluates his situation and may now find it optimal to stop. In particular, the

extreme outcome of a winning gamble in every time period up to the final horizon is now less extreme, and

thus the impact of probability weighting is less significant. Then the fact that the agent is risk averse (on

gains) means that he stops gambling. Conversely, if the first gamble results in a loss, the agent re-evaluates,

and again the probability weighting is less significant, resulting in the agent electing to continue gambling

(as PT preferences are risk seeking on losses).
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wealth process from a well-chosen interval to one of stopping immediately. From this fact

Ebert and Strack (2015) make a drastic inference: the naive PT agent never stops. This

extreme prediction of a naive agent’s behaviours arguably casts doubt over the applicability

of PT in a continuous dynamic model.

The extant prospect theory literature has focused on pure strategies, both in static

and dynamic settings. Results on mixed (or randomised) strategies are very limited. One

result is given in Wakker (1994) (see also Theorem 7.4.1 of Wakker (2010)), which considers

mixed strategies in the context of a static choice of prospect in a rank dependent utility

model, and relates the benefit of using mixed strategies to the concavity of the probability

weighting function. There is also mention of the desire of PT agents for randomisation in

the mathematical finance literature, for example, Carassus and Rasonyi (2015). In contrast,

randomisation has been discussed in the ambiguity literature since the seminal work of

Rai↵a (1961) and is standard in other branches of economics such as game theory. In this

chapter we consider the role of randomisation in the agents’ set of potential strategies and

re-examine the impact of probability weighting in a dynamic PT model, in both the discrete

setup of Barberis (2012) and the continuous setup of Ebert and Strack (2015).

The first contribution of this chapter is to highlight that a PT agent facing a dynamic

investment/stopping problem will typically benefit from following a randomised strategy.4

We demonstrate this result in the context of the casino gambling model of Barberis (2012).

In this setting the wider choice of available strategies causes the agent to gamble in a larger

regime of parameters.

Our second contribution is to reconsider the continuous time model of Ebert and

Strack (2015). They show how to choose an interval [a, b] containing the initial wealth x such

that stopping at the first exit time of the wealth process from this interval is strictly preferred

to stopping immediately. Their result is true under a mild condition described as probability

weighting being stronger than loss aversion, which they demonstrate holds for the most

popular weighting functions. We show that the randomised strategy of sometimes stopping

immediately and sometimes stopping on the first exit from [a, b] is a better prospect than

simply stopping on the first exit from the interval. Hence the analysis of Ebert and Strack

(2015) is no longer su�cient to conclude that the naive agent never stops, once randomisation

is allowed. Our result requires a condition that can be interpreted as follows: probability

4A similar observation is made in He et al. (2016). The main focus of He et al. (2016) is on the agent

who can precommit in a discrete time, infinite horizon model. In contrast, our focus is on the implications

for the continuous time setting, and especially the impact of time inconsistency and the question of whether

naive agents always use a trivial strategy in this setting.
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weighting on losses for nearly certain events is stronger than probability weighting on gains

for rare events. We show this condition follows from the prevailing experimental finding

that w±(1/2) < 1/2 and demonstrate (for the same parameters as Ebert and Strack (2015))

that it holds for several popular weighting functions.

Ebert and Strack (2015) extend their arguments based on intervals to prove that

for naive agents restricted to pure strategies, the optimal strategy is to always continue and

gamble “until the bitter end”. In contrast, we show that a naive agent with a randomisation

device (the ability to generate a continuous random variable), and with the ability to commit

his current self to following strategies which depend on the realisation of this device, does

not necessarily follow a never-stopping strategy. However, our argument needs more than a

result based on intervals. One way to conclude that the optimal strategy for agents who can

randomise is to always continue is to determine the optimal prospect and to show that this

prospect does not carry any mass at the starting wealth level. We show that this is not true

in general, and that the never-stopping result no longer holds when agents can randomise.

To demonstrate this, in Section 2.5 we give a pair of examples for which we calculate the

optimal prospect of an agent and show that if the initial value of the Brownian motion is

at the reference level, then the optimal prospect includes an atom at the reference level.

A naive agent who can randomise may stop at the reference level. The analysis is further

extended in Section 2.6 to cover a more general modelling setup where we show that a naive

agent may stop if his net wealth is su�ciently high. Thus the drastic conclusion of Ebert

and Strack (2015) that naive PT agents never stop is no longer the unique prediction if we

allow for a wider class of strategies. Naive PT agents who can follow randomised strategies

may voluntarily stop gambling.

The rest of this chapter is organised as follows. In Section 2.2 we briefly describe the

structure of the optimal stopping problem under PT preferences and the idea of randomi-

sation. Section 2.3 presents the discrete model and we give numerical results confirming

that randomisation can lead to improvement in economic value to di↵erent types of agent.

The continuous counterpart is reviewed in Section 2.4. We first demonstrate that the pure

strategy in form of a first exit rule of Ebert and Strack (2015) can be improved by mixing the

strategy with sometimes stopping immediately. Then through solving two simple stylised

examples in Section 2.5 as well as a model under more general specifications in Section 2.6,

we show that the optimal behaviours of a naive agent may include voluntary cessation of

gambling. Finally we conclude in Section 2.7.
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2.2 Prospect theory and optimal stopping

2.2.1 Prospect theory preferences

We work under the same PT preferences framework as in Section 1.2.1 of Chapter 1 which

we briefly recap as follows. The agent’s utility or value function defined over gains and losses

is U such that U is continuous, U(0) = 0, U is concave and increasing on R
+

and convex

and increasing on R� and U satisfies the (simple) loss aversion property U(y) +U(�y) < 0

for all y.5 For the probability weighting functions, we assume that w± is concave on [0, Q±]

and convex on [Q±, 1] for some Q± 2 (0, 1) with w±(1/2) < 1/2. For an exogenously fixed

reference level R, the PT value of a random payo↵ Z is given by E(Z) as defined in (1.2).

2.2.2 Optimal stopping

We assume that the agent’s wealth from gambling or trading of assets follows a stochastic

process X. For this chapter, we consider X to be either a simple random walk (Section

2.3), a Brownian motion (Section 2.4 and 2.5), or some other general time-homogeneous

di↵usion (Section 2.6). The strategies available to the agent correspond to stopping times

⌧ representing when to sell an asset or stop gambling. Then the stopped value X = X⌧

represents the prospect of the agent. The goal of the agent is to find

sup
⌧2⇤

E(X⌧ )

where E is as given in (1.2). ⇤ is a suitable set of stopping times depending on the context

of the modelling framework.

2.2.3 Randomised strategies: a preliminary discussion

In classical optimal stopping problems in the expected utility framework, the agent faces a

choice between stopping and continuing at each instant of time. If there is no probability

weighting then there is no incentive to randomise: the expected payo↵ is linear in the

probabilities and if the value from stopping is V S and the value from continuing is V C ,

then the payo↵ V (✓) from a randomised strategy involving continuing with probability ✓

is V (✓) = ✓V C + (1 � ✓)V S  max{V S , V C}. Hence there is an optimal strategy which is

pure, and the ability to randomise brings no benefit to the agent. This result extends to any

5We do not explicitly require simple loss aversion in Chapter 1 but this condition will be useful in this

chapter. For the Kahneman and Tversky (1979) value function of (1.1), it satisfies simple loss aversion if

↵+ = ↵� and k > 1.
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situation where there is no probability weighting.6 However, if probabilities are re-weighted

then typically V (✓) 6= ✓V C +(1�✓)V S and the agent may benefit from mixed strategies. In

fact, although our focus is on PT preferences, similar arguments will apply in any dynamic

setting where probability weighting is included, for example, the rank dependent utility

models of Quiggin (1982) and Yaari (1987).

Extensive experimental research documents widespread patterns of stochastic or

random choice whereby subjects faced with the same decision problem on multiple occasions

make di↵erent choices.7 Agranov and Ortoleva (2015) (also Dwenger et al. (2013)) design an

experiment to distinguish between di↵erent explanations for the source of stochastic choice

and document evidence in support of deliberate randomisation.8 This evidence fits with our

theoretical model where it can be optimal for PT agents to randomise.

2.3 The discrete model

2.3.1 Wealth dynamics and types of the agent

An agent is o↵ered a series of independent and identical fair gambles in which he could

win or lose a unit amount. At the beginning of each period, the agent decides whether to

enter the gamble (continue) or to leave (stop). Upon stopping or the end of the T th period,

whichever comes first, the whole game ends and the agent takes the current cumulative

profit or loss as his final payo↵. The evolution of the agent’s net wealth can be represented

by a path through a T -period recombining binomial tree, and the wealth process X follows

a simple random walk. At each time point t = 0, 1, ..., T , his net wealth can possibly take

t + 1 distinct values labeled by S(1, t) > S(2, t) > ... > S(t + 1, t). If the initial wealth of

the agent is zero then S(i, t) = t� 2(i� 1). In this setup, the available strategies ⇤ is a set

of stopping times taking values on {0, 1, ..., T � 1}.

Barberis (2012) assumes that the agent’s decision at a particular node is a binary

choice of exit or continuation which only depends on the current position of that node. A

plan at node (i, t) is defined as a mapping C : (i, t) ! {stop, continue}. When the agent is

6Kyle et al. (2006) and Henderson (2012) consider optimal stopping problems for PT agents without

probability weighting and determine the optimal stopping rules. Since there is no probability weighting in

these settings their proposed strategies are optimal, even if randomised strategies are allowed.
7This pattern of stochastic choice was first noted by Tversky (1969) and replicated in many studies, see

Agranov and Ortoleva (2015) and Dwenger et al. (2013) and references therein.
8Other theoretical models where randomisation is a deliberate choice include Machina (1985), Cerreia-

Vioglio et al. (2013), Cerreia-Vioglio et al. (2015) and Saito (2015).
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at node (i, t), a collection of plans at all reachable subsequent nodes a = {C(k, s) : t 6 s 6
T �1, i 6 k 6 s� t+ i} is a stopping strategy of the game associated with (i, t) as a starting

position. Let A(i, t) be the set of all possible stopping strategies available to the agent who

is at the node (i, t). Then under a given stopping strategy a 2 A(i, t) which leads to a

stopping time ⌧(a), one can compute the probability distribution of X(i,t)
⌧(a) (the superscript

(i, t) is used to indicate that the wealth process starts at the node (i, t)). Assuming a zero

reference level, the PT value of this strategy is computed by E(X(i,t)
⌧(a)). The exact behaviours

of the agent depends on his own type as described below.

The precommitting agent

At time zero, the precommitting agent solves the optimisation problem

sup
a2A(1,0)

E(X(1,0)
⌧(a) ).

Define the corresponding optimiser as a⇤ = {C⇤(i, t) : 0 6 t 6 T � 1, 1 6 i 6 t + 1}. The

precommitting agent acts according to the plan C⇤(i, t) in any subsequent node (i, t). In

this case, the optimal strategy is computed only once at time zero and it characterises the

subsequent behaviours of the agent completely.

The naive agent

Unlike the precommitting agent, the naive agent re-computes the optimal strategy at every

node and decides whether to continue or stop in the current node based on the new optimi-

sation result. The updated decision overrides the plans derived in any previous time step.

Mathematically, the agent who is currently at node (i, t) solves

sup
a2A(i,t)

E(X(i,t)
⌧(a)).

Suppose the optimal solution associated with this particular starting node is given by a⇤
(i,t) =

{C⇤
(i,t)(k, s) : t 6 s 6 T � 1, i 6 k 6 s� t+ i}. Then the agent’s action at this node is given

by C⇤
(i,t)(i, t). This type of agent is time inconsistent as his planned action at a fixed node

(K,S) may change with his current position (i, t) (that is, C⇤
(i,t)(K,S) depends on (i, t)).

The sophisticated agent

This type of agent is aware that he will re-evaluate the prospect value in future states

and follow the best strategy at that moment in time. Nonetheless, he does not have any

commitment device to force his future self to follow a strategy planned today. Instead,
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he acts in an optimal way today in anticipation of how he will behave in the future.

Consequently, this type of agent operates on the logic of backward induction.9 Starting

from the last period of the game, the agent solves for the optimal plan at the nodes of

(1, T � 1), (2, T � 1), ..., (T, T � 1). Knowing his behaviours in the future time, he iterates

one time-step backward and decides whether it is optimal to continue or quit the game at

the preceding nodes. The process is repeated all the way back to time zero. Precisely, the

optimal decision C⇤ at each node is given by the algorithm

C⇤(i, T � 1) = argmax
C(i,T�1)2{stop,continue}

E(X(i,T�1)

⌧(C(i,T�1))

), 1 6 i 6 T,

C⇤(i, t) = argmax
C(i,t)2{stop,continue}

E(X(i,t)
⌧(C(i,t)[a⇤

(i,t))), 1 6 i 6 t+ 1, t < T � 1,

where a⇤(i, t) := {C⇤(k, s) : t < s 6 T � 1, i 6 k 6 s� t+ i} represents the collection of the

optimal actions at all reachable nodes beyond (i, t).

2.3.2 Randomisation in the discrete model

Rather than limiting the plan at each node to a binary choice between stopping or continuing,

the agent could consider randomising the stopping decision such that the probability of

continuing at node (i, t) is given by ✓(i, t). A stopping strategy associated with a particular

starting node (i, t) is no longer a collection of binary mappings but instead a collection of

continuation probabilities {✓(k, s) 2 [0, 1] : t 6 s 6 T � 1, i 6 k 6 s� t+ i}. In this setting,

the PT value of a stopping strategy can be obtained by (1.2) as before upon evaluating

the payo↵ distribution, and one can still distinguish the three types of agent as in Barberis

(2012) by amending the definitions in Section 2.3.1 to allow for a supremum over a suitable

space ⇥. Note that if we restrict the continuation probabilities to take values on {0, 1} only,

we recover the setup of Barberis (2012).

2.3.3 Numerical results in a two-period model

In this section we present results under the Tversky and Kahneman (1992) specification of

the value and weighting function (see (1.1) and (1.3)) with ↵± = ↵ and �± = �. We consider

T = 2 a two-period model and a starting net wealth at the reference point which is assumed

to be zero.
9It is also possible to understand the optimal strategy of this type of agent in a game-theoretic manner.

The stopping problem can be interpreted as a sequential game with T players, each of them representing a

copy of the agent at each time point t = 0, 1, ..., T � 1. The optimal strategy can then be characterised as a

sub-game perfect equilibrium.
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The agent who can pre-commit

Consider first Figure 2.1. The left panels show the strategies followed by the agent in the

case where he cannot randomise, for three di↵erent parameter combinations. An open circle

at a node indicates a node at which it is optimal to continue gambling; a closed or solid

circle indicates a node at which it is optimal to stop. We find three possible behaviours

- the loss-exit strategy of gambling at time zero and continuing after a win but stopping

after a loss [Panel (a)]; the gain-exit strategy of gambling at time zero and continuing after

a loss but stopping after a win [Panel (c)] and the trivial strategy of always stopping such

that the agent does not enter the game in the first place [Panel (e)]. Note that it is never

optimal to always continue. The right hand panels show what happens if, for the same

parameter sets, we consider an agent who can randomise. We find cases where the agent

who can randomise gambles at time zero when the agent who cannot does not gamble. The

probability of gambling can be significant in this case, for the parameters of Panels (e) and

(f) it is 0.47 as opposed to zero. However, compare Panels (a) and (b) ((c) and (d)), if

the deterministic agent follows a loss-exit (gain-exit) strategy then his counterpart with the

ability to randomise follows a strategy with similar characteristics.

Now consider the results of Figure 2.2 which describe the strategies in detail as

parameters change. Panel (a) shows the parameter combinations (in loss aversion k and

↵, we fix the probability weighting parameter �) for which the agent gambles at time zero.

The agent without the ability to randomise follows a gain-exit strategy for low values of loss

aversion k and convexity/concavity ↵ (region bounded by the dash-dot line) and a loss-exit

strategy for low k and large ↵ (region bounded by the solid line) and chooses never to

gamble for large values of loss aversion k (the region above the solid and dash-dot lines).

Also plotted in Panel (a) by the dashed line is the boundary of the region where the agent

with the ability to randomise chooses a non-zero probability of gambling. (Again, the region

below the dashed line is the parameter region where he follows a non-trivial strategy). Note

that the parameter region where the agent who can randomise enters the gamble at time

zero is larger than the corresponding region for the deterministic agent. In this sense, the

ability to randomise leads to more gambling.

The lower left panel (c) shows the optimal probability that the agent gambles at

time zero for the agent who can randomise. The two right panels (b) and (d) show the

probability of gambling at time 1, after a win (Panel (b)) or after a loss (Panel (d)). In

cases where the agent who cannot randomise follows a gain-exit strategy then the agent who

can randomise follows a similar strategy - he gambles at time zero and again after a loss,
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but after a win he may gamble again, albeit with a small probability. In cases where the

agent who cannot randomise follows a loss-exit strategy then the agent who can randomise

also exits after a loss, but gambles at time zero with a probability typically less than one,

and sometimes as low as 0.4, and also gambles after a win with a probability less than one.

There are several features of PT which drive these results. First, the presence

of loss aversion means that symmetric bets, such as stopping at time 1 in all situations,

are unattractive. (Further, increasing loss aversion parameter k reduces the value of all

strategies making stopping at time zero more likely.) Second, the fact he is risk seeking

on losses and risk averse on gains means an agent has an incentive to follow a gain-exit

strategy. Since U(2)/U(1) = U(�2)/U(�1) = 2↵ this incentive is greatest when ↵ is small.

However the impact of probability weighting is to provide incentives in the opposite direction

- probability weighting gives greater prominence to extreme events, encouraging long tailed

distributions on gains and thin tailed distributions on losses, or equivalently, encouraging

loss-exit strategies. When ↵ is large and thus the impact of convexity is small, this factor

dominates.

What then is the impact of randomisation? In this model randomisation gives the

agent further flexibility in the design of his terminal wealth. This makes it more likely that

the agent gambles or enters the casino initially, see Panel (a) of Figure 2.2. For the agent

who is not allowed to make use of randomisation, the only values of w which are relevant

are w(1/4) and w(1/2). In particular, there are no events of very small probability and the

shape of w near zero is irrelevant. In contrast, the agent who can randomise can design

gambles of arbitrary probability.

The naive agent

Results for the naive agent are presented in Figures 2.3 and 2.4 in the same format. Recall

that we are assuming a version of näıvité whereby the agent can commit his current self to

following an action which depends on a contemporaneous random outcome. At time zero,

the naive agent selects the identical strategy to the precommiting agent. That is, what he

plans to do is the same as the agent who can commit. (See the time zero node in all trees in

Figures 2.1 and 2.3 and the left hand panels of Figures 2.2 and 2.4.) The interesting feature

of the naive agent is the fact that because he is unable to commit, he has the possibility

of modifying his strategy at time 1. The naive agent re-evaluates his strategies at time 1,

and always chooses to gamble after a loss but stop after a win, ie. if he gambles at time

zero, he follows a gain-exit strategy. As Barberis (2012) observes, the striking feature is
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(a) Optimal pure strategy with ↵ =

0.95, k = 1.45 and � = 0.5.

0.52

0.95

0

(b) Optimal randomised strategy with

↵ = 0.95, k = 1.45 and � = 0.5.

(c) Optimal pure strategy with ↵ = 0.3,

k = 1.05 and � = 0.5.

1

0.14

1

(d) Optimal randomised strategy with

↵ = 0.3, k = 1.05 and � = 0.5.

(e) Optimal pure strategy with ↵ = 0.5,

k = 1.15 and � = 0.5.

0.47

0.45

0

(f) Optimal randomised strategy with

↵ = 0.5, k = 1.15 and � = 0.5.

Figure 2.1: The agent who can precommit. The left panels display strategies when the agent

cannot randomise where an open circle denotes a node at which it is optimal to continue and closed

or solid circles are nodes where it is optimal to stop. The right panels display the corresponding

strategy for the agent who can randomise where the number at each node gives the probability of

continuing at that node. The Tversky and Kahneman (1992) PT parameters are given in each

panel.
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(b) Probability of continuing at the

gain node for an agent with randomised
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(c) Probability of entering the game at

time zero for an agent using randomised

strategies.
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(d) Probability of continuing at the

loss node for an agent with randomised

strategies.

Figure 2.2: The agent who can precommit. Panel (a) displays the parameter combinations for

which the agent gambles at time zero. The solid and dash-dot lines distinguish the three types

of strategy {do not enter/trivial; loss-exit, gain-exit} for the agent without randomisation. The

dashed line indicates the region below which the agent who can randomise enters the game at time

zero with some positive probability. Panels (c) displays the probability of entering the game at time

zero for the agent who can randomise. Panels (b) (and (d)) display the probability of continuing

at the gain (loss) node at time 1 for the agent who can randomise. Regions with no value in (b)

and (d) correspond to parameters where the agent did not enter the game at time zero. All panels

use T = 2 and � = 0.5.
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that when the probability weighting is the dominant e↵ect, the naive agent without access

to randomisation plans at time zero to follow a loss-exit strategy, but actually follows a

gain-exit strategy. For the agent with randomisation, the results are broadly similar. The

impact of randomisation is to modify the probability of entering the casino initially, but at

time 1, this agent still follows a gain-exit strategy.

The sophisticated agent

The results for the sophisticated agent are obtained by backward induction, see Figure 2.5.

In comparison with the results for the agent with the ability to commit, we find in the region

where the latter follows a gain-exit strategy the two agents behave similarly, but in the region

where the latter follows a loss-exit strategy, the sophisticated agent without the ability to

commit follows the trivial strategy. The agent knows at time zero that he plans to follow a

strategy of gain-exit at time 1 (if he does not follow the trivial strategy). Hence, in regions

where the agent with precommitment would choose to follow a loss-exit strategy (where loss

aversion and convexity/concavity are small and the probability weighting dominates) the

sophisticated agent knows that his future self will not follow this strategy and prefers not

to gamble at time zero.

2.4 The continuous model

2.4.1 The setup of Ebert and Strack (2015)

In the Ebert and Strack (2015) model, returns from gambling are modelled as a Brownian

motion Bx where the superscript x denotes the starting wealth level. The agent’s problem

is thus to find

Ṽ (x) = sup
⌧2⇤

E(Bx
⌧ ) (2.1)

where ⇤ is the set of uniformly integrable stopping times.10

The uniform integrability assumption deserves some discussion. Since Brownian

motion hits any level in finite time with probability one, over the infinite horizon an agent

without a lower bound on wealth can achieve a prospect (y, 1) (a unit mass at y) for any

y, especially any y > x where x is the starting value of the Brownian motion. We want

to exclude this type of doubling strategy. There are at least four approaches or rationales

10Recall that the set of uniformly integrable stopping times is the set of finite stopping times ⇢ such that

(Bx
t^⇢)t>0 is a uniformly integrable family of random variables.
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(a) Optimal pure strategy with ↵ =

0.95, k = 1.45 and � = 0.5.

0.52

0

1

(b) Optimal randomised strategy with

↵ = 0.95, k = 1.45 and � = 0.5.

(c) Optimal pure strategy with ↵ = 0.3,

k = 1.05 and � = 0.5.

1

0

1

(d) Optimal randomised strategy with

↵ = 0.3, k = 1.05 and � = 0.5.

(e) Optimal pure strategy with ↵ = 0.5,

k = 1.15 and � = 0.5.

0.47

0

1

(f) Optimal randomised strategy with

↵ = 0.5, k = 1.15 and � = 0.5.

Figure 2.3: The naive agent. The left panels display strategies when the agent cannot randomise

where an open circle denotes a node at which it is optimal to continue and closed or solid circles

are nodes where it is optimal to stop. The right panels display the corresponding strategy for the

agent who can randomise where the number at each node gives the probability of continuing at that

node. The Tversky and Kahneman (1992) PT parameters are given in each panel.

64



α
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

k

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
δ=0.5

Gain-exit

Trivial

Gain-exit

(a) Parameter combinations for which

the agent gambles at time zero and form

of his strategy.

δ=0.5

p
1
,1

0

0.2

0.4

0.6

0.8

1

k

1

1.2

1.4

1.6

1.8

2

α

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1

(b) Probability of continuing at the

gain node for an agent with randomised

strategies.

1

0.8

0.6

α

0.4

0.2

δ=0.5

2

1.8

1.6

k

1.4

1.2

0

0.2

0.4

0.6

0.8

1

1

p
1
,0

(c) Probability of entering the game at

time zero for an agent using randomised

strategies.

δ=0.5
p

2
,1

0

0.2

0.4

0.6

0.8

1

k

1

1.2

1.4

1.6

1.8

2

α

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1

(d) Probability of continuing at the

loss node for an agent with randomised

strategies.

Figure 2.4: The naive agent. Panel (a) displays the parameter combinations for which the agent

gambles at time zero. The solid and dash-dot lines distinguish the two types of strategy {do

not enter/trivial; gain-exit} for the agent without randomisation. The dashed line indicates the

region below which the agent who can randomise enters the game at time zero with some positive

probability. Panels (c) displays the probability of entering the game at time zero for the agent who

can randomise. Panels (b) (and (d)) display the probability of continuing at the gain (loss) node

at time 1 for the agent who can randomise. Regions with no value in (b) and (d) correspond to

parameters where the agent did not enter the game at time zero. All panels use T = 2 and � = 0.5.
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Figure 2.5: The sophisticated agent. The figure displays the parameter combi-

nations for which the sophisticated agent gambles at time zero. The dash-dot line

distinguishes the two types of strategy {do not enter/trivial; gain-exit} for the

agent without randomisation. The dashed line indicates the region below which

the agent who can randomise enters the game at time zero with some positive

probability. In the region where the agent enters, the probabilities of continuing

at the gain (loss) nodes are zero (one) respectively. We use T = 2 and � = 0.5.

for doing so. First, we can suppose that the Brownian motion has a negative drift (so that

Brownian motion Bx hits levels y > x with probabilities strictly less than one), at the

expense of an extra level of complication in the analysis. Second, we can insist that if the

Brownian motion hits some value � then all gambling must cease, and the agent receives

the stopped value �. It follows that Bx is a supermartingale and all feasible prospects

(ie. the class of random variables in form of Bx
⌧ ) have expected values less than or equal to

x. Then by first order stochastic dominance it is su�cient to consider only prospects with

mean x. Having calculated the optimal prospect we can check that its range is bounded

below, and hence that the condition of enforced stopping at � is never applied, for large

enough . Third, we could insist that stopping times are bounded by some large T and

then let T increase to infinity. Finally, as we do, we could exclude doubling strategies by

positing a mathematical restriction on ⌧ , in particular by insisting that stopping times are

uniformly integrable, whence the mean of the stopped process is x.

(2.1) is the type of the probability-weighted optimal stopping problem that we anal-

yse in Chapter 1. The key step towards constructing a solution is based on the idea that

the search over stopping times can be replaced by a search over random variables (refer to
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the equivalence of (1.7) and (1.8) in Section 1.2.2 of Chapter 1). Define

V (x) = sup
X:E[X]=x

E(X).

Then we have V (x) = Ṽ (x). Our goal here is to find V (x) = Ṽ (x) and the set of optimisers

for V (prospects or random variables) and Ṽ (stopping times).

Ebert and Strack (2015) show that for an extremely wide class of value and prob-

ability weighting functions, for any initial wealth x there is a first exit stopping rule (a

two-point prospect) which is preferred to stopping immediately (a prospect of a sure-wealth

x). From this they reach the result that in continuous time models, naive agents always

postpone their stopping decisions: a naive agent with PT preferences will gamble “until the

bitter end”. Taken at face value, this never stopping result leads to unrealistic predictions

and casts doubt on the usefulness of näıvité plus PT preferences in a dynamic context.

Assume the reference level is zero, and that the initial value of the Brownian motion

is at the reference level. We first restate a result of Ebert and Strack (2015).

Proposition 2.1 (Ebert and Strack (2015)). Suppose that (in addition to the standard

assumptions listed in Section 2.2.1) the value function U satisfies 0 < U 0(0�) = KU 0(0+) <

1 for some K > 1.11,12

Suppose for the probability weighting functions w± there exists a p̂ 2 (0, 1/2) such

that

w
+

(p̂) >
Kp̂

1 + (K � 1)p̂
, w�(1� p̂) <

1� p̂

1 + (K � 1)p̂
. (2.2)

Then there exists ✏̂ > 0 such that the agent with zero initial wealth prefers gambling until

his wealth reaches ✏̂(1� p̂) or �✏̂p̂ to stopping immediately.

Proof. Let ✏ be a positive constant which later we will treat as a parameter. Let b✏ = ✏(1�p̂)

and a✏ = �✏p̂. Suppose the agent has zero initial wealth. One strategy open to the agent is

to gamble until the first time his wealth reaches b✏ or a✏ and then to stop. By construction,

the probability that the process hits b✏ before a✏ is p̂. Then the value Hp̂(✏) of this strategy

is:

Hp̂(✏) = w
+

(p̂)U(b✏) + w�(1� p̂)U(a✏) = w
+

(p̂)U(✏(1� p̂)) + w�(1� p̂)U(�✏p̂).
11Under this assumption the value function exhibits finite marginal loss aversion in the sense that

U 0(0+) < U 0(0�) < 1. Köbberling and Wakker (2005) introduce this notion of loss aversion and show that

it has the advantage of being scale independent. We have added the adjective marginal to distinguish the

concept from simple loss aversion U(y) + U(�y) < 0.
12Note that the Kahneman and Tversky (1979) value function (1.1) has infinite slope at the origin and

thus does not satisfy this assumption. We postpone the discussion on this type of value function to Section

2.6.
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Tversky-Kahneman Goldstein-Einhorn Prelec

Condition (2.2) K = 2.25 (0, 0.072) (0, 0.035) (0, 0.062)

K = 1.5 (0, 0.176) (0, 0.104) (0, 0.139)

Condition (2.3) (0, 0.5) (0, 0.5) (0.0018, 0.5)

Table 2.1: Ranges of probabilities for which the Ebert-Strack condition (2.2) and condition

(2.3) are satisfied for various weighting function specifications and input parameters. The

first two rows correspond to those in Table W.1 of Ebert and Strack (2015) and give prob-

abilities for which (2.2) is satisfied. The third row gives the range of probabilities for which

condition (2.3) is satisfied. The first (second; third) column corresponds to the Tversky and

Kahneman (1992) weighting function with �± = 0.65 (Goldstein and Einhorn (1987) with

d± = 0.69, �± = 0.77; Prelec (1998) with b± = 1.05, a± = 0.65).

Note that Hp̂(0) = 0. Now, writing H 0
p̂ for the derivative with respect to ✏,

H 0
p̂(0+) = (1� p̂)w

+

(p̂)U 0(0+)� p̂w�(1� p̂)U 0(0�)

> p̂(1� p̂)

⇢

K

1 + (K � 1)p̂
� K

1 + (K � 1)p̂

�

U 0(0+) = 0.

Hence there exists ✏̂ > 0 for which Hp̂(✏̂) > 0 and for this (p̂, ✏̂) the agent prefers to continue

(run until wealth first hits b✏̂ or a✏̂) over stopping immediately.

⇤

From this result (together with an extension to any arbitrary initial wealth level

x), Ebert and Strack (2015) infer that a naive agent who can only use pure stopping rules

always postpones stopping decisions and hence, never stops.

The assumptions on the weighting functions given in (2.2) are satisfied by the com-

monly used inverse-S shaped weighting functions of Tversky and Kahneman (1992), Prelec

(1998), Goldstein and Einhorn (1987) (see (1.4) for the forms of the Prelec and Goldstein-

Einhorn weighting functions) and the neo-additive weighting function (Wakker (2010), p208)

for many parameter values, provided p̂ is small. The first two rows of Table 2.1 correspond

to those in Table W.1 of Ebert and Strack (2015) and give probabilites for which (2.2) is

satisfied. For example, for the Tversky and Kahneman (1992) weighting function, and a loss

aversion parameter of K = 2.25, (2.2) is satisfied provided the gain probability p̂ is chosen

to be less than 0.072.
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Ebert and Strack (2015) show that a su�cient condition for there to exist a p̂ such

that (2.2) holds is both w0
+

(0+) > K and w0
�(1�) > K. This property says that extremely

unlikely gains are overweighted and extremely likely losses are underweighted, both by

more than the loss aversion parameter. That is, probability weighting is stronger than loss

aversion.

2.4.2 Randomisation in the continuous model

Now we move on to mixed strategies and our first main result in the continuous time setup.

As in the discrete model, the fact that a PT agent prefers one strategy over another does

not mean that he necessarily prefers the first strategy over any mixture of the two. We now

show that in the setup considered in the main body of Ebert and Strack (2015), the agent

who can randomise his strategy prefers such a mixture. Thus if the naive agent can mix

over strategies then he prefers sometimes stopping over never stopping. This prediction is

more realistic and is closer to observed behaviour.

Proposition 2.2. Suppose that in addition to the assumptions of Proposition 2.1 we have

w0
�((1� p̂)) > w0

+

(p̂). (2.3)

Then there exists ✓̂ 2 (0, 1) such that the agent with zero initial wealth prefers a randomised

strategy of stopping immediately with probability (1 � ✓̂) and otherwise gambling until his

wealth reaches ✏̂(1�p̂) or �✏̂p̂ to the pure strategy of gambling until his wealth reaches ✏̂(1�p̂)

or �✏̂p̂.

Proof. We use the same notation as in the proof of Proposition 2.1. Suppose now the agent

stops gambling immediately with probability 1 � ✓ and otherwise gambles until his wealth

reaches b✏̂ or a✏̂. Fixing p̂, ✏̂, considering ✓ as a variable and writing Hp̂,✏̂(✓) as the value of

the strategy,

Hp̂,✏̂(✓) = w
+

(✓p̂)U(b✏̂) + w�(✓(1� p̂))U(a✏̂) = w
+

(✓p̂)U(✏̂(1� p̂)) + w�(✓(1� p̂))U(�✏̂p̂).

Note that Hp̂,✏̂(0) = 0 and Hp̂,✏̂(1) > 0 by design.

Consider the derivative of H with respect to ✓. Then

@

@✓
Hp̂,✏̂(✓) = p̂w0

+

(✓p̂)U(✏̂(1� p̂)) + (1� p̂)w0
�(✓(1� p̂))U(�✏̂p̂)

= p̂(1� p̂)



w0
+

(✓p̂)
U(✏̂(1� p̂))

1� p̂
+ w0

�(✓(1� p̂))
U(�✏̂p̂)

p̂

�

.
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Since U is concave on y > 0, U(y) + U(�y) < 0 and p̂ < 1/2, we have

U(�✏̂p̂)
p̂

< �U(✏̂p̂)

p̂
< �U(✏̂(1� p̂))

1� p̂
.

Recall our hypothesis that w0
�((1� p̂)) > w0

+

(p̂). Then

@

@✓
Hp̂,✏̂(✓)

�

�

�

�

✓=1

< p̂
�

w0
+

(p̂)� w0
�(1� p̂)

 

U(✏̂(1� p̂)) < 0.

In particular, Hp̂,✏(✓) is maximised at some interior point and the agent who can

randomise prefers a mixed strategy of sometimes stopping and sometimes waiting until

wealth first leaves the interval (a✏̂, b✏̂) to a pure strategy of waiting until wealth first leaves

the same interval.

⇤

Intuitively, condition (2.3) says we require the probability weighting function on

losses for nearly certain events to be stronger than probability weighting on gains for rare

events. Since typical weighting functions satisfy w±(1/2) < 1/2, w± is steeper over (1/2, 1)

than over (0, 1/2) and hence (2.3) may be expected to hold for a wide family of popular

weighting functions. Since
R

1/2
0

[w0
�((1� p))�w0

+

(p)]dp = 1�w�(1/2)�w
+

(1/2) > 0 there

must exist a range of p̂ for which w0
�((1� p̂)) > w0

+

(p̂).

We now discuss specific functional forms in the literature. By considering limp#0
w0

�(1�p)

w0
+(p)

we see that for the Tversky and Kahneman (1992) weighting functions, (2.3) is satisfied for

all su�ciently small p̂ provided �
+

� ��. For the weighting function of Goldstein and Ein-

horn (1987), (2.3) is satisfied for all su�ciently small p̂, provided d
+

> d� or d
+

= d� and

�
+

� ��. In the third row of Table 2.1 we report the range of probabilities for which (2.3)

is satisfied. We take the same parameters as used by Ebert and Strack (2015) in their Table

W.1. We see that for their parameter choices, condition (2.3) holds for all probabilities

p̂ < 1/2 for the Tversky and Kahneman (1992) and Goldstein and Einhorn (1987) weighting

functions. In particular, the condition (2.3) is very mild and is easily satisfied for these

parameters. There is also a column in Table 2.1 for the Prelec (1998) weighting function.

Although (2.3) is not always satisfied by the Prelec (1998) weighting function, it is satisfied

for almost the whole range of probabilities for the parameters used by Ebert and Strack

(2015), excluding only very small values of p̂ less than 0.0018.

All the examples in Table 2.1 assume w
+

= w�. An example with w
+

6= w� is the

Tversky and Kahneman (1992) weighting function with parameters of �
+

= 0.61, �� = 0.69

and loss aversion K = 2.25. Then Ebert and Strack’s condition (2.2) holds for p̂ < 0.0839
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and condition (2.3) holds over the range (0.0023, 0.5). In particular, both (2.2) and (2.3)

hold for 0.0023 < p̂ < 0.0839.

Proposition 2.2 shows that the first exit strategy of Ebert and Strack (2015) can be

improved upon by mixing with sometimes stopping immediately, and hence their argument

is not su�cient to conclude that a naive agent never stops if he has access to randomised

strategies. Instead, we need to identify the optimal prospect: if this prospect has no mass

at the starting wealth level, then a naive agent with the ability to randomise would never

stop. Our goal in the next section is to show that in general this is not the case, by giving

examples in which the optimal prospects have masses at zero.

2.5 Two stylised examples

In this section, we give simple, tractable examples which demonstrate that the optimal

prospect can have a mass at the starting wealth level. As before, the wealth process prior to

stopping is a Brownian motion starting at the reference level which is assumed to be zero.

We consider two di↵erent specifications of the value function U and probability weighting

functions w±. Using (1.8) and a change of variable, our problem in both cases is to find

(the optimiser for)

V = sup

⇢

Z 1

0

w
+

(F̄X(x))U 0(x)dx�
Z

0

�1
w�(FX(x))U 0(x)dx

�

(2.4)

where the supremum is taken over random variables X with mean 0. FX is the CDF of X

and F̄X(x) := 1� FX(x).

2.5.1 Specifications

Specification I

In our first specification, the value function takes the piecewise linear form

U(x) =

8

<

:

x ^ 1, x � 0,

Kx, x < 0,

where K > 1. Then U exhibits loss aversion (both simple and finite marginal) and is concave

over gains13 and convex on losses.

13Some form of concavity is required on gains, else the optimisation problem for the PT agent with

probability weighting is ill-posed. The cap on the value function for wealth above one is a particularly

simple form, and may represent the not unrealistic assumption that the agent will be asked to leave the

casino once his cumulative winnings reach a critical value.
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The probability weighting functions w± are general inverse-S shaped satisfying the

standard assumptions in Section 2.2.1. Define ⌘ = minp2[0,1]
w�(p)

p and q� = argminp2[0,1]
w�(p)

p .

Also set

q
+

= argmax
p2[0,1]

{w
+

(p)�K⌘p} . (2.5)

We further assume that

q
+

+ q� = argmax
p2[0,1]

⇢

w
+

(p)�K min
u2[0,1]

✓

w�(u)

u

◆

p

�

+ argmin
p2[0,1]

⇢

w�(p)

p

�

< 1. (2.6)

If w
+

= w� = w and the probability weighting function is that of Tversky and

Kahneman (1992) then (2.6) is satisfied provided there is a reasonable level of loss aversion.

For example if � = 0.65, (2.6) is satisfied by K greater than about 1.2. See Appendix 2.A for

a pair of simple su�cient conditions for (2.6). If K = 1 such that there is no loss aversion,

then (2.6) cannot hold.

Specification II

In the second case, the value function is logarithmic over gains and linear on losses

taking the form of

U(x) =

8

<

:

ln(1 + x), x � 0,

Kx, x < 0.
(2.7)

As before, we impose simple as well as finite marginal loss aversion by setting K > 1.

The weighting function on losses w� is general inverse-S shaped. We again define

⌘ = minp2[0,1]
w�(p)

p and q� = argminp2[0,1]
w�(p)

p . Meanwhile, the weighting function on

gains is piecewise linear given by

w
+

(p) =

8

>

>

>

<

>

>

>

:

↵p, 0  p  q
+

,

↵q
+

+ �(p� q
+

), q
+

< p < ↵�1

↵�� + q
+

,

1� ↵(1� p), ↵�1

↵�� + q
+

 p  1,

(2.8)

where ↵ > 1, � 2 (0, 1) and q
+

are constants with14 0 < q
+

< 1��
2(↵��) <

1

2

. Piecewise linear

weighting functions of this form are proposed by Webb (2015) as a simple generalisation of

the probability weighting function used in the NEO-expected utility of Chateauneuf et al.

(2007). Relative to the NEO-expected utility probability weighting functions, a piecewise

linear function has the advantage of being continuous. Figure 2.6 gives a sketch of w
+

and

w� under this specification.

14A condition q+  1��
↵��

is required to ensure that ↵�1
↵��

+ q+  1. The additional factor of 1
2 ensures

that w+( 12 ) <
1
2 .
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p

w
+

(p)

0

1

1q
+

↵q
+

↵�1

↵�� + q
+

�(↵�1)

↵�� + ↵q
+

p

w�(p)

0

1

1q�

Figure 2.6: Sketch of w
+

and w� used in Specification II of Section 2.5. w� is a general

inverse-S shaped weighting function whilst w
+

is a piecewise linear function defined in (2.8).

Finally, we assume q
+

+ q� < 1 (as in (2.6) under Specification I) and

1� ↵q
+

1� q
+

< K⌘ < ↵. (2.9)

Note that under assumption (2.9) and using the piecewise linear structure of w
+

, we have

max
p2[0,1]

{w
+

(p)�K⌘p} = max (0, 1�K⌘, q
+

(↵�K⌘)) = q
+

(↵�K⌘)

and the optimiser is q
+

. Hence q
+

= argmaxp2[0,1] {w+

(p)�K⌘p}. Even though q
+

should

be interpreted as a given model parameter under this specification, it is consistent with

definition (2.5) under Specification I.

2.5.2 The optimal prospects in the stylised examples

Proposition 2.3. If the initial wealth level is x = 0, then the optimal prospects P⇤ = P⇤
0

under Specification I and II share the same form of a three-point distribution as

P⇤ =

✓

� ⌫

q�
, q�; 0, 1� q� � q

+

;
⌫

q
+

, q
+

◆

(2.10)

where

q� = argmin
p2[0,1]

w�(p)

p
, q

+

= argmax
p2[0,1]

⇢

w
+

(p)�K min
u2[0,1]

✓

w�(u)

u

◆

p

�

.

Moreover, ⌫ = q
+

under Specification I and ⌫ = q
+

⇣

↵q�
Kw�(q�)

� 1
⌘

under Specification II.

The proof is given in Appendix 2.B. It follows that for an initial wealth starting at

the reference level of zero the optimal prospect includes a point mass at the reference level.
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If, in addition to the restrictions on parameters of w± in Section 2.5.1, we add an assumption

that there exists some p such that (2.2) and (2.3) hold for all p̂ < p.15 Then we have examples

which satisfy the conditions of Proposition 2.1, Proposition 2.2 and Proposition 2.3. For

these examples, a naive agent with no access to randomisation and with zero initial wealth

will never stop (Proposition 2.1, Ebert and Strack (2015)). Such an agent can benefit from

randomisation to improve the first exit strategy of Ebert and Strack (2015) (Proposition

2.2). His optimal prospect includes an atom at zero (Proposition 2.3) and we discuss the

possible optimal behaviours of the naive agent in Section 2.5.4.

2.5.3 The optimal stopping rules in the stylised examples

The conclusion from the previous section is that there are circumstances in which the op-

timal prospect includes a mass at the origin. Typically (as in the example above) there is

uniqueness at the level of optimal prospects. But there are many stopping rules an agent

might use to attain a given prospect. In the probability literature, these are known as

solutions of the Skorokhod embedding problems.16

For now, assume that the agent is a precommitting one and he is looking for a

stopping strategy which can attain the target prospect P⇤
0

. One way to do so is to use a

stopping rule in which the stopping time is the first time that the Brownian motion falls

below a well-chosen function of its running maximum. The Azéma and Yor (1979) solution

of the Skorokhod embedding problem takes this form.

A second way to achieve the prospect P⇤
0

is to wait until Brownian motion hits

â = �⌫ q++q�
q�

or b̂ = ⌫ q++q�
q+

, and then to stop the first time thereafter that the Brownian

motion is at � ⌫
q�

, 0 or ⌫
q+

. For an agent with access to a randomisation device (in the form

of an independent random variable), other stopping rules can be used to attain optimality.

The simplest is to stop immediately with probability 1� q
+

� q� and to otherwise stop the

first time the Brownian motion reaches � ⌫
q�

or ⌫
q+

.

A further way to achieve the prospect P⇤
0

is to stop the first time the Brownian

motion hits � ⌫
q�

or ⌫
q+

, and also to stop at zero at a constant rate � := 1�q+�q�
2⌫ . Then,

15In both Specification I and II, it is possible to construct examples of w± which satisfy all these conditions

simultaneously. See Appendix 2.C.
16The only cases where there is a unique embedding (within the class of uniformly integrable embeddings)

are those where the optimal prospect is either a point mass at the reference level (when stopping immediately

is the only strategy) or a pair of point masses at locations ǎ < 0 < b̌ (when the only strategy is to stop

on first exit from the interval (ǎ, b̌)). In general, for dynamic optimal stopping problems under probability

weighting we must expect non-uniqueness of the optimal strategy.
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in the absence of stopping at � ⌫
q�

or ⌫
q+

, the probability that the process has not been

stopped by time t is e��L0
t where (L0

u)u�0

is the local time of Brownian motion at zero.

More specifically, this is the stopping rule introduced in Lemma 1.10 of Chapter 1 with the

choice of � such that �({0}) = �, �({� ⌫
q�

}) = �({ ⌫
q+

}) = 1 and zero elsewhere. This

strategy is time-homogeneous and Markovian in the sense that the decision to stop only

depends on the current value of the wealth process. In fact it is the unique stopping rule

with these properties.17

2.5.4 Naive agents in the stylised examples

Proposition 2.3 describes the optimal prospect for the PT agent, and the discussion in

Section 2.5.3 describes some optimal strategies for an agent with zero initial wealth who

can commit to a strategy or stopping rule. What then is the strategy followed by the naive

agent? The strategy of the naive agent is the instantaneous, time zero, element of the

planned strategy of the agent who can commit to a stopping rule.

When the Brownian motion is at the origin, there is a family of optimal strategies

for the agent who can precommit, and no unique prediction for the behaviour of the naive

agent. Provided the optimal prospect includes an atom at zero (Proposition 2.3), any time-

zero behaviour at the reference level associated with the possible strategies in Section 2.5.3

(including stopping immediately, always continuing, or stopping at a rate) is consistent with

the behaviour of a naive agent.18

What might be considered a characteristic of a reasonable strategy for a naive agent?

One characteristic would be homogeneity in time, so that the same rule is used to stop or

otherwise continue each time the process returns to a given level. A second characteristic

would be that the decision to stop, now and in the future, depends on the prevailing level of

17In this example where the underlying wealth process is a Brownian motion, we say that a stopping

time ⌧ is time-homogeneous and Markovian if there exists a time-independent measure � such that P(⌧ >

t) = P(
R
R Lu

t �(du) < T ) where (Lu
t )t>0,u is the local time process of the Brownian motion and T is an

independent exponential random variable of rate one. Suppose � has a density such that �(dx) = ⇣(x)dx.

Using occupation times formula, we could deduce the hazard rate of this stopping strategy as

lim
�t#0

P(⌧ 2 (t, t+ �t)|⌧ > t, (Bs)s6t)

�t
= ⇣(Bt).

In particular, the agent is stopping the process at a rate per unit time which only depends on the current

level of the Brownian motion but not its historical path nor time. If an agent wants to use this type of

time-homogeneous, Markovian stopping rule to attain a given target prospect, the required choice of � is

uniquely given by (1.17) in Chapter 1.
18If only pure strategies are deemed admissible, then the Ebert and Strack (2015) result implies that

instantaneous stopping is never optimal.
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the wealth process and not on any other factors.19 This suggests that a naive agent should

adopt a Markovian strategy. Within the class of time-homogeneous, Markovian stopping

rules there is a unique strategy which attains a given prospect. If we insist that the naive

agent chooses strategies from this class then there is a unique prediction for his behaviour.

Except in trivial cases, the use of a Markovian strategy requires randomisation.

Earlier in Section 2.5.3 we gave four stopping rules an agent with the ability to

precommit might use to attain the optimal prospect. The first strategy based on the Azéma-

Yor stopping time is Markovian in the pair (Bt, St = supst Bs)t�0

but it is not Markovian

in the wealth process B alone. The second strategy is not time-homogeneous. Although

neither Markovian nor time-homogeneous, both these strategies are pure, and never involve

stopping immediately. A naive agent basing his strategy on these rules never stops, as

predicted by Ebert and Strack (2015).

The third proposed strategy for the agent with a commitment device is to stop

immediately with probability 1 � q
+

� q�, and otherwise to stop the first time the wealth

process leaves the interval (� ⌫
q�

, ⌫
q+

). This requires a randomisation device at t = 0. The

strategy is time-inhomogeneous since the agent plans to use a di↵erent strategy on any

future returns to zero. A naive agent following this strategy has a positive probability of

stopping every time the Brownian motion is at the reference level. Since Brownian motion

started at zero returns to zero infinitely often in any positive time interval, the naive agent

using this strategy stops the first time the Brownian motion hits zero with probability one.

For wealth processes started at the reference level, stopping is immediate with probability

one, the exact converse to the Ebert and Strack (2015) result of always waiting to the bitter

end.

The fourth strategy requires randomisation as well, but is Markovian and time-

homogeneous. The naive agent following this stopping rule stops at the origin at rate �.

The decision about whether to stop or continue depends only on the current value of wealth,

and does not depend on any other factors (including time). The discussion of this section

can be summarised by the following result.

Theorem 2.4. Suppose the naive agent uses a Markovian time-homogeneous strategy.

Then, for the examples in Section 2.5.1, the agent may stop at the reference level.

19A naive agent will reconsider any planned decisions. At time zero the agent does not plan to base his

strategy on any element of the wealth history except the current value: it is not natural for him to plan to

use a rule in which stopping at a future time depends on the behaviour of the wealth process between now

and that future time.
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2.6 Extension to a more general model

Our stylised examples in Section 2.5 have been designed to facilitate calculations. Nonethe-

less, they demonstrate that it is not the case that naive agents never stop: instead if agents

can randomise their strategy then they may stop voluntarily. For our analysis to be as

wide-ranging as Ebert and Strack (2015), we need to allow for more general value functions

and more general wealth processes. In particular, we want to consider value functions with

infinite marginal utility at the origin which are not covered by Proposition 2.1 and 2.2.

In this section, we consider the wealth process Xx = (Xx
t )t>0

being an exponential

Brownian motion such that

Xx
t = x exp

✓✓

µ� �2

2

◆

t+ �Bt

◆

combined with the value and weighting function of Tversky and Kahneman (1992) as in

(1.1) and (1.3). We consider parameters combination such that the drift of the asset is

non-negative and the optimal stopping problem is well-posed. A su�cient condition is given

by ↵+

d+
< 1� 2µ

�2 6 1 (see Proposition 1.1 in Chapter 1). We study the behaviour of a naive

agent with di↵erent initial wealth levels x (while keeping his reference point R fixed). The

strategy of the naive agent at wealth level x is given by the time zero element of the optimal

solution of the problem

V (x) = sup
⌧

E(Xx
⌧ �R). (2.11)

Problem (2.11) has been solved completely in Chapter 1 and the optimal target

prospect P⇤(x) has a (scaled) quantile function in form of (1.11). It contains a point mass

on losses set at some level `(x) below min(x,R), a point mass at some level a(x) > R together

with a continuous distribution on a semi-infinite interval (a(x),1). From Proposition 1.7,

we know that the optimal prospect does not allocate any probability mass to the reference

level. Hence a naive agent will never stop at the reference level even if he has access to

randomised strategies.

However, there exists initial wealth levels x such that x lies inside the support of

the optimal prospect P⇤(x). In Figure 2.7 we plot the location `(x) of the point mass on

losses and the lower limit a(x) of the support of the distribution on gains as functions of the

initial wealth x. For small initial wealths x < x⇤ = 1.015, the optimal prospect consists of a

point mass on losses at `(x) where `(x) < min{x,R}, and a distribution on gains supported

on [a(x),1) where a(x) > max{x,R}. But for larger initial wealths x > x⇤, the form of
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the optimal prospect changes. There is no mass assigned to losses, and moreover a(x) < x.

Then the initial wealth lies within the support of the optimal prospect.

x
0.4 0.6 0.8 1 1.2 1.4 1.6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

ℓ(x)
a(x)
x

Figure 2.7: The plot of the levels of losses and the lower bounds of gains against di↵erent

initial wealth levels x. The model takes a martingale exponential Brownian motion and

Tversky and Kahneman (1992) value and weighting functions. For x
0

> x⇤ = 1.015, the

optimal prospect does not place any probability mass on losses, and the lower bound on the

support of the optimal prospect lies below the initial wealth level x. Parameters used are

↵
+

= 0.5, ↵� = 0.9, k = 1.25, �± = 0.7 and R = 1.

The implications for the naive agent in this example are as follows. If at time t the

current wealth Xt is such that Xt < x⇤ then it is not optimal to stop. If the current wealth

lies above x⇤ then it lies within the interval to which the optimal prospect assigns mass, and

a naive agent with access to randomised strategies may stop there. Although for a given

initial wealth there is no unique optimal stopping rule for the agent with a precommitment

device, there is an unique optimal stopping rule within the class of time-homogeneous,

Markovian strategies.

At an initial wealth level of x, suppose the precommitting agent plans to attain the

optimal prospect P⇤(x) by stopping at y at rate  (y;x) per unit time for some function

 . If the naive PT agent adopts strategies from this family, in particular, if he uses the

instantaneously-optimal (time-homogeneous, Markovian) strategy of an agent with a pre-

commitment device, then the naive agent stops at x at rate  (x;x). The resultant stopping
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rate  (x;x) adopted by the naive agent is non-zero for all x above x⇤. In this case the

realised prospect of the naive agent consists of a density on (x⇤,1), together with a point

mass at 0 (its size is equal to the probability that X never reaches x⇤). In other words, a

naive agent who can randomise may stop anywhere above x⇤.

2.7 Conclusion

This chapter derives new results on prospect theory in a dynamic context. Our first con-

tribution is to observe that, unlike in the expected utility paradigm, PT agents can benefit

from following randomised strategies. We investigate the impact of randomised strategies in

recombining binomial tree models in the spirit of Barberis (2012) and show that the ability

to follow randomised strategies can lead to improvements in PT value.

Our second contribution is to revisit the continuous time model of Ebert and Strack

(2015) under an assumption that agents have access to randomised strategies. Ebert and

Strack (2015) argue that for any reasonable specification of PT preferences, a naive agent

prefers to stop on the first exit from some interval to stopping immediately. We show in a

general setting that there is a mixed strategy which is preferred to this first exit strategy,

and our mixed strategy may involve stopping at the reference level. Moreover, we provide

examples where the optimal prospect for an agent includes mass (in form of an atom or a

density) at the initial wealth level. If the naive agent is able to follow randomised strategies,

then the agent may realise this optimal prospect with a strategy which involves sometimes

stopping. Ebert and Strack (2015) show that under pure strategies, PT preferences and

näıvité lead to the “unrealistic” conclusion of never stopping. The authors discuss options

to evade their never stopping result including dispensing with the probability weighting

element of PT or the notion of näıvité. Our results show that a third possibility is to retain

probability weighting and näıvité but to allow the agent to use randomised strategies. If

the setup is expanded to allow for randomised strategies then the predictions of a dynamic

prospect theory model are closer to reality in the sense that they include voluntary cessation

of gambling for a naive agent.
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Appendix to Chapter 2

2.A Simple su�cient conditions for (2.6).

A pair of conditions which together are su�cient for (2.6) is

argmax
p2[0,1]

{w
+

(p)� p}+ arg min
p2[0,1]

⇢

w�(p)

p

�

< 1 (2.12)

and

K >

✓

min
p2[0,1]

w�(p)

p

◆�1

. (2.13)

Proposition 2.5. Suppose w± = w where w is a di↵erentiable, inverse-S shaped probability

weighting function which is concave on [0, Q] and convex on [Q, 1]. Let A(p) = w(p)+w(1�

p). If A is strictly decreasing on [0, 1/2), then Q  1/2 and (2.12) holds.

Proof. Let q
+

= argmaxp2[0,1](w(p)� p) and q� = argminp2[0,1]

⇣

w(p)
p

⌘

. Since A is strictly

decreasing on [0, 1/2) it follows that w0(p) � w0(1 � p) < 0 there. Suppose Q > 1

2

. Then

1�Q < 1/2 and w0(1�Q) < w0(Q). But from the shape of w, w0 is minimised at Q, which

yields a contradiction. Hence Q 6 1

2

.

Define w(p) := 1 � w(1 � p) which is an inverse-S shaped probability weighting

function made by rotating w. Since q� is a contact point of the largest convex function

dominated by w, by symmetry 1� q� is a contact point of the concave majorant to w.

Let q⇤ 2 [0, 1 � Q] be the solution to the equation w0(q⇤) = 1. As w0(p) 6
w0(1 � p) = w0(p) on [0, Q] and w0(q

+

) = 1 = w0(q⇤), we have w0(q⇤) = w0(q
+

) 6 w0(q
+

).

Since q
+

6 Q 6 1 � Q and w0 is decreasing on [0, 1 � Q], this gives q
+

6 q⇤. Also

w0(1 � q�) < 1 = w0(q⇤) and in turn q⇤ < 1 � q�. It follows that q
+

6 q⇤ < 1 � q� or

equivalently q
+

+ q� < 1. Hence (2.12) holds. ⇤

Corollary 2.6. If w± = w then for the Tversky and Kahneman (1992) and Goldstein and

Einhorn (1987) weighting functions (2.12) holds. Then if K is su�ciently large such that

(2.13) holds, (2.6) holds also.

Proof. The proof of this result makes use of the fact that these weighting functions are

inverse-S shaped, and therefore all that needs to be checked is that A is strictly decreasing

on [0, 1/2), which is a simple exercise in calculus. ⇤
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2.B Solutions in the examples of Section 2.5

Define

D(µ) = supR 1
0

¯F
X

(x)dx=µ=
R 0
�1 F

X

(x)dx

⇢

Z 1

0

w
+

(F̄X(x))U 0(x)dx�
Z

0

�1
w�(FX(x))U 0(x)dx

�

= supR 1
0

¯F
X

(x)dx=µ=
R 0
�1 F

X

(x)dx

⇢

Z 1

0

w
+

(F̄X(x))U 0(x)dx�K

Z

0

�1
w�(FX(x))dx

�

since U(x) = Kx on x < 0 for both specifications. Then V = supµ D(µ). The expression

for D(µ) can be rewritten as

D(µ) = sup
(h+,h�)2A2

1(µ)

⇢

Z 1

0

w
+

(h
+

(x))U 0(x)dx�K

Z 1

0

w�(h�(x))dx

�

where the set A2

1

(µ) is given by

A2

�(µ) =

⇢

(h
+

, h�) : [0,1)2 ! [0,1)2, h± decreasing and right continuous, h±(0)  1,

Z 1

0

h±(x)dx = µ, h
+

(0) + h�(0)  �

�

.

Then D(µ)  D̃(µ) where

D̃(µ) = sup
(h+,h�)2A2

2(µ)

⇢

Z 1

0

w
+

(h
+

(x))U 0(x)dx�K

Z 1

0

w�(h�(x))dx

�

.

In calculating D(µ) we require the total mass of the target law X to be less than or equal

to one (with the understanding that X can be made into a random variable with unit total

mass by including an atom at zero). In calculating D̃(µ) we make no such requirement. The

advantage of considering D̃(µ) is that the problems over gains and losses decouple:

D̃(µ) = sup
h2A1

1(µ)

⇢

Z 1

0

w
+

(h(x))U 0(x)dx

�

�K inf
h2A1

1(µ)

⇢

Z 1

0

w�(h(x))dx

�

where

A1

�(µ) = {h : [0,1) ! [0,1), h decreasing and right continuous, h(0)  �,

Z 1

0

h(x)dx = µ}.

Set

G̃(w;µ) = sup
h2A1

1(µ)

Z 1

0

w(h(x))U 0(x)dx, L̃(w;µ) = inf
h2A1

1(µ)

Z 1

0

w(h(x))dx.

Then

D̃(µ) = G̃(w
+

;µ)�KL̃(w�;µ).

Our plan is to solve for G̃(w
+

;µ) and L̃(w�;µ) (and to find respective optimisers hµ
+

, hµ
�)

and hence to find the µ (µ̂ say) which maximises D̃(µ). There are two possibilities. If
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hµ̂
+

(0)+hµ̂
�(0) > 1 then the optimiser for D̃ = supµ D̃(µ) is not feasible for D (and then the

optimiser for D depends on a complicated interplay between h
+

(0) and h�(0)); alternatively

if hµ̂
+

(0) + hµ̂
�(0)  1 then the optimiser for D̃ = supµ D̃(µ) is feasible for D and hence is

an optimiser for D. The corresponding optimal target law has P(X > x) = hµ̂
+

(x) for x > 0

and P(X < x) = hµ̂
�(�x) for x < 0. If hµ̂

+

(0) + hµ̂
�(0) < 1 then the optimal target law

includes an atom of size 1� (hµ̂
+

(0) + hµ̂
�(0)) at zero.

We first look at the problem for losses which is common to both specifications.

Recall ⌘ = min
⇣

w�(p)
p

⌘

and q� = argmin
⇣

w�(p)
p

⌘

. Then w�(h) � ⌘h with equality at zero

and q�. For h 2 A1

1

(µ) we have

Z 1

0

w�(h(x))dx �
Z 1

0

⌘h(x)dx = ⌘µ.

Set h⇤(x) = q�I
(x< µ

q�
)

. Then h⇤ is admissible and
R1
0

w�(h⇤(x))dx = µ
q�

w�(q�) = ⌘µ.

Then h⇤ is optimal and L̃(w�;µ) = ⌘µ.

We complete the solution construction for each specification in the following two

subsections.

2.B.1 Specification I

In this case we have G̃(w
+

;µ) = suph2A1
1(µ)

R

1

0

w
+

(h(x))dx. Recall that w
+

is a general

inverse-S shaped probability weighting function. Let Q
+

be the inflexion point of w
+

.

Solution of the problem for gains

Extend the definition of w
+

to [0,1) by setting w
+

(p) = 1 for p > 1. Let W be the smallest

concave majorant of w
+

. Then W = w
+

on [0,'] and W is linear on [', 1] for some ' < Q
+

.

Let W̃ (�) = supp2(0,1){W (p)� �p} be the convex dual of W .

For � > 0, W (p)  W̃ (�) + �p and

Z

1

0

w
+

(h(x))dx 
Z

1

0

W (h(x))dx 
Z

1

0

{W̃ (�) + �h(x)}dx  W̃ (�) + �µ

where we use
R

1

0

h(x)dx 
R1
0

h(x)dx = µ. Since � is arbitrary, and W is concave, so that

inf�{W̃ (�) + �µ} = W (µ), we have
R

1

0

w
+

(h(x))dx  W (µ).

Now, we exhibit an admissible h such that
R

1

0

w
+

(h(x))dx = W (µ). This h is then

optimal and G̃(w
+

;µ) = W (µ). First consider the degenerate case when µ � 1. Take

h(x) = I
(x<µ); then

R

1

0

w
+

(h(x))dx = 1 = W (µ). Now consider the case where µ  '.

Take h(x) = µI
(x<1)

; then
R

1

0

w
+

(h(x))dx = w
+

(µ) = W (µ). Finally consider the case

' < µ < 1. Take h(x) = I(x<µ�'

1�'

) + 'I(µ�'

1�'

x<1). Then
R

1

0

h(x)dx = µ�'
1�' + ' 1�µ

1�' = µ.
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Moreover, since h takes values 1 and ', and since W = w
+

at these points, and W is linear

on [', 1],
Z

1

0

w
+

(h(x))dx = w
+

(1)
µ� '

1� '
+ w

+

(')
1� µ

1� '
= W (µ).

Solution of the problem for gains and losses

By definition

D̃ = sup
µ
{G̃(w

+

;µ)�KL̃(w�;µ)} = sup
µ
{W (µ)�K⌘µ} = W̃ (K⌘).

Under (2.6) and more especially the fact that q
+

:= argmaxp2[0,1]{w+

(p) � K⌘p} < 1 we

have that the optimal µ given by ⌫ = q
+

satisfying 0  ⌫ < '. For this ⌫, the solution of

the problem for gains is a mass of size q
+

at 1, and the solution of the problem for losses

is a mass of size q� at �q
+

/q�. Moreover, under (2.6) we have q
+

+ q� < 1. Then D̃ = D

and the optimiser for the problem is the prospect P⇤ = (�q
+

/q�, q�; 0, 1 � q
+

� q�; 1, q+)

which agrees with (2.10).

2.B.2 Specification II

In this case we have G̃(w
+

;µ) = suph2A1
1(µ)

R1
0

1

1+xw+

(h(x))dx. Recall that w
+

is piecewise

linear.

Solution of the problem for gains

Let W be the smallest concave majorant of w
+

. We solve the maximisation problem for the

concave probability weighting function W . This gives an upper bound for the problem with

probability weighting function w
+

. Then we show that this bound can be attained.

Set � = 1�↵q+
1�q+

. Then � 2 (0, 1) and

W (p) =

8

<

:

↵p, 0  p  q
+

,

↵q
+

+ �(p� q
+

), q
+

< p  1.

We want to find G̃(W,µ) = suph2A1
1(µ)

ĜW (µ, h) where

ĜW (µ, h) =

Z 1

0

1

1 + x

�

↵h(x)I{h(x)q+} + (↵q
+

+ �(h(x)� q
+

))I{h(x)>q+}
�

dx.

Suppose first that µ 
⇣

↵
� � 1

⌘

q
+

. Set

I(x) = max
g2[0,1]

⇢

1

1 + x

�

↵gI{gq+} + (↵q
+

+ �(g � q
+

))I{g>q+}
�

� ↵q
+

g

µ+ q
+

�

. (2.14)
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Then, for h 2 A1

1

(µ),

ĜW (µ, h)  ↵q
+

µ

µ+ q
+

+

Z 1

0

I(x)dx.

From the piecewise linear structure of the objective function the maximum in (2.14) can

only occur at g 2 {0, q
+

, 1} and

I(x) = max

⇢

0,
↵q

+

1 + x
�

↵q2
+

µ+ q
+

,
1

1 + x
� ↵q

+

µ+ q
+

�

.

Then since
✓

↵q
+

1 + x
�

↵q2
+

µ+ q
+

◆

�
✓

1

1 + x
� ↵q

+

µ+ q
+

◆

=
↵q

+

µ+ q
+

(1� q
+

)� 1� ↵q
+

1 + x

� �(1� q
+

)� (1� ↵q
+

) = 0

we have

I(x) =

8

>

<

>

:

0, x � µ
q+

,

↵q
+

⇣

1

1+x � q+
µ+q+

⌘

, x < µ
q+

.

Then for any h 2 A1

1

(µ)

ĜW (µ, h)  q
+

↵µ

µ+ q
+

+

Z µ/q+

0



↵q
+

1 + x
�

↵q2
+

µ+ q
+

�

dx = ↵q
+

ln

✓

1 +
µ

q
+

◆

. (2.15)

Further, if h(x) = q
+

I{x<µ/q+} then h 2 A1

1

(µ) and there is equality in (2.15). Hence

G̃(W,µ) = ↵q
+

ln
⇣

1 + µ
q+

⌘

.

Finally, for the non-negative random variableX⇤ = X⇤(µ) with FX⇤(x) = q
+

I{x<µ/q+}

for x 2 (0,1) we find

↵q
+

ln

✓

1 +
µ

q
+

◆

=

Z 1

0

1

1 + x
w

+

(FX⇤(x))dx  G̃(w
+

, µ)  G̃(W,µ) = ↵q
+

ln

✓

1 +
µ

q
+

◆

and hence G̃(w
+

, µ) = ↵q
+

ln
⇣

1 + µ
q+

⌘

.

Now suppose µ >
⇣

↵
� � 1

⌘

q
+

. Set

J (x) = max
g2[0,1]

⇢

1

1 + x

�

↵gI{gq+} + (↵q
+

+ �(g � q
+

))I{g>q+}
�

� g

1 + µ

�

(2.16)

= max

⇢

0,
↵q

+

1 + x
� q

+

1 + µ
,

1

1 + x
� 1

1 + µ

�

.

We find

J (x) =

8

>

>

>

>

<

>

>

>

>

:

1

1+x � 1

1+µ , 0  x  �(1 + µ)� 1,

q
+

⇣

↵
1+x � 1

1+µ

⌘

, �(1 + µ)� 1 < x  ↵(1 + µ)� 1,

0, ↵(1 + µ)� 1 < x,
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and the optimiser in (2.16) is g = h⇤(x) where

h⇤(x) =

8

>

>

>

>

<

>

>

>

>

:

1, 0  x  �(1 + µ)� 1,

q
+

, �(1 + µ)� 1 < x  ↵(1 + µ)� 1,

0, ↵(1 + µ)� 1 < x.

Then for h 2 A1

1

(µ) we have

ĜW (µ, h)  µ

1 + µ
+

Z 1

0

J (x)dx = ↵q
+

ln

✓

↵

�

◆

+ ln �(1 + µ).

As before, if we define X⇤ via FX⇤(x) = h⇤(x) 2 A1

1

(µ) then

↵q
+

ln

✓

↵

�

◆

+ ln �(1 + µ) =

Z 1

0

1

1 + x
w

+

(FX⇤(x))

 G̃(w
+

, µ)  G̃(W,µ)  ↵q
+

ln

✓

↵

�

◆

+ ln �(1 + µ).

Hence G̃(w
+

, µ) = ↵q
+

ln
⇣

↵
�

⌘

+ ln �(1 + µ).

In summary,

G̃(w
+

, µ) =

8

>

<

>

:

↵q
+

ln
⇣

1 + µ
q+

⌘

, 0 < µ  q
+

⇣

↵
� � 1

⌘

,

↵q
+

ln
⇣

↵
�

⌘

+ ln �(1 + µ), µ > q
+

⇣

↵
� � 1

⌘

.

Note that G̃(w
+

, ·) is continuously di↵erentiable (and concave) in its second argument. Let

G be the inverse to the derivative of G̃. Then G(y) = (G̃0)�1(y) = ( 1y � 1)I{y<�} + q
+

(↵y �

1)I{y��}.

Solution of the problem for gains and losses

By definition D̃ = supµ{G̃(w
+

;µ) � KL̃(w�;µ)}. We find that the supremum over µ

is attained at ⌫ = G(Kw�(q�)

q�
) = q

+

⇣

↵q�
Kw�(q�)

� 1
⌘

. Condition (2.9) is equivalent to

Kw�(q�)

q�
2 (�,↵) which ensures ⌫ > 0. For µ = ⌫ <

⇣

↵
� � 1

⌘

q
+

, the solution of the

problem for gains is a mass of size q
+

at ⌫
q+

, and the solution of the problem for losses is

a mass of size q� at � ⌫
q�

. Moreover, by hypothesis q
+

+ q� < 1. Then D̃ = D and the

optimiser for the problem is the prospect P⇤ = (� ⌫
q�

, q�; 0, 1� q
+

� q�;
⌫
q+

, q
+

).

2.C Constructions of w± satisfying all the conditions in

Propositions 2.1, 2.2 and 2.3.

In this section, we demonstrate it is possible to construct probability weighting functions

w± which simultaneously satisfy all the conditions in (2.2) and (2.3) and those listed in
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Section 2.5.1 for each specification.

Under Specification I, the w± can be any general inverse-S shaped functions. It

follows from the discussion in Section 2.4.2 and Appendix 2.A that, for example, the Tversky

and Kahneman (1992) weighting functions with � = �
+

= �� can satisfy all the required

conditions if K is su�ciently large.

Now we consider Specification II. Suppose w� is continuously di↵erentiable and such

that ⇤ :=
q

w0
�(1�)w�(q�)

q�
> 1. (The Tversky and Kahneman (1992) and Goldstein and

Einhorn (1987) weighting functions satisfy this condition for all parameter combinations, as

does the piecewise linear weighting function if ↵� � 1). Fix � 2 (1,⇤) and suppose K > 1

is such that K 2 ( q�
w�(q�)

,
w0

�(1�)

�2 ). Then, since w0
�(1�) > K�2, there exists q > 0 such

that w0
�(1 � q) > �K for q  q and then w�(1 � q) < 1 � �Kq < 1 �Kq for q  q. Now

choose a piecewise linear w
+

with ↵ 2 (K,�K), � 2 (0, 1) and q
+

< min{ 1��
2(↵��) , q, 1� q�}.

Then for p̂ 2 (0, q
+

), w
+

(p̂) = ↵p̂ > Kp̂ > Kp̂
1+(K�1)p̂ and w�(1� p̂) < 1�Kp̂ < 1�p̂

1+(K�1)p̂ .

Thus (2.2) holds. Further, w0
�(1 � p̂) > �K > ↵ = w0

+

(p̂) so that (2.3) holds. Finally we

have q
+

< 1 � q� and 1�↵q+
1�q+

< 1 < Kw�(q�)

q�
< K < ↵ such that the assumptions under

Specification II hold.
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Chapter 3

A multi-asset investment and

consumption problem with

transaction costs

“What is so terrible about transaction costs? On what basis are they

considered the ultimate evil, so that their minimization must override

all other considerations of choice, freedom, and justice?”

— Murray Rothbard, The Myth of Neutral Taxation

3.1 Introduction

The study of optimal investment and consumption problem over an infinite time horizon

dated back to the seminal work of Merton (1969), in which a CRRA agent can trade in a

frictionless market consisting of one risk-free bond and one risky asset with price process

following a geometric Brownian motion. Merton provides an explicit solution to the problem:

the agent should invest a constant fraction of his wealth into the risky asset and maintain a

fixed consumption rate per unit wealth. Despite the mathematical elegance of the solution,

it is impractical to implement such an investment strategy involving continuous rebalancing

in view of transaction costs in the real world.

Ever since then researchers have been looking to incorporate market frictions in

the Merton model. Magill and Constantinides (1976) provide intuitions of the form of the

optimal strategy in presence of proportional transaction costs. The agent should trade
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in a minimal fashion to keep the fraction of wealth allocated to the risky asset within a

fixed interval which is referred to as the no-transaction region. This conjectured strategy is

characterised mathematically by Davis and Norman (1990) in form of a local time trading

rule, and its optimality is proved by a standard Hamilton-Jacobi-Bellman (HJB) verification

argument under some technical assumptions. Shreve and Soner (1994) utilise the notion

of viscosity solution to overcome some of the technical restrictions in Davis and Norman

(1990) and re-establish many of their results. More recently, a dual formulation based on

the concept of shadow price has emerged, starting with Kallsen and Muhle-Karbe (2010) in

the context of logarithm utility and later extended to power utility by Choi et al. (2013)

and Herczegh and Prokaj (2015). Choi et al. (2013) derive the conditions on the model

parameters leading to a well-posed problem. Using a primal HJB approach, Hobson et al.

(2016) re-prove these well-posedness conditions and along the way provide a number of new

analytical results on the comparatives statics of the problem.

The existing literature on this subject has been focusing on a market with one

risky asset only, and thus it is a natural direction to generalise the results to a model with

multiple risky assets. However, the extension is di�cult and the limited progress made

so far in a higher dimensional setting is mostly confined to technical characterisations of

the value function/trading strategy, numerical studies or asymptotic analysis. Akian et al.

(1995) show that the value function is the unique viscosity solution to a HJB variational

inequality. In a model with two assets, Chen and Dai (2013) characterise the shape of the

no-transaction region. Explicit solutions in a multi-asset problem with transaction costs are

rare in general. An exception is the special case studied by Liu (2004) where the risky assets

are uncorrelated and the agent has a CARA utility function. Otherwise, one has to resort

to numerical methods such as a policy improvement algorithm proposed by Muthuraman

and Kumar (2006), or a Markov chain approximation scheme of Collings and Haussmann

(1999) which they prove the convergence. Some asymptotic results are available in the cases

with small transaction costs. See Possamäı et al. (2015) for example.

In this chapter we consider the problem with a risk-free bond and two risky assets.

Transactions in the first risky asset are costless, but transactions in the second risky asset,

which we term the illiquid asset, incur proportional costs. (More generally, we may have

several risky assets on which no transaction costs are payable. By a mutual fund theorem,

this general case can be reduced to the case with a single liquid, risky asset.)

The methodology adopted in this chapter is a primal HJB approach based on Hob-

son et al. (2016) which considers the classical case with one risky asset only. We postulate
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that the value function depends on four variables: the total amount of liquid wealth, the

price level of the illiquid asset, number of units of the illiquid asset held and time. Although

the second asset in our model leads to a much more complicated HJB equation, the transfor-

mation scheme used in Hobson et al. (2016) can indeed be employed in our current setting

and we obtain a reduced problem with a similar structure. The main di�culty lies with

the extra parameters entering the problem which make the analysis of the well-posedness

conditions and comparative statics a much more challenging task. But through a detailed

study on the underlying di↵erential equations, we are able to extend the ideas from the

one-dimensional case in Hobson et al. (2016) to the more general setting considered in this

chapter. This in turn allows us to make significant progress towards understanding the

analytical behaviours of the solution in a multi-asset setup.

Our first achievement is to show that the problem of finding the free boundaries

associated with the HJB variational inequality and the value function can be reduced to the

study of a boundary crossing problem for a family of solutions to a class of first order ordinary

di↵erential equations parametrised by the initial values. This allows us to characterise

precisely the parameter combinations for which the problem is well-posed (Theorem 3.4),

and in those cases to give an expression for the value function (Theorem 3.5). These results

extend Choi et al. (2013) and Hobson et al. (2016) to the case of multiple risky assets.

Our second achievement is to make definitive statements about the comparative

statics for the problem. We focus on the boundaries of the no-transaction wedge and the

certainty equivalent value of the holdings in the illiquid asset. Amongst other results, we

prove (see Theorem 3.9 and Corollary 3.10 for precise statements) that as the drift on the

illiquid asset improves, the agent aims to keep a larger fraction of his total wealth in the

illiquid asset, in the sense that the critical ratios at which sales and purchases take place

are increasing in the drift. Conversely, as the agent becomes more impatient, the agent

keeps a smaller fraction of wealth in the illiquid asset. Further, we prove (Theorem 3.11

and Corollary 3.12) that as the drift on the illiquid asset improves, or as the agent becomes

less impatient, the certainty equivalent value of the holdings in the illiquid asset increases.

See Section 3.6 for a more detailed discussion.

The remainder of the chapter is as follows. In the next section we formulate the

problem. In Section 3.3 we derive the HJB equation and give heuristics showing how it can

be converted to a free boundary value problem involving a first order di↵erential equation.

Then we can state our main results in Section 3.4 on the existence of a solution. In Section 3.5

we discuss the various cases which arise. In Section 3.6 we discuss the comparative statics
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of the problem, before Section 3.7 concludes. Materials on the solution of the free boundary

value problem, the verification argument for the HJB equation, and other lemmas on the

analysis of solutions of the di↵erential equations are relegated to an appendix.

3.2 The problem

The economy consists of one money market instrument paying constant interest rate r > 0

and two risky assets, one of which is liquidly traded while the other one is illiquid. There are

no transaction costs associated with trading in the liquid asset. Meanwhile, trading in the

illiquid asset incurs a proportional transaction cost � 2 [0,1) on purchases and � 2 [0, 1)

on sales where not both � and � are zero. Let (S, Y ) = (St, Yt)t>0

be the price processes of

the liquid and illiquid assets respectively. The price dynamics are given by

(St, Yt) =

✓

S
0

exp

✓

(µ� �2

2
)t+ �Bt

◆

, Y
0

exp

✓

(↵� ⌘2

2
)t+ ⌘Wt

◆◆

where (B,W ) is a pair of Brownian motions with correlation coe�cient ⇢ 2 (�1, 1). Write

� := (µ � r)/� and ⌫ := (↵ � r)/⌘ for the Sharpe ratio of the liquid and illiquid asset

respectively.

Let ⇥t be the number of units of the illiquid asset held by an agent at time t.

Then ⇥t = ⇥
0

+ �t �  t where � = (�t)t>0

and  = ( t)t>0

are both increasing, non-

negative processes representing the cumulative units of purchases and sales respectively of

the illiquid asset. Let C = (Ct)t>0

be the non-negative consumption rate process of the

agent and ⇧ = (⇧t)t>0

be the cash value of holdings in the risky liquid asset. We assume

⇥, C and ⇧ are progressively measurable and right-continuous. If X = (Xt)t>0

is the total

value of the liquid instruments (cash and the liquid risky asset) then, assuming transaction

costs are paid in cash,

dXt = r(Xt � ⇧t)dt+
⇧t

St
dSt � Ctdt� Yt(1 + �)d�t + Yt(1� �)d t

= [(µ� r)⇧t + rXt � Ct] dt� Yt(1 + �)d�t + Yt(1� �)d t + �⇧tdBt.

We say that a portfolio (X,⇥) is solvent at time t if its instantaneous liquidation

value is non-negative, that is

Xt + ⇥+

t Yt(1� �)� ⇥�
t Yt(1 + �) > 0.

A consumption/investment strategy (C,⇧,⇥) is said to be admissible if the resulting port-

folio is solvent at the current time and at all the future time points. Write A(t, x, y, ✓) for

the set of admissible strategies with initial time-t value (Xt� = x, Yt = y,⇥t� = ✓).
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We assume the agent has a CRRA utility function with risk aversion parameter

R 2 (0,1) \ {1}. His objective is to find an optimal strategy which maximises the expected

lifetime discounted utility from consumption. The problem is thus to find

V (x, y, ✓) = sup
(C,⇧,⇥)2A(0,x,y,✓)

E
✓

Z 1

0

e��s
C1�R

s

1�R
ds

◆

(3.1)

where � is the agent’s subjective discount rate.

We will call Xt + ⇥tYt the paper wealth of the agent. In our parametrisation a key

quantity will be Pt :=
⇥

t

Y
t

X
t

+⇥

t

Y
t

, the proportion of paper wealth invested in the illiquid asset.

3.3 The HJB equation and a free boundary value prob-

lem

3.3.1 Deriving the HJB equation

Let

V(x, y, ✓, t) = sup
(C,⇧,⇥)2A(t,x,y,✓)

E
✓

Z 1

t
e��s

C1�R
s

1�R
ds

◆

be the forward-starting value function from time t. Inspired by the analysis in the classical

case involving a single risky asset only, we postulate that the value function has the form

V(x, y, ✓, t) = e��tV (x, y, ✓) = ⌥
e��t(x+ y✓)1�R

1�R
G

✓

y✓

x+ y✓

◆

(3.2)

for some strictly positive function G to be determined and ⌥ a convenient scaling constant

which will help simplify the HJB equation. We take ⌥ =
⇣

b1
Rb4

⌘�R
where b

1

and b
4

are

constants to be defined below in Section 3.3.2 in terms of the financial parameters associated

with the underlying problem. For the present we assume that G is smooth and use heuristic

arguments to derive a characterisation of the candidate value function. Later we will out-

line a verification argument that this candidate value function coincides with the solution

of the corresponding optimal investment/consumption problem, and therefore deduce the

necessary smoothness properties of V and G.

Building on the intuition developed by Magill and Constantinides (1976) and Davis

and Norman (1990) we expect that the optimal strategy of the agent is to trade the illiquid

asset only when Pt falls outside a certain interval [p⇤, p⇤] to be identified. Due to the

solvency restriction, we must have � 1

� 6 Pt 6 1

� and [p⇤, p⇤] ✓ [� 1

� ,
1

� ]. Whenever Pt < p⇤,

the agent purchases the illiquid asset to bring Pt back to p⇤. Hence for an initial position
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(x, ✓) such that p = y✓
x+y✓ < p⇤, the number of units of illiquid asset to be purchased is given

by � = xp⇤�(1�p⇤)y✓
y(1+�p⇤)

such that y(✓+�)
x+y(✓+�)�y(1+�)� = p⇤. The value function does not change

on this transaction, and hence we deduce that for � 1

� 6 p < p⇤,

(x+ y✓)1�RG(p) = [x+ y(✓ + �)� y(1 + �)�]1�RG(p⇤)

and in turn

G(p) =

✓

1 + �p

1 + �p⇤

◆

1�R

G(p⇤) = A⇤(1 + �p)1�R (3.3)

where A⇤ := G(p⇤)(1 + �p⇤)R�1. Similar consideration leads to the conclusion that

G(p) =

✓

1� �p

1� �p⇤

◆

1�R

G(p⇤) = A⇤(1� �p)1�R (3.4)

for p⇤ < p 6 1

� where A⇤ := (1� �p⇤)R�1G(p⇤).

Consider M = (Mt)t>0

defined via

Mt :=

Z t

0

e��s
C1�R

s

1�R
ds+ e��tV (Xt, Yt,⇥t).

We expect M to be a supermartingale in general, and a martingale under the optimal

strategy. Suppose V is C2⇥2⇥1. Then applying Ito’s lemma we find

e�tdMt

=
C1�R

t

1�R
dt+ VxdXt +

1

2
Vxxd[X]t + VydYt +

1

2
Vyyd[Y ]t + V✓d⇥t + Vxyd[X,Y ]t � �V dt

=

 

C1�R
t

1�R
� VxCt +

�2

2
Vxx⇧2

t + ((µ� r)Vx + �⌘⇢VxyYt)⇧t + rVxXt + ↵VyYt +
⌘2

2
VyyY

2

t � �V

!

dt

+ (V✓ � (1 + �)VxYt)d�t + (VxYt(1� �)� V✓)d t + �Vx⇧tdBt + ⌘VyYtdWt.

Further assume V is strictly increasing and concave in x. Then on maximising the drift

term with respect to Ct and ⇧t and setting the resulting maxima to zero, we obtain the

HJB equation over the no-transaction region:

R

1�R
V 1�1/R
x + rxVx + ↵yVy +

⌘2

2
y2Vyy �

(�Vx + ⌘⇢yVxy)2

2Vxx
� �V = 0. (3.5)

3.3.2 Reduction to a first order free boundary value problem

Define the auxiliary parameters b
1

, b
2

, b
3

and b
4

as

b
1

=
2
h

� � r(1�R)� �2
(1�R)

2R

i

⌘2(1� ⇢2)
, b

2

=
�2 � 2R⌘⇢� + ⌘2R2

⌘2R2(1� ⇢2)
, b

3

=
2(⌫ � �⇢)

⌘(1� ⇢2)
,

b
4

=
2

⌘2(1� ⇢2)
.
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It will turn out that the optimal investment and consumption problem depends on the

original parameters only through these auxiliary parameters and the risk aversion level R.

Here b
1

plays the role of a ‘normalised discount factor’, which adjusts the discount

factor to allow for numeraire growth e↵ects and for investment opportunities in the liquid

risky asset. b
4

is related to the level of the ‘idiosyncratic volatility’ of the illiquid asset.

The parameter b
3

is the ‘e↵ective Sharpe ratio, per unit of idiosyncratic volatility’ of the

illiquid asset. The parameter b
2

is the hardest to interpret: essentially it is a nonlinearity

factor which arises from the multi-dimensional structure of the problem. Note that b
2

=

1 + 1

1�⇢2

⇣

�
⌘R � ⇢

⌘

2

> 1.

In the sequel we will work with the following assumption.

Standing Assumption 3.1. Throughout the chapter we assume b
1

> 0, b
2

> 1 and b
3

> 0.

The rationale for imposing b
1

> 0 is that b
1

> 0 is necessary to ensure well-posedness

of the Merton problem in the absence of the illiquid asset. (If R < 1 and b
1

6 0, the value

function is infinite for the Merton problem. Conversely, if R > 1 and b
1

6 0, then for

every admissible strategy the expected discounted utility of consumption equals �1). In

contrast, the assumption b
3

> 0 is not necessary. However, the advantage of working with

a positive e↵ective Sharpe ratio of the illiquid asset (b
3

> 0) is that the no-transaction

wedge is contained in the first two quadrants of the (x, y✓) plane. The assumption b
3

> 0

reduces the number of cases to be considered in our analysis, and facilitates the clarity of

the exposition, but the methods and results developed in this chapter can be extended easily

to the case of an illiquid asset with non-positive e↵ective Sharpe ratio.

The case b
2

= 1 is rather special and we exclude it from our analysis. One scenario

in which we naturally find b
2

= 1 is if � = 0 = ⇢. In this case there is neither a hedging

motive, nor an investment motive for holding the liquid risky asset. Essentially then, the

investor can ignore the presence of the liquid risky asset, reducing the dimensionality of the

problem. This problem is the subject of Hobson et al. (2016). If b
2

= 1 then the solution n

we define in the next paragraph may pass through singular points. See Choi et al. (2013)

or Hobson et al. (2016) for a discussion of some of the issues.

We adopt the same transformation as Hobson et al. (2016) to reduce the order of the

HJB equation. Recall the relationship between V and G in (3.2) and the definition p = y✓
x+y✓ .

Away from p = 1, set h(p) = sgn(1� p)|1� p|R�1G(p), w(h) = p(1� p)dhdp , W (h) = w(h)
(1�R)h ,

let N = W�1 be the inverse function to W and set n(q) = |N(q)|�1/R|1�q|1�1/R. Then, we
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show in Appendix 3.A that (3.5) can be transformed into a first order di↵erential equation

n0(q) = O(q, n(q)) (3.6)

where

O(q, n) =
(1�R)n

R(1� q)
� 2(1�R)2qn/R

2(1�R)(1� q) [(1�R)q +R]� '(q, n)� sgn(1�R)
p

'(q, n)2 + E(q)2

(3.7)

with

'(q, n) := b
1

(n� 1) + (1�R)(b
3

� 2R)q + (2� b
2

)R(1�R),

E(q)2 := 4R2(1�R)2(b
2

� 1)(1� q)2.

Define the quadratic

m(q) :=
R(1�R)

b
1

q2 � b
3

(1�R)

b
1

q + 1 (3.8)

and the algebraic function

`(q) := m(q) +
1�R

b
1

q(1� q) +
(b

2

� 1)R(1�R)

b
1

q

(1�R)q +R
. (3.9)

Note that m has a turning point (a minima if R < 1 and a maxima if R > 1) at qM := b3
2R

and set mM := m(qM ) = 1� b23(1�R)

4b1R
.

The following are the key properties of the function O. They are special cases of a

more complete set of properties given in Lemma 3.6 below.

Lemma 3.2. 1. O(q, n) can be extended to q = 1 by continuity on (1�R)n < (1�R)`(1);

2. On (0,1)⇥ (0,1), O(q, n) = 0 if and only if n = m(q);

3. For given R and q the sign of O(q, n) depends only on the signs of n � m(q) and

`(q)� n.

Now we apply the same transformations which took (3.5) to (3.6) to the value

function on the purchase and sale regime. For � 1

� 6 p < p⇤, G(p) = A⇤ (1 + �p)1�R as

given by (3.3). Then

w(h) = p(1� p)
dh

dp
= p(1� p)(1�R)h



�

1 + �p
+

1

1� p

�

= (1�R)h



p(1 + �)

1 + �p

�

and |1 �W (h)| = |1�p|
1+�p =

⇣

A⇤
|h|

⌘

1/(1�R)

. It follows that n(q) = (A⇤)�1/R. This expression

holds for � 1

� 6 p < p⇤ on which q = W (h) = (1+�)p
1+�p . The equivalent range in q is thus
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given by q < q⇤ := (1+�)p⇤
1+�p⇤

. Similarly on the sale region we have n(q) = (A⇤)�1/R for

q > q⇤ := (1��)p⇤

1��p⇤ .

The C2⇥2⇥1⇥1 smoothness of the original value function V now translates into C1

smoothness of the transformed value function n. Hence we are looking for a continuously

di↵erentiable function n and boundary points (q⇤, q⇤) solving (3.6) on q 2 (q⇤, q⇤) with

n(q) = (A⇤)�1/R for q  q⇤ and n(q) = (A⇤)�1/R for q � q⇤. First order smoothness of n

at the boundary points forces n0(q⇤) = n0(q⇤) = 0. By Lemma 3.2, n0(q) = O(q, n(q)) = 0 if

and only if n(q) = m(q). Hence the free boundary points must be given by the q-coordinates

where n intersects the quadratic m. The free boundary value problem now becomes solving

n0(q) = O(q, n(q)) on q 2 (q⇤, q⇤) subject to n(q⇤) = m(q⇤) and n(q⇤) = m(q⇤).

As an example, suppose R < 1 and mM > 0. Fix u 2 (0, qM ). As we will show

later in Section 3.5, the solution to (3.6) with initial value (u,m(u)) is decreasing. We are

interested in when this solution crosses m again, and we call this point ⇣(u). Then we have

a family of solutions (nu(q))uq⇣(u) to (3.6) with n(u) = m(u) and n(⇣(u)) = m(⇣(u)).

The solution we want is the one which is consistent with the given transaction costs. Our

approach is based on the same idea as in Hobson et al. (2016). Let ⇠ = �+�
1�� > 0 be the

round-trip transaction cost. Suppose for now 1 /2 [p⇤, p⇤] and in turn 1 /2 [q⇤, q⇤]. Exploiting

the relationships that q⇤ = (1+�)p⇤
1+�p⇤

and q⇤ = (1��)p⇤

1��p⇤ , we have

ln(1 + ⇠) = ln(1 + �)� ln(1� �) =

Z p⇤

p⇤

dp

p(1� p)
�
Z q⇤

q⇤

dq

q(1� q)
.

Then, using the definitions of w, N and O,

ln(1 + ⇠) =

Z h⇤

h⇤

dh

w(h)
�
Z q⇤

q⇤

dq

q(1� q)

=

Z q⇤

q⇤

N 0(q)dq

(1�R)qN(q)
�
Z q⇤

q⇤

dq

q(1� q)

=

Z q⇤

q⇤

R

q(1�R)

✓

N 0(q)

RN(q)
� 1�R

R(1� q)

◆

dq

=

Z q⇤

q⇤

✓

� R

q(1�R)

O(q, n(q))

n(q)

◆

dq (3.10)

where in the last line we use the fact that O(q,n(q))
n(q) = n0

(q)
n(q) = 1�R

R(1�q) �
1

R
N 0

(q)
N(q) . Hence the

required solution from the free boundary value problem is the one such that

ln(1 + ⇠) =

Z q⇤

q⇤

✓

� R

q(1�R)

O(q, n(q))

n(q)

◆

dq (3.11)

holds.
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In case where 1 2 [p⇤, p⇤] or equivalently 1 2 [q⇤, q⇤], the integrals
R p⇤

p⇤

dp
p(1�p) and

R q⇤

q⇤
dq

q(1�q) are not well defined. But it can be shown that (3.11) still holds using a limiting

argument, see Appendix 3.H.

To summarise, we would like to solve the following:

(The free boundary value problem) find a positive function n(·) and a pair of

boundary points (q⇤, q⇤) solving

n0(q) = O(q, n(q)), q 2 [q⇤, q
⇤]

n(q⇤) = m(q⇤), n(q⇤) = m(q⇤) (3.12)

subject to (3.11).

In Section 3.5, we distinguish several di↵erent cases and discuss how to construct the

solution (n(·), q⇤, q⇤) in each of these cases. The importance of the quadratic m is clear from

(3.12). Meanwhile, the function ` acts as a bound on the feasible solution to n0 = O(q, n),

at least on 0 < q 6 1. Suppose, for example, that R < 1. Then for q 2 [q⇤, q⇤], m(q) 6 n(q)

by construction, and we also have n(q) < `(q) on q⇤ 6 q 6 1. Furthermore, the value of `(1)

is key in determining when the problem is ill-posed.

3.4 Main results

In Section 3.3 we converted the original HJB equation into the free boundary value problem

(3.12). Now we argue that, given a solution (n(·), q⇤, q⇤) to (3.12) we can reverse the

transformations and construct a candidate value function.

Suppose there exists a solution (n(·), q⇤, q⇤) to (3.12) with n being strictly positive.

Define p⇤ = q⇤
1+�(1�q⇤)

and p⇤ = q⇤

1��(1�q⇤) . Let N(q) = sgn(1 � q)n(q)�R|1 � q|R�1,

W = N�1 and w(h) = (1 � R)hW (h). We would like to construct the candidate value

function from G(p) = sgn(1 � p)|1 � p|1�Rh(p) where h solves dh
dp = w(h)

p(1�p) . The main

subtlety is that w(h)
p(1�p) is not well defined at p = 1. Nonetheless, the definition of G at p = 1

can be understood in a limiting sense. To this end, we distinguish two di↵erent cases based

on whether (q⇤ � 1) and (q⇤ � 1) have the same sign or not, or equivalently whether the no-

transaction wedge, plotted in (x, y✓) space, includes the vertical axis x = 0 (corresponding

to p = 1).

Proposition 3.3. (i) For 1 /2 [p⇤, p⇤], define h(p) via
Z h(p)

N(q⇤)

du

w(u)
=

Z p

p⇤

du

u(1� u)
(3.13)
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on p⇤ 6 p 6 p⇤. Then (3.13) is equivalent to

Z N(q⇤)

h(p)

du

w(u)
=

Z p⇤

p

du

u(1� u)
(3.14)

and (3.14) is an alternative definition of h(p).

Let

GC(p) =

8

>

>

>

>

<

>

>

>

>

:

n(q⇤)�R (1 + �p)1�R , p 2 [� 1

� , p⇤),

sgn(1� p)|1� p|1�Rh(p), p 2 [p⇤, p⇤],

n(q⇤)�R (1� �p)1�R , p 2 (p⇤, 1

� ].

Then GC is a C2 function on (� 1

� ,
1

� ). Moreover (x+y✓)1�R

1�R GC( y✓
x+y✓ ) is strictly increasing

and strictly concave in x.

(ii) For 1 2 [p⇤, p⇤], define h(p) via

8

>

<

>

:

R h(p)
N(q⇤)

du
w(u) =

R p
p⇤

du
u(1�u) , p⇤ 6 p < 1,

R N(q⇤)
h(p)

du
w(u) =

R p⇤

p
du

u(1�u) , 1 < p 6 p⇤.

Let

GC(p) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

n(q⇤)�R (1 + �p)1�R , p 2 [� 1

� , p⇤),

sgn(1� p)|1� p|1�Rh(p), p 2 [p⇤, p⇤] \ {1},

n(1)�Re�(1�R)a, p = 1,

n(q⇤)�R (1� �p)1�R , p 2 (p⇤, 1

� ],

with a := �
R

1

q⇤

⇣

R
q(1�R)

O(q,n(q))
n(q)

⌘

dq�ln(1+�). Then |a| 6 ln(1+⇠), and GC is a C2 function

on (� 1

� ,
1

� ). Moreover (x+y✓)1�R

1�R GC( y✓
x+y✓ ) is strictly increasing and strictly concave in x.

The first pair of main results of this chapter are summarised in the following two

theorems. For a given set of risk aversion parameter R, discount factor � and market

parameters r, µ, �, ↵, ⌘, ⇢, we say the problem is well-posed if the value function is finite

on the interior of the solvency region for all values of the transaction costs � and �. We say

the problem is ill-posed if the value function is infinite for all � > 0 and � 2 (0, 1). We say

the problem is conditionally well-posed if the value function is well-posed for large values of

the round-trip transaction cost, but ill-posed for small values.

Theorem 3.4. The investment/consumption problem is:

1. well-posed in either of the following cases:
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(a) R > 1;

(b) R < 1 and mM � 0;

2. ill-posed if R < 1, mM < 0 and `(1) 6 0;

3. conditionally well-posed if R < 1, mM < 0 and `(1) > 0. In this case the problem is

well-posed if and only if ⇠ > ⇠ where ⇠ is defined in (3.18) below.

Note that, if R < 1 and mM = 0 and � = 0 = � (a case we have excluded) then the

problem is ill-posed.

Theorem 3.5. Suppose the parameters are such that the problem is well-posed. Set

V C(x, y, ✓) =

✓

b
1

Rb
4

◆�R (x+ y✓)1�R

1�R
GC

✓

y✓

x+ y✓

◆

where GC is as defined as in the relevant case of Proposition 3.3. Then V C = V where V

is the value function of the investment/consumption problem defined in (3.1).

3.5 Solutions to the free boundary value problem

In this section we study the solutions to the free boundary problem (3.12) under several

di↵erent combinations of parameters.

Let S ✓ {(q, n) : q > 0, n > 0} = (0,1) ⇥ [0,1) be the set S = {q = 1} [

{q = R
R�1

} [ {n = 0} [ {q < 1, (1 � R)n � (1 � R)`(q)}. On (0,1) ⇥ [0,1) \ S define

F (q, n) = O(q, n)/n. Extend the definition of F to (0,1)⇥ [0,1) where possible by taking

appropriate limits. We begin this section with a list of useful results regarding the functions

m and ` and operators O and F .

Lemma 3.6. 1. (a) For R < 1, `(q) > m(q) on q 2 (0, 1]. Moreover, on (0,1), m

crosses ` exactly once from below at some point above 1;

(b) For R > 1, m(q) > `(q) on q 2 (0, 1]. Moreover, on (0,1), m either does not

cross ` at all, or touches ` exactly once in the open interval (1, R/(R � 1)), or

crosses ` twice on (1, R/(R� 1)). Also, `(q) > m(q) on (R/(R� 1),1);

2. For R > 1, F (q, n) is well defined at q = R/(R� 1);

3. For n > 0 and (1�R)n < (1�R)`(1), F (1, n) is well-defined and

F (1, n) := lim
q!1

F (q, n) = � (1�R)(n�m(1))

`(1)� n
. (3.15)
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Also, for 0 < q  1 and R < 1 we have limn"`(q) F (q, n) = �1 (and limn#`(q) F (q, n) =

+1 if R > 1). For q > 1 and R < 1 (and 1 < q < R
R�1

for R > 1) we have

F (q, `(q)) := lim
n!`(q)

F (q, n) = � 1�R

R(1� q)

⇢

q[(1�R)q +R]

[(1�R)q +R]2 + (b
2

� 1)R2

� 1

�

.

(3.16)

4. F (q, n) = 0 if and only if n = m(q). Moreover,

(a) for R < 1:

i. On 0 < q < 1, F (q, n) < 0 for m(q) < n < `(q) and F (q, n) > 0 for n < m(q)

or n > `(q);

ii. At q = 1, F (1, n) < 0 for m(1) < n < `(1) and F (1, n) > 0 for n < m(1).

F (1, n) is not well-defined for n > `(1);

iii. On q > 1, F (q, n) < 0 for n > m(q) and F (q, n) > 0 for n < m(q);

(b) for R > 1:

i. On 0 < q < 1, F (q, n) > 0 for `(q) < n < m(q) and F (q, n) < 0 for n < `(q)

or n > m(q);

ii. At q = 1, F (1, n) > 0 for `(1) < n < m(1) and F (1, n) < 0 for n > m(1).

F (1, n) is not well-defined for n 6 `(1);

iii. On 1 < q 6 R/(R � 1), F (q, n) < 0 for n > m(q) and F (q, n) > 0 for

n < m(q);

iv. On q > R/(R � 1), F (q, n) < 0 for m(q) < n < `(q) and F (q, n) > 0 for

n > `(q) or n < m(q).

Recall (qM ,mM ) is the extrema of the quadratic m (a minima when R < 1 and a

maxima when R > 1) with qM = b3
2R > 0. The key analytical properties of the problem only

depend on the signs of the three parameters (1 � R,mM , `(1)). We classify four di↵erent

cases using the decision tree in Figure 3.1.

We parameterise the family of solutions to (3.12) by the left boundary point. Fix

u 2 (0, qM ) and denote (nu(q))q>u the solution to the initial value problem

n0(q) = O(q, n(q)), n(u) = m(u).

Note that O(q, n) and @O
@n (q, n) are well defined away from the set S (with appropriate

extension by taking limits whenever applicable). Then standard theories assure the existence
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R < 1

mM > 0

Case 1 (W)

mM < 0

`(1) 6 0

Case 2 (I)

`(1) > 0

Case 3 (CW)

R > 1

Case 4 (W)

Figure 3.1: Classification of di↵erent cases based on the signs of the parameters. The

abbreviations in parentheses indicate the solution features of the cases, where “W” refers

to unconditional well-posedness for all levels of transaction cost, “I” refers to unconditional

ill-posedness for all levels of transaction cost and “CW” refers to conditional well-posedness,

i.e. well-posedness for su�ciently high levels of transaction cost only.

and uniqueness of the solution to the above initial value problem. Let ⇣(u) = inf{q > u :

(1�R)nu(q) < (1�R)m(q)} denote where nu first crosses m to the right of u. Define

⌃(u) = exp

 

Z ⇣(u)

u

✓

� R

q(1�R)

O(q, nu(q))

nu(q)

◆

dq

!

� 1. (3.17)

Lemma 3.7. Suppose mM > 0. Then ⌃ is a strictly decreasing, continuous mapping

⌃ : (0, qM ] ! [0,1) with ⌃(0+) = +1 and ⌃(qM ) = 0.

Now suppose mM  0. Let p�  p
+

be the roots of m(q) = 0. Set ⇠ := limu"p� ⌃(u).

Then ⌃ is a strictly decreasing, continuous mapping ⌃ : (0, p�] ! [⇠,1) with ⌃(0+) = +1

and ⌃(p�) = ⇠. Moreover, limu"p� nu(·) = 0, limu"p� ⇣(u) = p
+

, and

⇠ = exp

 

�
Z p+

p�

R

q(1�R)
F (q, 0)dq

!

� 1. (3.18)

3.5.1 Case 1: R < 1 and mM � 0

For any initial value u 2 (0, qM ), m0(u) < 0 = O(u,m(u)) = O(u, nu(u)) = n0
u(u). Thus

nu(q) must initially be larger than m(q) for q being close to u. By part 4 of Lemma 3.6,

O(q, n) is negative on {(q, n) : 0 < q 6 1,m(q) < n < `(q)} [ {(q, n) : q > 1, n > m(q)}.

Also, nu(q) cannot cross `(q) from below on 0 < q 6 1 since limn"`(q) O(q, n) = �1.

By considering the sign of O(q, n), we conclude nu must be decreasing until it crosses m.

This guarantees the finiteness of ⇣(u), and the triple (nu(·), u, ⇣(u)) represents one possible

100



solution to problem (3.12). Notice that the family of solutions (nu(·))0<u<q
M

cannot cross,

and thus nu(q) is decreasing in u. The solutions corresponding to initial values u = 0 and

u = qM can be understood as the appropriate limit of a sequence of solutions.

Although O(q, n) has singularities at q = 1 and n = `(q), part 3 of Lemma 3.6

shows that a well-defined limit O(q, n) exists on {(q, n) : q = 1, n < `(1)} and {(q, n) : q >

1, n = `(q)}. Hence there exists a continuous modification of O(q, n) and a solution nu can

actually pass through these singularity curves. See Figure 3.2(a) for some examples.

From the analysis leading to (3.11), the correct choice of u should satisfy ⇠ = ⌃(u).

From Lemma 3.7, for every given level of round-trip transaction cost ⇠, there exists a unique

choice of the left boundary point given by u⇤ = ⌃�1(⇠) and then the desired solution to

the free boundary value problem is given by (nu⇤(·), u⇤, ⇣(u⇤)). Figure 3.2(b) gives the

plots of ⌃�1(⇠) and ⇣(⌃�1(⇠)) representing the boundaries (q⇤, q⇤) under di↵erent levels of

transaction costs.
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(q)

m(q) & l(q)

(a) Examples of solutions nu(q) with

di↵erent initial values (u,m(u)).
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(b) Plots of q⇤ = ⌃�1(⇠) and q

⇤ = ⇣(q⇤).

Figure 3.2: Case 1 where parameters chosen are R = 0.5, b
1

= 0.25, b
2

= 1.75 and b
3

= 0.85.

3.5.2 Case 2: R < 1, mM < 0, `(1)  0

Let `
0

be the root of `(q) = 0 on q 2 (0, 1). Since the solution to n0(q) = O(q, n(q)) must

be bounded below by zero1 and above by `(q) for q 2 (0, `
0

), for any initial value (u,m(u))

1Suppose a solution n starting at (u,m(u)) hits zero at some q = q0 with `(q0) > 0. Then both n

and n0 = n0(q) := 0 are solutions to the initial value problem n0(q) = O(q, n(q)) with n(q0) = 0, but this

contradicts the uniqueness of the solution given that @O
@n

(q, n) is well defined along the trajectories of n(q)

and n0(q) over q 2 [u, q0].
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for which m(u) > 0, the corresponding solution nu(·) must hit (`
0

, 0). Hence there does

not exist any strictly positive solution which crosses m again to the right of u. See Figure

3.3. In this case, there is no solution to the free boundary value problem and indeed the

underlying problem is ill-posed for all levels of transaction costs and thus the value function

cannot be defined.
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m(q) & l(q)

Figure 3.3: Case 2 where parameters chosen are R = 0.5, b
1

= 0.25, b
2

= 1.75 and b
3

= 1.5.

3.5.3 Case 3: R < 1, mM < 0, `(1) > 0

Let p± with 0 < p� < qM < p
+

be the two roots of m(q) = 0. The parameterisation of the

solution is the same as in Case 1 except the left boundary point should now be restricted

to u 2 (0, p�) to ensure a positive initial value. The function ⌃ defined in (3.17) is still a

strictly decreasing map with ⌃(0+) = +1 except its domain is now restricted to (0, p�].

Unlike Case 1, we now only consider ⌃�1(⇠) on the range ⇠ 2 (⇠,1). For such a

given high level of round-trip transaction cost, the required left boundary point is given

by u⇤ = ⌃�1(⇠) and u⇤ = ⇣(u⇤), see Figure 3.4. In this case, the problem is conditionally

well-posed only for a su�ciently high level of transaction costs.

3.5.4 Case 4: R > 1.

In this case the quadratic m has a positive maxima at (qM ,mM ) and m(q) > `(q) on

q 2 (0, 1). By checking the sign of O(q, n) using part 4 of Lemma 3.6, one can verify

that the solution nu of the initial value problem is always increasing for any choice of left

boundary point u 2 (0, qM ). In this case the family of solutions is increasing in u. The

solution nu(q) crosses m(q) from below at ⇣(u) = inf(q > u : nu(q) > m(q)). The correct
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(a) Examples of solutions nu(q) with

di↵erent initial values (u,m(u)).
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(b) Plots of q⇤ = ⌃�1(⇠) and q

⇤ = ⇣(q⇤).

Figure 3.4: Case 3 where parameters chosen are R = 0.5, b
1

= 0.25, b
2

= 1.75 and b
3

= 1.2.

choice of u is again the one solving ⇠ = ⌃(u) using the same definition in (3.17). As in

Case 1, the function ⌃ is onto from (0, qM ] to [0,1) and hence u⇤ = ⌃�1(⇠) always exists

uniquely for any ⇠. See Figure 3.5. Indeed for R > 1, the agent’s utility function is always

bounded above by zero and hence the value function always exists and is finite.
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(a) Examples of solutions nu(q) with

di↵erent initial values (u,m(u)).
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Figure 3.5: Case 4 where parameters chosen are R = 1.25, b
1

= 1.5, b
2

= 1.25 and b
3

= 2.
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3.6 Comparative statics

In this section, we investigate how the no-transaction wedge [p⇤, p⇤], the value function V

and the certainty equivalent value of the illiquid asset change with the market parameters

and level of transaction costs.

3.6.1 Monotonicity with respect to market parameters

Proposition 3.8. Suppose (n(·), q⇤, q⇤) is the solution to the free boundary value problem.

Then:

1. q⇤ and q⇤ are decreasing in b
1

;

2. For R < 1, q⇤ and q⇤ are increasing in b
3

.

Recall that p⇤ = q⇤
1+�(1�q⇤)

and p⇤ = q⇤

1��(1�q⇤) . Then, Proposition 3.8 gives imme-

diately:

Theorem 3.9. 1. p⇤ and p⇤ are decreasing in b
1

;

2. For R < 1, p⇤ and p⇤ are increasing in b
3

.

Theorem 3.9 describes the comparative statics in terms of the auxiliary parameters.2

In general, it is di�cult to make categorical statements about the comparative statics with

respect to the original market parameters since many of the market parameters enter the

definitions of more than one of the auxiliary parameters. However, we have the following

results concerning the dependence of p⇤ and p⇤ on the discount rate, and on the drift of the

illiquid asset.

Corollary 3.10. p⇤ and p⇤ are decreasing in �. If R < 1 then p⇤ and p⇤ are increasing in

↵.

Now we consider the “cash value” of the holdings in the illiquid asset. We compare

the agent with holdings in the illiquid asset to an otherwise identical agent (same risk

aversion and discount parameter, and trading in the financial market with bond and risky

asset with price S) who has a zero initial endowment in the illiquid asset and is precluded

from taking any positions in this asset.

2Since the free boundary value problem does not depend on b4, q⇤ and q⇤ are trivially independent of

b4. We have strong numerical evidence that p⇤ is decreasing in b2 and p⇤ is increasing in b2, and when

R > 1 p⇤ and p⇤ are both increasing in b3, but we have not been able to prove the results.
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Consider the market without the illiquid asset. For an agent operating in this

market a consumption/investment strategy is admissible for initial wealth x > 0 (we write

(C = (Ct)t�0

,⇧ = (⇧t)t�0

) 2 AW (x)) if C and ⇧ are progressively measurable, and if the

resulting wealth process X = (Xt)t�0

is non-negative for all t. Here X solves

dXt = r(Xt � ⇧t)dt+
⇧t

St
dSt � Ctdt

subject to X
0

= x. Let W = W (x) be the value function for a CRRA investor:

W (x) = sup
(C,⇧)2A

W

(x)
E
"

Z 1

0

e��t
C1�R

t

1�R
dt

#

.

The problem of finding W is a classical Merton consumption/investment problem without

transaction costs. We find

W (x) =



1

R

✓

� � r(1�R)� �2(1�R)

2R

◆��R
x1�R

1�R
=

✓

b
1

b
4

R

◆�R x1�R

1�R
.

Define C = C(y✓;x) to be the certainty equivalent value of the holding of the illiquid

asset, i.e. the cash amount which the agent with liquid wealth x and ✓ units of the illiquid

asset with current price y, trading in the market with transaction costs, would exchange

for his holdings of the illiquid asset, if after this exchange he is not allowed to trade in the

illiquid asset. (We assume there are no transaction costs on this exchange, but they can be

easily added if required.) Then C = C(y✓;x) solves

W (x+ C) = V (x, y, ✓)

which becomes

C = C(y✓;x) = (x+ y✓)G(p)1/(1�R) � x.

Theorem 3.11. 1. (1�R)G is decreasing in b
1

;

2. (1�R)G is increasing in b
3

.

Corollary 3.12. C is decreasing in � and increasing in ↵.

Both these monotonicities are intuitively natural. For the monotonicity in ↵, since

the agent only ever holds long3 positions in the illiquid asset, we expect him to benefit from

an increase in drift and hence price of the illiquid asset. If we consider monotonicity in �

then for R < 1, increasing � reduces the magnitude of the discounted utility of consumption,

3Note, if he starts with a solvent initial portfolio, but with a negative holding in the illiquid asset, then

the agent makes an instantaneous transaction at time zero to make his holding positive.
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and reduces the value function. However, this is not the same as decreasing the certainty

equivalent value of the holding of risky asset. Indeed, when R > 1, increasing � reduces the

magnitude of the discounted utility of consumption, but since the terms are negative, this

increases the value function. Nonetheless, C is decreasing in �.

3.6.2 Monotonicity with respect to transaction costs

From the discussion in Section 3.5, we have seen that transformed boundaries only depends

on the round-trip transaction cost ⇠. In particular, q⇤ and q⇤ are respectively strictly

decreasing and increasing in ⇠. However, the purchase/sale boundaries in the original scale

still depend on the individual costs of purchase and sale. Write

p⇤(�, �) =
q⇤(⇠)

1 + �(1� q⇤(⇠))
, p⇤(�, �) =

q⇤(⇠)

1� �(1� q⇤(⇠))

and recall that ⇠ = �+�
1�� . Then

dp⇤
d�

=
@p⇤
@q⇤

@q⇤
@⇠

@⇠

@�
=

1 + �

(1� �)2
1 + �

[1 + �(1� q⇤)]2
@q⇤
@⇠

< 0

so that the critical ratio of wealth in the illiquid asset to paper wealth at which the agent

purchases more illiquid asset is decreasing in the transaction cost on sales. However, per-

haps surprisingly, the dependence of the critical ratio p⇤ at which purchases occur on the

transaction cost on purchases is not unambiguous in sign:

dp⇤
d�

=
@p⇤
@�

+
@p⇤
@q⇤

@q⇤
@⇠

@⇠

@�
= � q⇤(1� q⇤)

[1 + �(1� q⇤)]2
+

1

1� �

1 + �

[1 + �(1� q⇤)]2
@q⇤
@⇠

is not necessarily negative, for we may have q⇤ > 1. This issues is discussed further in Hobson

et al. (2016) where examples are given in which the boundaries to the no-transaction region

are not monotonic in the transaction cost parameters.

3.7 Conclusion

The solution of Merton (1969) of the infinite horizon, consumption and investment problem

is elegant and insightful but assumes a perfect market with no frictions. Building on this

work, there is a large literature, starting with Magill and Constantinides (1976) and Davis

and Norman (1990) investigating the form of the solution in the presence of transaction

costs. When there is a single asset Choi et al. (2013) (via shadow prices) and Hobson et al.

(2016) (via an analysis of the HJB equation) are able to characterise precisely when the
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problem is well-posed. However, Davis and Norman (1990), Choi et al. (2013) and Hobson

et al. (2016) all assume the financial market includes just a single risky asset.

In this chapter we have extended the results to two risky assets, and give a complete

characterisation of the solution, but in the special case where transaction costs are payable

on only one of the risky assets. The presence of the second risky asset, which may be used

for hedging and investment purposes, makes the problem significantly more complicated

than the single risky asset case, but we can extend the methods of Hobson et al. (2016) to

give a complete solution. Indeed, up to evaluating an integral of a known algebraic function,

we can determine exactly when the problem is well-posed and up to solving a free boundary

value problem for a first order di↵erential equation we can determine the boundaries of the

no-transaction wedge.

At the heart of our analysis is this free boundary value problem. Although the utility

maximisation problem depends on many parameters describing the agent (his risk aversion

and discount rate), the market (the interest rate and the drifts, volatilities and correlations

of the traded assets) and the frictions (the transaction costs on sales and purchases) the

ODE depends on the risk aversion parameter and just three further parameters, and the

solution we want can be specified further in terms of the round-trip transaction cost.

Building on the work of Choi et al. (2013), Hobson et al. (2016) give a solution to

the problem in the case of a single risky asset. The major issue in Choi et al. (2013) and

Hobson et al. (2016) is to understand the solution of an ODE as it passes through a singular

point. In this chapter the problem is richer, and the ODE is more complicated, but in other

ways the analysis is much simpler because although the key ODE has singularities, these

can be removed.

In the chapter we have assumed a single illiquid asset and just one further risky

asset, but the analysis extends immediately to the case of a single illiquid asset and several

risky assets on which no transaction costs are payable, at the expense of a more complicated

notation. This observation is a form of mutual fund theorem— the agent chooses to invest in

the additional liquid financial assets in fixed proportions and these assets may be combined

into a representative market asset. Details of the argument in a related context may be

found in Evans et al. (2008). Nonetheless, the extension to a model with many risky assets

with transaction costs payable on all of them remains a challenging open problem.
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Appendix to Chapter 3

3.A Transformation of the HJB equation

Looking at the HJB Equation (3.5), and using intuition gained from similar problems, we

expect that V = V (x, y, ✓) can be written as V (x, y, ✓) = x1�RJ(y✓x ) for J a function of a

single variable z representing the ratio of wealth in the illiquid asset to wealth in the liquid

assets. The equation for J = J(z) contains expressions of the form zJ 0(z) and z2J 00(z) and

so can be made into a homogeneous equation by the substitution (z, J(z)) 7! (eu,K(u)).

The second-order equation for K can then be reduced to a first order equation by setting

w(K) = dK
du and making K the subject of the equation, see Evans et al. (2008) or Hobson

et al. (2016) for details of a similar order-reduction in a related problem. However, there are

cases where x = 0 lies inside the no-transaction region and at this point z is undefined, and

the above approach does not work. Hence, we need to use a di↵erent parametrisation. We

use a parametrisation based on Pt =
Y
t

⇥

t

X
t

+Y
t

⇥

t

representing the proportion of paper wealth

which is held in the illiquid asset. The delicate point at x = ±0 (or z = ±1) becomes

a delicate point at p = 1, but as we show by a careful analysis any singularities can be

removed.

Using the form of value function in (3.2) to compute all the relevant partial deriva-

tives, (3.5) can be rewritten as

0 =
b
1

b
4



G(p)� pG0(p)

1�R

�

1�1/R

� �G(p) + r(1� p) [(1�R)G(p)� pG0(p)]

+ ↵ [(1�R)pG(p) + p(1� p)G0(p)]

+
⌘2

2

⇥

p2(1� p)2G00(p)� 2Rp2(1� p)G0(p)�R(1�R)p2G(p)
⇤

�
�

� [(1�R)G(p)� pG0(p)] + ⌘⇢
⇥

�R(1�R)pG(p) +Rp(2p� 1)G0(p)� p2(1� p)G00(p)
⇤ 

2

2 [p2G00(p) + 2RpG0(p)�R(1�R)G(p)]
.

(3.19)

Let4 h(p) = sgn(1� p)|1� p|R�1G(p) and w(h) = p(1� p)dhdp . Then

w(h)

p(1� p)
=

dh

dp
= sgn(1� p)|1� p|R�1



G0(p) + (1�R)
G(p)

1� p

�

(3.20)

4The assumption b3 > 0 means that the agent would like to hold positive quantities of the illiquid asset,

and that the no-transaction wedge is contained in the half-space p > 0. To allow for b3 < 0 it is necessary

to consider p < 0. This case can be incorporated into the analysis by incorporating an extra factor of sgn(p)

into the definition of h, so that h(p) = sgn(p(1� p))|1� p|R�1G(p). This then leads to extra cases, but no

new mathematics, and the problem can still be reduced to solving n0 = O(q, n) where O is given by (3.7),

but now for q < 0.
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and in turn

G0(p) =
w(h)

|p||1� p|R � (1�R)
G(p)

1� p
. (3.21)

This gives

G(p)� pG0(p)

1�R
= G(p)� p

1�R



w(h)

|p||1� p|R � (1�R)
G(p)

1� p

�

= |1� p|�Rh

✓

1� w(h)

(1�R)h

◆

. (3.22)

We expect that Vx > 0 and hence that this expression is positive. It follows that sgn(1�p) =

sgn(h) = sgn(1�W (h)). Then

✓

G(p)� pG0(p)

1�R

◆

1� 1
R

= sgn(1� p)|1� p|1�Rh|h|� 1
R

�

�

�

�

1� w(h)

(1�R)h

�

�

�

�

1� 1
R

, (3.23)

(1� p) [(1�R)G(p)� pG0(p)] = sgn(1� p)|1� p|1�R [(1�R)h� w(h)] ,

(1�R)G(p)� pG0(p) =
sgn(1� p)|1� p|1�R

1� p
(1�R)h

✓

1� w(h)

(1�R)h

◆

and

(1�R)pG(p) + p(1� p)G0(p) = sgn(1� p)|1� p|1�Rw(h).

Taking a further derivative

w(h)w0(h) = p(1� p)
dh

dp

d

dh
w(h) = p(1� p)

d

dp
w(h)

= p(1� p)
d

dp

�

sgn(1� p)|1� p|R�1 [p(1� p)G0(p) + (1�R)pG(p)]
 

= sgn(1� p)|1� p|R�1

⇥
⇥

p2(1� p)2G00(p) + p(1� p)(1� 2Rp)G0(p) + (1�R)p(1�Rp)G(p)
⇤

and hence the second order terms in (3.19) can be rewritten as:

p2(1� p)2G00(p)� 2Rp2(1� p)G0(p)�R(1�R)p2G(p)

= sgn(1� p)|1� p|1�Rw(h)(w0(h)� 1),

�R(1�R)pG(p) +Rp(2p� 1)G0(p)� p2(1� p)G00(p)

= � sgn(1� p)|1� p|1�R

1� p
(w0(h)w(h)� (1�R)w(h)) ,

and

p2G00(p) + 2RpG0(p)�R(1�R)G(p) =
sgn(1� p)

|1� p|1+R
[w(h)w0(h) + (2R� 1)w(h)�R(1�R)h] .

(3.24)

109



Substituting back into (3.19), and dividing through by sgn(1�p)|1�p|1�R we obtain

0 =
b
1

b
4

h|h|�1/R

�

�

�

�

1� w(h)

(1�R)h

�

�

�

�

1�1/R

� �h

+ r [(1�R)h� w(h)] + ↵w(h) +
⌘2

2
w(h)(w0(h)� 1)

�

n

�(1�R)h
⇣

1� w(h)
(1�R)h

⌘

� ⌘⇢ [w0(h)w(h)� (1�R)w(h)]
o

2

2 [w(h)w0(h) + (2R� 1)w(h)�R(1�R)h]
. (3.25)

Recall the definitions W (h) = w(h)
(1�R)h , N = W�1 and n(q) = |N(q)|�1/R|1�q|1�1/R.

Then w(N(q)) = (1�R)N(q)W (N(q)) = (1�R)qN(q). Put h = N(q) in (3.25) and divide

by h. Then we have

0 =
b
1

b
4

n(q)� � + r(1�R)(1� q) + ↵(1�R)q +
⌘2

2
(1�R) [qw0(N(q))� q]

� 1�R

2

{�(1� q)� ⌘⇢ [qw0(N(q))� (1�R)q]}2

qw0(N(q)) + (2R� 1)q �R
. (3.26)

Recall the definitions of the auxiliary constants (bi)i=1,2,3,4 given at the very start

of Section 3.3.2. Rearranging (3.26) and multiplying by b
4

0 = (1�R)q2(w0(N(q)))2

+ [b
1

n(q)� [b
1

+ b
2

R(1�R)] + (b
3

+ 2R� 2)(1�R)q] qw0(N(q))

+
⇥

(2R� 1)(b
3

� 1) +R2(1� b
2

)
⇤

(1�R)q2

+ [(1� 2R)b
1

+R(1�R)b
2

�R(1�R)b
3

] q

+b
1

R+ b
1

[(2R� 1)q �R]n(q)

=: A(qw0(N(q)))2 +B(qw0(N(q))) + C. (3.27)

This can be viewed as a quadratic equation in qw0(N(q)). Note that the coe�cients A, B,

C depend on the market parameters only through the auxiliary parameters b
1

, b
2

, b
3

.

We want the root corresponding to Vxx < 0. This is equivalent to

1

1�R
p2G00(p) +

2R

1�R
pG0(p)�RG(p) < 0. (3.28)

Using (3.24) and the fact that sgn(1� p) = sgn(h), and multiplying (3.28) by |1� p|R+1/|h|

we find we want the solution for which

1

(1�R)

1

h
{w(h)w0(h)+(2R�1)w(h)�R(1�R)h} = {qw0(N(q))+(2R�1)q�R} < 0. (3.29)

Consider (3.26) and write u = qw0(N(q)). Then for fixed q (3.26) is of the form

(1 � R)a
1

u � a
2

= (1 � R) (a3u+a4)
2

(u�a5)
where (ai)1i5

are constants with a
1

> a2
3

and a
5

=
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R � (2R � 1)q. It is easily seen that this equation has two solutions, one on each side of

u = a
5

, and that from (3.29) the one we want is the smaller root. Thus

qw0(N(q)) =
�B � sgn(A)

p
B2 � 4AC

2A

where A, B, C are the constants in (3.27). Note that sgn(A) = sgn(1�R). Then, we have

n0(q)

n(q)
=

1�R

R(1� q)
� 1

R

N 0(q)

N(q)

=
1�R

R(1� q)
� 1�R

R

q

qw0(N(q))� (1�R)q2

=
1�R

R(1� q)
� 1�R

R

2Aq

�B � sgn(A)
p
B2 � 4AC � 2A(1�R)q2

.

After some algebra, we arrive at

n0(q) =
(1�R)n(q)

R(1� q)
� 2(1�R)2qn(q)/R

2(1�R)(1� q) [(1�R)q +R]� '(q, n(q))� sgn(1�R)
p

'(q, n(q))2 + E(q)2
.

3.B Continuity and smoothness of the candidate value

function

Proof of Case (i) of Proposition 3.3. We have

Z N(q⇤)

N(q⇤)

du

w(u)
�
Z p⇤

p⇤

du

u(1� u)
=

Z q⇤

q⇤

✓

N 0(u)

(1�R)uN(u)
� 1

u(1� u)

◆

du

+

Z q⇤

q⇤

du

u(1� u)
�
Z p⇤

p⇤

du

u(1� u)

=

Z q⇤

q⇤

✓

� R

u(1�R)

O(u, n(u))

n(u)

◆

du� ln(1 + ⇠)

= 0

using (3.11) and this establishes the equivalence of (3.13) and (3.14).

Suppose we have a solution (n(·), q⇤, q⇤) to (3.12) with n being strictly positive.

Let N(q) = sgn(1 � q)n(q)�R|1 � q|R�1, W = N�1 and w(h) = (1 � R)hW (h). We set

GC(p) = sgn(1 � p)|1 � p|1�Rh(p) where h solves dh
dp = w(h)

p(1�p) . For notational convenience

(and to allow us to write derivatives as superscripts) write G as shorthand for GC .

First we check that G is C2. Outside the no-transaction interval this is immediate

from the definition, and follows on (p⇤, p⇤) from the fact that n and n0 are continuous. This

property is inherited by the pair (w,w0) and then on integration by the trio (h, h0, h00) and

finally (G,G0, G00).
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It remains to check the continuity of G, G0 and G00 at p⇤ and p⇤. We prove the

continuity at p⇤; the proofs at p⇤ are similar. Using 1�q⇤

1�p⇤ = 1

1+�p⇤ for the penultimate

equivalence, we have

G(p⇤+) = sgn(1� p⇤)|1� p⇤|1�Rh(p⇤)

= sgn(1� p⇤)|1� p⇤|1�R sgn(1� q⇤)n(q⇤)
�R|1� q⇤|R�1

= n(q⇤)
�R(1 + �p⇤)

1�R = G(p⇤�).

Then continuity of G0 at p⇤ follows from (3.22) where

G(p⇤+)� p⇤G0(p⇤+)

1�R
= |1� p⇤|�Rh⇤(1�W (h⇤)) =

G(p⇤+)

1� p⇤
(1� q⇤)

=
G(p⇤)

1 + �p⇤
= G(p⇤�)� p⇤G0(p⇤�)

1�R
.

Finally, from (3.24),

p2⇤G
00(p⇤+) + 2Rp⇤G

0(p⇤+)�R(1�R)G(p⇤+)

=
G(p⇤+)

(1� p⇤)2h⇤
[w(h⇤)w

0(h⇤) + (2R� 1)w(h⇤)�R(1�R)h⇤]

=
G(p⇤)

(1� p⇤)2
[(1�R)W (h⇤)w

0(h⇤) + (2R� 1)(1�R)W (h⇤)�R(1�R)]

=
G(p⇤)

(1� p⇤)2



(1�R)2q⇤

✓

q⇤ +
N(q⇤)

N 0(q⇤)

◆

+ (2R� 1)(1�R)q⇤ �R(1�R)

�

=
(1�R)G(p⇤)

(1� p⇤)2



(1�R)q⇤

✓

q⇤ +
1� q⇤
1�R

◆

+ (2R� 1)q⇤ �R

�

= �R(1�R)G(p⇤)

✓

1� q⇤
1� p⇤

◆

2

= �R(1�R)
G(p⇤)

(1 + �p⇤)2

= p2⇤G
00(p⇤�) + 2Rp⇤G

0(p⇤�)�R(1�R)G(p⇤�),

where we have used the fact that

0 =
n0(q⇤)

n(q⇤)
=

1�R

R(1� q⇤)
� 1

R

N 0(q⇤)

N(q⇤)
.

Then we conclude that G00 is continuous at p = p⇤.

Now we argue that (x+y✓)1�R

1�R G( y✓
x+y✓ ) is strictly increasing and strictly concave in

x. Outside [p⇤, p⇤] this is immediate form the definition. On [p⇤, p⇤] the increasing property

will follow if G(p)� pG0
(p)

1�R > 0. But this is trivial since

G(p)� pG0(p)

1�R
= |1� p|�Rh(1�W (h)) = |1� p|�RN(q)(1� q)

= |1� p|�R|1� q|Rn(q)�R > 0.
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Meanwhile, (x+y✓)1�R

1�R G( y✓
x+y✓ ) is concave on [p⇤, p⇤] is equivalent to (3.28), or, by the analysis

leading to (3.29) to qw0(N(q))+ (2R� 1)q�R < 0. But this follows from our choice of root

in (3.27).

⇤

Proof of Case (ii) of Proposition 3.3. Note that the integrand of
R q⇤

q⇤

⇣

R
q(1�R)

O(q,n(q))
n(q)

⌘

dq

is everywhere negative and therefore
R

1

q⇤

⇣

� R
q(1�R)

O(q,n(q))
n(q)

⌘

dq exists in [0, ln(1+⇠)]. Hence

� ln(1 + ⇠) 6 a 6 ln(1 + ⇠).

For p 6= 1, the C2 smoothness of G = GC follows as in the first case of Proposition

3.3. We will focus on the case of p = 1.

Suppose first that p⇤ < 1 < p⇤. Continuity of G and G0 at p = 1 can be established

if we can show that both

lim
p!1

1

G(p)

✓

G(p)� pG0(p)

1�R

◆

1�1/R

= n(1) (3.30)

and

lim
p!1

pG0(p)

(1�R)G(p)
= 1� ea. (3.31)

Substituting (3.31) into (3.30) we recover the given value of G(1).

Using (3.23) and the equivalence of p ! 1 and q ! 1 we have

1

G(p)

✓

G(p)� pG0(p)

1�R

◆

1� 1
R

= |h|� 1
R |1�W (h)|1� 1

R = |N(q)|� 1
R |1� q|1� 1

R = n(q) ! n(1)

and (3.30) holds.

For (3.31) we have,

1�W (h(p))

1� p
=

(1�R)h(p)� p(1� p)h0(p)

(1�R)(1� p)h(p)
= 1� pG0(p)

(1�R)G(p)
.

Suppose p < 1. Then using the definition of h(p),

0 =

Z h(p)

N(q⇤)

du

w(u)
�
Z p

p⇤

du

u(1� u)

=

Z W (h(p))

q⇤

N 0(q)dq

(1�R)qN(q)
�
Z p

p⇤

du

u(1� u)

=

Z W (h(p))

q⇤

✓

N 0(q)

(1�R)qN(q)
� 1

q(1� q)

◆

dq +

Z W (h(p))

q⇤

dq

q(1� q)
�
Z p

p⇤

du

u(1� u)

=

Z W (h(p))

q⇤

✓

� R

u(1�R)

O(u, n(u))

n(u)

◆

du�
Z q⇤

p⇤

du

u(1� u)
�
Z p

W (h(p))

dq

q(1� q)

=

Z W (h(p))

q⇤

✓

� R

u(1�R)

O(u, n(u))

n(u)

◆

du� ln(1 + �)� ln

✓

p

W (h(p))

1�W (h(p))

1� p

◆

.
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Letting p " 1 and using the fact that limp!1

W (h(p)) = 1, we obtain

lim
p"1

1�W (h(p))

1� p
= ea. (3.32)

A similar calculation for p > 1 gives limp#1
W (h(p))�1

p�1

= ea as well. Hence (3.31) holds. As

a byproduct, we can establish

lim
p!1

G0(p) = (1�R)(1� ea)G(1) = (1�R)(1� ea)n(1)�Re�(1�R)a.

Consider now continuity of G00 at p = 1. We show limp!1

G00(p) exists. Consider:

[(1�R)G(p)� pG0(p)]2

G(p)[p2G00(p) + 2RpG0(p)�R(1�R)G(p)]
=

(1�R)2h(1�W (h))2

w(h)w0(h) + (2R� 1)w(h)�R(1�R)h

=
(1�R)(1� q)2

(1�R)qN(q)/N 0(q)� (1� q)[R+ (1�R)q]

=
(1�R) [1�R�R(1� q)n0(q)/n(q)]

R[R+ (1�R)q]n0(q)/n(q)�R(1�R)
.

Then,

lim
p!1

[(1�R)G(p)� pG0(p)]2

G(p)[p2G00(p) + 2RpG0(p)�R(1�R)G(p)]
= lim

q!1

(1�R) [1�R�R(1� q)n0(q)/n(q)]

R{[R+ (1�R)q]n0(q)/n(q)� (1�R)}

=
(1�R)2

R[n0(1)/n(1)� (1�R)]
. (3.33)

Note that n0(1)/n(1)�(1�R) 6= 0 since sgn(n0(1)) = � sgn(1�R). The limit is thus always

well defined and can be used to obtain an expression for limp!1

G00(p).

Since (x+y✓)1�R

1�R G( y✓
x+y✓ ) is strictly increasing, strictly concave in x for both p < 1

and p > 1, these properties extend to p = 1 under the second order smoothness of G. Note

that the monotonicity and concavity at p = 1 must be strict due to (3.31) and (3.33).

Finally we consider the case where p⇤ = 1 or p⇤ = 1. Suppose we are in the former

scenario. Then to show the continuity of G at p⇤ = 1 it is su�cient to show that

n(q⇤)
�R (1 + �)1�R = n(1)�Re�(1�R)a.

But q⇤ = 1 when p⇤ = 1 and thus a = � ln(1 + �). The above expression then holds

immediately. Values of G0(1) and G00(1) can again be inferred from (3.31) and (3.33). A

similar result follows in the case p⇤ = 1.

⇤
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3.C The candidate value function and the HJB varia-

tional inequality

In this section we verify that the candidate value function given in Proposition 3.3 solves

the HJB variational inequality

min

✓

� sup
c>0,⇡

Lc,⇡V C ,�MV C ,�NV C

◆

= 0 (3.34)

where L, M and N are the operators

Lc,⇡f :=
c1�R

1�R
� cfx +

�2

2
fxx⇡

2 + ((µ� r)fx + �⌘⇢fxyy)⇡

+ rfxx+ ↵fyy +
⌘2

2
fyyy

2 � �f,

Mf := f✓ � (1 + �)yfx,

N f := (1� �)yfx � f✓.

Note that for f = f(x, y, ✓) which is strictly increasing and concave in x we have

L⇤f := sup
c>0,⇡

Lc,⇡f =
R

1�R
f1�1/R
x + rxfx + ↵yfy +

⌘2

2
y2fyy �

(�fx + ⌘⇢yfxy)2

2fxx
� �f

and thus it is equivalent to show that min
�

�L⇤V C ,�MV C ,�NV C
�

= 0. From construc-

tion of V C , it is trivial that L⇤V C = 0, MV C = 0 and NV C = 0 on the no-transaction

region, purchase-region and sale-region respectively. Hence it remains to show that

8

>

>

>

>

<

>

>

>

>

:

L⇤V C 6 0, NV C 6 0, �1/� 6 p < p⇤,

MV C 6 0, NV C 6 0, p⇤ 6 p 6 p⇤,

L⇤V C 6 0, MV C 6 0, p⇤ < p 6 1/�.

On the purchase region p 2 [�1/�, p⇤), direct substitution reveals that

NV C = �
✓

b
1

Rb
4

◆�R

n(q⇤)
�R(�+ �)y(x+ y✓)�R(1 + �p)�R 6 0,

and

L⇤V C =
R(x+ y✓)1�R

1�R

✓

b
1

Rb
4

◆

1�R

(1 + �p)1�Rn(q⇤)
�R

✓

m(q⇤)�m

✓

(1 + �)p

1 + �p

◆◆

6 0

where we have used the facts that n(q⇤) = m(q⇤),
(1+�)p
1+�p < (1+�)p⇤

1+�p⇤
= q⇤ and the quadratic

m(q) is decreasing (respectively increasing) over q < q⇤ < qM when R < 1 (respectively

R > 1). Similar calculations can be performed on the sale region p 2 (p⇤, 1/�] to show that

MV C 6 0 and L⇤V C 6 0.

115



Now we show that MV C 6 0 on the no-transaction region p 2 [p⇤, p⇤]. The inequal-

ity NV C 6 0 can be proved in an identical fashion. Again writing G as shorthand for GC ,

we have

MV C = V C
✓ � (1 + �)yV C

x =
pV C

✓



(1 + �p)
G0(p)

G(p)
� �(1�R)

�

.

Since sgn(V C) = sgn(1�R), it is necessary and su�cient to show

sgn(1�R)



(1 + �p)
G0(p)

G(p)
� �(1�R)

�

6 0.

But G(p) = sgn(1� p)h(p)|1� p|1�R for p 6= 1, and then

G0(p)

G(p)
=

h0(p)

h(p)
� 1�R

1� p
=

w(h)

h(p)p(1� p)
� 1�R

1� p
=

1�R

1� p

✓

W (h)

p
� 1

◆

and the required inequality becomes

1�W (h)

1� p
> 1

1 + �p
. (3.35)

We are going to prove (3.35) for p 2 [p⇤, p⇤] \ {1}. Then MV C 6 0 will hold at p = 1 as

well by smoothness of V C .

Suppose p⇤ < p⇤ < 1. Starting from the identity

Z N(q)

N(q⇤)

dh

w(h)
=

Z p

p⇤

du

u(1� u)

and following the substitutions leading to (3.10), we find
Z q

q⇤

✓

� R

u(1�R)

O(u, n(u))

n(u)

◆

du = �
Z q

q⇤

dv

v(1� v)
+

Z p

p⇤

du

u(1� u)
.

Since the expression on the left hand side is increasing in q, we deduce

1

p(1� p)

dp

dq
> 1

q(1� q)
.

Define �(q) := q
1+�(1�q) . Then � is a solution to the ODE �0(q) = %(q,�(q)) where

%(q, y) = y(1�y)
q(1�q) . Note that �(q⇤) = q⇤

1+�(1�q⇤)
= p⇤ = p(q⇤). For p⇤ 6 p 6 p⇤ < 1 or

equivalently q⇤ 6 q 6 q⇤ < 1, we have p0(q) > %(q, p(q)), and we conclude p(q) > �(q) for

q 2 [q⇤, q⇤]. Then

p = p(q) > q

1 + �(1� q)
=

W (h)

1 + �(1�W (h))

which establishes (3.35).

If instead 1 < p⇤ < p⇤, we can arrive at the same result by showing p(q) 6 �(q) for

1 < q⇤ 6 q 6 q⇤ starting with
R N(q⇤)
N(q)

dh
w(h) =

R p⇤

p
du

u(1�u) and then apply the same argument

as in the previous case.
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It remains to consider the case of p⇤ 6 1 6 p⇤. The only issue is that the comparison

of derivatives of p(q) and �(q) may not be trivial at q = 1 because of the singularity in %(q, y).

But by direct computation, we find �0(1) = 1 + �. On the other hand, consider an inverse

expression q = q(p) we have

q0(1�) = lim
p"1

1� q(p)

1� p
= lim

p"1

1�W (h(p))

1� p
= ea

due to (3.32) and similarly we have q0(1+) = ea. Then q0(1) and in turn p0(1) = 1/q0(1) is

well-defined, and moreover since a > � ln(1 + �) we have

p0(1) = e�a < 1 + � = �0(1).

Together with the fact that p(1) = 1 = �(1), we must have that �(q) is an upcrossing of p(q)

at q = 1. From this we conclude p(q) > �(q) on q 2 [q⇤, 1) and �(q) > p(q) on q 2 (1, q⇤].

(3.35) then follows.

3.D Proof of the main results

Proof of Theorems 3.4 and 3.5. We prove the two theorems together. Suppose we are in

the well-posed cases. From the analysis in Section 3.5, there exists a solution (n(·), q⇤, q⇤)

to the free boundary value problem with n being strictly positive. By the C2 smoothness

of GC , V C is C2⇥2⇥1. Moreover, in Appendices 3.B and 3.C we show that V C is a strictly

increasing and concave function in x solving the HJB variational inequality (3.34).

Let Mt :=
R t
0

e��s C1�R

s

1�R ds+ e��tV C(Xt, Yt,⇥t). Applying Ito’s lemma, we obtain

Mt = M
0

+

Z t

0

e��sLC
s

,⇧
sV Cds+

Z t

0

e��sMV Cd�s +

Z t

0

e��sNV Cd s

+

Z t

0

e��s�V C
x ⇧sdBs +

Z t

0

e��s⌘V C
y YsdWs

6 M
0

+

Z t

0

e��s�V C
x ⇧sdBs +

Z t

0

e��s⌘V C
y YsdWs.

Suppose R < 1. Then Mt > 0, and the sum of the stochastic integrals is a local

martingale bounded below by �M
0

and in turn it is a supermartingale. Thus E(Mt) 6
M

0

= V C(x, y, ✓) which gives

E
✓

Z t

0

e��s
C1�R

s

1�R
ds

◆

6 V C(x, y, ✓)� E
�

e��tV C(Xt, Yt,⇥t)
�

6 V C(x, y, ✓).

On sending t ! 1, we obtain E
⇣

R1
0

e��s C1�R

s

1�R ds
⌘

6 V C by monotone convergence and

thus V 6 V C since C is arbitrary.
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If R > 1, then the above argument does not go through directly since the local

martingale will not be bounded below. But using the argument of Davis and Norman (1990),

we can consider a perturbed candidate value function which is bounded on the no-transaction

region and define a version of the value process M which will be a supermartingale. The

result can be obtained by considering the limit of the perturbed candidate value function.

To show V C 6 V , it is su�cient to demonstrate the existence of a strategy which

attains the value V C . Suppose the initial value (x, y✓) is such that y✓
x+y✓ = p 2 [p⇤, p⇤].

Define feedback controls C⇤ = (C⇤
t )t>0

and ⇧⇤ = (⇧⇤
t )t>0

with C⇤
t = C⇤(Xt, Yt,⇥t) and

⇧⇤
t = ⇧⇤(Xt, Yt,⇥t) where

C⇤(x, y, ✓) := [V C
x (x, y, ✓)]�

1
R , ⇧⇤(x, y, ✓) := �

(µ� r)V C
x (x, y, ✓t) + �⌘⇢yV C

xy(x, y, ✓t)

�2V C
xx(x, y, ✓t)

,

and ⇥⇤ = (⇥⇤
t )t>0

a finite variation, local time strategy in form of ⇥⇤
t = ✓+�⇤

t � ⇤
t which

keeps Pt within (p⇤, p⇤). Let X⇤ be the liquid wealth process evolving under these controls.

Now since (X⇤, Y ⇥⇤) is always confined in the no-transaction wedge, this strategy is clearly

admissible.

Let M⇤ be the process M = (Mt)t>0

evolving under this controlled system. Then

M⇤
t = M⇤

0

+

Z t

0

e��sLC⇤
s

,⇧⇤
sV Cds+

Z t

0

e��sMV Cd�⇤
s +

Z t

0

e��sNV Cd ⇤
s

+

Z t

0

e��s�V C
x ⇧⇤

sdBs +

Z t

0

e��s⌘V C
y YsdWs

=: M⇤
0

+N1

t +N2

t +N3

t +N4

t +N5

t .

By construction of C⇤ and ⇧⇤, N1

t = 0. Moreover, �⇤ is carried by the set {Pt = p⇤}

over which MV C
s = 0. Hence N2

t = 0, and similarly N3

t = 0. We show in Appendix 3.E

that the local-martingale stochastic integrals N4 and N5 are martingales. Then on taking

expectation we have

E
✓

Z t

0

e��s
(C⇤

s )
1�R

1�R
ds

◆

+ E(e��tV C(X⇤
t , Yt,⇥

⇤
t )) = E(M⇤

t ) = M⇤
0

= V C . (3.36)

We also show in Appendix 3.E that limt!1 E(e��tV C(X⇤
t , Yt,⇥⇤

t )) = 0. Then letting t ! 1

in (3.36) gives

V C = E
✓

Z 1

0

e��s
(C⇤

s )
1�R

1�R
ds

◆

6 sup
(C,⇧,⇥)2A(0,x,y,✓)

E
✓

Z 1

0

e��s
C1�R

s

1�R
ds

◆

= V.

Now suppose the initial value (x, y✓) is such that p < p⇤. Then consider a strategy of

purchasing � = xp⇤�(1�p⇤)y✓
y(1+�p⇤)

number of shares at time zero such that the post-transaction

proportional holding in the illiquid asset is y(✓+�)
x+y(✓+�)�y(1+�)� = p⇤, and then follow the
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investment/consumption strategy (C⇤,⇧⇤,⇥⇤) as in the case of p 2 [p⇤, p⇤] thereafter. By

construction of V C , V C(x, y, ✓) = V C(x� y(1 + �)�, y, ✓ + �). Using (3.36) we have

E
✓

Z t

0

e��s
(C⇤

s )
1�R

1�R
ds

◆

+ E(e��tV C(X⇤
t , Yt,⇥

⇤
t )) = V C(x� y(1 + �)�, y, ✓ + �) = V C(x, y, ✓)

and from this we can conclude V C 6 V . Similar argument applies for initial value p > p⇤.

Now we consider the set of parameters which leads to unconditional ill-posedness.

It is su�cient to show that the problem without the liquid asset (which is the classical

transaction cost problem involving one single risky asset only) is ill-posed. Note that `(1) 6 0

is equivalent to b
3

> b1
1�R + b

2

R and this inequality can be restated as ↵ > 1

2

⌘2R + �
1�R .

But this is exactly the ill-posedness condition in the one risky asset case. See Hobson et al.

(2016) or Choi et al. (2013).

Finally we consider the conditionally well-posed case. From the discussion in Section

3.5, it is clear that as long as ⇠ > ⇠ there still exists (n(·), q⇤, q⇤) a solution to the free

boundary value problem and thus one could show V C = V following the same argument in

the proof for the unconditionally well-posed cases. Moreover, from Lemma 3.7 we can see

that n(·) # 0 as ⇠ # ⇠, in turn V C ! 1 from its construction. But V > V C and thus we

conclude V ! 1 as ⇠ # ⇠. This shows the ill-posedness of the problem at ⇠ = ⇠, and using

the monotonicity of V in ⇠ this conclusion extends to any ⇠ 6 ⇠.

⇤

119



3.E The martingale property of the value process under

the optimal control

Firstly we want to show that the �⇧⇤V C

x

V C

and
⌘yV C

y

V C

are bounded on the no-transaction region.

Writing GC as shorthand for G,

�⇧⇤V C
x

V C
= �V C

x

V C

�V C
x + ⌘⇢yV C

xy

V C
xx

= � (1�R)G(p)� pG0(p)

G(p)

⇥ �[(1�R)G(p)� pG0(p)] + ⌘⇢[�R(1�R)pG(p) +Rp(2p� 1)G0(p)� p2(1� p)G00(p)]

p2G00(p) + 2RpG0(p)�R(1�R)G(p)

= �(1�R)

✓

1� w(h)

(1�R)h

◆ �(1�R)h
⇣

1� w(h)
(1�R)h

⌘

� ⌘⇢[w0(h)w(h)� (1�R)w(h)]

w0(h)w(h) + (2R� 1)w(h)�R(1�R)h

= �(1�R)(1� q)
�(1� q)� ⌘⇢

h

(1�R)q
⇣

q + N(q)
N 0

(q)

⌘

� (1�R)q
i

(1�R)q N(q)
N 0

(q) � (1� q)[R+ (1�R)q]

=
1�R

R
(1� q)

8

<

:

� �
(1�R)(⌘⇢R� �)q

⇣

N(q)
N 0

(q) � (1� q)
⌘

R(1� q)� (1�R)q
⇣

N(q)
N 0

(q) � (1� q)
⌘

9

=

;

=
1�R

R
(1� q)

8

<

:

� � (⌘⇢R� �)

2

4

R(1� q)

R(1� q)� (1�R)q
⇣

N(q)
N 0

(q) � (1� q)
⌘ � 1

3

5

9

=

;

.

Using the monotonicity property of n it can be easily shown that (1 � R)( N(q)
N 0

(q) �
1�q
1�R )  0, and then

R(1� q)� (1�R)q

✓

N(q)

N 0(q)
� (1� q)

◆

> R(1� q)� (1�R)q

✓

1� q

1�R
� (1� q)

◆

= R(1� q)2 > 0

and in turn |R(1� q)� (1�R)q
⇣

N(q)
N 0

(q) � (1� q)
⌘

| > R(1� q)2. Thus

�

�

�

�

�⇧⇤V C
x

V C

�

�

�

�

6 |1�R|
R

|1� q|

8

<

:

|�|+ |⌘⇢R� �|

2

4

R|1� q|
R(1� q)� (1�R)q

⇣

N(q)
N 0

(q) � (1� q)
⌘ + 1

3

5

9

=

;

6 |1�R|
R

|1� q|
⇢

|�|+ |⌘⇢R� �|


R|1� q|
R(1� q)2

+ 1

��

=
|1�R|

R
{|�||1� q|+ |⌘⇢R� �| [1 + |1� q|]}

6 K
1

for some K
1

> 0 since |1� q| is bounded on q 2 [q⇤, q⇤].

On the other hand,

⌘yV C
y

V C
=

⌘

G(p)
[(1�R)pG(p) + p(1� p)G0(p)] = ⌘

w(h)

h
= ⌘(1�R)W (h)
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and then |⌘yV
C

y

V C

| 6 ⌘|1�R|q⇤ =: K
2

.

Recall the notation VC(x, y, ✓, t) = e��tV C(x, y, ✓), and define a process D =

(Dt)t>0

via Dt = lnVC(X⇤
t , Yt,⇥⇤

t , t) = lnV C(X⇤
t , Yt,⇥⇤

t )� �t. Then

Dt = D
0

�
Z t

0

1

1�R

(V C
x )1�1/R

V C
ds+

Z t

0

�⇧⇤
sV

C
x

V C
dBs +

Z t

0

⌘YsV C
y

V C
dWs

� 1

2

Z t

0

1

(V C)2
⇥

�2(⇧⇤
s)

2(V C
x )2 + 2�⌘⇢Ys⇧

⇤
sV

C
x V C

y + ⌘2Y 2

s (V
C
y )2

⇤

ds

and hence the value process admits a representation of

VC(X⇤
t , Yt,⇥

⇤
t , t) = V C(x, y, ✓) exp

✓

�
Z t

0

1

1�R

(V C
x )1�1/R

V C
ds

◆

Ht

with

Ht := E
 

Z t

0

�⇧⇤
sVx

V C
dBs +

Z t

0

⌘YsV C
y

V C
dWs

!

where E(Zt) := exp
�

Zt � 1

2

[Z]t
�

is the Doleans exponential of a process Z. Since
R t
0

�⇧⇤
s

V
x

V C

dBs

and
R t
0

⌘Y
s

V C

y

V C

dWs have bounded integrands, H is a true martingale. Now,

(e��t�⇧⇤
tV

C
x )2 6 K2

1

V C(Xt, Yt,⇥t)
2

6 K2

1

V C(x, y, ✓)2H2

t

= K2

1

V C(x, y, ✓)2E
 

2

Z t

0

�⇧⇤
sVx

V C
dBs + 2

Z t

0

⌘YsV C
y

V C
dWs

!

⇥ exp

✓

Z t

0

1

(V C)2
⇥

�2(⇧⇤
s)

2(V C
x )2 + 2�⌘⇢Ys⇧

⇤
sV

C
x V C

y + ⌘2Y 2

s (V
C
y )2

⇤

ds

◆

6 K2

1

V C(x, y, ✓)2E
 

2

Z t

0

�⇧⇤
sVx

V C
dBs + 2

Z t

0

⌘YsV C
y

V C
dWs

!

⇥ exp
�⇥

K2

1

+ 2⇢K
1

K
2

+K2

2

⇤

t
�

and therefore

E
�

(e��t�⇧⇤
tV

C
x )2

�

6 K2

1

V C(x, y, ✓)2 exp
�⇥

K2

1

+ 2⇢K
1

K
2

+K2

2

⇤

t
�

.

We conclude E
⇣

R t
0

(e��s�⇧⇤
sV

C
x )2ds

⌘

< 1 and hence N4

t =
R t
0

e��s�⇧⇤
sV

C
x dBs is a true

martingale. Similarly, we can show that N5

t =
R t
0

e��s⌘V C
y YsdWs is also a true martingale

using the fact that (e��t⌘V C
y Yt)2 6 K2

2

V C(x, y, ✓)2H2

t .

Finally, we want to show that e��tV C(X⇤
t , Yt,⇥⇤

t ) converges to zero in L1. We have

1

1�R

(V C
x )1�1/R

V C
=

1

G(p)

✓

G(p)� pG0(p)

1�R

◆

1�1/R

= n(q) > n(q⇤).
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Then

e��tV C(X⇤
t , Yt,⇥

⇤
t ) = V C(x, y, ✓) exp

✓

�
Z t

0

1

1�R

(V C
x )1�1/R

V C
ds

◆

Ht

6 V C(x, y, ✓) exp (�n(q⇤)t)Ht

and hence limt!1 E(e��tV C(X⇤
t , Yt,⇥⇤

t )) = 0 as

E(V C(x, y, ✓) exp (�n(q⇤)t)Ht) = V C(x, y, ✓) exp (�n(q⇤)t) ! 0.

3.F The first order di↵erential equation

For convenience, we recall some notations, and introduce some more:

m(q) =
R(1�R)

b
1

q2 � b
3

(1�R)

b
1

q + 1,

`(q) = m(q) +
1�R

b
1

q(1� q) +
(b

2

� 1)R(1�R)

b
1

q

(1�R)q +R
,

'(q, n) = b
1

(n� 1) + (1�R)(b
3

� 2R)q + (2� b
2

)R(1�R),

E(q)2 = 4R2(1�R)2(b
2

� 1)(1� q)2,

v(q, n) = '(q, n)� sgn(1�R)
p

'(q, n)2 + E(q)2,

D(q, n) = 2b
1

[(1�R)q +R][n�m(q)]� q [v(q, n)� v(q,m(q))] ,

A(q, n) = (`(q)� n)

 

2b
1

[(1�R)q +R]� b
1

q

 

1� sgn(1�R)
'

p

'2 + E2

!!

+D(q, n). (3.37)

We begin with a useful lemma.

Lemma 3.13. O(q, n) has an alternative expression

O(q, n) = � (1�R)nD(q, n)

2R(1� q)[(1�R)q +R]b
1

[`(q)� n]
. (3.38)

Proof. Consider

b
1

(`(q)� n) + '(q, n)

= R(1�R)q2 � b
3

(1�R)q + b
1

� b
1

n+ (1�R)q(1� q) +
(b

2

� 1)R(1�R)q

(1�R)q +R

+b
1

n� b
1

+ b
3

(1�R)q +R(1�R)[�2q + 2� b
2

]

= R(1�R)



(1� q)2 � (b
2

� 1) +
(b

2

� 1)q

(1�R)q +R

�

+ (1�R)q(1� q)

= (1�R)(1� q)[R(1� q) + q]� (b
2

� 1)R2(1�R)

(1�R)q +R
(1� q).
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Then, noting that (1�R)q +R = R(1� q) + q,

b
1

[(1�R)q +R](`(q)� n)

= (1�R)(1� q)[R(1� q) + q]2 �R2(1�R)(b
2

� 1)(1� q)� '(q, n)[R(1� q) + q],

and multiplying by 4(1�R)(1� q),

4b
1

(1�R)(1� q)[(1�R)q +R](`(q)� n)

= 4(1�R)2(1� q)2[R(1� q) + q]2 � 4'(q, n)(1�R)(1� q)[R(1� q) + q] + '(q, n)2

�{sgn(1�R)}2
�

'(q, n)2 + 4R2(1�R)2(b
2

� 1)(1� q)2
�

= {2(1�R)(1� q)[R(1� q) + q]� '(q, n)}2 � {sgn(1�R)}2
�

'(q, n)2 + E(q)2
 

.

Writing this last expression as the di↵erence of two squares we find

2(1�R)(1� q)[(1�R)q +R]� '(q, n)� sgn(1�R)
p

'(q, n)2 + E(q)2

=
4b

1

(1�R)(1� q)[(1�R)q +R](`(q)� n)

2(1�R)(1� q)[R(1� q) + q]� v(q, n)
.

Then

O(q, n) =
(1�R)n

R(1� q)
� 2(1�R)2qn/R

2(1�R)(1� q) [(1�R)q +R]� '(q, n)� sgn(1�R)
p

'(q, n)2 + E(q)2

=
(1�R)n

R(1� q)

⇢

1� (1�R)q(1� q)

b
1

(`(q)� n)
+

qv(q, n)

2b
1

[(1�R)q +R](`(q)� n)

�

(3.39)

=
(1�R)n {2b

1

(`(q)� n)[(1�R)q +R]� 2[(1�R)q +R](1�R)q(1� q) + qv(q, n)}
2b

1

R[(1�R)q +R](1� q)(`(q)� n)

=
(1�R)n

n

2b
1

[(1�R)q +R]
h

(`(q)�m(q))� (n�m(q))� (1�R)q(1�q)
b1

i

+ qv(q, n)
o

2b
1

R(1� q)[(1�R)q +R](l(q)� n)
.

The result then follows since

2b
1

[(1�R)q +R]

⇢

`(q)�m(q)� (1�R)q(1� q)

b
1

�

= 2R(1�R)(b
2

� 1)q = �qv(q,m).

⇤

Proof of Lemma 3.6. (1) Observe that

`(q)�m(q) =
1�R

b
1

q(1� q) +
(b

2

� 1)R(1�R)

b
1

q

(1�R)q +R

=
(1�R)q

b
1

[(1�R)q +R]
P (q)
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where P (q) = Rb
2

+(1�2R)q� (1�R)q2. Hence the crossing points of `(q) and m(q) away

from q = 0 are given by the roots of P (q) = 0 if such roots exist. Note that P (� R
1�R ) =

P (1) = R(b
2

� 1) > 0, since by assumption, b
2

> 1.

If R < 1, then since P is inverse-U shaped and P (1) > 0 there must be two distinct

solutions of the quadratic equation P (q) = 0. As 0 < P (1) = P (�R/(1�R)), we must have

P (q) > 0 on q 2 [�R/(1 � R), 1], and the two roots must be found outside this interval.

If R > 1, the minima of P (q) is given by qP := 2R�1

2(R�1)

. Note that 1 < qP < R/(R � 1),

and since 0 < P (1) = P (R/(R � 1)), the root(s) of P (q) = 0 must be contained on the

interval (1, R/(R � 1)) if they exist. The desired results can be established easily using

these properties of P .

(2) The behaviour at q = �R/(1�R) is only relevant for R > 1 so we write this as

q = R/(R � 1). Note that ` explodes at q = R
R�1

. It is su�cient to check the denominator

of O(q, n) is not equal to zero at q = R/(R� 1). Direct calculation gives

[(1�R)q +R][`(q)� n]|q= R

R�1
= � (b

2

� 1)R2

b
1

and hence

2R(1� q)[(1�R)q +R]b
1

[`(q)� n]|q= R

1�R

=
2R3(b

2

� 1)

(R� 1)
6= 0. (3.40)

(3) The following lemma records some useful identities.

Lemma 3.14.

'(q,m(q)) = R(1�R){(1� q)2 � (b
2

� 1)},

'(q, `(q)) = (1�R)(1� q)

⇢

(1�R)q +R� (b
2

� 1)R2

(1�R)q +R

�

,

'(1, n) = b
1

(n� `(1)),

v(q,m(q)) = �2R(1�R)(b
2

� 1),

v(q, `(q)) =

8

>

<

>

:

� 2R2
(1�R)(1�q)(b2�1)

(1�R)q+R , (1� q)[(1�R)q +R] > 0,

2(1�R)(1� q)[(1�R)q +R], (1� q)[(1�R)q +R] < 0,

v(1, n) = '(1, n)� sgn(1�R)|'(1, n)|.
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Proof. Most of these identities follow easily on substitution. For v(q, `(q)) we have

v(q, `(q)) = (1�R)(1� q)

⇢

(1�R)q +R� (b
2

� 1)R2

(1�R)q +R

�

� sgn(1�R)

s

(1�R)2(1� q)2
⇢

(1�R)q +R+
(b

2

� 1)R2

(1�R)q +R

�

2

= (1�R)(1� q)

⇢

(1�R)q +R� (b
2

� 1)R2

(1�R)q +R

�

� (1�R)|1� q|
�

�

�

�

(1�R)q +R+
(b

2

� 1)R2

(1�R)q +R

�

�

�

�

which simplifies to give the stated expression. ⇤

Return to the proof of Part (3) of Lemma 3.6. Note that sgn('(1, n)) = sgn(n�`(1)).

Assume we are in the range (1 � R)n < (1 � R)`(1). Then sgn('(1, n)) = � sgn(1 � R),

v(1, n) = 2'(1, n) and

D(1, n) = 2b
1

[n�m(1)]�v(1, n)+v(1,m(1)) = 2b
1

[n�m(1)]�2b
1

[n�`(1)]+2b
1

[m(1)�`(1)] = 0.

Further, after some algebra we can show @
@qD(q, n)|q=1

= �2b
1

R(n�m(1)).

Consider F (q, n) = O(q,n)
n = � (1�R)D(q,n)

2R(1�q)[(1�R)q+R]b1[`(q)�n] . Then both the numerator

and denominator of F are zero at q = 1. Nonetheless, we can apply L’Hôpital’s rule to

calculate limq!1

D(q,n)
1�q to deduce the expression in (3.15).

Now consider limn!`(q) F (q, n). Suppose first 0 < q < 1. Then

D(q, `(q)) = 2(1�R)q(1� q)

⇢

[(1�R)q +R] +
R2(b

2

� 1)

(1�R)q +R

�

which is non-zero and has sgn(D(q, `(q))) = sgn(1�R). It follows that for q < 1, and R < 1,

limn"`(q) F (q, n) = �1 and for q < 1 and R > 1, limn#`(q) F (q, n) = +1.

Now suppose q > 1, and if R > 1 that (1�R)q +R > 0. Then

D(q, `(q)) = 2b
1

[(1�R)q +R]

✓

1�R

b
1

q(1� q) +
(b

2

� 1)R(1�R)

b
1

q

(1�R)q +R

◆

� 2(1�R)q(1� q)[(1�R)q +R]� 2R(1�R)(b
2

� 1)q

= 0.

Then, in order to determine the value of F (q, `(q)) via L’Hôpital’s rule we need

@D

@n
= 2b

1

[(1�R)q +R]� q
@v

@n
= 2b

1

[(1�R)q +R]� b
1

q

 

1� sgn(1�R)'
p

'2 + E2

!

. (3.41)
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It follows that

@

@n
D(q, n)

�

�

�

�

n=`

= 2b
1

[(1�R)q +R]



1� q[(1�R)q +R]

[(1�R)q +R]2 +R2(b
2

� 1)

�

and hence we obtain (3.16).

(4) We prove the results for R < 1. The results for R > 1 can be obtained similarly,

the only issue being that sometimes there is an extra case which arises when (1� R)q + R

changes sign.

Note that for fixed q, the ordering of m(q) and `(q) is given by Part 1 of Lemma

3.6. The monotonicity of F in n for q = 1 can be obtained from (3.15).

If 0 < q < 1, then since

2b
1

[(1�R)q +R]� b
1

q

 

1� sgn(1�R)'
p

'2 + E2

!

> 2b
1

[(1�R)q +R]� 2b
1

q = 2Rb
1

(1� q) > 0,

we conclude from (3.41) that D(q, n) is increasing in n. Since D(q,m(q)) = 0 it follows that

D(q, n) > 0 for n > m(q) and D(q, n) < 0 for n < m(q). Hence, F (q, n) = 0 if and only if

n = m(q), and we have

sgn(F (q, n)) = � sgn

✓

D(q, n)

(1� q)[(1�R)q +R][`(q)� n]

◆

= sgn [(n�m(q))(n� `(q))] .

This gives the desired sign properties of F (q, n) on the range 0 < q < 1.

Now consider the case q > 1. From Part 3 of this proof, we have D(q, `(q)) = 0. We

can compute the second derivative of D with respect to n as

@2D

@n2

= sgn(1�R)b2
1

q
E2

(E2 + '2)3/2

so that (recall R < 1) D(q, n) is convex in n. Since D(q,m(q)) = D(q, `(q)) = 0, it follows

that on the regime of q > 1 we must have D(q, n) < 0 when n lies between m(q) and `(q)

and D(q, n) > 0 otherwise. Thus sgn(D(q, n)) = sgn [(n�m(q))(n� `(q))]. Then

sgn(F (q, n)) = sgn

✓

D(q, n)

`(q)� n

◆

= � sgn(n�m(q)).

Finally, note that F (q, n) can be zero only if n = m(q) or n = `(q). But for q > 1 the

limiting expression at n = `(q) is given by Part 3 of Lemma 3.6. Hence F (q, n) = 0 if and

only if n = m(q).

⇤
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The following lemma on further properties of F is key in the proofs of the mono-

tonicity property of ⌃ and in results on comparative statics:

Lemma 3.15. For q 2 (0, 1] and (1�R)m(q) < (1�R)n < (1�R)`(q), and for q > 1 and

(1�R)m(q) < (1�R)n, we have @
@nF (q, n) 6 0.

Proof. Direct computation gives

(`(q)� n)2
@

@n

✓

D(q, n)

`(q)� n

◆

= (`(q)� n)
@D

@n
+D(q, n)

= (`(q)� n)

 

2b
1

[(1�R)q +R]� b
1

q

 

1� sgn(1�R)
'

p

'2 + E2

!!

+D(q, n)

= A(q, n)

as defined in (3.37). Di↵erentiating A we have

@

@n
A(q, n) = sgn(1�R)

b2
1

E(q)2q(`(q)� n)

('2 + E(q)2)3/2
.

Hence for q > 0 and R < 1, A(q, n) is increasing in n for n < `(q) and decreasing in n for

n > `(q). If R > 1, then A(q, n) is decreasing in n for n < `(q) and increasing in n for

n > `(q).

Now we calculate the limiting value of A(q, n) as n ! ±1. Clearly '(q, n) ! ±1

as n ! ±1. Then,

lim
(1�R)n!+1

v(q, n) = lim
(1�R)'!+1

⇣

'� sgn(1�R)
p

'2 + E(q)2
⌘

= 0

and

lim
(1�R)n!+1

(`(q)� n)

 

1� sgn(1�R)
'(n, q)

p

'(n, q)2 + E(q)2

!

= 0.

Observe that

A(q, n) = 2b
1

[(1�R)q +R](`(q)�m(q))� b
1

q(`(q)� n)

 

1� sgn(1�R)
'

p

'2 + E2

!

� qv(q, n) + qv(q,m(q))

and thus

lim
(1�R)n!+1

A(q, n) = 2b
1

[(1�R)q+R](`(q)�m(q))+qv(q,m(q)) = 2(1�R)[(1�R)q+R]q(1�q).
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Now we compute the limiting value of A(q, n) as sgn(1 � R)n ! �1. In this case

v(q, n) is no longer converging. But consider

b
1

q(`(q)� n)

 

1� sgn(1�R)
'

p

'2 + E2

!

+ qv(q, n)

= b
1

q`(q) + q('� b
1

n)� sgn(1�R)
q'

p

'2 + E2

✓

b
1

`(q) + ('� b
1

n) +
E2

'

◆

.

Using the fact that '� b
1

n = '(q, n)� b
1

n is independent of n, we can obtain

lim
(1�R)n!�1

(

b
1

q(`(q)� n)

 

1� sgn(1�R)
'

p

'2 + E2

!

+ qv(q, n)

)

= 2b
1

q`(q)� 2q [b
1

� (1�R)(b
3

� 2R)q � (2� b
2

)R(1�R)]

and thus

lim
(1�R)n!�1

A(q, n) = 2b
1

[(1�R)q +R](`(q)�m(q)) + qv(q,m(q))� 2b
1

q`(q)

+ 2q [b
1

� (1�R)(b
3

� 2R)q � (2� b
2

)R(1�R)]

=
2R2(1�R)(b

2

� 1)q(1� q)

(1�R)q +R

after some algebra.

Suppose R < 1. For 0 < q < 1 we have A(q, n) increasing in n for n < `(q) and

decreasing in n for n > `(q). Since on this range of q limn!+1 A(q, n) = 2(1�R)[(1�R)q+

R]q(1 � q) > 0 and limn!�1 A(q, n) = 2R2
(1�R)(b2�1)q(1�q)

(1�R)q+R > 0, we conclude A(q, n) > 0

for all n.

If q > 1 then A(q, `(q)) = D(q, `(q)) = 0. But A(q, n) attains its maximum at

n = `(q), hence we have A(q, n) 6 0 for q > 1. Putting the cases together, (1�q)A(q, n) � 0

and @F
@n  0.

Now suppose R > 1. Suppose 0 < q < 1 or q > R/(R� 1). Then A(q, n) decreasing

in n for n < `(q) and increasing in n for n > `(q). Since limn!+1 A(q, n) < 0 and

limn!�1 A(q, n) < 0, we conclude A(q, n) < 0 for all n. If 1 < q < R
R�1

then A(q, n)

attains its minimum of zero at n = `(q). Hence A(q, n) > 0 for 1 < q < R
R�1

. We find

(1� q)[(1�R)q +R]A(q, n)  0 and again @F
@n  0.

It remains to check the result at q = 1 and, if R > 1, q = R/(R � 1). At q = 1 the

result follows by considering (3.15). For R > 1 and q = R/(R � 1), we obtain from (3.40)

that

F

✓

R

R� 1
, n

◆

=
(R� 1)2D( R

R�1

, n)

2R3(b
2

� 1)
.
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Using (3.41) we have

@D

@n

�

�

�

�

q=R/(R�1)

= � Rb
1

R� 1

 

1 +
'

p

'2 + E2

!

< 0

and then the monotonicity of F ( R
R�1

, n) in n follows from the monotonicity of D( R
R�1

, n)

in n. ⇤

Proof of Lemma 3.7. For any u 2 (0, qM ), since (1�R)nu(q) is decreasing in q and n0(⇣(u)) =

0, nu(q) can only cross m(q) at some q > qM . Moreover, for u  q  ⇣(u), (1� R)m(u) =

(1�R)nu(u) � (1�R)nu(q) � (1�R)nu(⇣(u)) = (1�R)m(⇣(u)) � (1�R)mM .

Since nq
M

(qM ) = mM , we have limu"q
M

m(⇣(u)) = mM and in turn limu"q
M

⇣(u) =

qM . Then limu"q
M

⌃(u) = 0.

Now consider ⇤(u) := ln(1+⌃(u)) =
R ⇣(u)
u � R

(1�R)q
O(q,n

u

(q))
n
u

(q) dq. From the fact that

O(u, nu(u)) = O(u,m(u)) = 0 = O(⇣(u),m(⇣(u))) = O(⇣(u), nu(⇣(u))) we have

d⇤

du
=

Z ⇣(u)

u
� R

(1�R)q

✓

@

@n

O(q, nu(q))

nu(q)

◆

@nu(q)

@u
dq < 0

where we have used Lemma 3.15 and the monotonicity of n to make the conclusion about

the sign.

We now show that limu#0 ⌃(u) = +1. We assume R < 1; the proof for R > 1 is

similar. Consider a quadratic function H(x) = (1 � R)(m0(0) � x) � R(l0(0) � x)x. Then

trivially H(m0(0)) > 0. Choose a constant k such that m0(0) < k < ↵ < 0 where ↵ is the

negative root of H(x) = 0. Then H(k) > 0 and equivalently k < (1�R)(m0
(0)�k)

R(l0(0)�k) . Now let

b(q) = 1 + kq. It is clear from the definition of D that D(0, 1) = 0 and then

d

dq
D(q, 1 + kq)

�

�

�

�

q=0

=
@

@q
D(q, n)

�

�

�

�

q=0,n=1

+ k
@

@n
D(q, n)

�

�

�

�

q=0,n=1

= �2Rb
1

m0(0) + 2Rb
1

k

and

lim
q#0

O(q, b(q)) = �
(1�R) d

dqD(q, 1 + kq)|q=0

2R2b
1

[`0(0)� k]
=

(1�R)(m0(0)� k)

R(l0(0)� k)
.

Then for all ✏ > 0, there exists K✏ 2 (0, 1) such that O(q, b(q)) > (1�R)(m0
(0)�k)

R(l0(0)�k) � ✏ for

q < K✏. Choose ✏ such that 0 < ✏ < (1�R)(m0
(0)�k)

R(l0(0)�k) � k. Then we have O(q, b(q)) > k on

0 < q < K✏ and solutions to n0 = O(q, n) can only cross b(q) from below. For fixed u < K✏,

let  u = inf(q > u : nu(q) > b(q)). Then for u < q < K✏ ^  u, n0
u(q) = O(q, nu(q)) >
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O(q, b(q)) > k, where we have used the property that F (q, n) = O(q,n)
n is decreasing in n.5

Moreover, there also exists Km such that m0(q) < 1

2

(m0(0) + k) for q < Km. Hence on

u < q < K✏ ^ u ^Km, n0
u(q)�m0(q) > k� 1

2

(m0(0)+ k) = 1

2

(k�m0(0)) =: bk > 0 and then

nu(q)�m(q) > bk(q�u). On the other hand, for  u < q < K✏^Km, m(q) < 1+ q
2

(m0(0)+k)

and hence nu(q) � m(q) > (1 + kq) � (1 + q
2

(m0(0) + k)) = bkq > bk(q � u). We conclude

nu(q)�m(q) > bk(q � u) for u < q < Q := K✏ ^Km.

Hence, using (3.38)

ln(1 + ⌃(u)) =

Z ⇠(u)

u
� R

(1�R)q

O(q, nu(q))

nu(q)
dq

>

Z Q

u

2b
1

[(1�R)q +R] (nu(q)�m(q))� q [v(q, nu(q))� v(q,m(q))]

2q(1� q)[(1�R)q +R]b
1

[l(q)� nu(q)]
dq.

For the denominator, and for u < q < Q  1 we have

2q(1� q)[(1�R)q +R]b
1

[l(q)� nu(q)] < 2q(1� q)[(1�R)q +R]b
1

[l(q)�m(q)]

= 2q2(1� q){(1�R)(1� q)[(1�R)q +R]

+ (b
2

� 1)R(1�R)}

< 2q2{M + (b
2

� 1)R(1�R)}

where M := sup
0<q<1

(1�R)(1�q)[(1�R)q+R]. For the numerator, note that for q < ⇣(u)

v(q, nu(q))� v(q,m(q))

= '(q, nu(q))� '(q,m(q))� {
p

'(q, nu(q))2 + E(q)2 �
p

'(q,m(q))2 + E(q)2}

< '(q, nu(q))� '(q,m(q))

= b
1

(nu(q)�m(q)).

Then,

2b
1

[(1�R)q +R](nu(q)�m(q))� q [v(q, nu(q))� v(q,m(q))]

> {2b
1

[(1�R)q +R]� b
1

q}(nu(q)�m(q))

= b
1

L(q)(nu(q)�m(q))

5In the case of R > 1, the fact that F (q, n) is decreasing in n alone is not su�cient to conclude O(q, n)

is also decreasing in n since F is positive. But one could directly compute

@O

@n
=

R� 1

2R(1� q)[(1�R)q +R]b1(`� n)2

✓
`D(q, n) + n(`� n)

@D

@n

◆

and check the above expression is negative on 0 < q < 1 since on this range of q we have D(q, n) < 0 for

n < m(q) and @D
@n

> 0.
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where L(q) := {2[(1 � R)q + R] � q}. Since L is linear and L(0) = 2R > 0, we can choose

to work on a small interval (0, qL) such that L(q) > min(2R,L(qL)) > 0. For su�ciently

small u such that u < qL, we have b
1

L(q)(nu(q) � m(q)) > b
1

min(2R,L(qL))bk(q � u) on

u < q < Q ^ qL.

Putting everything together and setting bQ := Q^ qL ^ 1, for u < bQ we deduce that

ln(1 + ⌃(u)) >

Z bQ

u

b
1

min(2R,L(qL))bk(q � u)

2q2[M + (b
2

� 1)R(1�R)]
dq

=
b
1

min(2R,L(qL))bk

2[M + (b
2

� 1)R(1�R)]

 

ln
bQ

u
+

u
bQ
� 1

!

.

Letting u # 0 and noting that bQ does not depend on u we conclude that ⌃(u) ! 1.

⇤

3.G Comparative statics

Proof of Proposition 3.8. (1) Set m(q) = b
1

(m(q) � 1) and similarly n(q) = b
1

(n(q) � 1)

and `(q) = b
1

(`(q)� 1). The idea behind this transformation is that m is constructed such

that it does not depend on b
1

. ` has a similar property. The free boundary value problem

can be written as to find (n, q⇤, q⇤) such that n0 = O(q, n) subject to n(q⇤) = m(q⇤) and

n(q⇤) = m(q⇤). Here O(q, n) := b
1

O(q, n
b1

+ 1) = b
1

O(q, n).

Note that ⇣(u) = inf{q > u : (1 � R)nu(q) < (1 � R)m(q)} = inf{q > u : (1 �

R)nu(q) < (1�R)m(q)}.

Define '(q, n) = '(q, n) = '(q, n
b1
+1), v(q, n) = v(q, n) = v(q, n

b1
+1) and D(q, n) =

D(q, n) = D(q, n
b1

+1). Then, as functions of q and n, ', v and D are all independent of b
1

.

We have

O(q, n) = � (1�R)(n+ b
1

)D(q, n)

2R(1� q)[(1�R)q +R][`(q)� n]
.

By the above remarks the only dependence on b
1

is through the term (n+ b
1

). Further

n0 = (n+ b
1

)F (q, n)

where F given by

F (q, n) = F (q, n) = � (1�R)D(q, n)

2R(1� q)[(1�R)q +R][`(q)� n]

does not depend on b
1

. By Lemma 3.15, F is decreasing in the second argument.
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Let bb
1

> eb
1

be two positive values of b
1

. Define bnu and enu the solutions to the initial

value problem n0(q) = O(q, n(q)) with n(u) = m(u) under parameters bb
1

and eb
1

respectively.

We extend this notation to O, ⇣, ⌃ and (q⇤, q⇤) in a similar fashion.

If nu is a solution to the initial value problem with nu(u) = m(u) we must have

(1�R)O(q, nu(q)) < 0 and hence (1�R)O is decreasing in b
1

. Then (1�R)bnu cannot upcross

(1�R)enu and since (1�R)bn0
u(u) = (1�R) bO(u, bnu(u)) < (1�R) eO(u, enu(u)) = (1�R)en0

u(u),

we must have (1 � R)bnu(q) < (1 � R)enu(q) at least up to q = b⇣(u) ^ e⇣(u). From this we

conclude b⇣(u) < e⇣(u). On the other hand, F (q, n) depends on b
1

only through n. It follows

that

� ln(1 + ⌃(u)) =

Z ⇣(u)

u

R

q(1�R)

O(q, n
u

(q)
b1

+ 1)
n
u

(q)
b1

+ 1
dq

=

Z ⇣(u)

u

R

q(1�R)

O(q, nu(q))

nu(q) + b
1

dq =

Z ⇣(u)

u

R

q(1�R)
F (q, nu(q))dq.

But, by the monotonity of nu and ⇣ in b
1

Z b⇣(u)

u

R

q(1�R)
F (q, bnu(q))dq >

Z b⇣(u)

u

R

q(1�R)
F (q, enu(q))dq >

Z e⇣(u)

u

R

q(1�R)
F (q, enu(q))dq

where we use (1�R)F (q, n) < 0 and and the fact that F is decreasing in n over the relevant

range. We conclude that ln(1+ b⌃(u)) < ln(1+ e⌃(u)) and hence bq⇤ = b⌃�1(⇠) < e⌃�1(⇠) = eq⇤.

To prove the monotonicity of the sale boundary q⇤, one can parameterise the family

of solutions via its right boundary point (nv(·), &(v), v). See Hobson et al. (2016) for the use

of a similar idea.

(2) Now we consider the monotonicity of the limits of the no-transaction wedge in

b
3

. We use a di↵erent transformation and comparison result. Set a(q) = n(q)�m(q). Then

the original free boundary value problem becomes to solve a0(q) = O(q, a(q)) subject to

boundary conditions a(q⇤) = a(q⇤) = 0 where

O(q, a) = � (1�R)(a+m(q))D(q, a+m(q))

2R(1� q)[(1�R)q +R]b
1

[`(q)�m(q)� a]
� 2R(1�R)

b
1

q +
b
3

(1�R)

b
1

.

Observe that b
1

[`(q)�m(q)] = (1�R)q(1� q)+ (b
2

� 1)R(1�R) q
(1�R)q+R does not depend

on b
3

. Further,

'(q, a+m(q)) = b
1

a+ '(q,m(q)) = b
1

a+R(1�R){(1� q)2 � (b
2

� 1)}

and v(q,m(q)) = �2R(1� R)(b
2

� 1) are both independent of b
3

. Hence D(q, a+m(q)) =

2b
1

[(1�R)q +R]a� q[v(q, a+m(q))� v(q,m(q))] and

O(q, a+m(q))

a+m(q)
=

(1�R)D(q, a+m(q))

2R(1� q)[(1�R)q +R]b
1

[`(q)�m(q)� a]
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are independent of b
3

. Recall we are assuming R < 1. Then O(q, n)  0 over the relevant

range and

@O

@b
3

(q, a) = � (1�R)D(q, a+m(q))

2R(1� q)[(1�R)q +R]b
1

[`(q)�m(q)� a]

@m

@b
3

+
1�R

b
1

= �O(q, a+m(q))

a+m(q)
⇥ 1�R

b
1

q +
1�R

b
1

> 0.

Supposebb
3

> eb
3

. Using similar ideas in Part 1 of the proof we can deduce b⇣(u) > e⇣(u)

and bau(q) > eau(q) for q < e⇣(u). Hence, using the fact that O(q,a+m(q))
a+m(q) does not depend on

b
3

ln(1 + b⌃(u)) =

Z b⇣(u)

u

✓

� R

q(1�R)

O(q, bnu(q))

bnu(q)

◆

dq

=

Z b⇣(u)

u

✓

� R

q(1�R)

O(q,bau(q) +m(q))

bau(q) +m(q)

◆

dq

>

Z e⇣(u)

u

✓

� R

q(1�R)

O(q,bau(q) +m(q))

bau(q) +m(q)

◆

dq

>

Z e⇣(u)

u

✓

� R

q(1�R)

O(q,eau(q) +m(q))

eau(q) +m(q)

◆

dq

= ln(1 + e⌃(u))

where we use the monotonicity of ⇣(u) and the property that O(q,n)
n is decreasing in n and

hence O(q,a+m(q))
a+m(q) is decreasing in a. Thus bq⇤ = b⌃�1(⇠) > e⌃�1(⇠) = eq⇤. The monotonicity

property of the sale boundary can be proved in a similar fashion by parameterising the

family of solutions with their right boundary points.

⇤

Proof of Theorem 3.11. (1) We write out the proof assuming R < 1. The case R > 1 follows

similarly.

We use (3.7) to compute

@

@b
1

O(q, n; b
1

) = � 2(1�R)2qn/R

{2(1�R)(1� q)[(1�R)q +R]� '(q, n)�
p

'(q, n)2 + E(q)2}2

⇥
 

1 +
'(q, n)

p

'(q, n)2 + E(q)2

!

@'

@b
1

and hence, for q > 0, sgn
⇣

@
@b1

O(q, n; b
1

)
⌘

= � sgn
⇣

@'
@b1

⌘

= � sgn(n� 1) = +1, since n(·) is

bounded above by 1.

Further, m(q) := b
1

(m(q; b
1

) � 1) is independent of b
1

and from this we deduce

@
@b1

m(q; b
1

) = �m(q;b1)�1

b1
and hence over the continuation region q 2 [q⇤, q⇤] we have
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sgn
⇣

@
@b1

m(q; b
1

)
⌘

= � sgn(m(q; b
1

) � 1) = +1. Using the signs of @
@b1

O(q, n; b
1

)|n=n(q)

and @
@b1

m(q; b
1

) together with the fact that q⇤ is decreasing in b
1

, we conclude n( · ; b
1

) is

increasing in b
1

. If we extend the domain of definition of n to (0,1) by setting n(q) = n(q⇤)

for q < q⇤ and n(q) = n(q⇤) for q > q⇤ then we have n( · ; b
1

) being increasing in b
1

on

(0,1).

Starting from the fact that n(q; b
1

) is increasing in b
1

, we can deduce that each of

�(1�q)N(q; b
1

), hW (h; b
1

), w(h; b
1

) and (1�p)h0(p; b
1

) is increasing in b
1

. Then for bb
1

> eb
1

(and using the overscripts to label the functions and parameters under the corresponding

choice of b
1

), we have

sgn(1� p)bh0(p) > sgn(1� p)eh0(p). (3.42)

Recall that G(p) = n(q⇤)�R(1 + �p)1�R and G(p) = n(q⇤)�R(1 � �p)1�R on the

purchase and sale region respectively. Using the monotonicity of n in b
1

we conclude bG(p) <

eG(p) over p 2 (0, bp⇤) [ (ep⇤, 1/�).

Suppose G(p; b
1

) is not decreasing in b
1

. Then since G is continuous, bG(p) must

cross eG(p) at least twice, with the first cross being an upcross and the last cross being a

downcross. Denote the p-coordinate of the first upcross and last downcross by ku and kd

respectively.

Away from p = 1, (3.42) implies that bG(p) cannot downcross eG(p). Then the only

possibility is that there are precisely two crossings with 0 < ku < kd = 1. But if kd = 1

such that K := bG(1) = eG(1), the relationship 1

G(1)

⇣

G(1)� G0
(1)

1�R

⌘

1�1/R
= n(1) gives

bG0(1) = (1�R)
⇣

K � (Kbn(1))�R/(1�R)

⌘

> (1�R)
⇣

K � (Ken(1))�R/(1�R)

⌘

= eG0(1)

contradicting the hypothesis that kd = 1 is a downcross.

(2) For R < 1 a similar argument to the above can be applied if we can show

that n( · ; b
3

) is decreasing in b
3

. But this follows immediately as sgn
⇣

@
@b3

O(q, n; b
3

)
⌘

=

� sgn
⇣

@'
@b3

⌘

= �1 = sgn
⇣

@
@b3

m(q; b
3

)
⌘

and q⇤ is increasing in b
3

.

If R > 1 we cannot use this argument. However, the monotonicity of the value

function in b
3

, and hence the monotonicity of C can be proved by a comparison argument.6

Consider a pair of models, the only di↵erence being that in the first model Y has drift ↵̃,

whereas in the second model Y has drift ↵̂ where ↵̂ > ↵̃. Write ✏ = ↵̂� ↵̃ > 0. Suppose that

parameters are such that Standing Assumption 3.1 holds in the first model; then necessarily

6The value function only depends on R and the auxiliary parameters, so when comparing two models

which di↵er only through b3 we may equivalently compare models which di↵er in ↵.
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Standing Assumption 3.1 holds in the second model. Let (Ỹ , Ŷ ) = (Ỹt, Ŷt)t�0

be given by

(Ỹt, Ŷt) = (ye⌘Wt

+(↵̃� ⌘

2

2 )t, ye⌘Wt

+(↵̂� ⌘

2

2 )t)

so that Ŷt = e✏tỸt. Let (C̃, ⇧̃, ⇥̃ = ✓ + �̃ �  ̃) be an admissible strategy for an agent in

the first model. Suppose ⇥̃ is non-negative, and note that the optimal strategy has this

property, even if the initial endowment in the illiquid asset is negative, since in that case

there is an initial transaction into the no-transaction wedge which is contained in the half-

plane ✓ � 0. We may assume we start in the no-transaction region. Then X̃
0

= x and

X̃ = (X̃t)t�0

solves

dX̃t = r(X̃t � ⇧̃t)dt+
⇧̃t

St
dSt � C̃tdt� Ỹt(1 + �)d�̃t + Ỹt(1� �)d ̃t.

Define the absolutely continuous, increasing process  by t =
R t
0

n

d�̃s ^ (d ̃s + ✏⇥̃sds)
o

and set

⇧̂t = ⇧̃t,

⇥̂t = ✓ + �̂t �  ̂t,

Ĉt = C̃t + (�+ �)Ỹtdt + (1� �)✏⇥̃tỸtdt,

�̂t =

Z t

0

e�✏s
⇣

d�̃s � ds
⌘

,

 ̂t =

Z t

0

e�✏s
⇣

d ̃s + ✏⇥̃sds� ds
⌘

.

Then

d⇥̂t = d�̂t � d ̂t = e�✏td⇥̃t � ✏e�✏t⇥̃tdt = d(e�✏t⇥̃t)

which gives ⇥̂t = ⇥̃te�✏t and in turn ⇥̂tŶt = ⇥̃tỸt. Then the corresponding wealth process

solves

dX̂t = r(X̂t � ⇧̂t)dt+
⇧̂t

St
dSt � Ŷt(1 + �)d�̂t + Ŷt(1� �)d ̂t � Ĉtdt

= r(X̂t � ⇧̃t)dt+
⇧̃t

St
dSt � Ŷte

�✏t(1 + �)[d�̃t � dt] + Ŷte
�✏t(1� �)[d ̃t + ✏⇥̃tdt� dt]

�C̃tdt� (1� �)✏⇥̃tỸtdt� (�+ �)Ỹtdt

= r(X̂t � ⇧̃t)dt+
⇧̃t

St
dSt � C̃tdt� Ỹt(1 + �)d�̃t + Ỹt(1� �)d ̃t.

If X̂
0

= x = X̃
0

then X̂ solves the same equation as X̃ and X̂t = X̃t � 0. Then, for any

admissible strategy in the first model for which (⇥t)t�0

is positive, including the optimal

strategy in this model, there is a corresponding admissible strategy in the second model
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with strictly larger consumption at all future times. Hence the value function is strictly

greater in the second model. ⇤

3.H The consistency condition on transaction costs

Fix positive constant ✏ > 0 and define �
1

(✏) := 1�W (h(1� ✏)) > 0 and �
2

(✏) := W (h(1 +

✏))� 1 > 0. Then for

o(✏, �
1

, �
2

) := ln

✓

1� ✏

1 + ✏

◆

� ln

✓

�
2

(1� �
1

)

�
1

(1 + �
2

)

◆

,

we have for p⇤ < 1 < p⇤

ln(1 + ⇠) + o(✏, �
1

(✏), �
2

(✏))

=

"

Z

1�✏

p⇤

dp

p(1� p)
+

Z p⇤

1+✏

dp

p(1� p)

#

�
"

Z

1��1(✏)

q⇤

dq

q(1� q)
+

Z q⇤

1+�2(✏)

dq

q(1� q)

#

=

"

Z h(1�✏)

h⇤

dh

w(h)
+

Z h⇤

h(1+✏)

dh

w(h)

#

�
"

Z

1��1(✏)

q⇤

dq

q(1� q)
�
Z q⇤

1+�2(✏)

dq

q(1� q)

#

=

"

Z W (h(1�✏))

q⇤

N 0(q)dq

(1�R)qN(q)
+

Z q⇤

W (h(1+✏))

N 0(q)dq

(1�R)qN(q)

#

�
"

Z

1��1(✏)

q⇤

dq

q(1� q)
�
Z q⇤

1+�2(✏)

dq

q(1� q)

#

=

Z

1��1(✏)

q⇤

✓

� R

q(1�R)

O(q, n(q))

n(q)

◆

dq +

Z q⇤

1+�2(✏)

✓

� R

q(1�R)

O(q, n(q))

n(q)

◆

dq.

On sending ✏ # 0, we have �
1

(✏) # 0 and �
2

(✏) # 0 and thus

Z q⇤

q⇤

✓

� R

q(1�R)

O(q, n(q))

n(q)

◆

dq = ln(1 + ⇠) + lim
✏#0

o(✏, �
1

(✏), �
2

(✏)).

Now,

�
2

(✏)

�
1

(✏)
=

W (h(1 + ✏))� 1

1�W (h(1� ✏))
=

W (h(1 + ✏))� 1

✏

✏

1�W (h(1� ✏))
.

But

1�W (h(1� ✏))

✏
=

(1�R)h(1� ✏)� ✏(1� ✏)h0(1� ✏)

(1�R)✏h(1� ✏)
= 1� (1� ✏)G0(1� ✏)

(1�R)G(1� ✏)

and thus lim✏#0
1�W (h(1�✏))

✏ = 1 � G0
(1)

(1�R)G(1)

. Similarly, we have lim✏#0
W (h(1+✏))�1

✏ = 1 �
G0

(1)

(1�R)G(1)

. Hence lim✏#0 o(✏, �1(✏), �2(✏)) = 0 and (3.11) holds. In case either p⇤ = 1 or

p⇤ = 1, a similar argument can be used to show that (3.11) is still valid.
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de Probabilités XIII, pages 90–115. Springer.

Baele, L., Driessen, J., Londono, J. M., and Spalt, O. G. (2014). Cumulative prospect theory

and the variance premium. Available at SSRN 2517657.

Barber, B. M. and Odean, T. (2013). The behavior of individual investors. In Handbook of

the Economics of Finance, pages 1533–1570. North Holland.

Barberis, N. (2012). A model of casino gambling. Management Science, 58(1):35–51.

Barberis, N. (2013). The psychology of tail events: Progress and challenges. The American

Economic Review, 103(3):611–616.

Barberis, N. and Huang, M. (2008). Stocks as lotteries: The implications of probability

weighting for security prices. The American Economic Review, 98(5):2066–2100.

Barberis, N. and Xiong, W. (2009). What drives the disposition e↵ect? an analysis of a

long-standing preference-based explanation. The Journal of Finance, 64(2):751–784.

Barberis, N. and Xiong, W. (2012). Realization utility. Journal of Financial Economics,

104(2):251–271.

137



Ben-David, I. and Hirshleifer, D. (2012). Are investors really reluctant to realize their losses?

trading responses to past returns and the disposition e↵ect. Review of Financial Studies,

25(8):2485–2532.

Benartzi, S. and Thaler, R. H. (1995). Myopic loss aversion and the equity premium puzzle.

The Quarterly Journal of Economics, 110(1):73–92.

Bertoin, J., Le Jan, Y., et al. (1992). Representation of measures by balayage from a regular

recurrent point. The Annals of Probability, 20(1):538–548.

Birru, J. (2015). Confusion of confusions: a test of the disposition e↵ect and momentum.

Review of Financial Studies, 28(7):1849–1873.

Calvet, L. E., Campbell, J. Y., and Sodini, P. (2009). Fight or flight? portfolio rebalancing

by individual investors. The Quarterly Journal of Economics, 124(1):301–348.

Camerer, C. F. and Ho, T. H. (1994). Violations of the betweenness axiom and nonlinearity

in probability. Journal of Risk and Uncertainty, 8(2):167–196.

Carassus, L. and Rasonyi, M. (2015). On optimal investment for a behavioral investor in

multiperiod incomplete market models. Mathematical Finance, 25(1):115–153.

Cerreia-Vioglio, S., Dillenberger, D., and Ortoleva, P. (2015). Cautious expected utility and

the certainty e↵ect. Econometrica, 83(2):693–728.

Cerreia-Vioglio, S., Dillenberger, D., Ortoleva, P., and Riella, G. (2013). Deliberately

stochastic: Random choice and preferences for hedging. Working paper.

Chateauneuf, A., Eichberger, J., and Grant, S. (2007). Choice under uncertainty with the

best and worst in mind: Neo-additive capacities. Journal of Economic Theory, 137(1):538–

567.

Chen, X. and Dai, M. (2013). Characterisation of optimal strategy for multi-asset invest-

ment and consumption with transaction costs. SIAM Journal on Financial Mathematics,

4(1):857–883.

Choi, J. H., Sirbu, M., and Zitkovic, G. (2013). Shadow prices and well-posedness in the

problem of optimal investment and consumption with transaction costs. SIAM Journal

on Control and Optimization, 51(6):4414–4449.

138



Collings, P. and Haussmann, U. G. (1999). Optimal portfolio selection with transac-

tion costs. In Control of Distributed Parameter and Stochastic Systems, pages 189–197.

Springer.

Conrad, J., Dittmar, R. F., and Ghysels, E. (2013). Ex ante skewness and expected stock

returns. The Journal of Finance, 68(1):85–124.

Davis, M. H. and Norman, A. R. (1990). Portfolio selection with transaction costs. Mathe-

matics of Operations Research, 15(4):676–713.

De Giorgi, E. G. and Legg, S. (2012). Dynamic portfolio choice and asset pricing with

narrow framing and probability weighting. Journal of Economic Dynamics and Control,

36(7):951–972.

Dhar, R. and Zhu, N. (2006). Up close and personal: Investor sophistication and the

disposition e↵ect. Management Science, 52(5):726–740.

Dwenger, N., Kübler, D., and Weizsäcker, G. (2013). Flipping a coin: Theory and evidence.

Available at SSRN 2353282.

Ebert, S. and Hilpert, C. (2015). Skewness preference and the popularity of technical

analysis. Available at SSRN 2354962.

Ebert, S. and Strack, P. (2015). Until the bitter end: on prospect theory in a dynamic

context. The American Economic Review, 105(4):1618–1633.

Evans, J., Henderson, V., and Hobson, D. (2008). Optimal timing for an indivisible asset

sale. Mathematical Finance, 18(4):545–567.

Feng, L. and Seasholes, M. S. (2005). Do investor sophistication and trading experience

eliminate behavioral biases in financial markets? Review of Finance, 9(3):305–351.

Fischbacher, U., Ho↵mann, G., and Schudy, S. (2015). The causal e↵ect of stop-loss and

take-gain orders on the disposition e↵ect. Working paper.

Genesove, D. and Mayer, C. (2001). Loss aversion and seller behavior: Evidence from the

housing market. The Quarterly Journal of Economics, 116(4):1233–1260.

Goldstein, W. M. and Einhorn, H. J. (1987). Expression theory and the preference reversal

phenomena. Psychological Review, 94(2):236–254.

139



Green, T. C. and Hwang, B. H. (2012). Initial public o↵erings as lotteries: Skewness

preference and first-day returns. Management Science, 58(2):432–444.

Grinblatt, M. and Keloharju, M. (2001). What makes investors trade? The Journal of

Finance, 56(2):589–616.

Grinblatt, M., Keloharju, M., and Linnainmaa, J. T. (2012). Iq, trading behavior, and

performance. Journal of Financial Economics, 104(2):339–362.
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