
 

warwick.ac.uk/lib-publications  
 

 

 

 

 

 

A Thesis Submitted for the Degree of PhD at the University of Warwick 

 

Permanent WRAP URL: 

http://wrap.warwick.ac.uk/89503  

 

Copyright and reuse:                     

This thesis is made available online and is protected by original copyright.  

Please scroll down to view the document itself.  

Please refer to the repository record for this item for information to help you to cite it. 

Our policy information is available from the repository home page.  

 

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/89503
mailto:wrap@warwick.ac.uk


M
A

E
G
NS

I
T A T

MOLEM

U
N

IVERSITAS  WARWICENSIS

Performance Engineering Unstructured Mesh,

Geometric Multigrid Codes

by

Richard Arthur Bunt

A thesis submitted to The University of Warwick

in partial fulfilment of the requirements

for admission to the degree of

Doctor of Philosophy

Department of Computer Science

The University of Warwick

September 2016



Contents

Acknowledgements vi

Declarations viii

Sponsorship and Grants ix

Abstract x

Abbreviations xii

List of Figures xvi

List of Tables xviii

List of Listings xix

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Parallel Computing and Performance Engineering 11

2.1 The Composition of a Parallel Machine . . . . . . . . . . . . . . 11

2.1.1 Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Central Processing Unit (CPU) . . . . . . . . . . . . . . . 14

2.1.3 Accelerators . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.4 Compute Node . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Parallel Data Decompositions . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Structured Mesh . . . . . . . . . . . . . . . . . . . . . . . 17

ii



2.2.2 Unstructured Mesh . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Parallel Programming Laws and Models . . . . . . . . . . . . . . 19

2.3.1 Speedup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Parallel Efficiency . . . . . . . . . . . . . . . . . . . . . . 20

2.3.3 Amdahl’s Law . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.4 Gustafson’s Law . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Performance Engineering . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Profiling and Instrumentation . . . . . . . . . . . . . . . . 24

2.4.2 Benchmarks, Mini- and Compact-Applications . . . . . . 25

2.4.3 Modelling Parallel Computation . . . . . . . . . . . . . . 27

2.4.4 Analytical Modelling . . . . . . . . . . . . . . . . . . . . . 31

2.4.5 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Alternative Methods . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Computational Fluid Dynamics, HYDRA and Tools 38

3.1 Computational Fluid Dynamics . . . . . . . . . . . . . . . . . . . 38

3.1.1 Uses of Computational Fluid Dynamics (CFD) . . . . . . 39

3.1.2 HYDRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.3 Multigrid . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.4 OPlus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.5 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.6 Mesh Partitioning Libraries . . . . . . . . . . . . . . . . . 47

3.2 Parallel Machine Resources . . . . . . . . . . . . . . . . . . . . . 48

3.3 Auto-instrumentation . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.1 Instrumentation Process . . . . . . . . . . . . . . . . . . . 51

3.4 Auto-instrumentation Case Studies . . . . . . . . . . . . . . . . . 54

3.4.1 Effect of Power8 SMT Degree on Runtime . . . . . . . . . 55

3.4.2 Highlighting Historical Performance Differences . . . . . . 57

3.4.3 Other Uses . . . . . . . . . . . . . . . . . . . . . . . . . . 58



3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Model-led Optimisation of an Unstructured Multigrid Code 62

4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Single-Level Model . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.1 Model Construction . . . . . . . . . . . . . . . . . . . . . 63

4.2.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Model Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.1 Communication in OPlus . . . . . . . . . . . . . . . . . . 69

4.3.2 Communication Optimisations . . . . . . . . . . . . . . . 72

4.4 Multigrid Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.1 Model Construction . . . . . . . . . . . . . . . . . . . . . 74

4.4.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Enabling Model-led Evaluation of Partitioning Algorithms at

Scale 84

5.1 Runtime Model for Multigrid Applications . . . . . . . . . . . . . 86

5.1.1 Model of Solver Steps . . . . . . . . . . . . . . . . . . . . 87

5.1.2 Model Integration . . . . . . . . . . . . . . . . . . . . . . 88

5.1.3 Generalisation to W-Cycles . . . . . . . . . . . . . . . . . 89

5.2 Additional Performance Model Detail . . . . . . . . . . . . . . . 90

5.2.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . 91

5.2.2 Region Grind-time Data . . . . . . . . . . . . . . . . . . . 92

5.2.3 Complete Loop Coverage . . . . . . . . . . . . . . . . . . 93

5.2.4 Buffer Pack Cost . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.5 Performance Model Validation (ParMETIS) . . . . . . . . 96

5.3 Set and Halo Size Generation . . . . . . . . . . . . . . . . . . . . 98

5.3.1 Partitioning Mini-Driver and Mini-Application . . . . . . 99

5.3.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3.3 Predictive Analysis of Partitioning Algorithms . . . . . . 101



5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6 Developing Mini-HYDRA 106

6.1 Developing Mini- and Compact-HYDRA . . . . . . . . . . . . . . 106

6.1.1 Mini-HYDRA . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.1.2 Compact-HYDRA . . . . . . . . . . . . . . . . . . . . . . 111

6.1.3 Supporting Tools . . . . . . . . . . . . . . . . . . . . . . . 111

6.2 Mini-HYDRA Validation . . . . . . . . . . . . . . . . . . . . . . . 113

6.2.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . 115

6.2.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.3 Impact of Intel Haswell on mini-HYDRA . . . . . . . . . . . . . 116

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7 Conclusions and Future Work 122

7.1 Research Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.4 Final Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Bibliography 130



Acknowledgements

Throughout the duration of my Ph.D., I have received assistance, advice and

encouragement from many people. In this section I would like provide my

warmest thanks to the most notable of these individuals.

To begin, I would like to thank my supervisor, Prof. Stephen Jarvis for

his efforts in setting this project up and most of all for his invaluable advice.

Additionally, I would like to thank him for his appearances prior to this Ph.D. –

most notably for his energetic delivery of lectures and for supervising my third

year project during my undergraduate course.

I would like to thank all the members (past, present and honorary) of the

High Performance and Scientific Computing Group at the University of War-

wick: Dr. David Beckingsale, Dr. Robert Bird, Dr. Adam Chester, James Davis,

James Dickson, Dr. Simon Hammond, Dr. Matthew Leeke, Tim Law, Dr. John

Pennycook, Stephen Roberts, Dr. Phillip Taylor and Dr. Steven Wright for their

comments and suggestions on the research presented in this thesis. I would like

to reiterate my thanks to Dr. Steven Wright for all his hard work managing the

High Performance and Scientific Computing Group.

Without the Herculean effort of the administrative staff at the Computer

Science department, it would not run nearly as smoothly. Therefore I must offer

my thanks to Dr. Roger Packwood (specifically for, but by no means limited to

loaning out an external drive bay for three years), Dr. Christine Leigh, Catherine

Pillet, Lynn McLean, Ruth Cooper, Gillian Reeves-Brown and Jane Clarke.

The work in this thesis was conducted in collaboration with Rolls-Royce, so

I would like to take this opportunity to thank the brilliant individuals that I

encountered during various conference calls and visits to Derby. I would like

to offer special thanks to Dr. Yoon Ho and Matthew Street for their questions

directed at my monthly progress presentations and suggestions for further work.

vi



The experiments presented in this thesis were conducted on a variety of

computers in the United Kingdom and here I would like to acknowledge their

use:

• Access to Minerva and Tinis was provided by the Centre for Scientific

Computing at the University of Warwick.

• This work used the ARCHER UK National Supercomputing Service (http:

//www.archer.ac.uk).

• We acknowledge use of Hartree Centre resources in this work. The STFC

Hartree Centre is a research collaboratory in association with IBM provid-

ing High Performance Computing platforms funded by the UK’s invest-

ment in e-Infrastructure. The Centre aims to develop and demonstrate

next generation software, optimised to take advantage of the move towards

exa-scale computing.

Finally, I would like to offer my greatest thanks to Nick, Elaine, Stephanie

and my sister Rachel for their support throughout this Ph.D., most notably for

forcing me to take a break, by either taking me somewhere without a laptop or

keeping me too busy.

http://www.archer.ac.uk
http://www.archer.ac.uk


Declarations

This thesis is submitted to the University of Warwick in support of my appli-

cation for the degree of Doctor of Philosophy. It has been composed by myself

and has not been submitted in any previous application for any degree. The

work presented (including data generated and data analysis) was carried out by

the author except in the cases outlined below:

• The performance model in Chapter 4 was in part formulated and described

by Dr. John Pennycook.

Parts of this thesis have been previously published in the following publica-

tions:

Chapter 4 R. A. Bunt, S. J. Pennycook, S. A. Jarvis, L. Lapworth, and Y. K.

Ho. Model-Led Optimisation of a Geometric Multigrid Application. In

Proceedings of the 15th High Performance Computing and Communica-

tions & 2013 IEEE International Conference on Embedded and Ubiquitous

Computing 2013 (HPCC&EUC’13), pages 742–753, Zhang Jia Jie, China,

November 2013. IEEE Computer Society, Los Alamitos, CA [23]

Chapter 5 R. A. Bunt, S. A. Wright, S. A. Jarvis, M. Street, and Y. K. Ho.

Predictive Evaluation of Partitioning Algorithms Through Runtime Mod-

elling. In In Proceedings of High Performance Computing, Data, and An-

alytics (HiPC’16), pages 1–11, Hyderabad, India, December 2016. IEEE

Computer Society, Los Alamitos, CA [24]

viii



Sponsorship and Grants

The research presented in this thesis was made possible by the following bene-

factors, sources and research agreements:

• The University of Warwick Postgraduate Research Scholarship (2012-2015).

• The Royal Society Industry Fellowship Scheme (IF090020/AM).

• Bull/Warwick Premier Partnership (2012-2014).

• Sponsored Research Agreement between University of Warwick and Rolls-

Royce plc (2014).

ix



Abstract

High Performance Computing (HPC) is a vital tool for scientific simulations;

it allows the recreation of conditions which are too expensive to produce in

situ or over too vast a time scale. However, in order to achieve the increas-

ing levels of performance demanded by these applications, the architecture of

computers has shifted several times since the 1970s. The challenge of engineer-

ing applications to leverage the performance which comes with past and future

shifts is an on-going challenge. This work focuses on solving this challenge for

unstructured mesh, geometric multigrid applications through three existing per-

formance engineering methodologies: instrumentation, performance modelling

and mini-applications.

First, an auto instrumentation tool is developed which enables the collection

of performance data over several versions of a code base, with only a single

definition of the data to collect. This information allows the comparison of

prospective optimisations (e.g. reduced synchronisation), and an assessment of

competing hardware (e.g. Intel Haswell/Ivybridge).

Second, this work details the development and use of a runtime performance

model of unstructured mesh, geometric multigrid behaviour. The power of the

model is demonstrated by i) exposing a synchronisation issue which degrades

total application runtime by 1.41× on machines which have poor support for

overlapping communication with computation; and, ii) accurately predicting the

negative impact of the geometric partitioning algorithm on executions using 512

partitions.

Third, a mini-application is developed to provide a vehicle for optimising

and porting activities, where it would be prohibitively time consuming to use

a large, legacy application. The use of the mini-application is demonstrated

by examining the impact of Intel Haswell’s fused multiply and advanced vector

x



extension instructions on performance. It is found that significant code modifi-

cations would be required to benefit from these instructions, but the architecture

shows promise from an energy perspective.



Abbreviations

AOA Angle of Attack.

API Application Programmer Interface.

BSP Bulk Synchronous Parallel.

CFD Computational Fluid Dynamics.

CPU Central Processing Unit.

DoE Department of Energy.

FLOP/s Floating Point Operations per Second.

FMA Fused Multiply-Add.

GPU Graphics Processing Unit.

HDF5 Hierarchical Data Format 5.

HPC High Performance Computing.

I/O Input/Output.

ILP Instruction Level Parallelism.

IMB Intel MPI Benchmark.

MLP Memory Level Parallelism.

MPI Message Passing Interface.

NUMA Non-uniform Memory Access.

xii



OPlus Oxford Parallel Library for Unstructured Solvers.

PAL Performance Architecture Laboratory.

PAPI Performance Application Programming Interface.

PPN Processors Per Node.

PRAM Parallel Random Access Machine.

RIB Recursive Inertial Bisection.

SAXPY Single-Precision AX Plus Y.

SMP Symmetric Multiprocessing.

SMT Simultaneous Multithreading.

SST Structual Simulation Toolkit.

UMA Uniform Memory Access.



List of Figures

1.1 Visualisation of top supercomputer performance over time (uses

data from [118, 145]) . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 An abstract representation of a parallel machine configuration . . 12

2.2 1-, 2- and 3-D structured mesh decompositions . . . . . . . . . . 17

2.3 Partitioning an unstructured mesh . . . . . . . . . . . . . . . . . 18

2.4 Amdahl’s Law and Gustafson’s Law for varying values of fp . . . 21

2.5 Hardware and software life cycle (adapted from [11]) . . . . . . . 23

3.1 3D Bypass duct with Mach number contours [119] . . . . . . . . 40

3.2 Interaction between HYDRA, OPlus and MPI . . . . . . . . . . . 42

3.3 Level transition pattern for (a) two V-cycles and (b) one W-cycle 43

3.4 Abstract representation of an unstructured mesh dataset over two

multigrid levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 HYDRA’s per OPlus loop speedup when compared to SMT1 on

Power8 (FLUX2, FLUX6, UPDATE12, UPDATE8) . . . . . . . . . . . . 55

3.6 HYDRA’s per OPlus loop speedup when compared to SMT1 on

Power8 (FLUX8, FLUX27, FLUX3, FLUX4) . . . . . . . . . . . . . . . 56

3.7 Per loop comparison between HYDRA 6.2.23 and HYDRA 7.3.4

on Napier for independent compute and comms+sync (FLUX2,

FLUX6, UPDATE12, UPDATE8, FLUX8) . . . . . . . . . . . . . . . . . 58

3.8 Per loop comparison between HYDRA 6.2.23 and HYDRA 7.3.4

on Napier for halo and execute compute (FLUX2, FLUX6, UPDATE12,

UPDATE8, FLUX8) . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.9 Per loop comparison between HYDRA 6.2.23 and HYDRA 7.3.4

on Napier for independent compute and comms+sync (FLUX27,

BCS7, FLUX3, FLUX25, FLUX4) . . . . . . . . . . . . . . . . . . . . 60

xiv



3.10 Per loop comparison between HYDRA 6.2.23 and HYDRA 7.3.4

on Napier for halo and execute compute (FLUX27, BCS7, FLUX3,

FLUX25, FLUX4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1 Comparison of iflux Wg values for 1 and 12 PPN on a single node 64

4.2 Comparison of recorded and predicted execution times for single-

level runs of the original HYDRA using 1 PPN . . . . . . . . . . 67

4.3 Comparison of recorded and predicted execution times for single-

level runs of the original HYDRA using 12 PPN . . . . . . . . . 68

4.4 Best-case performance behaviours for the OPlus communication

routines on two processors . . . . . . . . . . . . . . . . . . . . . . 69

4.5 Worst-case performance behaviours for the OPlus communication

routines on two processors . . . . . . . . . . . . . . . . . . . . . . 70

4.6 Compute/communication/synchronisation breakdown for the orig-

inal and optimised HYDRA, as: (a) time in seconds; and (b)

percentage of execution time . . . . . . . . . . . . . . . . . . . . 71

4.7 Comparison of observed and predicted execution times for single-

level runs of the optimised HYDRA, using 1 PPN . . . . . . . . . 73

4.8 Comparison of observed and predicted execution times for single-

level runs of the optimised HYDRA, using 12 PPN . . . . . . . . 74

4.9 Comparison of observed and predicted execution times for multi-

grid runs of the optimised HYDRA using 1 PPN . . . . . . . . . 77

4.10 Comparison of observed and predicted execution times for multi-

grid runs of the optimised HYDRA using 12 PPN . . . . . . . . . 78

5.1 Trace of solver iteration events (ncycles = 3) . . . . . . . . . . . . 86

5.2 Comparison of actual and predicted compute time (Rotor37, 8

million nodes; geometric partitioning; Tinis) . . . . . . . . . . . . 91

5.3 Predicted compute time percentage error (Rotor37, 8 million

nodes; geometric partitioning; Tinis) . . . . . . . . . . . . . . . . 92



5.4 Comparison of actual and predicted runtime (Rotor37, 8 million

nodes; geometric partitioning; Tinis). See Table 5.2 for confi-

dence intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.5 Total predicted time percentage error (Rotor38, 8 million nodes;

geometric partitioning; Tinis). . . . . . . . . . . . . . . . . . . . . 94

5.6 Comparison of HYDRA’s actual and predicted runtime (Rotor37,

8 million nodes, ParMETIS; Tinis) See Table 5.2 for confidence

intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.7 Percentage error for model costs (Rotor37, 8 million nodes, ParMETIS;

Tinis) See Table 5.2 for confidence intervals. . . . . . . . . . . . . 97

5.8 Percentage error of Wg calculation techniques for max edge com-

pute (Tinis) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.9 Impact of partitioning data source on model (Tinis) . . . . . . . 100

5.10 Predicted effect of partitioning algorithm on HYDRA’s runtime

and the speedup from using ParMETIS over a geometric parti-

tioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.1 Comparison between the runtime and parallel efficiency of Compact-

and Mini-HYDRA for each level of the multigrid . . . . . . . . . 112

6.2 Comparison between Mini- and Compact-HYDRA in terms of

the correlation of PAPI counters with parallel inefficiency . . . . 114

6.3 Comparison between OpenMP strong scaling behaviour between

Intel Ivybridge and Intel Haswell for both Compact- and Mini-

HYDRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.4 Impact of using the Intel Fused Multiply-* instructions with and

without auto-vectorisation on both Compact- and Mini-HYDRA 118

6.5 Performance impact of using auto-vectorisation on both Compact-

and Mini-HYDRA on both Intel Ivybridge and Intel Haswell . . 120



List of Tables

3.1 Hardware/software configuration of Napier . . . . . . . . . . . . 48

3.2 Hardware/software configuration of Power8 . . . . . . . . . . . . 48

3.3 Hardware/software configuration of ARCHER . . . . . . . . . . . 49

3.4 Hardware/software configuration of Minerva . . . . . . . . . . . . 49

3.5 Hardware/software configuration of Tinis . . . . . . . . . . . . . 50

3.6 Mapping between loop names and the identifiers assigned by the

auto-instrumentation tool . . . . . . . . . . . . . . . . . . . . . . 54

3.7 Confidence intervals for HYDRA’s runtime on Power8 at different

Simultaneous Multithreading (SMT) levels . . . . . . . . . . . . . 56

3.8 Confidence intervals for HYDRA’s Runtime on Napier . . . . . . 57

4.1 Description of compute and communication model terms for a

single-level HYDRA run . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Confidence intervals for HYDRA’s runtime on Minerva when us-

ing the LA Cascade dataset . . . . . . . . . . . . . . . . . . . . . 68

4.3 Description of additional model terms required to support multi-

grid HYDRA runs . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 Confidence intervals for HYDRA’s runtime on Minerva when us-

ing the Rotor37 dataset . . . . . . . . . . . . . . . . . . . . . . . 76

4.5 Model validation for multigrid runs of HYDRA on the LA Cas-

cade dataset (Confidence intervals are in Tables 4.2 and 4.4) . . . 79

4.6 Model validation for multigrid runs of HYDRA on the Rotor37

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1 Description of performance model terms from Chapter 4 and the

additional terms required for multiple cycle types, pack/unpack

costs and multiple compute regions . . . . . . . . . . . . . . . . . 85

xvii



5.2 Confidence intervals for HYDRA’s runtime on Tinis when using

either a Geometric Partitioning or ParMETIS to partition the

input deck. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.1 Confidence intervals for Compact- and Mini-HYDRA’s runtime

on Tinis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2 Confidence intervals for Compact- and Mini-HYDRA’s runtime

on Napier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117



Listings

3.1 Pseudo-code for HYDRA’s smooth loop . . . . . . . . . . . . . . 41

3.2 Code-snippet from vflux, a typical OPlus parallel loop . . . . . 44

3.3 An example auto-instrumentation rule which matches the entry

to an OPlus parallel loop, and action, to insert timers and gather

the set name associated with this loop . . . . . . . . . . . . . . . 52

6.1 Pseudo-code skeleton of the mini-application . . . . . . . . . . . 108

6.2 Pseudo-code of the edge loop . . . . . . . . . . . . . . . . . . . . 109

xix



CHAPTER 1
Introduction

Simulation is an important cornerstone of scientific experimentation and has

found widespread use in a variety of domains including engineering, physics and

economics. This is because simulations can be constructed to represent environ-

ments that would be prohibitively expensive, impossible or simply against the

law to physically create. Additionally, simulations can allow the measurement

of variables which would be challenging to record in practice. Furthermore,

simulation techniques are able to emulate processes faster than they occur in

realtime, allowing the outcome of these processes to be predicted ahead of time.

While some scientific simulations can be run on a computer which might be

found under an office desk, achieving the level of detail required for state of the

art applications in a time frame where the results are still of value, typically

requires execution on large parallel computers.

These parallel computers are housed not under desks, but in dedicated facil-

ities with their own cooling and power systems, and the most powerful are sev-

eral orders of magnitude more performant than any desktop computer. Floating

Point Operations per Second (FLOP/s) are one standard metric for quantifying

the performance of parallel computers – this metric indicates how many calcula-

tions (e.g. addition, multiplication) can be performed on floating point numbers

per second. The TOP500 list has been tracking the computing power available

on the fastest 500 computers from the last decade; from this it can been seen

that the computational power of machines has been increasing exponentially

since recording started in 1994, to the point where the most performant of these

machines can perform 93 petaFLOP/s (1015 FLOP/s) [118]. This regular in-

crease in computational power has enabled scientific simulations to run at both

1



greater capacity and capability.

The scientific simulations which run on these machines are the product of

years of research and are invaluable for their respective use cases, therefore

keeping them functioning on modern hardware is of paramount importance.

However, while hardware has progressed rapidly over the last four decades,

these simulations have largely remained unchanged and are often still written

using the programming languages around at the time of their inception. This,

along with their size makes adding new features, moving the applications to up-

coming parallel architectures, and running with larger degrees of parallelism a

significant time investment. It is therefore necessary to further the development

of performance engineering techniques, such as performance modelling (models

which allow reasoning about performance) and mini-applications (distilled ver-

sions of larger codes which are more tractable to experiment with) to aid with

overcoming these challenges.

This thesis represents over three years of performance engineering work on

HYDRA, a geometric multigrid, unstructured mesh code developed by Rolls-

Royce. HYDRA exemplifies the aforementioned challenges; it has existed through

over four decades of advances in parallel hardware and supporting tool chains;

it is written in FORTRAN77; and, it is tens of thousands of lines of code in size.

This work sees the construction of a runtime performance model of HYDRA,

which has primarily been used to i) validate HYDRA’s performance on several

machines at supercomputing centres around the United Kingdom, and ii) to

assess the continued suitability of competing partitioning algorithms. Addition-

ally this work presents the development of a mini-application; a smaller code

capturing only HYDRA’s primary computational behaviours. This is used to

assess the impact of the hardware features available from the next generation

of Intel Central Processing Units (CPUs) on codes such as HYDRA.

2



1,975 1,980 1,985 1,990 1,995 2,000 2,005 2,010 2,015

10−1

100

101

102

103

104

105

106

107

108

Year

P
er

fo
rm

an
ce

(G
F

L
O

P
/
se

co
n

d
)

Figure 1.1: Visualisation of top supercomputer performance over time (uses
data from [118, 145])

1.1 Motivation

Since the introduction of the TOP500 list [118] in 1994, the performance of the

world’s fastest computers has been increasing exponentially, from just under

100 gigaFLOP/s (109) to almost 100 petaFLOP/s in 2016 (see 1994 to 2016 in

Figure 1.1). Up until 2006, this increase in performance was primarily enabled

by increases in transistor densities, which was predicted to double every 18-24

months [120]. These performance increases were courtesy of Dennard scaling: as

the size of a transistor is reduced, power consumption is also reduced meaning

that a chip with double the density of transistors, can operate using the same

power as one with half the density (but the same area) [43]. Additionally,

shrinking transistors also reduces the switching delay which results in higher

clock speeds [51]. What this meant for the custodians of scientific simulations, is

that a reduction in time to solution could be expected every time new hardware

was procured with little or no effort from them.

3



However, post 2006 Dennard scaling began to breakdown due to physical

limits being reached (e.g. size of the transistor). This caused CPU designers

to shift their attention to optimising the execution architecture to maximize

the amount of instructions per cycle. This has resulted in a transition to using

CPUs with multiple execution cores, which allows the CPU to run at a lower

clock speed while being able to process the same number of instructions. In ad-

dition to this, the execution cores have become more complex with many more

opportunities for exploiting parallelism such as wide vector units and Simul-

taneous Multithreading (SMT). Further to this, the recent trend has been to

use many-core architectures, which trade a few complex cores for many simple

cores. Unfortunately, performance increases from these architectural changes

are not free; therefore application developers must actively invest time perfor-

mance engineering their application to take advantage of them [146].

These, and future architectural shifts, coupled with the fact that many scien-

tific simulations were originally written for the vector machines of the 1970s (see

1977 in Figure 1.1), has made it increasingly difficult to continuously evaluate

and prepare a code for performant future use. Many High Performance Comput-

ing (HPC) centres are therefore turning to performance engineering tools and

methodologies, such as predictive performance modelling and mini-applications

to facilitate system evaluation, to aid in the comparison of multiple candidate

machines, to investigate optimisation strategies, and to act as a vehicle for port-

ing codes to novel architectures. This thesis focuses on the application of in-

strumentation, the extension of runtime performance modelling techniques and

mini-applications (a relatively new form of performance engineering) to support

the shift of large, legacy, unstructured mesh, geometric multigrid applications

to new machines.

4



1.2 Problem Statement

This thesis builds upon both the performance engineering techniques of run-

time performance modelling and mini-applications in the context of unstruc-

tured mesh, geometric multigrid codes; applications which represent their input

geometries at varying resolution. An unstructured mesh can be represented as

a graph (G = (V,E)), where V is a set of nodes and E = {(a ∈ V, b ∈ V )}

is a set of edges, which are arbitrary pairs of nodes. The class of simulation

which is examined by this thesis, performs computation by iterating over E and

accessing the nodes a and b as defined by the pair. Further to this, geometric

multigrid applications operate on a list of these graphs M = [G0, ..., Gn], where

the results of computation over the edges of one graph of propagated to the

others. In this thesis the aim is to overcome some of the challenges associated

with performance engineering this class of code.

The a and b of any edge in any G are accessed indirectly (i.e. through the

edges) and are unlikely to be contiguous in memory; this posses a challenge to

computers which rely on this to achieve consistent performance. This uncer-

tainly in performance is a barrier predicting the runtime of computations over

edges, as the processing time of each edge can vary. This thesis aims to quantify

the impact of this uncertainty on model accuracy and propose a solution.

Unstructured meshes pose an additional challenge to modelling when at-

tempting predict runtime at large scale. This is because selecting an optimal

partitioning of a graph is an NP-Hard problem, and the generation of these

partitions must be performed by a partitioning algorithm to approximate the

solution [20]. This means that in order to obtain a representative partitioning

for a particular scale of execution, a partitioner must first be run at that scale.

This severely limits the predictive power of any performance model of unstruc-

tured mesh codes. This thesis aims to develop methods to gather representative

partitioning data which can be used by performance models of unstructured

mesh applications.

5



The development and validation of mini-applications is a challenging pro-

cess, as it is not well defined in the literature and differs depending on the

intended use case of the application. This thesis contributes to this gap, by de-

tailing the experience of developing, validating and using a geometric multigrid,

unstructured mesh mini-application.

The research presented in this thesis is performed as part of a project to

support the continued development of HYDRA, a geometric multigrid, unstruc-

tured mesh code developed by Rolls-Royce. This code has been developed over

the last four decades and as such it contains a vast amount of company knowl-

edge. This thesis demonstrates the impact of the developed tools, performance

model and mini-application by aiding Rolls-Royce with the continuing challenge

of moving HYDRA onto machines with more modern architectures and larger

degrees of parallelism.

1.3 Contributions

Specifically, this thesis and its products make the following contributions:

• The development of an automatic instrumentation process is presented

which allows for unprecedented flexibility in terms of implementation lan-

guage, the language to be instrumented and the instrumentation to be in-

serted. This process is implemented and then demonstrated by applying a

common set of instrumentation to three different variants of HYDRA: two

being chronological releases and the third being optimised to reduce syn-

chronisation costs. The data from which is then used to compare historical

changes in performance and to quantify the impact of the optimisation.

In work that is not presented in this thesis, the auto-instrumentation tool

has been used in support of collecting performance data from HYDRA

on a variety of platforms, such as Intel Haswell/Ivybridge, IBM Power 8,

BlueGene/Q so that their potential may be compared. It is expected that

this tool will be applied to other codes at Rolls-Royce, such as PRECISE,

6



in the future;

• The development of a runtime performance model of an unstructured mesh

code is detailed, which is able to capture the expected scaling behaviour of

HYDRA, and its proprietary communications library, the Oxford Parallel

Library for Unstructured Solvers (OPlus), when running on a grid with

one level. Through the introduction of a small number of additional model

terms, this model is generalised to multigrid simulations. The simple re-

lationship between these two models significantly reduces the complexity

of benchmarking a new platform, as it enables the extrapolation of com-

plete production runtimes using data collected from the execution of small

single-level datasets. The use of the performance model is demonstrated

by identifying a synchronisation issue which degrades performance by up

to 29.22% on machine configurations that exhibit poor support for over-

lapping computation with communication. An optimisation is then ap-

plied which decreases the cost of communication and synchronisation by

3.01× and total runtime by up to 1.41×. That it is possible to accelerate

HYDRA to such a degree demonstrates both the accuracy of the model

and the importance of reassessing whether an application’s original design

assumptions still hold on new hardware/software configurations. Given

this accuracy, the model has been put into use by Rolls-Royce to confirm

the correct strong scaling behaviour of HYDRA on small-scale evaluation

hardware;

• The analytical runtime model for multigrid applications is further gen-

eralised to support multiple cycle types (e.g. V-Cycle, W-Cycle) and a

variable number of time steps per iteration. Additional details are incor-

porated in to the performance model: buffer pack/unpack costs, runtime

costs from all 300+ loops in the code base, and performance informa-

tion for different memory access patterns. These additional details are

validated on up to 1,024 cores of a Haswell-based cluster, using both a

7



geometric partitioning algorithm and ParMETIS to partition the NASA

Rotor37 input deck, with a maximum absolute error of 12.63% and 11.55%

respectively. Additionally, the performance model’s accuracy is reported

on 1,008 cores of an Ivybridge-based cluster (ARCHER). These additions

to the model allow a wider range of workloads to be successfully modelled;

• Moses, an unstructured domain decomposition mini-application, is devel-

oped which is able to convert partitioning data from multiple algorithm-

s/libraries (ParMETIS, METIS, Scotch) at varying scale (up to 100,000

partitions) for use with the runtime performance model. This data allows

predictions to be made at scale without first running HYDRA at scale to

collect set sizes. Runtime predictions made using this data have an error

in runtime of at most 7.31% over 512 processes, when compared against

predictions made with empirically collected partitioning data. The use

of Moses is demonstrated in conjunction with the runtime performance

model to predictively compare the relative effect on HYDRA’s runtime of

using Scotch, ParMETIS, METIS and a geometric partitioning algorithm

on up to 30,000 cores. Using the runtime model in conjunction with Moses,

predicts that the geometric partitioning algorithm will cause reduced per-

formance in HYDRA at 512 processes when compared to ParMETIS;

• Finally, a mini-application is introduced which operates on datasets with

the following properties: i) unstructured mesh, ii) geometric multigrid,

and iii) a variable number of neighbours per node. It is validated us-

ing two previously developed techniques which have not previously been

applied to this class of code. These techniques provide evidence of the sim-

ilarity between the mini-application and the parent code in terms of their

shared memory scalability. To conclude, the use of the mini-application

is demonstrated by quantifying the impact of the new hardware features

introduced to the Intel Haswell platform over Intel Ivybridge for geometric

multigrid, unstructured mesh applications. It is found that FM-* instruc-

8



tions and the AVX2 features have a limited impact on performance, but

there is potential for Intel Haswell to deliver application results at a much

lower total energy. At the time of writing this thesis, this mini-application

is being used as part of procurement exercises, and it is hoped that this

mini-application will be used in the future as a vehicle for optimisation,

porting and execution on machines where HYDRA is not cleared for use.

1.4 Thesis Overview

The remainder of this thesis is structured as follows:

Chapter 2 contains knowledge of parallel computing essential to understand-

ing the field: the lexical set, the opportunities for parallelism provided by

the hardware, and the software which enables the usages of this hardware.

This chapter continues by providing historical background to performance

engineering techniques (the primary focus of this research) up to state of

the art techniques and their relative merits and shortcomings.

Chapter 3 introduces the context for this research – unstructured mesh, ge-

ometric multigrid applications, specifically Rolls-Royce HYDRA, an in-

stance of this class of code. The features and structure, and their associ-

ated performance challenges, of these codes and those specific to HYDRA

are described. This introduction also details the challenges associated

with collecting data from HYDRA and other unstructured mesh applica-

tions and how these were overcome using newly developed instrumentation

tools. Finally this chapter presents performance information collected us-

ing these instrumentation tools, which serves as an overview of HYDRA’s

performance and a demonstration of the instrumentation tool’s flexibility.

Chapter 4 presents the initial development of a runtime performance model of

HYDRA, first for single level execution and then for multigrid execution.

Validation results are presented for two representative datasets over 384

9



cores. The value of this model is then demonstrated by identifying detri-

mental communication behaviours through a discrepancy in the predicted

(expected) and actual contribution to total runtime from synchronisation

costs.

Chapter 5 generalises the runtime performance model to support a variable

number of time steps per iteration, arbitrary multigrid cycle types and

all datasets which rely solely on loops. This chapter then identifies the

challenge of generating representative partitioning data for use in large

scale runtime predictions, to which the construction of a partitioning mini-

application is presented as a solution. The use of this mini-application is

demonstrated by performing a predictive evaluation of the effect various

partitioning libraries have on application runtime.

Chapter 6 details the construction, validation and use of mini-HYDRA, a

mini-application designed to compliment the performance model devel-

oped in previous chapters. The mini-application is used to quantify the

impact the new instructions introduced as part of Intel Haswell (Fused

Multiply-Add (FMA) and AVX2) on HYDRA’s inviscid flux kernel.

Chapter 7 concludes this thesis with a summary of the work carried out and a

discussion of the impact this research has had on the individuals involved

in this project. Additionally the limitations of this work and possible

future research directions to either rectify these limitations or broaden

the research are identified.

10



CHAPTER 2
Parallel Computing and Performance Engineering

Parallel computing was born from the need to run algorithms of i) increasing

complexity to completion in a time frame such that the result is still of value,

and ii) over increasingly larger input domains. As the name suggests, parallel

computing enables this by running the independent computational parts of an

algorithm simultaneously (in parallel), as apposed to performing calculations

one by one (serially). One classical example of this involved human computers,

rather than the electronic computers available today, who performed engineering

calculations at the Langley Memorial Aeronautical Laboratory in the 1940s [31].

Groups of human computers existed at this laboratory in order to field these

calculations in parallel, and in some cases if a group reached capacity, the cal-

culations were sent to a secondary group.

The purpose of this chapter is to present the foundation of knowledge which

the work in this thesis builds upon. Not only does this foundation give the

thesis context, it also details the lexicon and concepts which are used through-

out. Specifically, this foundation consists of i) a description of the physical

hardware and software which comprise the domain of High Performance Com-

puting (HPC); ii) the laws and abstract models which capture the behaviour of

HPC applications; and, iii) an introduction to modelling and benchmarking the

performance of HPC applications and the relative merits of these techniques.

2.1 The Composition of a Parallel Machine

Today’s parallel computers often consist of electrical circuits, fibre interconnects

and large cooling apparatus. These electrical computers allow many opportuni-

ties for the parallel execution of calculations, and often multiple opportunities

11



Parallel Machine

Compute Node (1)

CPU (1)

Core (1) Core (n)

Accelerator
(1)

CPU (n) …

…

Core (1) Core (n)…

…

… Accelerator
(n)

Compute Node (n)

CPU (1)

Core (1) Core (n)

Accelerator
(1)

CPU (n)

…

Core (1) Core (n)…

…

… Accelerator
(n)

Figure 2.1: An abstract representation of a parallel machine configuration

will be exploited in order to achieve maximum benefit [144]. Opportunities for

parallelism are exposed throughout all the hardware components of a parallel

machine (see Figure 2.1) from the bit-level in a single Central Processing Unit

(CPU) core, to the data-level where datasets are partitioned across groups of

compute nodes.

2.1.1 Core

Bit-level parallelism allows the CPU core (see Figure 2.1) to push more bits

around per clock cycle, typically by increasing the size of the registers. Histori-

cally, this increase in bits has moved from 4 up to 64 bits [38]. As an example

of how this change can improve performance consider a CPU core which oper-

ates on 32-bit registers and needs to perform an operation on 64-bit numbers –

it must perform the calculation in two parts, thereby taking two clock cycles.

However, a CPU capable of operating on 64-bit registers is able to complete the

same calculation in a single clock cycle.

At a slightly higher level of parallelism in the CPU core, there is Instruction

Level Parallelism (ILP) [139]. This is an umbrella term for all mechanisms

12



which allow data independent instructions to progress through the CPU core in

parallel. ILP is achieved through a variety of mechanisms in order to maximise

the use of the CPU core under a variety of workloads. The first ILP mechanism

to mention is pipelining; this involves separating the handling of instructions

into distinct stages, with separate hardware for each [148]. The most basic

pipeline has separate fetch, decode and execute units. This decomposition allows

the decoding of an instruction to occur in parallel with the fetch of the next

instruction.

Further parallelisation can occur at each of the stages in the pipeline by

duplicating and providing specialised execution units – this is known as a su-

perscalar architecture [148]. An example of this is the Intel Haswell CPU core

which, has two execution units capable of performing an Fused Multiply-Add

(FMA) instruction. In order to maximise the use of these additional execution

units, techniques are employed such as dynamic [87] and speculative execu-

tion [148]. The combination of these techniques allows the CPU core to begin

two FMA operations simultaneously [103] and would benefit the computation

defined by Equation 2.1 as the partial results a and e have no data dependencies

and can therefore be performed simultaneously.

a = b ∗ c+ d;

e = f ∗ g + h;

r = a+ e;

(2.1)

In the case of the decoder, not only can they fetch and decode multiple

instructions simultaneously, they can also employ macro-fusion to exploit paral-

lelism at the micro-operation level (the sub-operations which form instructions).

This is achieved by fusing the micro-operations from different instructions into

a single, but more complex micro-operation [62]. Given a decoding unit which

can decode three instructions and one macro-fused instruction, the application

13



of macro-fusion can increase the number of decodes from four to five per cycle,

thereby reducing the pressure on this unit.

Another opportunity for parallelism in the CPU core is provided by the pres-

ence of vector units. These enable data level parallelism by handling dispatched

vector instructions that apply the same operation to several data items in paral-

lel [38]. One such example of a vector instruction is vaddpd, which adds two sets

of 64-bit doubles [90]. The number of operations these instructions perform in

parallel depends on the width of the registers they use. While in the past, vector

lengths were large [145], the trend at the time of writing this thesis is for CPU

cores to have vector lengths of four or eight 64-bit doubles [89]. In addition to

enabling arithmetic in parallel, vector instructions exist to push data, such as

the vmovapd instruction, which moves packed and aligned 64-bit floating point

values [90].

Parallelism is not limited to arithmetic operations; there are also oppor-

tunities in the CPU core for Memory Level Parallelism (MLP) [148]. This

mechanism allows multiple memory operations to occur simultaneously or over-

lap. CPU cores with MLP often exploit this by prefetching data elements from

slower to faster access memory before the data is required by an instruction,

in the hope it will decrease cache misses and increase achieved memory band-

width. MLP is important as it helps maximize the use of the available memory

bandwidth, which can be a bottleneck for performance [165, 167]. Essentially,

as a higher percentage of an application’s arithmetic is parallelised, the more

memory bandwidth is required to feed the calculations until this becomes the

bottleneck.

2.1.2 CPU

At the next level of the hardware hierarchy (Figure 2.1) there is Symmetric

Multiprocessing (SMP), a configuration consisting of multiple CPU cores. This

configuration is capable of exposing thread and task level parallelism [131] by

hosting multiple threads of execution, each of which exposes the parallelism

14



detailed in Section 2.1.1. At the most basic level, a CPU core offers Simultaneous

Multithreading (SMT) (multiple threads of execution per core) to increase the

use of a superscalar architecture, by increasing the sources of instructions [131]

e.g. Intel Hyperthreading [153]. At the other end of the spectrum there are

SMP systems with multiple CPUs, each with multiple cores, which can in turn

support multiple threads of execution. At this point, it becomes important to

consider the arrangement of these components as this impacts the efficiency of

communicating data between them.

There are two classes of SMP system: Non-uniform Memory Access (NUMA)

and Uniform Memory Access (UMA). In an UMA system, CPU cores can access

their local shared memory at the same latency and bandwidth as the shared

memory located on other cores. In a NUMA system CPU cores can access

their local memory faster than the local memory of other CPU cores [131].

The configuration shown in Figure 2.1 gives rise to two CPU NUMA regions:

communication between cores on the same CPU and between cores on different

CPUs. Due to the difference in communication time between NUMA regions,

locating data close to the CPU core which is operating on it can make a huge

difference to performance [15, 168]. Typically parallel machines use NUMA due

to its favourable memory size scaling over UMA [131].

2.1.3 Accelerators

The inclusion of accelerator cards in parallel machines has become increasingly

popular in recent years and in fact two of current top three in the TOP500 list

(Tianhe-2 and Titan) feature them (using Intel Xeon Phis and Nvidia Teslas

respectively) [118]. This increase in popularity is due to the potential of ac-

celerator cards to deliver power efficient computations [133], in an attempt to

overcome one of the challenges in HPC as outlined by the Department of Energy

(DoE) [76].

The basic concept behind the Graphics Processing Unit (GPU) and the In-

tel Xeon Phi is to provide many simple processing elements to expose a large

15



amount of fine-grained parallelism to computing applications. This is in con-

trast to a CPU which contains fewer general purpose cores. In the case of the

Intel Xeon Phi (Knights Corner) it has 61 cores, whereas an equivalent CPU,

the Intel Xeon E5-2670 has 8 [75]. The trade-off is that the cores on the Intel

Xeon Phi are simpler (e.g. they use in-order execution) and are lower clocked

compared to their CPU counterparts. The strength of the simpler cores is that

they have a larger degree of SMT, longer vector registers, they are greater in

number and have increased memory bandwidth [75]. The potential for individ-

ual applications to benefit from this configuration is usually non-obvious and

must be assessed by way of an in-depth performance study on a per accelerator

basis.

2.1.4 Compute Node

At the final level of the hardware hierarchy (see Figure 2.1) there are multi-

ple connected physical machines, each containing multiple CPUs thus further

scaling the capacity for thread and task level parallelism. This configuration is

known as a distributed memory system [131].

As with the CPU level of the hierarchy, it is important to consider the ar-

rangement of the components (compute nodes) and additionally the medium by

which they are connected as this impacts performance [131]. Another consider-

ation is the method by which a problem is partitioned between the distributed

memory as this influences factors such as idle time due to load imbalance and

time spent communicating data.

2.2 Parallel Data Decompositions

Many HPC applications simulate physical processes such as heat transfer and

fluid flow; examples of such applications include LAMMPS [137], a molecular

dynamics simulation, and OpenFOAM [92], a fluid dynamics simulation. Simu-

lations usually represent their domains using either a structured or unstructured

16



3-D Decomposition

Full 3x3 Structured Mesh Domain  

1-D Decomposition 2-D Decomposition 

Dataset Element Bidirectional 
Communication 

Decomposition Process

i

j

k

Figure 2.2: 1-, 2- and 3-D structured mesh decompositions

mesh which must be partitioned between compute nodes prior to execution on a

distributed memory machine (Section 2.1.4). The process used for partitioning

can impact performance because it influences both the ratio of computation to

communication and the quality of the load balancing. Furthermore, the selec-

tion of partitioning process depends on whether it is to be used on a structured

or unstructured mesh.

2.2.1 Structured Mesh

A structured mesh is a regular arrangement of points with a topology that is

apparent from their position in space. An example demonstrating this is given in

the top pane of Figure 2.2, where the quantities of the simulation are represented

as averages over each sub-cuboid.

Decomposing a structured mesh is achieved using either a 1-, 2- or 3-D de-

composition, as visualised by the lower set of three panes in Figure 2.2. The

height, width and depth (i, j, k) are divided by some function of the total num-

17



u

j k

b

a

f
v i

Mesh NodeEdge Partition Boundary

Figure 2.3: Partitioning an unstructured mesh

ber of threads available. Each of these decompositions achieves a perfect load

balance, although in practice this only occurs when the number of processors

is an exact divider of one of the domains sides (i, j or k), a square number

or a cubic number, in the case of 1-, 2- and 3-D decompositions respectively.

However, the ratio of communication to computation does change depending

on the chosen decomposition, with a 3-D decomposition theoretically being the

most favourable [105].

2.2.2 Unstructured Mesh

An unstructured mesh (see Figure 2.3) is a collection of nodes (e.g. j and u),

edges (e.g. between u and v) and faces (f), with the nodes being at an arbitrary

position in space. The flexibility of the unstructured mesh allows complex ge-

ometries to be represented and the simulation resolution can be increased (and

also the computation time) only in regions of importance by altering the density

of mesh points [114].

The neighbours of a node in an unstructured mesh are not implicitly defined,

as is the case for a structured mesh code where the neighbours can be determined

18



using offsets to the array indices. This means that an explicit list of neighbours

must be maintained, so that when computation over nodes is performed (e.g. the

accumulation of fluxes) data can be read from the required locations. This has

implications for the spacial and temporal locality of accesses when gathering

unstructured mesh features from memory, as a mesh node’s neighbours can

appear at arbitrary strides either side of its memory location.

Unlike a structured mesh, which can often be divided using algebra, an

unstructured mesh must be load balanced between distributed memory loca-

tions using specialised algorithms which are the result of numerous bodies of

research [63, 97, 128, 152, 164]. These algorithms are necessary to partition

unstructured meshes because it is not immediately clear how the mesh should

be divided, due to the arbitrary position and the number of neighbours of its

nodes. For example in Figure 2.3, mesh nodes u and b are in partition zero and

mesh nodes v, a and i are in the first partition, with a total of two edges cut on

level zero. However, some other arbitrary line could be drawn to partition the

mesh nodes.

Ideally both the number of edges cut and the load imbalance between the

number of nodes in each partition should be minimised, as a high value of the

former means increased communication time, and an high value of the latter

results in increased processor idle time. Finding an optimal partition is NP-

Hard and therefore these algorithms serve to find approximations to the optimal

solution [20].

2.3 Parallel Programming Laws and Models

When running and developing HPC applications it is only natural to want to

quantify their performance (e.g. time to results, use of parallelism). This sec-

tion covers the most basic performance metrics and laws which govern their

behaviour.

19



2.3.1 Speedup

S(n) =
Ra

Rb
(2.2)

Speedup (S(n) in Equation 2.2) is the ratio of two performance values, Ra and

Rb, where n is the variant between these values [131]. Typically Ra and Rb are

application runtimes from either, two different variants of the same application,

or the same variant run using different degrees of thread level parallelism. In

the latter case, n would be the number of threads Rb was executed with. As

an example, consider an application that can exploit thread level parallelism

which has had its runtime recorded using both a single thread and four threads.

Applying Equation 2.2 to these runtimes, with Ra being the single threaded

runtime and Rb being the runtime when using four threads, will yield the value

S(4) which indicates how many times faster (or slower) the multi-threaded ex-

ecution was compared to the serial run. While this is a useful summary metric,

especially when comparing the effectiveness of different code optimisations (e.g.

with and without using vector units) care must be taken when reporting speedup

in the case where multiple code optimisations have been applied, as it becomes

unclear which optimisation the speedup came from.

2.3.2 Parallel Efficiency

Pe(n) =
S(n)

n
(2.3)

Parallel efficiency (Pe(n) in Equation 2.3) codifies the extent to which an ap-

plication utilises opportunities for parallelism as opportunities are increased

(n) [131]. Equation 2.3 has speedup as one of its constituents. This captures

the performance change when using different degrees of thread level parallelism.

This speedup value is normalised by the degree of thread level parallelism used

as this is the speedup expected from an application which fully uses the available

parallelism. This metric can be used to compare the scalability of two different

20



0 21 23 25 27 29 211 213 215

0

21

23

25

27

29

Number of Processes

S
p

ee
d

u
p

Both laws fp = 1.0 Amdahl’s Law fp = 0.99
Amdahl’s Law fp = 0.95 Gustafson’s Law fp = 0.5
Gustafson’s Law fp = 0.3

Figure 2.4: Amdahl’s Law and Gustafson’s Law for varying values of fp

applications, or quantify whether the cost of additional resources required to

make additional parallelism available to the application is worth the increase in

performance.

2.3.3 Amdahl’s Law

St(s) =

(
1

fs +
fp
s

)
, St(s) ≤

1

fs
(2.4)

While the metrics of speedup (S(n)) and parallel efficiency (Se(n)) capture ob-

served performance, neither attempt to bound performance, whereas Amdahl’s

law [6] (Equation 2.4) can provide an upper bound on speedup. It does this for

an entire application run (St) in terms of the fraction of parallel code (fp) and

serial code (fs), by pushing the speedup of the parallel region (s) to infinity. By

priming Equation 2.4 with various fractions (fp equal to 1.0, 0.99 and 0.95), the

maximum achievable speedup for a given fp can be compared. Figure 2.4 shows

21



that given an application where all of the code can be parallelised, the maxi-

mum achievable speedup is linear in the number of threads. For example, with

a fixed work load a single thread must perform all the work, but two threads can

perform half of all the work simultaneously; this is known as strong scaling. It

should be noted that this bound on speedup is not strictly true, as super linear

speedups can be observed in practice due to the degree of available parallelism

not being the only factor influencing application performance; typically super

linear speedups are observed as a result of the decreasing data associated with

each thread fitting into successively smaller (but faster) levels of cache. Equa-

tion 2.4 further indicates that for a given fraction of parallel code, the runtime

will approach the runtime of the serial region as the degree of parallelism tends

to infinity. Even by having a serial region of 1% vastly impacts the overall

parallel efficiency of the application.

2.3.4 Gustafson’s Law

St(s) = fs + s(1− fs) (2.5)

Gustafson’s law [69] considers the bound on speedup for an entire application

(St) from a different perspective. Gustafson argued that in practice strong

scaling was not the norm, and that the problem size increased with increasing

degrees of parallelism (weak scaling); this behavior is codified in Equation 2.5

and plotted for varying proportions of parallel code in Figure 2.4. From this

figure it can be seen that even at much lower proportions of parallel code (fp

equal to 0.3 and 0.5), the predicted bound on speedup is much more optimistic

than the bound predicted by Amdahl’s law for considerably higher proportions

of parallel code (fp equal to 0.95 and 0.99).

22



Requirements 
and Specification

Hardware Cycle Software Cycle

System 
Design

Tuning

Mid-life 
Upgrade

Protoyping

Implementation

Installation and 
Acceptance

Requirements 
and Specification

Code 
Updates

Implementation

Design

Optimisation

Performance 
Analysis

Porting to System

Codesign

Feedback

Figure 2.5: Hardware and software life cycle (adapted from [11])

2.4 Performance Engineering

HPC applications are complex pieces of software which are often tens of thou-

sands of lines of code long, developed over several decades, and are run with

hundreds of thousands of degrees of parallelism. These codes are of high utility

and therefore it is important to continually assess and improve their perfor-

mance on current hardware through optimisation and code updates, and also

prepare for future hardware (see Figure 2.5).

The hardware upon which HPC applications are run is just as complex as

the applications themselves, so it is also important to continually assess the

health of this hardware. As the hardware ages, there will come a time when it

23



is necessary to replace it (see Figure 2.5). At this time is essential to have a tool

box of methods which allow the comparison of candidate replacement hardware

at the lowest level of parallelism, to indicate how well a particular application

will perform on a new architecture and/or use finer grained parallelism, and can

validate the performance of an application on new hardware.

Performance engineering is a field which encompasses many mature tech-

niques (e.g. benchmarking, mini- and compact applications, profiling and ana-

lytical performance modelling) developed to support each stage of this complex

cycle of developing and maintaining HPC systems and applications.

2.4.1 Profiling and Instrumentation

Profiling an application is the act of extracting performance data from a run-

ning application. Examples of data which can be collected about an application

include: the time duration and frequency of code blocks (e.g. gprof [68]), cache

hits and number of floating point operations (e.g. Performance Application Pro-

gramming Interface (PAPI) [18]), power draw (e.g. RAPL [39]) and memory

usage (e.g. Valgrind massif [129]). These metrics can be used to identify targets

for optimisation and parallelisation. For example, a routine which uses memory

inefficiently may demonstrate a high memory watermark or a high cache miss

rate, and a routine which would benefit the most from parallelisation efforts

would dominate runtime.

There are two main classes of profiling: statistical and tracing. Statistical

profiling periodically samples performance values whereas tracing collects all

data relating to a particular value (e.g. gprof [68]). This means that while the

statistical profiler collects incomplete data, and may even overlook performance

values entirely, it has the potential to exhibit lower overhead when running

at scale than a tracer (e.g. Sun Studio [91]). In the case of determining the

frequency and duration of code regions, a statistical profiler will periodically

sample data at the position of execution and then compile these samples in to

a report. In contrast, a tracer would record the entry and exit times of code

24



regions.

Another consideration to take into account is the method of instrumentation

by which values are collected. There are three main approaches to instrumen-

tation (as mentioned by Chittimalli and Shah [33]), these are binary, byte code

and source code instrumentation. The use of byte code instrumentation is im-

mediately ignored, as it applies to code running in a virtual machine, which

does not apply to the codes in this thesis. Source code based instrumentation

requires the augmentation of an applications source code, which can happen

before (e.g. PAPI [18]) or during compilation (e.g. gprof [68]). Static binary

instrumentation (e.g. Dyninst [160]) augments the compiled binary, naturally

this technique does not require the code to be recompiled. Similarly, dynamic

binary instrumentation (Intel PIN [106] and Valgrind [129]) does not require a

recompilation but may introduce runtime overheads.

2.4.2 Benchmarks, Mini- and Compact-Applications

The comparison of hardware choice and software optimisation approaches is an-

other core part of performance engineering. To enable such comparisons a vast

number of benchmarks, mini- and compact applications have been developed.

Benchmarks are applications which exercise and subsequently quantify the per-

formance of a particular subsystem, or group of subsystems belonging to a par-

allel machine, under a defined workload. Benchmarks come in a variety of forms.

At the lowest level, benchmarks can exercise and measure the performance of a

single subsystem (e.g. main memory [115], cache [121] and inter-compute node

interconnect [88]) and at the highest level, there are benchmarks which cap-

ture and asses the performance of common computational patterns, for example

Single-Precision AX Plus Y (SAXPY) [45, 122], or even the behavior of a specific

parent application (mini- and compact-applications) [110, 134, 140, 156].

There are several benchmarks which facilitate comparison of computational

power between different machines or single CPUs, but the most famous has to be

LINPACK [45] due to its prominent role in ordering the TOP500 list [118]. The

25



LINPACK benchmark solves dense systems of linear equations and is therefore

Floating Point Operations per Second (FLOP/s) heavy. While this makes it an

excellent compute benchmark, doubts about its usefulness have been raised as it

is only representative of a single class of code. This has led to the development

of further benchmarks [46, 47, 109]. Other compute benchmarks include the

Livermore Loops [54] and the Thirteen Dwarfs [7].

Power is another metric by which to compare machines and individual CPUs,

and is becoming an increasingly important concern. The FIRESTARTER bench-

mark can be used extract “near-peak power consumption” from a particular

CPU [70]. However, in the case of a machine comparison, the amount of useful

work done needs to be taken into consideration, meaning FLOP-per-Watt [53]

is a better method of comparing two architectures in terms of power.

As with the CPU, several benchmarks exist for characterising the different

levels of a memory system. For measuring the peak memory bandwidth from

main memory, the STREAM benchmark can be used [115]. This delivers result

in MB/s for four common memory access patterns: copy, scale, add and triad.

A second benchmark exists, Cachebench, for measuring the memory bandwidth

from individual levels of cache to the CPU [121]. Both of these benchmarks

can be used to compare the memory bandwidth of several candidate machines

and can give an indication of how well a code which is bottlenecked by memory

bandwidth will perform (Section 2.1.1).

Benchmarks also exist to quantify the performance of shared and distributed

memory computations. At the shared memory level there is OpenMP for which

there is a benchmark to measure the overhead from using various operations

such as loop iteration scheduling and synchronisation [8, 21, 22, 58]. On the

distributed memory side, benchmarks such as Intel MPI Benchmark (IMB) [88]

and SKaMPI [142, 143] collect bandwidth and latency figures for various mes-

sage sizes. These Message Passing Interface (MPI) benchmarks can be used to

compare different MPI implementations (e.g. MPICH2, Intel MPI, OpenMPI)

and different interconnects (e.g. Infiniband and Cray Aires).

26



A more recent trend has been to develop so called mini-applications, which

capture a subset of the key performance characteristics (e.g. memory access pat-

terns) from a class of applications or a parent code. Numerous mini-applications

have been developed, some of which have been released as part of projects such

as the Mantevo Project [77] and the UK Mini-App Consortium [158]. Mini-

applications from these repositories and other standalone mini-applications have

been used in a variety of contexts: i) exploring the suitability of new archi-

tectures for molecular dynamics codes [134], ii) examining the scalability of a

neutron transport application [156], iii) to aid the design an development of a

domain specific active library [140] and, iv) exploring different programming

models [110].

2.4.3 Modelling Parallel Computation

The formation of Amdahl’s law in 1967 was a just a starting point for the

development of further abstract and concrete models governing and describing

the performance of both parallel hardware and applications. While Amdahl’s

law contains just a few parameters to represent both the software (fraction of

parallel code) and the hardware (number of processors), newer models have

potentially hundreds, characterising compute, communication behaviour and

synchronisation behaviour. The increase in parameters allows more complex

hardware and software behaviours, but brings with it a decrease in tractability.

However, performance models still provide a useful platform from which to

perform analyses.

Parallel Random Access Machine (PRAM)

In 1978, PRAM was proposed as one of the first models of parallel computing.

It was developed due to the need for a framework with which to develop parallel

algorithms while avoiding the nuances of real hardware [56]. This model has the

follow constituent parts: an unbounded set of processors P = p0, p1, ... which

are each able to run LOAD, STORE, ADD, SUB, JUMP, JZERO, READ, FORK and HALT

27



instructions; an unbounded global memory and processor local memory, both ca-

pable of storing non-negative integers; a set of input register I0, I1, ..., In; a pro-

gram counter; a per processor accumulator, also capable of storing non-negative

integers; and, a finite program A comprising the aforementioned instructions.

Computation then proceeds as follows:

1. The input is placed in the input registers: one bit per Ik.

2. All memory is cleared and the length of the program (A) is placed into

the accumulator of P0.

3. Instructions are then executed simultaneously by each p ∈ P .

4. The FORK instruction can be used to spawn computation on an idle pro-

cessor.

5. Execution stops when either a HALT instruction is executed by P0 or a write

instruction is executed on the same global memory location simultaneously

by multiple processors.

There are several deficiencies with PRAM, the first of which is the lack of

cost associated with communication. This prevents the model from being an

accurate representation for NUMA machines which have multiple communica-

tion layers (core-to-core, socket-to-socket and node-to-node). This lack of cost

associated with communication time additionally prevents the scaling behaviour

of an application from being modelled when run at large scale, where commu-

nication costs can dominate.

Bulk Synchronous Parallel (BSP) Computation Model

BSP was developed in 1990 by Leslie Valiant with the same underlying goal as

PRAM [150, 161], to provide a model which allows researchers to independently

develop parallel algorithms and hardware. BSP overcomes the primary flaw

with PRAM: there was no cost parameter for communication events, which

limited the accuracy of PRAM when costing various algorithmic and hardware

28



choices. BSP execution proceeds in supersteps (S), each of which consists of

three sub-steps which are described below along with the relevant modelling

parameters.

1. Simultaneous computation on local processors Wi, where this is the cost

of computation in instruction rate per processor.

2. Data transfer between local processors hs,ig, where g is a measure of net-

work permeability under continuous traffic to uniformly random address

locations and hs,i is the number of messages or some function of this and

the size of the messages per processor [150].

3. Barrier synchronisation (l).

With values for the aforementioned parameters, Equation 2.6 can be used

to compute the cost of an algorithm (C) expressed using BSP.

C =
∑
s∈S

(max
i∈P

(ws,i) + max
i∈P

(hs,ig + l)) (2.6)

From examining Equation 2.6, two observations about the performance of

BSP applications can be drawn. First is that load balance is important for both

computation and global communication since they are both maximums over all

processors and second, minimising the number of supersteps will have a positive

effect on performance as it reduces the amount of global synchronisation [150].

As reported by Skillicorn et al the BSP model has been used to the benefit of

several application’s performance. Most notably is the work by Hill et al where

the authors develop a BSP model of a multigrid application [78]. This model is

then used to predictively assess the impact of different network choices on the

runtime of the code.

One of the main weaknesses of BSP is its disregard to data locality. This

presents an issue for HPC applications as data locality is important to make use

of hardware features such as caches and vector units, not using either of these

29



can lead to significant slow downs. However, the issue of locality was addressed

in an extension to BSP by Tiskin [155].

The LogP Model

The PRAM and BSP models are high level abstractions of parallel computation

and over simplify the detail of applications and hardware, specifically in the area

of communication, which permits the development of algorithms which would

perform poorly on real hardware. Culler et al address this issue with their LogP

model [37], which (as given by its name) has the following parameters:

L An upper bound on the latency or delay incurred in sending a point-to-point

communication containing a small number of words.

o The length of time a processor is engaged in message sending activities (over-

head).

g The maximum interval between consecutive messages (gap). The reciprocal

of g is the per-processor memory bandwidth.

P The number of processors. For simplicity, all local operations complete in

unit time.

Given values for these parameters in cycles, a communication graph can be

can be constructed indicating the cost of a particular communication pattern.

The authors go to great lengths to differentiate LogP from PRAM and BSP by

pointing out the flaws in these previous models. Most notably the authors point

out that PRAM does not penalise algorithms which use an excessive amount of

communication whereas LogP discourages this. While BSP also discourages a

large amount of interprocess communication, it mandates that only h messages

can be sent and received by processors in any superstep, where as LogP allows

more fine-grained control of messages and hence the ability to represent more

complex schedules of messages [37].

30



The LogP model has been successfully used by the authors, and by many

other researchers to investigate the performance of algorithms [28, 50, 82, 86, 95].

Building on the success of this model, further extensions have been made:

LogGP, which incorporates terms for long messages [5], LoPC which intro-

duces terms for contention [57] and LogfP which handles small Infiniband mes-

sages [83].

2.4.4 Analytical Modelling

The BSP and LogP performance models form the basis of a much larger class of

modelling techniques known as analytical modelling. These models are formed

of mathematical equations, often representing the time to completion of some

performance property (e.g. communication and computation time) of an algo-

rithm or application. These models are typically less constrained than BSP as

there is no framework other than mathematics itself to work within. This gives

them the power to represent complex behaviours not possible within a tight

framework.

The next major milestone in the development of analytical modelling tech-

niques was detailed by Adve in 1993 [2, 3]. The basic idea is the same as previous

models, in that the total cost (Tcost) of an application can be represented as the

sum of its costs (as codified in Equation 2.7).

Tcost = (Ccomputation +Ccommunication−Coverlap) +Csynchronisation +Coverhead

(2.7)

Each of these sub-term are often backed by their own models, for example

one might use a LogP (see Section 2.4.3) style model or a latency/bandwidth

model [79] to calculate Ccommunication. The Coverlap term is in recognition that

performance improvements can be gained from overlapping communication and

computation. This can alternatively be implemented by taking the maximum of

computation time that can be overlapped and communication time. Addition-

ally, terms such as Ccomputation are often maximums over processors in order to

31



capture the critical path of an application. The Csynchronisation term is used to

represent delays due to load imbalance between different processes and global

synchronisation. Finally, Coverhead is there to represent costs such as resource

contention. The use of this style of model has been documented extensively in

the literature.

One such body of work carried out by the Performance Architecture Lab-

oratory (PAL) at the Los Alamos National Laboratory details the usage of

modelling techniques throughout the hardware life cycle (see Figure 2.5). The

authors of this work use performance models: i) during system design to ex-

amine hybrid accelerated systems [9]; ii) during implementation to predict the

performance of a large scale systems from small scale evaluation hardware [11];

iii) during procurement to compare several vendor offerings [11]; iv) during post-

installation to validate machine performance [101, 136]; v) to aid in optimisa-

tion [94]; vi) to support machine maintenance [11]; vii) during upgrades [41, 99];

and, many other pieces of work [10, 85, 100]. This body of work exemplifies the

use of not just analytical modelling but performance modelling in general.

Another body of analytical modelling work was carried out by Gahvari et al,

in which the authors apply a model to an algebraic multigrid application exe-

cuting on a range of architectures available at the Lawrence Livermore National

Laboratory (including a Blue Gene/P and a Blue Gene/Q) [59, 60, 61]. This

work demonstrates the usefulness of using modelling to understand the scala-

bility of algebraic multigrid applications and the use of hybrid OpenMP/MPI

programming.

Work from the University of Warwick also specialises in the creation of ana-

lytical performance models. Their work has produced models for many classes

of MPI based codes which have been applied to several of the use cases defined

by PAL [13, 14, 40, 123, 124, 135].

The primary disadvantage of analytical modelling is the time they take to

construct; however due to their analytical nature these models are fast to evalu-

ate and are therefore highly tractable. This, along with their utility, more than

32



offsets the time investment required to development them.

2.4.5 Simulation

In contrast to analytical models, which consist of equations representing per-

formance costs, simulations are virtual environments (often created in software)

which emulate the execution of an application. Simulations are employed for

many of the same reasons as analytical models: to give guidances as to an ap-

plications performance on existing and future hardware. There exists two main

methods for performing a simulation:

Trace Driven Simulators replay traces collected from an execution of an appli-

cation. Examples of such simulators include the SimpleScalar [25] tools set

which can execute instruction level traces, MemSpy [112] which operates

on traces of memory accesses, and PSINS [154] an MPI trace executor.

Trace execution presents several difficulties relating both to the size of

traces and extrapolating traces of runs at large scale from smaller scale.

Execution Simulations are driven by a representation of the application to be

simulated written in a simulation language. Examples of such simulators

include PACE [130], its successor WARPP [72], LogGOPSim [84] (an MPI

execution simulator) and the Structual Simulation Toolkit (SST) [159].

Representing the application in a simulation language has several benefits

such as the ability to capture control flow and, in the case of WARPP,

this representation is much smaller than a trace; as timing information is

accumulated rather than replaying each individual instruction.

Simulations have several advantages over analytical models, in that they can

represent performance features that are difficult to represent analytically, such

as non-determinism and control flow. However, the ability to represent these

features comes with a price; increased simulation time. Often large amounts of

computing resource is needed to run these simulations which may not always

be readily accessible.

33



2.5 Alternative Methods

Automated instrumentation techniques are a natural solution to instrumenting

large code bases and have been extensively covered in the literature [19, 33, 44,

132, 149, 166]. As mentioned in Section 2.4.1, there are three main approaches to

instrumentation, these are binary, byte code and source code instrumentation;

however, the use of source code based instrumentation is focused upon in this

thesis.

The TAU tool set is a mature performance toolkit which along with imple-

mentations of the various instrumentation techniques, includes an automatic

source instrumentation tool [111, 149]. While this tool is effective for the most

part, it is unable to handle FORTRAN77 and nested loops, both of which are

supported by the tool developed in this thesis.

Byfl is another tool which is capable of instrumenting code bases, with what

the authors term “software counters” which can be used to record data from

executing code [132]. However this tool is tied to LLVM and so limits the use

of high performance compilers such as those produced by Intel, Cray and PGI.

However, the tool developed in this thesis is compiler agnostic.

The work which is most similar to that presented in this thesis is that devel-

oped by Wu et al ; their tool was developed so that instrumentation written by

performance engineers could be applied to multiple codes by application engi-

neers. In the case of HYDRA this quality is highly desirable as it allows one set

of instrumentation to be applied to multiple versions of the code and potentially

applied by a third party. This separation of instrumentation from code also has

the additional benefit that instrumentation can be transported non-securely to

the location of the HYDRA source. The tool developed in this thesis differs by

focusing on the needs of a performance engineer rather than end users [166] by

focusing on the flexibility of instrumentation rather than usability.

The use of analytical and simulation-based performance models has previ-

ously been demonstrated in a wide range of scientific and engineering appli-

34



cation domains. The construction of such models can augment many aspects

of performance engineering, including: comparing the expected performance of

multiple candidate machines during procurement [73], improving the scheduling

of jobs on a shared machine via walltime estimates [151], identifying bottlenecks

and potential optimisations to evaluate their effect upon performance ahead-of-

implementation [125] and post-installation machine validation [101].

One body of work similar to that presented in this thesis is described in [59,

60, 61], in which the authors apply an analytical performance model to an al-

gebraic multigrid application executing on a range of architectures available at

the Lawrence Livermore National Laboratory (including a BlueGene/P and a

BlueGene/Q). The focus of these papers is on understanding the scalability of

algebraic multigrid applications and the utility of hybrid OpenMP/MPI pro-

gramming. This work presents a model of a geometric multigrid application.

This differs from previous work produced at the University of Warwick (in which

several models of MPI-based codes [13, 14, 40, 123, 124] were developed) in that

the focus is on using the performance model to asses the suitability of different

partitioning algorithms/libraries at varying scale.

Giles et al have published several papers on the design and performance of

the Oxford Parallel Library for Unstructured Solvers (OPlus) and its successor,

OP2 [26, 35, 65, 66, 67, 126]. One of these papers details the construction

of an analytical performance model of a simple airfoil benchmark (consisting

of ≈2 K lines of code), executing on commodity clusters containing CPU and

GPU hardware [126]. The performance model achieves high levels of accuracy,

but does not support multigrid execution. This thesis details the construction

of a performance model for a significantly more complex production application

(consisting of ≈45 K lines of code), and presents model validations for datasets

with multiple grid levels. This work additionally differs by using data provided

by a mini-application in the performance modelling process.

Numerous mini-applications have been developed, some of which have been

released as part of projects such as the Mantevo Project [77] and the UK Mini-

35



App Consortium [158]). Mini-applications from these repositories and other

standalone mini-applications have been used in a variety of contexts: i) explor-

ing new architectures, as demonstrated by Pennycook et al who use miniMD,

a mini-application version of LAMMPS, to explore the performance of a molec-

ular dynamics code on Intel Xeon Phi [134]; ii) examining the scalability of a

neutron transport application [156]; iii) to aid the design and development of

a domain specific active library [140] and, iv) exploring different programming

models [110]. This work aims to provide further evidence as to the success of

the mini-application approach by detailing its usage in examining new hardware

features.

Benchmarks and mini-applications representing Computational Fluid Dy-

namics (CFD) codes already exist, but are missing some or all the applica-

tion characteristics that need to be captured in order to represent unstructured

mesh, geometric multigrid applications. LULESH is a hydrodynamics mini-

application representative of ALE3D, however it does not utilise a geometric

multigrid solver [96]. Likewise, both the Rodinia CFD [34] and AIRFOIL [65]

codes developed by Corrigan et al and Giles et al respectively, utilise an un-

structured mesh but are also lacking a geometric multigrid solver. Furthermore,

the Rodinia CFD code does not support datasets which represent geometries us-

ing nodes with a variable number of neighbours. The HPGMG-FV benchmark,

while not a CFD code, does utilise a geometric multigrid solver, however; it

operates on a structured mesh [1]. The mini-application developed in this work

supports datasets with the following characteristics: i) geometric multigrid, ii)

a variable number of neighbours per node and iii) unstructured, all of which

contribute to the spacial and temporal memory access behaviour of HYDRA.

Another body of work which is similar to that in this thesis and which

it builds upon, deals with the validation of a mini-applications performance

characteristics against those of the parent code. The technique employed by

Tramm et al involves comparing the correlation of parallel efficiency loss to

performance counters for both the mini-application and the original code [156].

36



Previously this technique has been applied to mini-applications of a neutron

transport code [156] and a Lagrangian hydrodynamics code [12]; in this thesis

it is applied to a different class of application. Messer et al develop three

mini-applications and use a comparison between the scalability of the mini-

application and the original code as evidence of their similarity [117]. However,

the authors focus on distributed memory scalability whereas in this work the

focus is on intranode scalability (OpenMP and SIMD).

2.6 Summary

This section has covered the anatomy of a parallel machine and the various

forms of parallelism which can be exploited by HPC applications from the CPU

core to the level of the distributed memory machine. It has been noted that

multiple forms of parallelism must be exploited in order to achieve the maximum

potential of any given machine.

Additionally in this section various performance engineering techniques have

been covered (e.g. profiling, benchmarking and performance modelling) and how

they are essential due to the complexity of the software, hardware and their

respective life cycles.

37



CHAPTER 3
Computational Fluid Dynamics, HYDRA and Tools

One use of High Performance Computing (HPC) resource is to run Computa-

tional Fluid Dynamics (CFD) simulations and in order to construct an analytical

runtime model or a performance proxy of such a simulation, the following are

necessary: i) knowledge of the codes structure and to a lesser extent the under-

pinning mathematics; ii) specifications of the parallel architectures to be run

on; and, iii) access to suitable software tooling. In this section, this prerequisite

knowledge and the tools used/developed are detailed.

3.1 Computational Fluid Dynamics

Versteeg and Malalasekera define CFD as the “analysis of systems involving

fluid flow, heat transfer and associated phenomena such as chemical reactions

by means of computer-based simulation” [162]. The Navier-Stokes equations (in

various forms) mathematically describe the flow of fluids and underpin CFD. For

problems where the viscosity of a fluid can be ignored, the Euler equations can

be used, which are a simplification of the Navier-Stokes equations [127]. These

equations are used the following high level description of the mathematics of

fluid dynamics due to their relative simplicity. The purpose of this description

is not to give a rigorous example of how a simulation is formulated from first

principles, but to give the reader a feel for how these simulations operate.

δ(ρu)

δx
+
δ(ρv)

δy
= 0 (3.1)

δ(ρu2)

δx
+
δ(ρuv)

δy
= − δp

δx
(3.2)

38



δ(ρuv)

δx
+
δ(ρv2)

δy
= −δp

δy
(3.3)

Euler’s equations (Equations 3.1, 3.2, 3.3) represent the relationship between

velocity (u and v), pressure (p) and density (ρ) in a moving fluid. Specifically,

there is the continuity equation to enforce the conservation mass and an equation

of momentum for each spacial dimension that is to be simulated (in this case

two). These equations, along with an equation to relate pressure and the density

of a gas [127], when discretized can be used as the starting point of constructing

a 2D-simulation of fluid flow.

CFD simulations are evolved in a series of time steps, starting from an

initial state (e.g. arrays of pressure, density, momentum and density energy)

by the application of the discretized equations to each volume, to a final state,

which is also a set of simulation properties. On such output data, analyses and

visualisations can be performed, such as that represented in Figure 3.1 [119].

This shows Mach contours on a 3D bypass duct [119] which were gathered from

a multigrid application with similar properties to the application considered in

this thesis.

3.1.1 Uses of CFD

CFD simulations have many advantages – they can save both time and money

by permitting the fast navigation of design spaces [147] without the cost of pro-

ducing scale models and purchasing wind tunnel time [163]. Additionally, these

methods can be used to model variables which would be difficult to measure di-

rectly [74] or to simulate conditions which would be impractical to create [162].

Due to these advantages CFD simulations have been applied to a plethora of real

world problems in domains such as sport (e.g. cycling [42, 74, 108] and motor

racing [4, 98, 102]), and aircraft design [32, 93] to name just a small subset.

Lukes et al detail the development of cycling aerodynamics over a period

of 50 years and mention a study performed in 2002 by Hanna et al, who use

39



AIAA 99–3339
Edge-based Multigrid and
Preconditioning for Hybrid Grids
Pierre Moinier
Jens-Dominik Müller
Michael B. Giles
Oxford University Computing Laboratory
Oxford, United Kingdom OX1 3QD

                                                                                

14th Computational Fluid Dynamics Conference
28 June – 1 July, 1999 / Norfolk VA

For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics
1801 Alexander Bell Drive, Suite 500, Reston, VA 20191–4344

Figure 3.1: 3D Bypass duct with Mach number contours [119]

CFD methods to propose that using rear disc wheels was not as effective as first

thought [74, 107]. Furthermore, Defraeye et al use CFD techniques to analyse

the drag of cyclist in different positions [42]. The computational models built

for this work potentially could be used to suggest favourable positions to adopt

while racing.

Likewise, CFD methods have also played an important role in motor racing.

For example, Kieffer et al use the Star-CD CFD code to examine the relationship

between the Angle of Attack (AOA) and the lift and drag coefficients for the

front and rear wings of a Formula Mazda car. Furthermore, the authors use

their computational model to quantify the impact of the ground on the velocity

and pressure around the front spoiler and propose using their computational

model to examine how changing the height of the front spoiler affects these

properties [102]. Kellar et al also report using a CFD simulation to optimise a

front spoiler [98].

Another area where CFD methods are prevalent is the aerospace industry.

Rolls-Royce use CFD codes to simulate the flow of fluids in and around some

of their commercial products to optimise engine designs. One example of such

40



Listing 3.1: Pseudo-code for HYDRA’s smooth loop

1 for i t e r = 1 to n i t e r do
2

3 i f i t e r == 1 then
4 ca l l jacob // Jacobian preconditioning
5 end i f
6

7 for s tep = 1 to 5 do
8

9 i f d i s s i p a t i v e f l u x update then
10 ca l l grad // compute gradient
11 ca l l v f lux // accumulate viscous fluxes
12 ca l l wf f lux // modify viscous wall fluxes
13 ca l l wvflux
14 end i f
15

16 ca l l i f l u x // accumulate inviscid fluxes
17 ca l l s r c s a // Spalart-Allmaras source term
18 ca l l update // update flow solution
19

20 end for
21

22 end for

an optimisation is detailed by Duta et al who reduce the effects of high cycle

fatigue [49]. One of the main sets of applications, tools and libraries involved

in such simulations is illustrated in Figure 3.2 and is the application which the

research in this thesis is based upon.

3.1.2 HYDRA

HYDRA [104] is a suite of nonlinear, linear and adjoint solvers developed by

Rolls-Royce in collaboration with many UK universities. The reader is referred

to previous works for more information [29, 30, 48, 64, 119].

The focus of this thesis is on HYDRA’s nonlinear solver, which is henceforth

referred to as “HYDRA”. Specifically HYDRA’s smooth loop, which accounts

for the vast majority of its execution time, is examined. This smooth loop

contains the following functions: vflux, iflux, jacob, grad, wfflux, wvflux,

srcsa and update), which are each called approximately 1–5 (Runge-Kutta [27])

times per iteration. Note that the loop does not include HYDRA’s main in-

put/output (I/O) or setup routines. Pseudo-code for this routine is shown in

Listing 3.1. In this thesis results are mostly from from HYDRA 6.2.23. How-

ever, results from HYDRA 7.3.4 are occasionally presented when, for example

41



Set 
Information

Communication

Graph 
Partitioning

HYDRA

OPlus

MPI

HDF5

ParMETIS

Application Middleware Libraries

I/O

Figure 3.2: Interaction between HYDRA, OPlus and MPI

examining historical performance or the applicability of the work in this thesis

to newer versions of HYDRA.

3.1.3 Multigrid

HYDRA employs multigrid methods which are designed to increase the rate

of convergence for iterative solvers, and possess a useful computational prop-

erty; the amount of computational work required is linear in the number of

unknowns [157]. Multigrid applications operate on a hierarchy of grid levels;

this thesis is concerned with geometric multigrid, wherein each grid level has

its own explicit mesh geometry, and the coarse levels of the hierarchy are con-

structed based upon the geometry of the finest level.

Starting at the finest level, multigrid applications use an iterative smooth-

ing subroutine to reduce high frequency errors. Low frequency errors are then

transferred to the next coarsest level (restriction), where they appear as high

frequency errors and can thus be more rapidly smoothed by the same subrou-

tine. Error corrections from the smoothing of coarse levels are then transferred

back to finer levels (prolongation). The order in which prolongations and re-

strictions are applied is know as a cycle, of which this thesis considers two types:

V-cycles and W-cycles as these are both available in HYDRA. Figure 3.3(a) and

Figure 3.3(b) visualise several V-cycles and two W-cycles respectively.

42



Multigrid Level

Fl
ow

 o
f E

xe
cu

tio
n

2 3 41

(a) V-Cycle

Multigrid Level
2 3 41

(b) W-Cycle

Restrict Prolong Smooth

Figure 3.3: Level transition pattern for (a) two V-cycles and (b) one W-cycle

3.1.4 OPlus

HYDRA uses the Oxford Parallel Library for Unstructured Solvers (OPlus),

which was designed to allow a single source code to be recompiled for serial

or parallel execution, acting as a middleware that completely hides other li-

brary calls (e.g. to Message Passing Interface (MPI) or OpenMP) and the low-

level implementation of a code’s parallel behaviour from the programmer (see

Figure 3.2) [26, 36]. Subroutines in the user source code (in this case, HYDRA)

are defined as operations over user-defined data sets (e.g. nodes, edges, faces)

and the library schedules the computation accordingly. When running serially,

43



Listing 3.2: Code-snippet from vflux, a typical OPlus parallel loop

1 do while ( op par loop ( edges , i s t a r t ,
2 i f i n i s h ) )
3

4 ca l l op acc e s s ( ‘ read ’ , ewt , 3 ,
5 edges , 0 , 0 , . . . )
6 ca l l op acc e s s ( ‘ read ’ , x , 3 ,
7 nodes , ne , 2 , . . . )
8 . . .
9 ca l l op acc e s s ( ‘ update ’ , vres , 6 ,

10 nodes , ne , 2 , . . . )
11

12 do i e = i s t a r t , i f i n i s h
13

14 i 1 = ne (1 , i e )
15 i 2 = ne (2 , i e )
16 ca l l v f l ux edge ( ewt (1 , i e ) ,
17 x (1 , i 1 ) , x (1 , i 2 ) ,
18 vre s (1 , i 1 ) , v r e s (1 , i 2 ) )
19

20 enddo
21

22 enddo

OPlus uses a standard loop to execute the subroutine for each set element; when

running in parallel, the set elements (and their computation) are partitioned

over multiple nodes. OPlus is also responsible for handling the halo exchanges

at the boundaries between processor domains, i.e there are no calls to the MPI

library or any other communication library within the HYDRA source code as

the MPI calls are handled by OPlus.

Listing 3.2 gives an example of an OPlus parallel loop. It should be noted

that nothing in the source code (besides the name of the op par loop function)

suggests that this loop will be executed in parallel. The inner loop (from istart

to ifinish) is a standard Fortran do loop, which calls a subroutine for each

edge in the unstructured mesh.

In order to schedule such a loop for parallel execution, OPlus requires that

the programmer declare how each data array will be accessed, via calls to

op access. Firstly, they must declare an access type for each array, read, write,

or read/write (“update”). OPlus then attaches a “dirty bit” to each array,

based upon these access modifiers; if an array is declared as being “write” or

“update”, then execution of the loop will invalidate any copy of the data held

on neighbouring processes. Secondly, the programmer must specify whether the

44



array is to be accessed directly (i.e. the array index is the loop counter) or indi-

rectly (i.e. the array index is the result of a look-up, based on the loop counter);

such information allows OPlus to reason about whether a given loop requires

data only from local set elements, or is likely to access data residing on another

processor.

When combined with the set partitioning, these access descriptors permit

OPlus to determine which iterations of the inner loop:

1. Can be executed prior to communication;

2. Require communication with neighbouring processors to ensure correct-

ness; and,

3. Should be executed redundantly on multiple processors to avoid additional

communication steps.

The set elements corresponding to such iterations are referred to henceforth

as independent, halo and execute set elements respectively. When OPlus is

operating using MPI communication proceeds as follows:

1. Wait until each outstanding send has completed (using MPI Waitany) be-

fore packing send buffers.

2. Initiate a swap of halo information with each neighbouring processor

(MPI Irecv and MPI Isend).

3. Carry out independent computation.

4. Wait until each outstanding receive has completed (again using MPI Waitany)

before unpacking receive buffers.

5. Carry out dependent and redundant computation.

The do while loop surrounding the computation enables OPlus to iterate

over the three distinct subsets of elements in a way that is transparent to the

programmer. The op par loop call returns true for a certain number of calls

45



(1,0)

(0,0)
u

j k

b

a

f
v i

(1,1)

(0,1)

Multigrid Edge

Level BoundaryMesh Node

Independent Edge

Dependent Edge

Partition Boundary

Figure 3.4: Abstract representation of an unstructured mesh dataset over two
multigrid levels

(thus continuing the while loop) and sets the values of istart and ifinish to

different values each time (thereby controlling the set elements executed by a

given iteration).

The experiments in this thesis use OPlus version 6.03 in conjunction with

HYDRA 6.2.23, however in some instances a modified version of OPlus 6.03 is

used which contains a distributed memory communication optimisation. Addi-

tionally, a more recent version of OPlus (version 6.12) is used in conjunction

with HYDRA 7.3.4.

3.1.5 Datasets

HYDRA represents its input geometries using an unstructured mesh (see Sec-

tion 2.2.2) and since HYDRA employs a multigrid solver (see Section 3.1.3) the

input geometry is replicated from a fine to a coarse resolution for levels one to n

of the multigrid. Consecutive levels are linked using a set of edges (distinct from

the edges which connect mesh nodes on the same level) which represent how the

46



physical properties of the simulations are prolonged and restricted between the

multigrid levels; Figure 3.4 visualises this additional type of edge. For example

the edge between j and v in Figure 3.4 is a multigrid edge.

Experiments in this thesis use two different datasets. First, the LA Cascade

dataset [80, 81] which is a mesh of ≈105K nodes and ≈305K edges (at the finest

level) representing a rectilinear cascade of turbine blades. Second, the NASA

Rotor37 dataset [141], a larger mesh of ≈746K nodes and ≈2.2 million edges

(at the finest level) representing an axial compressor rotor (Rotor37 (2M)).

Additionally, a larger variant of Rotor37 (Rotor37 (8M)) is used which has

≈8 million nodes and ≈24.8 million edges. Both datasets have four levels,

and follow similar execution paths through HYDRA. The primary difference

identified between the two datasets is the inclusion of an additional OPlus loop

not called by LA Cascade, due to the introduction of a non-zero rotational

parameter by Rotor37.

In Chapter 4 the runtime performance model is validated on both LA Cas-

cade and the smaller Rotor37 dataset. In Chapters 5 and 3 the larger Rotor37

dataset is used for all experiments. Finally, the LA Cascade dataset is used for

all experiments in Chapter 6.

3.1.6 Mesh Partitioning Libraries

As mentioned in Section 2.2.2, when using unstructured mesh datasets on dis-

tributed memory machines they must be partitioned using a partitioning al-

gorithm. OPlus has been developed such that different unstructured mesh

partitioning algorithms and libraries can be integrated and used, such as the

ParMETIS [97] library, the PTScotch [128] library and the Recursive Inertial

Bisection (RIB) algorithm [63, 152, 164].

All HYDRA experiments in Chapters 3 and 4 use the RIB implementation

built into OPlus. HYDRA experiments in Chapter 5 use ParMETIS 3.1 and

RIB. Partitioning data is also collected from METIS 5.1.0, PT-Scotch 6.0.4 and

Scotch 6.0.4, but is not used in conjunction with HYDRA/OPlus.

47



Hardware
Napier

Nodes 360 × E5-2697 v2
Cores per node 24
Frequency (GHz) 2.7
RAM per node (GB) 64
Interconnect FDR Infiniband

Software
Operating System Red Hat 4.4.7
Compilers Intel 16
MPI Intel MPI 5.1.1
Storage GPFS
Resource Manager SLS

Table 3.1: Hardware/software configuration of Napier

Hardware
Power8

Nodes 1 × Power8E
Cores per node 20
Frequency (GHz) 3.69
RAM per node 16GB-1TB
Interconnect N/A

Software
Operating System Red Hat Enterprise Linux 7
Compilers XLF 15.1.1 and XLC 13.1.1
MPI MPICH 3.1.2
Storage N/A
Resource Manager N/A

Table 3.2: Hardware/software configuration of Power8

3.2 Parallel Machine Resources

Throughout this thesis data is presented from several parallel machines (see

Tables 3.1, 3.2, 3.3, 3.4, 3.5). For the most part, these are standard commod-

ity clusters which fit the description and examples provided in Section 2.1 (e.g.

Intel Central Processing Unit (CPU) with an Infiniband network). The only ex-

ceptions to this are ARCHER (Table 3.3), which uses the custom Cray Aries in-

terconnect [52] and the Power8 machine 3.2, which holds two Power8 CPUs [55].

Minerva is a now decommissioned cluster formerly based at the University

of Warwick, built from Intel Westmere-based CPUs and connected with a QDR

Infiniband network (see Table 3.4 for more information). Data collected from

48



Hardware
Nodes 4544 × Intel E5-2697 v2
Cores per node 24
Frequency (GHz) 2.7
RAM per node (GB) 64
Interconnect Aries Interconnect

Software
Operating System CLE
Storage Lustre
Resource Manager PBS Professional

Table 3.3: Hardware/software configuration of ARCHER

Hardware
Minerva

Nodes 396 × Intel Xeon X5650
Cores per node 12
Frequency (GHz) 2.66
RAM per node (GB) 24
Interconnect QLogic TrueScale 4X QDR InfiniBand

Software
Operating System SLES11
Compiler Intel 13
MPI Open MPI 1.4.3
Storage IBM GPFS
Resource Manager Moab/Torque

Table 3.4: Hardware/software configuration of Minerva

Minerva is used only in Chapter 4 to conduct performance model validations.

Tinis, Minerva’s successor, is built from Intel Haswell-based CPUs and is

connected with the same QDR Infiniband network (see Table 3.5 for more in-

formation). Data collected from Tinis is used to i) perform the performance

model validations in Chapter 5; ii) validate mini-HYDRA in Chapter 6; and,

iii) examine the impact of the new instructions provided by the Intel Haswell

platform on HYDRA’s iflux routine in Chapter 6.

ARCHER is a Cray XC30 MPP supercomputer maintained by the EPCC

based in Edinburgh. Each of its nodes has two 12-core Intel Ivybridge CPUs and

inter-node communication occurs via the custom Cray Aires interconnect [52]

(see Table 3.3 for more information). Results from ARCHER were used to

identify the increased buffer pack/unpack costs caused by the larger Rotor37

49



Hardware
Tinis

Nodes 200 × E5-2630 v3
Cores per node 16
Frequency (GHz) 2.4
RAM per node (GB) 32
Interconnect QDR Infiniband

Software
Operating System CentOS 6.7
Compiler Intel 15
MPI Open MPI 1.6.5
Storage GPFS
Resource Manager Slurm/Moab

Table 3.5: Hardware/software configuration of Tinis

datasets, which motivated the extensions to the performance model presented

in Chapter 5.

Napier is a commodity cluster formed from Intel Ivybridge-based CPUs at

the Hartree Centre in Daresbury, UK (see Table 3.1). Results from this machine

were collect in support of i) the work in Chapter 6, where the results are used

in a comparison against results collected from an Intel Haswell machine; and,

ii) the work in Chapter 3 where HYDRA’s historical performance is examined.

The Power8 architecture was developed by IBM which supports 8-way Si-

multaneous Multithreading (SMT). Results from this chip were collected for use

in Chapter 3 to examine the impact of varying the degree of SMT on HYDRA’s

kernels.

3.3 Auto-instrumentation

Having the appropriate tools to gather performance information from HYDRA

is essential for the construction of performance models and the development of

mini-applications. However instrumenting HYDRA poses several challenges.

The size of the code base presents a major hurdle to instrumentation as

it contains over 300 loops. Although, as mentioned in Section 3.1.2, HYDRA

spends the vast majority of its runtime in a small subset of its loops, the loops

50



which are invoked depends on the input deck (i.e. Rotor37 uses additional loops

over LA Cascade) and the command line options used. Hand instrumenting

all of these loops is infeasible especially when instrumenting varying subsets of

these loops to reduce instrumentation overhead. The time taken to instrument

the entire code base by hand is further exacerbated by the fact that HYDRA is

in continuous development, so multiple versions exist (both releases with new

features and optimised variants) which need to be instrumented.

Restrictions on where the code can be run, compiled and by who adds ad-

ditional complexity to applying instrumentation to the code base as it is often

not possible for a performance engineer to place instrumentation in themselves.

This issue is also compounded by the fact that there are multiple versions of

the code, so often a performance engineer has never seen the source.

HYDRA’s reliance on OPlus (see Section 3.1.4) to perform parallel compu-

tations further complicates the process of instrumentation, as its Application

Programmer Interface (API) increases the complexity of the code’s structure,

as it requires the use of nested loops and hides the communication behaviour.

The former increases the complexity of inserting instrumentation as any code

analysis will be required to maintain state in order to handle multiple loop nests

and the latter requires both HYDRA and OPlus to be instrumented.

The fact that HYDRA is a multigrid code also increases the complexity of

the source and thus complicates instrumentation attempts as at any particular

point during execution the code could be on any level of the multigrid. That

is to say the instrumentation can be inserted such that collected performance

information needs to be associated with the particular multigrid level it was

collected from.

3.3.1 Instrumentation Process

The source code parsing which underpins the auto-instrumentation tool has

been designed as a process, so that it can be implemented in any programming

language in order to promote its use on a wide variety of platforms. This process

51



Listing 3.3: An example auto-instrumentation rule which matches the entry to
an OPlus parallel loop, and action, to insert timers and gather the set name
associated with this loop

1 {
2 ‘ ‘ regex ’ ’ :
3 ‘ ‘
4 ( dowhi le )\ ( hyd par loop \ ( ( [ ˆ , ] ∗ ) ,
5 ( [ ˆ , ] ∗ ) , ( [ ˆ , ] ∗ ) , ( [ ˆ , | \ ) ] ∗ ) \ )
6 ’ ’ ,
7 ‘ ‘ act ion ’ ’ : loopEnter ,
8 ‘ ‘ s ta te ’ ’ : loopRulesState ,
9 ‘ ‘ log ’ ’ : ‘ ‘ en te r loop instrumentat ion ’ ’

10 }

comprises three steps, which are as follows:

1. The program code is preprocessed before compilation to remove comments,

squash line continuations and remove all white space;

2. A set of condition action rules are passed over this preprocessed code,

where the conditions are segments of code (e.g. loop bounds) and the

actions insert instrumentation (e.g. to call a timer or record a variable’s

value over time);

3. Finally the code is post-processed to return the original formatting (white

space and comments).

The tool first preprocesses the program code based on features common to

the vast majority of languages used for scientific codes (Fortran and C variants),

so that adding support for new languages consists only of defining the tokens

for comments, new lines and line continuations. This avoids the need to add

an entirely new lexer and parser when adding support for additional languages,

which is a task methods reliant on the ROSE compiler [138] would require.

The rule conditions are regular expressions which are used to match the

preprocessed source lines, this means most of the language specific details are

encoded in the rule sets themselves rather than in a lexer and parser. An exam-

ple rule is provided in Listing 3.3; this rule matches the entry to OPlus parallel

loops and additionally defines regular expression groups (donated by rounded

52



brackets) so that static information from the OPlus API can be extracted and

used by the action.

The actions range in complexity from simple (e.g. inserting lines of code

before and after a match) to complex (e.g. running arbitrary code with which

to alter the source). In the case of the example in Listing 3.3, the action is a call

to a function which records the entry to an OPlus loop in the state dictionary

(loopRulesState) and stores the values from the regular expression groupings

to disk. The hyd par loop API call encodes the set which the loop iterates

over, this information is collected by this rule as it is essential for performance

modelling activities. Each action may also log output, this feature is required

for confirming that all the instrumentation has been inserted, when applying an

existing rule set to a different version of the code.

The final step is arguably the most important, as it maintains the readability

of the code and allows the correctness of the instrumentation to be verified by

performing a diff between the instrumented and non-instrumented source.

A realisation of this process was developed in Python, and overcomes the

challenges with instrumenting HYDRA as follows.

1. The size of the code. The instrumentation tool is a compiler wrapper

which modifies the input source code according to a set of rules, i.e. the

same source modifications can be applied over an arbitrarily sized code

base.

2. There are restrictions on where HYDRA can be compiled and run. The

auto-instrumentation is primed with a rule file, which can be freely dis-

tributed (unlike the HYDRA source) to the location of the source, rather

than needing to send the instrumented source code to performance engi-

neers, or the performance engineers to the source code.

3. There are several challenges related to the complexity of the source code,

such as the age of the language HYDRA is written in, the reliance on a

domain specific library, the existence of nested loops and the fact it is a

53



Loop Name Identifier
vflux FLUX2
iflux FLUX6
jacob UPDATE12
grad FLUX8
wfflux FLUX3
wvflux FLUX4
srcsa FLUX27
update UPDATE8

Table 3.6: Mapping between loop names and the identifiers assigned by the
auto-instrumentation tool

multigrid code. The auto-instrumentation tool overcomes these challenges

by allowing a large amount of flexibility in both the rules and the actions.

The overhead of this auto-instrumentation on an application’s runtime is tied

directly to the instrumentation/library calls that are being inserted, so does not

in and of itself add any measurable overhead.

3.4 Auto-instrumentation Case Studies

In order to demonstrate the effectiveness of the auto-instrumentation tool it is

used to aid in the execution of two performance studies. The first analyses the

impact of increased parallelism opportunities made available through SMT on

HYDRA’s (version 6.2.23) runtime when using the Power8 architecture, and

the second examines how HYDRA’s runtime performance has changed through

subsequent releases (versions 6.2.23 and 7.3.4). Both of theses studies stress the

auto-instrumentation tool in a different way, with the former testing its ability

to operate problem free on a completely alien platform and the latter stresses

its ability to operate over different versions of the code base.

In the following case studies, HYDRA’s loops are assigned identifiers by

the auto-instrumentation tool and not by the names used in Section 3.1.2. A

mapping between these identifiers is provided in Table 3.6 so that the names

can be related back to their descriptions in Listing 3.1. Furthermore, the loop

identifiers change depending on a loop’s position within a source file, therefore

54



1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4

0

0.5

1

1.5

2

2.5

3

FLUX2 FLUX6 UPDATE12 UPDATE8

1 1 1 12 2 2 23 3 3 34 4 4 4Level

Loop

SMT

S
p

ee
d

u
p

Synchronisation Speedup

Compute Speedup

Overall Speedup

Figure 3.5: HYDRA’s per OPlus loop speedup when compared to SMT1 on
Power8 (FLUX2, FLUX6, UPDATE12, UPDATE8)

the auto-instrumentation tool may assign different identifiers to the same loop

depending on the version of HYDRA. Where a comparison between different

versions of HYDRA is performed, the loop identifiers have been changed to

match those of the older version.

3.4.1 Effect of Power8 SMT Degree on Runtime

The results in this section were collected from the IBM Power8 machine de-

fined in Table 3.2, executing HYDRA primed with the Rotor37 (8M) dataset.

Figure 3.5 and Figure 3.6 show the speedup of the most expensive loops in

HYDRA, broken down by compute and synchronisation/communication cost,

when using varying levels of SMT. The confidence intervals for these results are

given in Table 3.7; there is no confidence interval for SMT level 4 as multiple

55



1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4

0

1

2

3

4

FLUX8 FLUX27 FLUX3 FLUX4

1 1 1 12 2 2 23 3 3 34 4 4 4Level

Loop

SMT

S
p

ee
d

u
p

Synchronisation Speedup

Compute Speedup

Overall Speedup

Figure 3.6: HYDRA’s per OPlus loop speedup when compared to SMT1 on
Power8 (FLUX8, FLUX27, FLUX3, FLUX4)

SMT Confidence Interval
1 10.87
2 17.65

Table 3.7: Confidence intervals for HYDRA’s runtime on Power8 at different
SMT levels

runs were not obtained due to restricted time on the machine. However, this

is not expected to be an issue due to the low variance observed for the results

from SMT levels 1 and 2.

The usage of SMT on the Power8 architecture has a positive impact on the

compute (sum of independent, halo and execute times) performance, especially

for FLUX2, but this improvement diminishes and in some cases reverses (as is the

case for UPDATE12) on the coarser levels of the multigrid (Figure 3.5). However,

for loops which have associated communication activities (e.g. FLUX2 and FLUX6,

FLUX8), increasing the degree of SMT also increases synchronisation cost (see

56



Version Confidence Interval
6.2.23 13.22
7.3.5 27.86

Table 3.8: Confidence intervals for HYDRA’s Runtime on Napier

Figure 3.5 and Figure 3.6). This increased synchronisation cost outweighs the

gains from the reduced computation time in the case of both FLUX6 and FLUX8.

Despite this, FLUX2 does experience an overall improvement at SMT4 on levels

one and two of the multigrid (Figure 3.5), most likely because it is the most

compute heavy routine in HYDRA. Overall, these changes in performance result

in an slowdown when increasing the degree of SMT used.

The display of data in Figure 3.5 and Figure 3.6 demonstrates the ability of

the auto-instrumentation to enable easy data collection despite the challenges.

From the data itself; the reduction in compute time is promising and warrants

further investigation towards reducing the synchronisation costs on this architec-

ture. One avenue to reduce these overheads would be to construct an OpenMP

version of HYDRA rather than relying on MPI for intranode communication.

Furthermore the results have highlighted the varying responses to SMT levels

on a per loop, per level basis, this information could be used to intelligently

vary degrees of parallelism during execution.

3.4.2 Highlighting Historical Performance Differences

Figure 3.7, Figure 3.8, Figure 3.9 and Figure 3.10 show the runtime of the most

expensive loops broken down by the region of compute, communication+sync

and multigrid level (see Section 3.1.4) for versions 6.2.23 and 7.3.4 of HYDRA.

When considering just the two most expensive loops (in terms of runtime) it

is apparent that FLUX2 and FLUX6 are quicker (1.14× and 1.72× respectively)

due to reductions in synchronisation cost. By examining the most expensive

loops from version 6.2.23 it could be concluded the code has undergone positive

changes in terms of performance; however, this improvement is not reflected in

the overall runtime of both versions. This analysis highlights that the increase

57



6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4

6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4

6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4

6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4

6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4

100

200

300

400

500

600

700

FLUX2 FLUX6 UPDATE12 UPDATE8 FLUX8

1 1 1 1 12 2 2 2 23 3 3 3 34 4 4 4 4Level

Loop

Version

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Comms+Sync

Independent

Figure 3.7: Per loop comparison between HYDRA 6.2.23 and HYDRA 7.3.4
on Napier for independent compute and comms+sync (FLUX2, FLUX6,
UPDATE12, UPDATE8, FLUX8)

in runtime is due to the fact that the synchronisation cost for previously inex-

pensive loops has been increased by several orders of magnitude (FLUX25 and

BCS7). The confidence intervals for these results are given in Table 3.8.

3.4.3 Other Uses

This instrumentation tool has been a cornerstone to the collection of results in

this chapter and those which follow. In Chapter 4 the tool is used to collect the

performance data (e.g. loop time, communication time, synchronisation time,

set and halo sizes) for use with a runtime performance model. Additionally the

tool was used to effortlessly instrument two different variants of HYDRA (one

being optimised to reduce synchronisation cost) in preparation for a comparison

58



6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4

6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4

6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4

6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4

6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4

5

10

15

20

25

30

FLUX2 FLUX6 UPDATE12 UPDATE8 FLUX8

1 1 1 1 12 2 2 2 23 3 3 3 34 4 4 4 4
Level

Loop

Version

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Halo

Execute

Figure 3.8: Per loop comparison between HYDRA 6.2.23 and HYDRA 7.3.4
on Napier for halo and execute compute (FLUX2, FLUX6, UPDATE12, UPDATE8,
FLUX8)

between versions. In Chapter 5 the instrumentation rules are extended to col-

lect additional information from OPlus (buffer pack/unpack time) as it became

apparent that these costs needed representation during performance modelling

activities on larger datasets.

In experiments which are not detailed in this thesis, the auto-instrumentation

has been used with a single rule-action set to instrument three different chrono-

logically released versions of HYDRA. The instrumentation has enabled a strong

scaling study to be performed, revealing how its performance has changed

(on a per loop basis) over several generations. Additionally, the same rule-

action set has been used to successfully instrument and collect performance

data from HYDRA on a variety of platforms including an IBM BlueGene/Q

59



6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4

6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4

6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4

6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4

6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4

50

100

150

200

250

300

350

400

FLUX27 FLUX3 FLUX4FLUX25BCS7

1 1 1 1 12 2 2 2 23 3 3 3 34 4 4 4 4Level

Loop

Version

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Comms+Sync

Independent

Figure 3.9: Per loop comparison between HYDRA 6.2.23 and HYDRA 7.3.4
on Napier for independent compute and comms+sync (FLUX27, BCS7, FLUX3,
FLUX25, FLUX4)

and an Ivybridge-based cluster. Furthermore, the tool has been used to instru-

ment HYDRA using a variety of libraries such as the Performance Application

Programming Interface (PAPI) [18], perf-dump and a custom timing library.

3.5 Summary

This chapter began by introducing CFD as the study of fluid dynamics by way

of computer simulations, and detailing the use that these simulations bring to

various domains such as sports and aeronautics. This plethora of applications

motivates the focus on this class of codes.

Next HYDRA was introduced, a CFD code developed by Rolls-Royce, and

its proprietary communications library (OPlus) as the code bases that will be

60



6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4

6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4

6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4

6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4

6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4
6
.2

.2
3

7
.3

.4

0

0.2

0.4

0.6

0.8

1

1.2

FLUX27 FLUX3 FLUX4FLUX25BCS7

1 1 1 1 12 2 2 2 23 3 3 3 34 4 4 4 4Level

Loop

Version

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Halo

Execute

Figure 3.10: Per loop comparison between HYDRA 6.2.23 and HYDRA 7.3.4
on Napier for halo and execute compute (FLUX27, BCS7, FLUX3, FLUX25, FLUX4)

used as part of the case studies presented in this thesis. HYDRA is categorised

as a geometric multigrid, unstructured mesh code and each of these properties

and their potential performance implications on current generation hardware is

discussed. Additional details specific to the operation of HYDRA and OPlus

are also presented, as a detailed understanding of a codes operation assists in

the application of performance modelling techniques; the focus of this thesis.

Lastly, an auto-instrumentation tool is developed to overcome the challenges

associated with instrumenting HYDRA. The design of this tool is presented

along with a demonstration of its use through two case studies: i) an assessment

of the impact of the different SMT modes available on the Power8 platform on

HYDRA’s runtime; and, ii) an analysis of HYDRA’s performance over different

versions of the code.

61



CHAPTER 4
Model-led Optimisation of an Unstructured Multigrid Code

This chapter details the construction of an analytical performance model of

HYDRA, a production non-linear multigrid solver used by Rolls-Royce for com-

putational fluid dynamics simulations. The model captures both the computa-

tional behaviour of HYDRA’s key subroutines and the behaviour of its propri-

etary communication library, OPlus, with an absolute error consistently under

16% on up to 384 cores of an Intel X5650-based commodity cluster.

A demonstration is provided of how the performance model can be used to

highlight performance bottlenecks and unexpected communication behaviours,

thereby guiding code optimisation efforts. Informed by model predictions, an

optimisation is implemented in OPlus that decreases the communication and

synchronisation time by up to 3.01× and consequently improves total applica-

tion performance by 1.41×.

4.1 Experimental Setup

The hardware/software configuration for all experiments are listed in Table 3.4.

For the single level model validations in Section 4.2, the results are gathered

using the LA Cascade dataset (see Section 3.1.5). For the multilevel model

validations in Section 4.4 the NASA Rotor37 (2M) dataset is also used.

62



Term Definition

Hardware Parameters
P Set of processors.
αintra Intra-node (memory) latency.
βintra Inverse of intra-node (memory) bandwidth.
αinter Inter-node (network) latency.
βinter Inverse of inter-node (network) bandwidth.

Dataset Parameters
ncycles Number of cycles (assumes convergence not reached).
nstart Number of smoothing iterations in the first cycle.
ncrs Number of smoothing iterations on the coarsest level.
npde Number of partial differential equations (PDEs).

Measured Parameters
Wg,l Grind-time per set element in loop l.
Ni,l Number of independent set elements in loop l.
Nh,l Number of dependent (halo) set elements in loop l.
Ne,l Number of redundant (execute) set elements in loop l.
Bl Number of bytes sent per set element in loop l.
ncalls,l Number of calls to loop l in each smoothing iteration.

Derived Parameters
Cr Communication cost for reductions.
Cl Communication cost for loop l.
Wl Wall-time for loop l.
Wsmooth Wall-time for a single smooth iteration.
Wtotal Total wall-time.

Table 4.1: Description of compute and communication model terms for a
single-level HYDRA run

4.2 Single-Level Model

4.2.1 Model Construction

Model construction is begun by modelling the expected behaviour of HYDRA,

based on examination of its source code and its intended design. Specifically,

two assumptions are made:

1. The communication cost of exchanging halo data for a given loop will be

hidden behind the independent compute for that loop as stated by the

OPlus design [26].

2. All loops proceed in a bulk synchronous parallel (BSP) fashion.

Based on these assumptions, a description of a loop’s (l) runtime can be formed

63



0 1 2 3 4 5 6 7 8 9 10 11

5.00E-08

6.00E-08

7.00E-08

8.00E-08

9.00E-08

1 PPN

12 PPN

MPI Rank

W
g

(s
ec

o
n

d
s)

Figure 4.1: Comparison of iflux Wg values for 1 and 12 PPN on a single node

as follows:

Wl = max(Ni,l ×Wg,l, Cl)

+(Nh,l +Ne,l)×Wg,l

(4.1)

That is, the maximum of the compute time for Ni independent set elements

and the communication time for Nh +Ne halo/execute elements (to account for

potential overlap), plus the compute time for halo/execute elements (which are

dependent on communication and thus cannot be overlapped).

Compute costs are calculated using grind-times (Wg values), which repre-

sent the processing time associated with a single loop iteration (and hence a

single set element). These are too small to be measured directly due to the

resolution of the timers available. Therefore, they are instead calculated from

the execution times of complete loops (Wl values). For runs with more than one

Processors Per Node (PPN), it is necessary to account for the fact that Message

Passing Interface (MPI) tasks will contend for a node’s shared resources (e.g.

DRAM bandwidth); as shown in Figure 4.1, the performance effects of such

contention can be significant, increasing grind-times (and hence loop times) by

≈30%. Contention effects may also differ per core; since the aim is to predict

64



the best-case, the minimum observed Wg is used (marked in Figure 4.1 by the

12 PPN dashed line) in the model. These Wg values are recorded empirically

from benchmarking runs of an instrumented version of HYDRA, which contains

profiling calls associated with OPlus loops. Using Listing 3.2 as an example

OPlus loop, profiling calls are placed:

1. Surrounding the entire code block to collect the loop name, start and end

times; and,

2. Around the inner loop to record the number of elements in the indepen-

dent, halo and execute sets.

Halo exchange communication costs are calculated using a collection of sim-

ple bandwidth/latency models [79]:

Cl = αintra + βintra × (Nh,l +Ne,l)×Bl (4.2)

where the values of α (latency) and β (reciprocal bandwidth) are recorded from

the Intel MPI Benchmark (IMB) [88], and the number of bytes per element (B)

is calculated from op access declarations on a per loop basis. Note that the

intra- and inter-node versions of these equations are the same, and that these

two parameterisations are used interchangeably by the model (depending on

whether the destination processor is on- or off-node). A given network interface

is then modelled using a number of α and β pairs (a piecewise linear regression),

to account for dynamic optimisations performed by MPI, such as the transition

between the “rendezvous” and “eager” communication protocols.

The geometric meshes that HYDRA operates on are unstructured (i.e. node

connectivity must be stored explicitly in a list), and thus the way that the mesh

is partitioned over processors has a significant effect on execution time. In order

to accurately determine the amount of computational work and message sizes

per node, the Ni, Nh, and Ne values are calculated for each processor count

using an instrumented version of the Oxford Parallel Library for Unstructured

Solvers (OPlus).

65



Since a model of HYDRA’s critical path is sought, the wall-times of each

loop are taken as the maximum across all processors before being combined into

a time per smooth iteration:

Wsmooth =
∑
l

ncalls,l ×max
p∈P

(Wl) (4.3)

where the number of calls to each loop is recorded from an instrumented version

of HYDRA. This process is straightforward for loops which are called every iter-

ation (e.g. jacob and iflux from Listing 3.1). However, loops which are called

or communicate only when some condition holds are associated with a proba-

bility, e.g. vflux from Listing 3.1 is modelled as occurring with a probability

of 0.6, and the communication frequency of iflux is modelled with a proba-

bility of 0.4. These conditional execution patterns are discovered by comparing

the worst case number of calls and bytes sent, to the actual values reported

by HYDRA on a per loop basis. If a significant difference is apparent, then a

probability is derived from the code logic.

Additional communication is required at the end of each cycle, to calculate

total residual error and to print messages to the screen. The costs of these

communication steps are captured in a separate model term:

Cr = log2(|P |)× (nstart + (ncycles − 1))

× [(α+ β × 78) + (4α+ β × (80npde + 24))]

(4.4)

where: 78 is the number of bytes exchanged before a printf call; the calculation

of residual error features four reductions of 20npde+6 bytes each; and reductions

are assumed to require log2(|P |) messages.

To predict total execution time, the total number of smooth iterations must

be calculated. The first of HYDRA’s cycles always consists of nstart smooth

iterations, and all other cycles (on a single level dataset) execute ncrs smooth

66



1 2 4 8 16 32
0

50

100

150

200

Number of Processors

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Observed Predicted

Figure 4.2: Comparison of recorded and predicted execution times for
single-level runs of the original HYDRA using 1 PPN

iterations; therefore the total execution time can be modelled as below:

Wtotal = Cr + (nstart + ncrs × [ncycles − 1])×Wsmooth (4.5)

For clarity, a description of each term in the model can be found in Table 4.1.

The extension of the model to account for the effects of background machine

noise (due to other users), cache effects (due to decreasing local problem size

at scale) and the non-deterministic behaviour of MPI’s collective/non-blocking

communication routines is left to future work.

4.2.2 Validation

The graphs Figure 4.2 and Figure 4.3 compare observed and predicted execu-

tion times for HYDRA running for 200 cycles on a single level of LA Cascade.

Results are included for two different PPN counts, to stress-test the different

components of the model, the contribution of communication between MPI tasks

and network contention to total execution time will be much lower for 1 PPN

than for 12 PPN.

67



12 24 48 96 192 384
0

10

20

30

Number of Processes

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Observed Predicted

Figure 4.3: Comparison of recorded and predicted execution times for
single-level runs of the original HYDRA using 12 PPN

Nodes
Multigrid Single

1PPN 12PPN 1PPN 12PPN
Orig. Opt. Orig. Opt. Orig. Opt. Orig. Opt.

1 6.48 59.34 3.15 1.44 2.00 2.77 3.83 5.31
2 40.80 49.97 6.98 3.30 4.58 6.34 8.79 12.18
4 44.81 35.32 3.14 0.84 1.17 1.62 2.24 3.11
8 14.47 12.61 3.03 0.58 0.80 1.11 1.54 2.13
16 6.76 5.62 0.53 1.52 2.11 2.92 4.04 5.60
32 2.94 2.40 5.48 5.80 8.04 11.14 15.44 21.40

Table 4.2: Confidence intervals for HYDRA’s runtime on Minerva when using
the LA Cascade dataset

The gap between observed and predicted times is significant, representing

maximum model errors of 27.38% and 30.00% for 1 and 12 PPN respectively.

The model’s inaccuracy must therefore stem from a violation of the initial

modelling assumptions; compute and communication may be failing to overlap,

and/or synchronisation costs (i.e. the time processors spend waiting at barriers

and blocking communication calls) may be higher than anticipated. This con-

clusion is drawn because the other individual model components (computation

and communications) are accurate; single loop computation costs are predicted

with high accuracy (96.78% on a single process), as are the individual message

times predicted by the network model (the mean squared error for the intra-

68



MPI_Irecv(p1);
MPI_Isend(p1);
independent();

MPI_Irecv(p0);
MPI_Isend(p0);
independent();

MPI_wait(recvs);
dependent();

MPI_wait(recvs);
dependent();

MPI_wait(sends); MPI_wait(sends);

Process 0 Process 1

Messages
Ex

ec
ut

io
n 

Fl
ow

Figure 4.4: Best-case performance behaviours for the OPlus communication
routines on two processors

and inter-node models are 1.04× 10−11 and 4.78× 10−9 respectively).

4.3 Model Analysis

4.3.1 Communication in OPlus

The best-case communication pattern for an OPlus loop (see Listing 3.2) on two

processors (and the expected behaviour, if the modelling assumptions outlined

during the model construction hold) is shown in Figure 4.4; the worst-case pat-

tern (based on the most recent MPI standard [116]) is shown in Figure 4.5. The

MPI standard does not say that a message must begin sending when MPI Isend

is called, and a successful return from the corresponding MPI Wait means only

that the send buffer can be re-used; therefore, it is possible for a message to be

delayed until the sending processor can make no further progress. Consider the

diagram in Figure 4.5: the left processor reaches its MPI Waitany call before

sending (but after receiving) its message; proceeds with its dependent compute,

69



MPI_Irecv(p1);
MPI_Isend(p1);
independent();

MPI_Irecv(p0);
MPI_Isend(p0);
independent();

MPI_wait(recvs);
dependent();

MPI_wait(recvs);
dependent();MPI_wait(sends);

MPI_wait(sends);

Process 0 Process 1

Messages
Ex

ec
ut

io
n 

Fl
ow

Figure 4.5: Worst-case performance behaviours for the OPlus communication
routines on two processors

while the right processor remains blocked; and is only forced to send upon reach-

ing the MPI Waitall call at the beginning of its next parallel loop (which may

take place after a significant amount of serial computation).

This worst-case behaviour is observed repeatedly in experiments (confirmed

by MPI traces from SunStudio and manual investigation of timestamps), ex-

plaining the discrepancy between HYDRA’s execution times and those predicted

by the model. Specifically, due to the lack of synchronisation points between

loops, it is theoretically possible for the compute costs of a single op par loop

to be counted several times towards total execution time.

70



12 24 48 96 192 384
0

5

10

15

20

25

Number of Processes

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Original Compute Original Comms + Sync

Optimised Compute Optimised Comms Optimised Sync

(a) Seconds

12 24 48 96 192 384
0

20

40

60

80

100

Number of Processes

C
o
n
tr

ib
u

ti
o
n

to
R

u
n
ti

m
e

(%
)

Original Compute Original Comms + Sync

Optimised Compute Optimised Comms Optimised Sync

(b) Percent

Figure 4.6: Compute/communication/synchronisation breakdown for the
original and optimised HYDRA, as: (a) time in seconds; and (b) percentage of
execution time

71



4.3.2 Communication Optimisations

One way to fix this problem would be to ensure that non-blocking messages make

progress when the application is not inside the MPI library [17]. However, this

would likely have required a major overhaul to the codebases of both HYDRA

and OPlus, which is beyond the scope of this work. Instead, some relatively

simple alterations are made to the OPlus communication routines, to investigate

the use of investing more time in improving the behaviour of non-blocking sends

and receives. Specifically, these changes are as follows:

1. The non-blocking send (MPI Isend) is replaced by a non-blocking syn-

chronous send (MPI Issend), thus ensuring a call to the matching MPI Wait

completes successfully “only if a matching receive is posted, and the re-

ceive operation has started to receive the message” [116].

2. An MPI Waitall is introduced on outstanding send requests immediately

before blocking on outstanding receive requests, thus helping processors

to remain synchronised in keeping with the modelling assumptions.

Figure 4.6 presents a breakdown of HYDRA’s execution time into compute,

communications and synchronisation using 12 PPN. For the original code, the

instrumentation is unable to separate communication and synchronisation costs

(since the time spent in MPI Waitany calls is reported); for the optimised code,

the time spent in HYDRA’s original MPI Waitany calls are reported as commu-

nication, and time spent in the newly introduced MPI Waitall as synchronisa-

tion. It is observed that the contribution of communication and synchronisation

to HYDRA’s execution time is decreased by the optimisations, in all configu-

rations tested. However, the cost of synchronisation remains significant (as a

fraction of execution time) even in the optimised code. A small fraction of this

cost is attributed to the overhead of MPI Waitall, but it is believed that most

of this is caused by a combination of load imbalance between processors and

communications that fail to overlap. Further investigation into this matter is

necessary.

72



1 2 4 8 16 32
0

50

100

150

200

Number of Processes

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Observed (Orig.) Observed (Opt.) Predicted

Figure 4.7: Comparison of observed and predicted execution times for
single-level runs of the optimised HYDRA, using 1 PPN

Since the optimised version of HYDRA uses MPI Issend, IMB was modified

to use this non-blocking call instead of a regular blocking send and used to

re-benchmark the network. With these new latency and bandwidth figures in

place (as shown in Figure 4.7 and Figure 4.8), the performance improvements

that are observed following optimisation are in keeping with those predicted by

the model. Performance is improved by up to 1.45× in the case of single level

runs, and is most noticeable for 12 PPN (since communication costs are higher

for these runs).

It is acknowledged that the optimised version of the code may well be slower

than the original at a sufficiently high core count. However, HYDRA is run at

Rolls-Royce as a capacity workload; most jobs are scheduled on between one

and four densely packed compute nodes, where the optimisation is shown to

have the greatest effect. It believed that the results in this section adequately

demonstrate the role that performance modelling can play in identifying unusual

performance behaviours, and highlight that improving the communication be-

haviour of OPlus is clearly a critical direction for future research.

73



12 24 48 96 192 384
0

10

20

30

Number of Processes

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Observed (Orig.) Observed (Opt.) Predicted

Figure 4.8: Comparison of observed and predicted execution times for
single-level runs of the optimised HYDRA, using 12 PPN

4.4 Multigrid Model

4.4.1 Model Construction

In order to extend the single level model discussed in Section 4.2 to support

multigrid execution, there are a number of terms that must be able to take

different values for different levels of the multigrid. A description of these model

terms is given in Table 4.3.

The simplest change to the model introduces separate grind-times per grid

level (to account for changes in smooth behaviour, such as using first- or second-

order smoothing), and separate Ni, Nh and Ne values per grid level (to account

for each level having its own mesh geometry):

Cl,L = αintra + βintra × (Nh,l,L +Ne,l,L)×Bl (4.6)

Wl,L = max(Ni,l,L ×Wg,l,L, Cl,L)

+ (Nh,l,L +Ne,l,L)×Wg,l,L

(4.7)

This change also affects Equation 4.3, which is updated to capture the wall-time

74



Term Definition

Dataset Parameters
nlevels Number of levels in the multigrid.
nfmg Level below which first-order smoothing is used.
npre Number of pre-smoothing iterations.
npost Number of post-smoothing iterations.

Measured Parameters
Wg,l,L

Same as in Table 4.1, but specific to level L.
Ni,l,L

Nh,l,L

Ne,l,L

ncalls,l

Derived Parameters
Rcalls Number of additional calls caused by restrict.
Pcalls Number of additional calls caused by prolong.
nsmooth,L Number of smoothing iterations on level L per cycle.
Cl,L

Same as in Table 4.1, but specific to level L.Wl,L

Wsmooth,L

Table 4.3: Description of additional model terms required to support multigrid
HYDRA runs

per smooth iteration using a separate parameter for each level:

Wsmooth,L =
∑
l

ncalls,l,L ×max
p∈P

(Wl,L) (4.8)

The number of times that each level is smoothed during multigrid execution de-

pends upon the cycle type in use, which in this case is the V-cycle (Figure 3.3(a)).

Specifically, the finest level of the grid is always smoothed npre times; the coars-

est level is always smoothed ncrs times; and intermediate levels are called npre

times prior to restriction and npost times prior to prolongation:

nsmooth,L =


npre L = 1

npre + npost L < nlevels

ncrs L = nlevels

(4.9)

As before, the first of HYDRA’s cycles runs nstart smooth iterations before

beginning the V-cycle. However, the level these start-up iterations operate on

75



Nodes
Multigrid

1PPN 12PPN
Orig. Opt. Orig. Opt.

1 12.21 11.35 15.73 21.80
2 8.13 8.14 11.29 15.64
4 37.94 14.09 19.53 27.07
8 20.98 5.77 8.00 11.09
16 9.68 13.21 18.31 25.37
32 8.00 4.46 6.18 8.56

Table 4.4: Confidence intervals for HYDRA’s runtime on Minerva when using
the Rotor37 dataset

is now specified at runtime by a parameter (nfmg). This change, together with

the other equations detailed in this section, give rise to the updated form of

Equation 4.5 seen below:

Wtotal =Cr +
(
nstart ×Wsmooth,nfmg

)
+
∑
L

[(ncycles − 1)× nsmooth,L ×Wsmooth,L]
(4.10)

The network model assumes no computation-communication overlap, as results

from a comparison between the original version of HYDRA and a blocking

implementation showed that this was not occurring in all cases.

The extension to multigrid also introduces restrict and prolong terms, as

shown in Equation 4.11.

Rcalls = Pcalls = (nlevels − 1)× (ncycles − 1) (4.11)

All other aspects of the model remain the same, and is it possible to collect all

of the empirical benchmark information required for the predictive modelling of

multigrid datasets from the execution of single-level benchmarks.

4.4.2 Validation

When reading the accuracy figures in this section, it is important to understand

that the experiments were performed on a shared (and heavily contended) re-

source; validating a performance model on such a machine tends to increase

76



1 2 4 8 16 32
0

200

400

600

800

1,000

Number of Processes

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Observed (Orig.) Observed (Opt.) Predicted

Figure 4.9: Comparison of observed and predicted execution times for
multigrid runs of the optimised HYDRA using 1 PPN

error due to varying machine load. All experiments are repeated multiple times

and the minimum, mean and maximum observed runtimes are reported. It is

observed that HYDRA’s runtime can vary by up to 22.42% from the mean, and

that a distinct change of behaviour in model error occurs when moving from

single to multiple packed nodes for both datasets (as this is the point at which

the model switches from using solely intra-node communications).

A degree of inaccuracy in the model should also be expected due to other

potential issues that are not captured by the model, such as: process placement

on the host machine (e.g. a poor allocation by the scheduler will potentially

impact not only execution time, but also the mesh partitioning) and the non-

deterministic behaviour of MPI’s non-blocking communications. Furthermore,

it is noted that modelling a code’s strong-scaling performance (i.e. the change in

execution time occurring from an increase in the number of processors solving

a problem of fixed size) is harder than modelling its weak-scaling performance

(i.e. the change in execution time occurring from an increase in total problem

size, for a fixed amount of work per processor).

Figure 4.9, Figure 4.10 and Table 4.5 present model validations for the op-

77



12 24 48 96 192 384
0

50

100

150

Number of Processes

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Observed (Orig.) Observed (Opt.) Predicted

Figure 4.10: Comparison of observed and predicted execution times for
multigrid runs of the optimised HYDRA using 12 PPN

78



Nodes
Original (s) Optimised (s)

Pred. (s)
% Error Original % Error Optimised

Min Mean Max Min Mean Max Min Mean Max Min Mean Max

1 PPN
1 975.05 977.29 981.66 920.63 967.18 981.18 913.51 -6.31 -6.53 -6.94 -0.77 -5.55 -6.90
2 499.97 525.34 541.60 463.74 502.82 514.73 463.38 -7.32 -11.80 -14.44 -0.08 -7.84 -9.98
4 286.25 309.44 331.98 240.98 268.65 277.02 244.58 -14.56 -20.96 -26.33 1.49 -8.96 -11.71
8 163.06 172.40 177.83 132.87 140.30 145.74 133.44 -18.17 -22.60 -24.96 0.43 -4.89 -8.44

16 89.25 92.01 96.15 74.45 77.19 80.18 74.46 -16.57 -19.07 -22.56 0.01 -3.54 -7.14
32 50.87 52.31 53.87 44.24 45.76 46.69 45.32 -10.92 -13.36 -15.87 2.44 -0.96 -2.94

12 PPN
1 145.37 146.81 148.58 111.43 112.09 112.90 99.12 -31.81 -32.48 -33.29 -11.04 -11.57 -12.21
2 81.12 83.37 88.24 57.39 58.95 60.76 57.30 -29.36 -31.27 -35.06 -0.16 -2.80 -5.69
4 48.86 50.55 52.06 38.56 39.07 39.42 36.54 -25.22 -27.71 -29.81 -5.23 -6.47 -7.32
8 30.83 32.08 33.92 26.89 27.14 27.48 26.13 -15.24 -18.54 -22.96 -2.83 -3.72 -4.92

16 21.76 22.00 22.30 23.59 24.51 25.14 21.31 -2.07 -3.15 -4.44 -9.67 -13.08 -15.24
32 16.41 18.27 22.00 22.99 25.30 28.91 21.18 29.06 15.88 -3.74 -7.89 -16.30 -26.76

Table 4.5: Model validation for multigrid runs of HYDRA on the LA Cascade dataset (Confidence intervals are in Tables 4.2 and 4.4)

79



timised version of HYDRA, running a multigrid simulation (with four levels)

using the LA Cascade dataset. When comparing Figure 4.10 to Figure 4.8, it

is observed that multigrid execution times follow a very similar trend to, and

are ≈4–6× larger than, those of the corresponding single-level benchmark. This

trend indicates the potential for predicting the execution time of a multigrid

run from benchmarks of a single level.

The amount by which the model over-predicts increases with the number of

processors for 1 PPN runs. Since LA Cascade is a relatively small dataset, when

running at scale (32 nodes) it is decomposed to the point at which the partitions

fit into cache; this leads to a decrease in Wg values, and thus a violation of the

original modelling assumptions. Even at scale, LA Cascade’s runtime is still

dominated by computation (7.63× larger than communication time), and the

increasing model error thus stems primarily from the compute component of

the model (the error of which increases from 0.69% to 3.85%).

It is noted that the model error for 12 PPN runs is also increasing with pro-

cessor count. However, in this case the model is under-predicting. The compute

model remains accurate for 12 PPN runs (13.42% error), and the number of

messages (and bytes) accounted for by the network model is within 1.05% of

those observed in HYDRA; therefore the increasing model error is attributed to

the increasing synchronisation costs arising from running at scale (Figure 4.6).

Accounting for such synchronisation costs in the model is clearly a direction for

future research.

The point at which the optimisation is no longer valid is exposed in Table 4.5,

and occurs when running HYDRA using LA Cascade on 192 cores. At this

scale, the compute is such a small portion of total runtime (24.42%) that the

potential benefit from keeping compute synchronised is outweighed by the cost

of synchronisation. These results suggest that scale should be taken into account

when selecting the communications strategy for HYDRA.

The model error for Rotor37 is larger than for LA Cascade, increasing from

0.87% to 7.79% for 1 PPN, and from 6.14% to 11.82% for 12 PPN. This increased

80



error is due to the communication component of the model. The compute error

remains low (1.08% and 16.05% for 1 and 12 PPN runs respectively), highlight-

ing this component’s ability to adapt to different data sets which follow similar

execution paths, whereas analysis of the message sizes used in the communica-

tion component highlights an imbalance in their distribution. To prepare the

model for additional datasets, it must be extended to include all of HYDRA’s

loops and their influence on communication behaviour.

4.5 Summary

The chapter details an analytical performance model of Rolls-Royce HYDRA

executing two unstructured multigrid datasets, LA Cascade and Rotor37, on

up to 384 cores of an Intel X5650-based commodity cluster. The model has an

average predictive accuracy of≈90% for configurations matching those employed

by Rolls-Royce.

Using the performance model as a guide of expected (and desired) runtime

behaviour, a synchronisation issue in HYDRA’s OPlus communication library

was identified, which leads to a performance degradation of up to 29.22% on

Minerva (see Table 3.4). An optimisation is proposed and implemented that

improves HYDRA’s strong-scalability significantly on this platform, bringing

observed execution times in line with those predicted by the model. This opti-

misation was incorporated into a production version of HYDRA, which exhib-

ited a ≈7% improvement in runtime when using datasets more representative

of actual workloads (than LA Cascade or Rotor37) and on hardware in use by

Rolls-Royce. While this is a smaller improvement in runtime than observed

using LA Cascade or Rotor37, this speedup still has the potential to improve

the throughput of HYDRA workloads at Rolls-Royce.

The results in this chapter therefore illustrate the role of performance mod-

elling in the analysis and optimisation of legacy codes, and highlight the impor-

tance of revisiting such applications to assess whether their design assumptions

81



Nodes
Original (s) Optimised (s)

Pred. (s)
% Error Original % Error Optimised

Min Mean Max Min Mean Max Min Mean Max Min Mean Max

1 PPN
1 1367.00 1373.90 1379.46 1368.87 1375.11 1380.45 1298.27 -5.03 -5.50 -5.89 -5.16 -5.59 -5.95
2 737.27 742.03 745.57 697.78 702.40 706.09 657.55 -10.81 -11.38 -11.81 -5.77 -6.38 -6.87
4 400.26 411.81 438.98 363.99 373.34 378.37 339.25 -15.24 -17.62 -22.72 -6.80 -9.13 -10.34
8 226.23 235.70 247.64 197.11 199.28 203.00 180.89 -20.04 -23.25 -26.95 -8.23 -9.23 -10.89

16 135.43 139.80 145.31 112.11 117.01 125.59 101.96 -24.72 -27.07 -29.84 -9.06 -12.87 -18.82
32 74.83 79.73 82.99 65.16 67.23 69.71 57.53 -23.12 -27.84 -30.67 -11.71 -14.43 -17.47

12 PPN
1 214.74 215.45 216.36 177.99 179.50 182.05 168.60 -21.49 -21.75 -22.07 -5.27 -6.07 -7.39
2 121.17 122.02 122.36 112.78 113.40 114.24 100.28 -17.24 -17.82 -18.04 -11.09 -11.57 -12.22
4 70.36 71.27 72.22 64.06 67.00 75.56 54.28 -22.85 -23.84 -24.84 -15.27 -18.99 -28.16
8 43.34 43.97 44.85 38.02 38.48 39.10 32.32 -25.44 -26.51 -27.95 -15.00 -16.02 -17.36

16 25.40 26.31 26.83 22.29 24.02 24.66 19.86 -21.80 -24.49 -25.96 -10.88 -17.30 -19.45
32 17.32 19.55 24.34 15.48 19.37 23.72 13.40 -22.63 -31.44 -44.95 -13.43 -30.83 -43.50

Table 4.6: Model validation for multigrid runs of HYDRA on the Rotor37 dataset

82



still hold on new software/hardware configurations. Also, it is shown that it is

possible to reason about the performance of a geometric multigrid application

based upon the execution of small, single-level benchmarks, and hence demon-

strate a way to minimise the amount of benchmarking required when evaluating

new machines.

In the next chapter, the model is i) further generalised to support multiple

multigrid cycle types and Runge-Kutta invocations with a variable number of

iterations; ii) extended to include additional costs, such as buffer pack/unpack

times; and, iii) augmented with a mini-application representative of HYDRA’s

partitioning behaviour. In this way, the model will apply to a wider range of

workloads and along with the mini-application, will be able to perform predic-

tions without first needing to run an instrumented version of HYDRA at scale

to collect partition sizes.

83



CHAPTER 5
Enabling Model-led Evaluation of Partitioning Algorithms

at Scale

While the performance model developed in the previous chapter was successful

at identifying detrimental communication behaviour, limitations prevented the

model from delivering runtime predictions across the desired range of input

parameters and scale: i) the performance model was lacking complete analytical

support, which restricted the set of tasks runtime predictions could be performed

for (e.g. different multigrid cycle types); ii) the dataset coverage was limited due

to the performance model only being primed from a subset of HYDRA’s loops;

and, iii) the model was reliant on partitioning data, which could only be collected

empirically from HYDRA when running at scale.

First the inclusion of additional runtime costs to the performance model are

validated on up to 1,024 cores of a Haswell-based cluster, using both a geomet-

ric partitioning algorithm and ParMETIS to partition the input deck, with a

maximum absolute runtime error of 12.63% and 11.55% respectively. Second,

the development of a mini-application representative of the mesh partitioning

process internal to HYDRA is detailed. This mini-application is able to gen-

erate partitioning data that is usable with the performance model to produce

predicted application runtimes within 7.31% of those produced using empiri-

cally collected data. Next, a demonstration of the performance model is given

by performing a predictive comparison of several partitioning algorithms on up

to 30,000 cores. The performance model is able to correctly predict the inef-

fectiveness of the geometric partitioning algorithm at 512 cores on the Rotor37

dataset.

84



Term Parameter Definition

Indicies
g Grind time (loop time divided by total iterations)
p Process identifier
l Loop identifier
u Unpack time
i Independent elements
h Dependent elements
e Redundant compute elements

Dataset Parameters
nlevels Number of levels in the multigrid.
ncycles Number of multigrid cycles to perform.
nfmg Level below which first-order smoothing is used.
npre Number of pre-smoothing iterations.
npost Number of post-smoothing iterations.
nrk Number of Runge-Kutta iterations.
nstart Number of starting iterations.
ncrs Number of smoothing iterations to perform

at the coarsest level of the multigrid.

Measured Parameters
Wg,p,l,L Grind-time per level, per set element in loop
Wu Grind-time for unpacking an element
Ni,p,l,L Number of independent set elements in loop.
Nh,p,l,L Number of dependent (halo) set elements in loop
Ne,p,l,L Number of redundant (execute) set elements in loop.

Derived Parameters
Rcalls Number of additional calls caused by restrict.
Pcalls Number of additional calls caused by prolong.

IpostL Calls caused by npost input parameter on level L.
IpreL Calls caused by npre input parameter on level L.
IcrsL Calls caused by ncrs input parameter on level L.
IstartL Calls caused by nstart input parameter on level L.
Wp,l,L Walltime per process, per loop, per level.
Wmg Total runtime of the multigrid solver.
Cl,L Communication cost for loop l per level.

Table 5.1: Description of performance model terms from Chapter 4 and the
additional terms required for multiple cycle types, pack/unpack costs and
multiple compute regions

85



1 2 3 4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

10

1 2
1

2
1 2

2
2

2

1 2
1

2
1 2

2
2

Multigrid Level

S
ol
ve
r
It
er
at
io
n
E
ve
n
t

npre
npost
ncrs
nstart

additional

(a) V-Cycle

1 2 3 4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

10

1 2
1

2
1

2
2
1

2

22
1

2
1

2
2
1

2

2
2

2

1 2
1

2
1

2
2
1

2

22
1

2
1

2
2
1

2

2
2

Multigrid Level

S
ol
ve
r
It
er
at
io
n
E
ve
n
t

(b) W-Cycle

Figure 5.1: Trace of solver iteration events (ncycles = 3)

5.1 Runtime Model for Multigrid Applications

The generality and tractability of HYDRA’s existing performance model is in-

creased to overcome the aforementioned shortcomings. First the construction of

further analytical equations are presented, which describe HYDRA’s function

invocations. Following this, it is shown how these new equations operate with

the model developed in Chapter 4. Next, it is demonstrated how the new analyt-

ical equations can be adapted to allow for runtime predictions when using other

types of multgrid cycle, thereby increasing the applicability of the model. The

modelling terms used throughout this chapter are defined in Table 5.1; this table

repeats parameters defined in Tables 4.1 and 4.3 for the readers convenience,

86



however it does not repeat the hardware parameters listed in Table 4.1.

5.1.1 Model of Solver Steps

HYDRA’s smooth routine invokes a number of solver iterations. These depend

on HYDRA’s current position in the multigrid cycle (labeled in Figure 5.1) and

directly affect the total number of solver steps. To parameterise the model,

HYDRA’s source code is examined from both the solver and Runge-Kutta loop

bounds to the input deck, and in doing so the following parameters are identified

as influencing the loop bounds: ncrs, npre, npost, ncycles.

To aid the development of equations for the number of solver iterations (per

multigrid level) in terms of these parameters, a trace of solver iteration events

and the multigrid level they originate from is collected. Figure 5.1(a) presents

this trace, which is used as a guide for further code inspection, by creating a

mapping between events in the trace and HYDRA’s source code.

The first feature apparent from Figure 5.1(a), are the initial 11 iterations

on the first level of the multigrid (solver iteration events 1 and 2). Through

experimentation with the input deck and code inspection, it was found that the

first 10 of these events can be attributed to the nstart parameter. The extra

event is a separate feature, in which an additional iteration of the inner loop

is performed only when restricting. This leads directly to Equation 5.1, where

nstart is simply multiplied by the number of inner loop iterations (nrk), and to

this, a single addition iteration is added.

Istart1 = nstart × nrk + 1 (5.1)

The second feature visible in Figure 5.1(a) is event 10. This feature is singled

out next as it does not appear at the beginning of the previous V-cycle (solver

iteration event 2). Code inspection reveals that these events are dictated by

npre. Given the information that these events occur at the beginning of every

V-Cycle, Equation 5.2 can be constructed. The second half of the equation

87



deals with the single additional iteration while restricting – both ×1 terms,

while unneeded, are left in to ensure a 1-to-1 mapping between the two halves

of Equation 5.2 for readability.

Ipre1 = ((ncycles − 2)× npre × nrk)

+((ncycles − 2)× 1× 1)

(5.2)

Next the events which occur on levels 2 and 3 of the V-cycle are examined, for

both prolongation and restriction. Code inspection reveals that the number of

iterations are dictated by npost and as is the case with Equations 5.1 and 5.2,

the additional iteration which occurs while prolonging must be accounted for.

Ipost2,3 = (((ncycles − 1)× npost × 2)× nrk)

+(((ncycles − 1)× 1)× 1)

(5.3)

Finally, the events which occur on the final level of the multigrid are examined:

events 7 and 16 in Figure 5.1(a). These occur once per V-cycle, therefore the

equation is:

Icrs4 = (ncycles − 1)× ncrs × nrk (5.4)

It should be noted that Equations 5.1-5.4, given an input deck, will predict the

invocation count of iflux. The invocation count of the other functions will be

dealt with by modelling their percentage of invocations relative to iflux.

5.1.2 Model Integration

Equations 5.1-5.4 are integrated bottom up, into the existing model to provide a

fully analytical description of HYDRA’s computation. The reader is referred to

the previous chapter for the equations for communication time (Cl,L), restrict

(Rcalls) and prolong (Pcalls) as these equations remain unchanged [23].

88



Equation 5.5 describes how the different types of compute (independent,

halo and execute) and the communication are combined into a single walltime.

To model communication-computation overlap, the larger of the independent

compute and communication time is taken, and added to this, the compute

which cannot be overlapped at all. This equation can easily be adjusted to

produce a prediction where overlap is not assumed to occur, by replacing the

maximum function with a summation.

Wp,l,L = max(Ni,p,l,L ×Wg,l,L, Cl,L)

+ (Nh,p,l,L +Ne,p,l,L)×Wg,p,l,L

(5.5)

Finally, the runtime of all of the loops on each level of the multigrid are summed

to give the predicted runtime for the solver (Equation 5.6).

Wmg =
∑
l

∑
L

max
p∈P

(Wp,l,L)× IL (5.6)

5.1.3 Generalisation to W-Cycles

V-Cycles are not the only pattern by which multigrid solvers can transition

between levels. The process used in Section 5.1.1 to derive the equations which

model a V-cycle is next applied to a W-Cycle – this lends weight to the processes

applicability to arbitrary cycle types. As before, a trace of the code is plotted,

but while performing W-cycles (Figure 5.1(b)).

The non-repeating features in Figure 5.1(b) (solver iteration event 1), and

the frequency of steps caused by npre, are the same as for the V-cycle case,

therefore Equations 5.1 and 5.2 can be reused. Next, the location where a

single cycle terminates is identified (solver iteration event 21 in Figure 5.1(b) in

order to construct equations for the remaining levels of the multigrid.

Equations 5.7 and 5.8 are similar to Equations 5.3 and 5.4 but are parame-

terised to allow operation with multiple cycle types.

89



Ipost2,3 = (((ncycles − 1)×Opost
2,3 × npost)× nrk)

+(((ncycles − 1)×Oadditional
2,3 × 1)× 1)

(5.7)

Icrs4 = (ncycles − 1)×Ocrs
4 × ncrs × nrk (5.8)

Where Ocrs
4 , Opost

2 , Opost
3 , Oadditional

2 and Oadditional
3 equal 4, 3, 6, 2 and 4 re-

spectively for a W-Cycle and 1, 2, 2, 1 and 1 respectively for a V-Cycle. By

making these improvements to the model it can support multiple cycle types

(e.g. W-Cycle and V-Cycle) and a variable number of Runge-Kutta iterations.

As an additional side effect the changes have increased the performance models

tractability; the model’s time to prediction has improved by ≈22× when pre-

dicting for runs at approximately 500 cores, and will likely improve the time to

prediction at much larger scale.

5.2 Additional Performance Model Detail

First, three additional runtime costs are identified and included within the per-

formance model: the compute and communication time for all 300+ loops in the

code base, the time taken to pack and unpack data from the Message Passing In-

terface (MPI) library buffers at the application layer, and separate performance

data for each region of compute. Second, these changes are validated over 1,024

cores by presenting the effect each adjustment has on the model’s error. The

performance model is further validated when using ParMETIS, rather than a

geometric partitioning algorithm. Finally, the performance model’s accuracy is

reported over 1,008 cores when using data collected from an Ivybridge-based

cluster (ARCHER).

90



1
6

6
4

1
2
8

1
9
2

2
5
6

3
2
0

3
8
4

4
4
8

5
1
2

1
0
2
4

0

1

2

3

4

·103

Number of Processes

C
o
m

p
u
te

R
u
n
ti

m
e

(s
e
c
o
n
d
s)

Actual compute

Prediction with loops, separate Wg

Prediction without loops,separate Wg

Prediction with loops, with average Wg

Prediction without loops, average Wg

Figure 5.2: Comparison of actual and predicted compute time (Rotor37, 8
million nodes; geometric partitioning; Tinis)

5.2.1 Experimental Setup

For the model validations in this section and Section 5.3 the Rotor37 (8M)

dataset (see Section 3.1.5) is used. Modelling data is collected from Tinis, a

Haswell-based cluster and ARCHER, an Ivybridge-based cluster. More detailed

specifications for each can be found in Table 3.3 and Table 3.5 respectively.

However, all the analysis is performed using the data from Tinis.

The HYDRA experiments presented in this section and those remaining in

this chapter use ParMETIS 3.1 and Recursive Inertial Bisection (RIB). Parti-

tioning data is also collected from METIS 5.1.0, PT-Scotch 6.0.4 and Scotch

6.0.4, but is not used in conjunction with HYDRA/Oxford Parallel Library for

Unstructured Solvers (OPlus). More information on partitioning algorithms can

be found in Section 3.1.6.

91



1
6

6
4

1
2
8

1
9
2

2
5
6

3
2
0

3
8
4

4
4
8

5
1
2

1
0
2
4

0

5

10

15

20

25

30

Number of Processes

P
e
rc

e
n
ta

g
e

E
rr

o
r

With loops, separate Wg

Without loops, separate Wg

With loops, With average Wg

Without loops, average Wg

Figure 5.3: Predicted compute time percentage error (Rotor37, 8 million
nodes; geometric partitioning; Tinis)

5.2.2 Region Grind-time Data

OPlus partitions HYDRA’s compute into three different regions, independent,

halo and execute. For each of these element types the access pattern varies,

which is reflected in the timing information. The compute time (per element) for

dependent elements compared to independent elements is 60.72% and 142.45%

larger for vflux and iflux respectively. Without using separate timing infor-

mation for the different regions a consistent under prediction in compute time is

observed (average of 19.12%). However, when the performance model is primed

with separate timing information for each region then the model error is reduced

(see Figure 5.2) to a consistent average under prediction of 12.69%. Percentage

errors at each process count are provided in Figure 5.3.

The analytical model is generalised to support these regional grind times

by introducing three new terms: Wg,i,l,L, Wg,h,l,L and Wg,e,l,L for the inde-

pendent, halo and execute regions respectively. After making this adjustment

Equation 5.5 becomes Equation 5.9.

92



1
6

6
4

1
2
8

1
9
2

2
5
6

3
2
0

3
8
4

4
4
8

5
1
2

1
0
2
4

0

1

2

3

4

·103

Number of Processes

R
u
n
ti

m
e

(s
e
c
o
n
d
s)

Actual runtime

Predicted runtime

Predicted runtime without pack+unpack costs

Figure 5.4: Comparison of actual and predicted runtime (Rotor37, 8 million
nodes; geometric partitioning; Tinis). See Table 5.2 for confidence intervals.

Wp,l,L = max(Ni,p,l,L ×Wg,i,l,L, Cl,L)

+ (Nh,p,l,L ×Wg,h,l,L +Ne,p,l,L

×Wg,e,l,L)

(5.9)

5.2.3 Complete Loop Coverage

HYDRA consists of over 300 nested loops of which a subset are used by any given

dataset; due to this large number of loops, using automated instrumentation

tools is essential. Tools were developed in Section 3.3 to cope with the specifics

of the code base which existing tools were unable to deal with (e.g. FORTRAN77

and nested loops). Naturally, full code coverage gives increased model accuracy

because as it provides a complete view of HYDRA’s performance. Also, it future

proofs the performance model against new datasets which may exercise other

regions of the code.

93



1
6

6
4

1
2
8

1
9
2

2
5
6

3
2
0

3
8
4

4
4
8

5
1
2

1
0
2
4

0

10

20

30

Number of Processes

P
e
rc

e
n
ta

g
e

E
rr

o
r

Total runtime

Total runtime without pack+unpack costs

Figure 5.5: Total predicted time percentage error (Rotor38, 8 million nodes;
geometric partitioning; Tinis).

With the addition of performance data from all loops in HYDRA the runtime

performance model’s under prediction reduces from an average of 12.69% to

4.79% (see Figure 5.2). Even with complete loop coverage there is still an error

in compute time; it is suspected this is due to the modelling assumption that

compute time per edges/node is the same across all processes which is not often

the case. Both the complete loop coverage and the use of detailed compute

data, reduces the compute error by approximately 10% at all measured scales

(see Figure 5.3).

5.2.4 Buffer Pack Cost

OPlus abstracts communication between processes, and as part of this it must

pack and unpack elements shared between processes into communication buffers.

The cost of this operation largely depends on the number of items that need

moving around, which in the previously used datasets of approximately ≈746 K

nodes and ≈2.2 million edges (at the finest level) was a negligible amount. Fur-

94



Nodes Geometric ParMETIS
16 2.95 82.92
64 0.65 42.54
128 8.14 5.58
192 2.08 7.09
256 4.43 5.46
320 1.50 7.13
384 1.53 7.52
448 2.23 2.70
512 1.34 3.16
832 1.02 2.75
1024 0.77 2.05

Table 5.2: Confidence intervals for HYDRA’s runtime on Tinis when using
either a Geometric Partitioning or ParMETIS to partition the input deck.

ther validation work on the performance model with a larger dataset indicated

parts of the code were not being modelled and subsequent performance analysis

pointed to a significant buffer pack and unpack cost. With larger scale runs,

increasingly larger datasets will be required (over 100 million nodes) therefore

increasing this cost even further.

The analytical model is extended with Equation 5.10 to account for the

buffer pack and unpack costs. Likewise, the unpack costs are accounted for on

the receiving process.

Wp,l,L =Nh,p,l,L ×Wu +Ne,p,l,L ×Wu (5.10)

Figure 5.4 shows that the runtime performance model’s total under prediction is

reduced from an average of 24.76% to 8.56% and at most 12.63% (see Figure 5.5

for per process errors).

The runtime performance model has also been validated with the aforemen-

tioned details on up to 1,008 cores of ARCHER, with a maximum model error

of 4.72%. This provides further evidence to suggest the model is applicability

across multiple generations of Intel hardware.

95



1
6

6
4

1
2
8

1
9
2

2
5
6

3
2
0

3
8
4

4
4
8

5
1
2

1
0
2
4

0

1

2

3

4

5
·103

Number of Processes

R
u
n
ti

m
e

(s
e
c
o
n
d
s)

Actual Runtime

Predicted Runtime

Actual Max Compute

Predicted Max Compute

Actual Pack+Unpack Time

Predicted Pack+Unpack Time

Figure 5.6: Comparison of HYDRA’s actual and predicted runtime (Rotor37,
8 million nodes, ParMETIS; Tinis) See Table 5.2 for confidence intervals.

5.2.5 Performance Model Validation (ParMETIS)

Figure 5.6 presents the total runtime, max compute time and pack/unpack

time for both predicted and actual executions when using ParMETIS as the

partitioning algorithm. The errors for total runtime, max compute time and

pack/unpack costs are on average 8.65%, 4.09% and 5.23% respectively.

The compute error consistently under predicts and the error is neither in-

creasing or decreasing with scale, but fluctuates between under predictions of

8.37% and 1.43% (see Figure 5.7). This under prediction and fluctuation can be

partially explained by a deviation from the assumption that the Wg values are

similar across all processes for a given OPlus loop, multigrid level and compute

region. This is not true as different processes have different access patterns, due

to the nature of unstructured mesh codes.

This broken assumption manifests itself as a problem in the performance

model when an average, maximum or minimum Wg is used to approximate the

compute cost, as the model will always predict that the most expensive processes

96



1
6

6
4

1
2
8

1
9
2

2
5
6

3
2
0

3
8
4

4
4
8

5
1
2

1
0
2
4

−20

−10

0

10

20

Number of Processes

P
e
rc

e
n
ta

g
e

E
rr

o
r

Runtime

Max Compute

Pack+Unpack Time

Figure 5.7: Percentage error for model costs (Rotor37, 8 million nodes,
ParMETIS; Tinis) See Table 5.2 for confidence intervals.

is the one with the most elements to process. From Figure 5.8 it can seen that

this assumption leads to an under prediction (except for at 320 processes) when

using the average Wg and an over prediction when using the maximum Wg. For

the predictions in this chapter an average over the top 50% largest Wg values is

used as this is more representative of the compute costs on the critical path.

The pack and unpack error fluctuates between under predicting and over

predicting. However, for the most part the absolute error is very low (less than

3 seconds for runs larger than 128 processes). Further investigation is required to

identify the remaining sources of error, specifically at lower core counts, where

the runtime prediction is over predicting 50.32 seconds and under predicting

23.32 seconds for runs with 16 and 64 processes respectively.

The compute under prediction leads to an under prediction of the total

runtime as this is the dominant cost. Errors of between 2.68% and 11.55% are

observed. This validation demonstrates the performance model’s effectiveness

at predicting runtime when using alternative partitioning algorithms.

97



1
6

6
4

1
2
8

1
9
2

2
5
6

3
2
0

3
8
4

4
4
8

5
1
2

−20

−10

0

10

20

Number of Processes

P
e
rc

e
n
ta

g
e

e
rr

o
r

(%
)

Max Wg

Average Wg

Average top 50% Wg

Figure 5.8: Percentage error of Wg calculation techniques for max edge
compute (Tinis)

5.3 Set and Halo Size Generation

Typically in order for an analytical model to provide a runtime prediction, the

size of the dataset (i.e. number of nodes, edges, cells) and message sizes must

be known for a given process count. In the case of a structured mesh these sizes

can be obtained using basic algebra, but for unstructured meshes these sizes

depend on the partitioning algorithm (e.g. ParMETIS) and the halo exchange

strategies.

Previously this data was collected empirically from HYDRA, but this ap-

proach becomes impractical for large process counts as vast amounts of hardware

are required. This limits the performance model’s capacity to predict HYDRA’s

scaling behaviour. Two applications are developed to solve this limitation: one

for driving the partitioning algorithm, and one for computing the set and halo

sizes (the latter will henceforth be referred to as “Moses”). With these appli-

cations, it is easier to explore different approaches (e.g. simulation, alternative

partitioning algorithms, serialisation of code) to collecting partitioning informa-

98



tion for use in runtime predictions at scale.

5.3.1 Partitioning Mini-Driver and Mini-Application

First, a mini-driver (a framework for running specific application routines with

test data) is developed, which exists to perform four tasks: i) read in the mesh

files used by HYDRA for each level of the multigrid; ii) manipulate the mesh

files into a form usable by the chosen partitioning algorithm; iii) invoke the

partitioning algorithm; and, iv) store the resultant partitioning in a standard

form, so the mini-application which is responsible for computing the halo and

set sizes can operate with any chosen partitioning algorithm. This standard

form is a set of tuples, which map nodes to the identifier of the partition they

belong to.

To ensure the mini-driver’s correctness, a comparison between the arguments

to the chosen partitioning library (in this case ParMETIS) when called from

HYDRA and the arguments used in the mini-driver is performed to ensure they

are identical. Collecting usable partition data is only the start of the halo and

set generation process; OPlus uses this data to partition the remaining sets and

form the halos.

Second, a mini-application is developed which mimics the process by which

OPlus uses the partitioning data to generate all other size data: the size of

all sets in use by the CFD simulation (e.g. edges, nodes, faces); the number of

elements which can be updated before and after communication; and, the size

of the halos to communicate. To develop a fully representative version would

be prohibitively time consuming, so a simplified version is built by adding only

the major detail; this detail is selected based upon the largest contributors to

runtime.

Using Moses and the mini-driver it is possible to generate partitioning in-

formation for up to 100,000 cores, which is usable by the runtime performance

model.

99



1
6

6
4

1
2
8

1
9
2

2
5
6

3
2
0

3
8
4

4
4
8

5
1
2

0

1

2

3

4

5
·103

Number of Processes

R
u
n
ti

m
e

(s
e
c
o
n
d
s)

Actual Runtime

Prediction using Empirical Data

Prediction using Data from Moses

Prediction using a Structured Mesh Approximation

Figure 5.9: Impact of partitioning data source on model (Tinis)

5.3.2 Validation

First the level of detail included in the mini-application is quantified by per-

forming a comparison between actual runtime, runtime predictions made using

partitioning data generated by Moses and predictions made using partitioning

data collected empirically from HYDRA (Figure 5.9). Additionally, a runtime

prediction is plotted using a variant of the partitioning model used by Mathis et

al [113], where the set and halo sizes are approximated to the structured mesh

case. This plot is used as a baseline for runtime accuracy that can be achieved

when using a simple partitioning model.

Figure 5.9 clearly highlights the large error (46.94%) in runtime that using

the structured mesh approximation induces compared to using the empirically

collected partitioning data. Whereas the runtime prediction made using the

partitioning data generated by Moses differs by at most 7.31%. If the predicted

parallel efficiencies are also examined when using both the structured mesh

approximation and the data generated from Moses it is found that the former

100



indicates a near perfect efficiency across all ranks, but the latter is in line with

the empirically predicted efficiency: an average parallel efficiency of 0.70 when

using the empirically collected partition data and a parallel efficiency 0.69 when

using the partitioning data generated by Moses. These results would indicate

that using the data generated by Moses affords more runtime performance model

accuracy than using the structured mesh data.

From the breakdown of predicted runtime costs (computation, communica-

tion, synchronisation, pack and unpack time) the two reasons why the structured

mesh approximation fails to give an accurate prediction can be identified: i) it

under predicts the amount of data to be sent between ranks, resulting in a

lower predicted communication time and lower pack and unpack times; and ii)

the lack of load imbalance reduces the cost of synchronisation on each process.

While the data generated using Moses is more representative than that from

the structured mesh approximation, there are still sources of error. To identify

these the set and halo sizes generated by HYDRA are compared directly with

those generated by Moses. It is found that while the set sizes generated for the

first level of the multigrid are of low error (0% for edges and ≈6% for nodes)

this error increases up the multigrid to ≈24% and ≈35% for nodes and edges

respectively. However, the upper levels of the multigrid account for a diminish-

ing amount of the total runtime and therefore these errors have a smaller effect

on predicted runtime error.

5.3.3 Predictive Analysis of Partitioning Algorithms

The use of the runtime performance model is demonstrated in conjunction with

Moses to perform a predictive comparison of the effect varying partitioning al-

gorithms have on HYDRA’s runtime, for a given dataset (Rotor37) at varying

scales (16-30,000 processes). Specifically, the trade off between load balancing

the sets present in HYDRA (nodes and edges) and the amount of communica-

tion/pack/unpack costs is considered. The performance model is primed with

compute data from a single scale (16 processes), as memory behaviours are not

101



S
c
o
tc

h
(1

6
)

M
E

T
IS

(1
6
)

G
e
o
m

e
tr

ic
(1

6
)

P
a
rM

E
T

IS
(1

6
)

S
c
o
tc

h
(6

4
)

M
E

T
IS

(6
4
)

G
e
o
m

e
tr

ic
(6

4
)

P
a
rM

E
T

IS
(6

4
)

S
c
o
tc

h
(1

2
8
)

M
E

T
IS

(1
2
8
)

G
e
o
m

e
tr

ic
(1

2
8
)

P
a
rM

E
T

IS
(1

2
8
)

S
c
o
tc

h
(2

5
6
)

M
E

T
IS

(2
5
6
)

G
e
o
m

e
tr

ic
(2

5
6
)

P
a
rM

E
T

IS
(2

5
6
)

S
c
o
tc

h
(5

1
2
)

M
E

T
IS

(5
1
2
)

G
e
o
m

e
tr

ic
(5

1
2
)

P
a
rM

E
T

IS
(5

1
2
)

S
c
o
tc

h
(1

0
2
4
)

M
E

T
IS

(1
0
2
4
)

G
e
o
m

e
tr

ic
(1

0
2
4
)

P
a
rM

E
T

IS
(1

0
2
4
)

S
c
o
tc

h
(2

0
0
0
)

M
E

T
IS

(2
0
0
0
)

P
a
rM

E
T

IS
(2

0
0
0
)

S
c
o
tc

h
(4

0
0
0
)

M
E

T
IS

(4
0
0
0
)

S
c
o
tc

h
(6

0
0
0
)

M
E

T
IS

(6
0
0
0
)

S
c
o
tc

h
(8

0
0
0
)

M
E

T
IS

(8
0
0
0
)

S
c
o
tc

h
(1

0
0
0
0
)

M
E

T
IS

(1
0
0
0
0
)

S
c
o
tc

h
(2

0
0
0
0
)

M
E

T
IS

(2
0
0
0
0
)

S
c
o
tc

h
(3

0
0
0
0
)

101

102

103

104

Partitioning algorithm (Number of processes)

R
u
n
ti

m
e

(s
e
c
o
n
d
s)

Max compute

Max pack

Comms+sync

−40

−35

−30

−25

−20

−15

−10

−5

0

S
p

e
e
d
u
p

(%
)

Max Compute

Max Pack

Comms+Sync

Actual

Predicted

Figure 5.10: Predicted effect of partitioning algorithm on HYDRA’s runtime and the speedup from using ParMETIS over a geometric
partitioning

102



being considered.

Figure 5.10 contains this comparison of partitioning algorithms, however due

to several current limitations is was not possible to collect the complete range

(16-30,000) of data for all partitioning algorithms used in this work. It was only

possible to collect data for up to 1,024 partitions for the geometric partitioning

algorithm as currently there is no serial implementation of this algorithm with

which to prime the mini-driver. Additionally, it was only possible to collect

partitioning data from ParMETIS for up to 2,000 partitions as the simulations

take in the order of weeks to complete. Finally, METIS is unable to partition

the Rotor37 (8M) into 30,000 parts.

From Figure 5.10, it can be seen that the geometric partitioning algorithm is

able to produce a partitioning with a comparable or lower predicted maximum

compute when compared to the other partitioning algorithms, however it makes

no consideration as to the communication time. This omission manifests itself

primarily as increased time spent packing and unpacking elements for commu-

nication – 1.35× and 1.92× larger at 16 and 1,024 processes respectively when

compared to ParMETIS (the next worst performing partitioning algorithm in

terms of these costs). However, both the Scotch and METIS partitioning li-

brary manage the trade-off between costs as they take into account the number

of edges cut, which is a proxy for communication time. This leads to predicted

runtimes which are at most 1.2× better (predicted speedup of using METIS

over a geometric partitioning at 1,024 cores).

Also from Figure 5.10, it can be seen that METIS consistently performs bet-

ter than its parallel variant (ParMETIS) across all scales for both max compute

time, and pack and unpack cost, this leads to a predicted performance improve-

ment of up to 1.1× (at 512 cores). This performance improvement does not

appear to diminish with scale.

This predictive analysis has delivered three observations, i) at the scales

measured, Scotch and METIS are the better choice of partitioning algorithm

when compared to ParMETIS and the geometric partitioning algorithm; ii)

103



the serial variant of ParMETIS produces consistently better partitions than

ParMETIS itself; and, iii) the geometric partitioning invokes reduced perfor-

mance in HYDRA runs of greater than 512 processes due to increasing buffer

pack and unpack costs. These predictive observations will direct the focus of

future work such as integrating the feature to read in pre-generated partitions

into HYDRA. Especially those from Scotch and PT-Scotch, the former to see if

the performance improvements at small scale hold and the later to determine if

PT-Scotch is out performed by its serial variant.

Observation iii) is validated in Figure 5.10 by plotting the predicted and

actual percentage runtime slow down of HYDRA when using the geometric

partitioning algorithm over ParMETIS to partition the input deck (Rotor37). As

can be seen from the figure, the runtime performance model in conjunction with

Moses accurately predicts the downfall of the geometric partitioning algorithm

at 512 processes. Indicating that this partitioning algorithm is not suitable for

anything but small scale runs when using the Rotor37 dataset.

5.4 Summary

The development of a general analytical model for a multigrid code which sup-

ports multiple cycle types, a variable number of Runge-Kutta iterations and an

arbitrary number of loops has been presented. These additions have increased

the number of input decks the performance model is applicable to.

These additional details have been validated on up to 1,024 cores of a

Haswell-based cluster, using both ParMETIS and a geometric partitioning al-

gorithm to partition the input deck, with a maximum absolute error of 12.63%

and 11.55% respectively.

The development of Moses has been presented – a domain decomposition

mini-application, which is able to convert partitioning data from multiple algo-

rithms (Scotch, METIS, ParMETIS) at varying scale (up to 30,000 cores) into

data usable by the runtime performance model. It is shown that runtime pre-

104



dictions made using this data have a runtime error of at most 7.31% over 512

processes, when compared against predictions made with empirically collected

partitioning data.

Finally, a demonstration of Moses is given; it is used in conjunction with

the runtime performance model by comparing the effect of several different par-

titioning algorithms on HYDRA’s runtime. From this analysis it is concluded

that priming HYDRA with partitioning data from Scotch is worth investigating

due its consistent predicted performance advantage (maximum of 1.21×) over

ParMETIS. Additionally, the prediction that the geometric partitioning algo-

rithm causes reduced performance in HYDRA at 512 processes when compared

with ParMETIS is validated.

105



CHAPTER 6
Developing Mini-HYDRA

The ongoing and rapid cycle of hardware and software development in the High

Performance Computing (HPC) space means there are always new performance

opportunities to evaluate for particular classes of application. This evaluation

is often a time consuming process due to the complexity of the applications

involved, and the learning curve that often comes with using new architectures

and tool chains. To ease this process application custodians have looked to

alternative techniques to ease this burden. As has been demonstrated by previ-

ous work and the work in Chapters 4 and 5 performance modelling is one such

example, which allows the reasoning about scaling behaviour.

However, this performance model is weak at reasoning about low level per-

formance behaviours. Another relatively new device which allows for reasoning

about low level performance is the mini-application – a manageable, but per-

formance representative application which can be used to conduct rapid perfor-

mance analysis of a much larger application. In this chapter a mini-application

is developed for unstructured mesh, geometric multigrid codes, its scaling be-

haviour is validated and then its use is demonstrated by assessing the perfor-

mance impact of incremental features to hardware.

6.1 Developing Mini- and Compact-HYDRA

6.1.1 Mini-HYDRA

Even though the benefits of mini-applications are clear (see Section 2.5), their

development is not a well-defined process as it depends largely on their intended

purpose [117]. This makes their development challenging as the purpose may

106



differ on a project-by-project basis, limiting the reuse of efforts. However, the

literature details a list of considerations and guidelines; these are aggregated by

Messer et al and summarised here as a set of questions for reference [117].

1. Where does the application spend most of its execution time?

2. What performance characteristics will the mini-application capture?

3. Can any part of the development process be automated?

4. How can the build system be made as simple as possible?

When these questions are answered the mini-application’s developer will

have a concrete understanding as to i) which aspects of the parent code the

mini-application should include, and ii) the components of the supporting con-

figuration (e.g. tools and datasets). These guidelines are applied to the devel-

opment of mini-HYDRA and because the development of each mini-application

is essentially unique, it is considered a valuable exercise to document the use-

fulness of this approach. Additionally a new consideration is proposed, which

comes from the experiences developing mini-HYDRA.

An answer to question 1 is provided in Section 3.4 – the most time consum-

ing regions of code are contained within the routines vflux and iflux. This

decomposition in time reveals the routines that should be captured within the

mini-application. This decomposition in time is not always necessary to high-

light the regions of the parent application that should be focused on as the

mini-application developer may already have a particular performance charac-

teristic in mind that they wish to study which may not dominate runtime.

Next question 2 is answered by considering the primary purpose of mini-

HYDRA – to evaluate the impact of new hardware features based on their suit-

ability for applications such as HYDRA. This use case suggests constructing a

mini-application which ignores I/O and inter-node communication performance

costs and focuses on computation costs. This question guides the decomposition

107



Listing 6.1: Pseudo-code skeleton of the mini-application

1

2 i n t updown = 0 ;
3 while ( i < c y c l e ) {
4 // Runge−Kutta i t e r a t i o n s
5 for ( i n t j = 0 ; j < RK; j++) {
6 compute f lux edge ( ) ;
7 compute boundary f lux edge ( ) ;
8 compute wa l l f l ux edge ( ) ;
9 update ( ) ;

10 t ime s t ep ( ) ;
11 }
12

13 // Mult ig r id l o g i c . Move r e s t r i c t or pro long ?
14 i f (updown == 0) {
15 l e v e l ++;
16 r e s t r i c t ( ) ;
17

18 i f ( l e v e l == l e v e l s −1) {
19 updown = 1 ;
20 }
21 }
22 e l s e {
23 l e v e l −−;
24 pro long ( ) ;
25

26 i f ( l e v e l == 0) {
27 updown = 0 ;
28 i ++;
29 }
30 }
31 }

of the code in terms of the type of performance cost rather than in time, and

shifts the focus on to more specific regions of the code.

Now a new consideration is proposed: which aspects of the simulation (e.g.

unstructured mesh, finite volume, multigrid) contribute to the compute be-

haviour within the most expensive regions of the code? This decomposition

by simulation aspect provides a route for including performance characteristics

within the mini-application. It is the irregular memory accesses which con-

tribute greatly to the difficulty of running on different compute architectures.

These irregular memory accesses come from two main sources: the edge updates

over the unstructured dataset and the restriction and prolongation of corrections

between the multigrid levels (see Section 3.1.3).

With these features in mind, mini-HYDRA is based upon an existing code

developed by Corrigan et al as it shares simulation features with HYDRA [34].

108



Listing 6.2: Pseudo-code of the edge loop

1

2 for edge e in edges {
3 // Acquire the i n d i c i e s o f the nodes at
4 // each end o f t h i s edge
5 a = e . l e f t i n d e x , b = e . r i g h t i n d e x ;
6

7 // Extract the node p r o p e r t i e s .
8 //Note that a and b can be a r b i t r a r y
9 d e n s i t y a = v a r i a b l e s [ a∗NVAR + VAR DENSITY ] ;

10 dens i ty b = v a r i a b l e s [ b∗NVAR + VAR DENSITY ] ;
11

12 // Perform f l u x c a l c u l a t i o n
13 . . .
14

15 //Update the f l u x e s
16 . . .
17 }

However, as described in Section 2.5 HYDRA has several additional simulation

features, which need adding to this existing code. It should be noted that

the correctness of the simulation is not verified against a standard problem, as

the interest is purely on the performance characteristics which are validated in

Section 6.2. Furthermore there are no restrictions on where this code can be

run, meaning it can be run on hardware without being subject to a lengthy

approval processes first.

A skeleton for the resultant mini-application is provided in Listing 6.1 with

a focus on presenting an overview of the simulation’s properties. The outer loop

controls, not the number of iterations, but the number of complete multigrid

cycles performed. The nested loop performs the Runge-Kutta iterations, where

the core of the simulation is performed. The routines of interest are the * edge

routines as they contain the vast majority of the memory accesses. Past the

Runge-Kutta loop is the multigrid logic, which in this case hard codes a V-

cycle.

In the * edge routines the application originally performed computation over

nodes, i.e. each node is taken in turn and updated based on the properties of

it’s neighbours. While this is an irregular access pattern it can make vectori-

sation challenging for several reasons (e.g. the variable number of nested loop

iterations). This was modified to computation over edges (as this is used by the

109



parent code), which is demonstrated in Listing 6.2. This computation takes each

edge in turn then accesses the node at each end. This arrangement removes the

need for an inner loop, and introduces it’s own barriers to exposing parallelism,

but the key is for the challenges to be the same as for the parent code.

Support for the computational behaviours of multigrid were implemented by

augmenting the construction of the Euler solver presented by Corrigan et al with

crude operators to transfer the state of the simulation between the levels of the

multigrid (see Listing 6.1). These operators are defined by Equations 6.1 and

6.2 which serve as restriction (fine to coarse grid) and prolongation (coarse to

fine grid) operators respectively [16]. Where ulj represents simulation property

u of the jth node at level l and N l
j is the set of node indices which are linked to

node j at level l from l − 1 of the grid.

ulj =

∑
i∈N l

j
ul−1
i

|N l
j |

(6.1)

ul−1
i∈N l

j

= ulj (6.2)

The restriction operator (Equation 6.1) primes the simulation properties with

an average across nodes from the finer grid level – this mapping is defined as part

of the input deck. The prolongation operator (Equation 6.2) reverses restriction

by injecting the values from the coarse grid to the fine grid as dictated by the

mapping.

Support for an arbitrary number of neighbours was added by modifying the

bounds of the flux summation (Equation 4 in the work by Corrigan et al) to

accommodate a variable number of components. This summation is already

weighted by the surface area of the interface between nodes in the mesh, so it

is not necessary to correct for additional interfaces.

110



6.1.2 Compact-HYDRA

To complement mini-HYDRA, compact-HYDRA is constructed. In contrast

to the mini-application, contains actual kernels from HYDRA and is there-

fore closely representative of performance. Of course this means that compact-

HYDRA is subject to certain restricts on where it can be run, but it can still be

used for i) in house porting activities, and ii) as a vehicle for validating the per-

formance characteristics of mini-HYDRA which is demonstrated in Sections 6.2

and 6.3.

Compact-HYDRA is built by manually separating the flux calculations in

iflux from any memory allocation and usage of Cray Pointers, then an auto-

matic FORTRAN to C conversion is applied to generate a version of this kernel

in C. This reduces the chance of introducing errors during the conversion pro-

cess. Next the mini-application is modified to invoke this translated kernel, as

this way both applications can use a common framework for reading datasets

and check-pointing. Essentially both compact- and mini-HYDRA can be primed

using the same datasets; this keeps the underlying cause of irregular memory

access patterns the same which aids in the comparison between the applications.

6.1.3 Supporting Tools

Part of what makes a mini-application a useful tool is its simplicity, this however

can not just be restricted to the application itself and must apply to the processes

surrounding the mini-application and parent application that take time (e.g.

building, job submission).

The make process is simplified by removing all third-party libraries such as

Hierarchical Data Format 5 (HDF5) and the communications library. These can

both be safely removed as the purpose of this mini-application is not to investi-

gate Input/Output (I/O) performance, inter-node communication performance

or the overheads introduced by library abstractions. Removing these dependen-

cies allows the application to be built in seconds with little or no intervention

111



3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

0.2

0.4

0.6

0.8
P

a
ra

ll
e
l

E
ffi

c
ie

n
c
y

3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

0.2

0.4

0.6

0.8

3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

0.2

0.4

0.6

0.8

P
a
ra

ll
e
l

E
ffi

c
ie

n
c
y

3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

0

5

10

15

20

Number of Threads

R
u
n
ti

m
e

(s
e
c
o
n
d
s)

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

0

5

10

15

20

Number of Threads

Mini-HYDRA Level 1 Compact-HYDRA Level 1

Mini-HYDRA Level 2 Compact-HYDRA Level 2

Mini-HYDRA Level 3 Compact-HYDRA Level 3

Mini-HYDRA Level 4 Compact-HYDRA Level 4

Figure 6.1: Comparison between the runtime and parallel efficiency of
Compact- and Mini-HYDRA for each level of the multigrid

112



Nodes
Compact HYDRA Mini-HYDRA

with FMA without FMA with FMA without FMA
SIMD no SIMD SIMD no SIMD SIMD no SIMD SIMD no SIMD

1 0.71 0.19 0.05 0.14 0.08 0.03 0.20 0.10
4 0.04 0.02 0.05 16.04 0.04 0.12 0.04 0.07
8 16.11 15.98 16.00 0.04 0.02 0.07 0.23 0.19
12 0.06 0.06 0.06 0.09 0.04 0.05 0.10 0.09
16 0.05 0.04 0.02 0.07 0.20 0.02 0.15 0.06

Table 6.1: Confidence intervals for Compact- and Mini-HYDRA’s runtime on
Tinis

past adjusting the compiler and its flags in the makefile. Another time delay

in benchmarking is the creation of job submissions scripts so examples of these

scripts are included for several common schedulers: SLURM, LSF and Moab.

Utilities have been included to validate the final state of the simulation after

changes to the configuration (e.g. compiler flags, code optimisations, porting

to accelerators) of the code. Additionally, tools are included to extract the

geometries from the datasets used to prime HYDRA and transform them into

a form which is understood by the mini-application. This is done to reduce the

number of factors which could cause differences in runtime behaviour between

HYDRA and its mini-application.

6.2 Mini-HYDRA Validation

The mini-application is validated using two existing methods. First a compari-

son is performed between the OpenMP parallel efficiency of both the compact-

and mini-application for all levels of the multigrid [117] (see Figure 6.1). Ob-

viously a correlation between scaling behaviour does not imply the underlying

causes of the observed behaviour are the same. For this reason, the comparison is

further strengthened using a second approach, VERITAS, developed by Tramm

et al, which involves comparing the correlation of parallel efficiency loss to per-

formance counters for both the mini-application and the parent code [156] (see

Figure 6.2). These comparisons highlight differences and similarities between

the two applications which will address in turn.

113



P
A

P
I

C
A

S
H

R

P
A

P
I

L
1

S
T

M

P
A

P
I

C
A

IN
V

P
A

P
I

C
A

IT
V

P
A

P
I

C
A

S
N

P

P
A

P
I

L
2

D
C

A

P
A

P
I

L
2

T
C

A

P
A

P
I

T
L

B
IM

P
A

P
I

F
U

L
C

C
Y

P
A

P
I

T
O

T
IN

S

P
A

P
I

B
R

P
R

C

P
A

P
I

B
R

T
K

N

P
A

P
I

B
R

C
N

P
A

P
I

B
R

N
T

K

P
A

P
I

B
R

IN
S

P
A

P
I

B
R

U
C

N

P
A

P
I

L
S
T

IN
S

P
A

P
I

B
R

M
S
P

P
A

P
I

F
U

L
IC

Y

P
A

P
I

L
1

D
C

M

P
A

P
I

P
R

F
D

M

P
A

P
I

L
2

D
C

W

P
A

P
I

L
2

T
C

W

P
A

P
I

L
3

D
C

R

P
A

P
I

L
1

T
C

M

P
A

P
I

T
L

B
D

M

P
A

P
I

L
2

IC
H

P
A

P
I

L
3

T
C

R

P
A

P
I

L
1

L
D

M

P
A

P
I

L
2

L
D

M

P
A

P
I

L
2

D
C

M

P
A

P
I

L
3

D
C

A

P
A

P
I

L
2

T
C

M

P
A

P
I

L
3

T
C

A

P
A

P
I

L
2

S
T

M

P
A

P
I

L
3

D
C

W

P
A

P
I

L
3

T
C

W

P
A

P
I

C
A

C
L

N

P
A

P
I

L
1

IC
M

P
A

P
I

L
3

L
D

M

P
A

P
I

L
2

IC
M

P
A

P
I

L
2

T
C

R

P
A

P
I

L
2

IC
A

P
A

P
I

L
2

IC
R

P
A

P
I

L
3

IC
A

P
A

P
I

L
3

IC
R

P
A

P
I

S
T

L
IC

Y

P
A

P
I

T
O

T
C

Y
C

P
A

P
I

M
E

M
W

C
Y

P
A

P
I

L
3

T
C

M

P
A

P
I

S
T

L
C

C
Y

P
A

P
I

L
2

D
C

R

P
A

P
I

R
E

S
S
T

L

−1

−0.5

0

0.5

1

1.5

PAPI Event Name

C
o
rr

e
la

ti
o
n

w
it

h
P

a
ra

ll
e
l

In
e
ffi

c
ie

n
c
y

Mini-HYDRA

Compact-HYDRA

Difference

Figure 6.2: Comparison between Mini- and Compact-HYDRA in terms of the correlation of PAPI counters with parallel inefficiency

114



6.2.1 Experimental Setup

In this section validations of the mini-application against parent code behaviours

are performed on a dual socket, 16 core Haswell node (see Table 3.5). Both

applications were primed using the geometry from the LA Cascade dataset.

In Section 6.3 experiments are performed on both the aforementioned Haswell

machine and additionally a dual socket, 24 core Ivybridge machine (see Table 3.1).

All experiments are performed using both the mini-application and a derivative

of the parent code using the LA Casacade dataset.

The confidence intervals for the runtime of both compact- and mini-HYDRA

on both Tinis and Napier, using the LA Cascade dataset and varying compiler

flags: with and without Fused Multiply-Add (FMA) (where available) and with

and without auto-vectorisation can be found in Table 6.1 and Table 6.2.

6.2.2 Validation

By visual inspection of the first four charts in Figure 6.1 it can be seen that

the parallel efficiency of both compact- and mini-HYDRA are similar, except

when scaling between one and three processes. The parallel efficiency for mini-

HYDRA is lower than that of compact-HYDRA for this transition; it is sus-

pected that this is caused by the mini-application enjoying the increased cache

bandwidth for single core workloads supplied by the Haswell platform [71] more

than compact-HYDRA due to its higher number (2-3×) of level two cache reads.

This suspicion is evidenced by the fact that this drop in parallel efficiency does

not appear in results collected from the Ivybridge platform, which does not

have increased cache bandwidth for single core workloads (see Figure 6.3). This

difference in level two data cache reads manifests itself in Figure 6.2 with the

correlation of the PAPI L2 DCR counter not matching for both applications (and

consequently PAPI L2 TCR): a positive correlation with parallel inefficiency is

observed for compact-HYDRA rather than a slight negative correlation. It is

important to be aware of this difference when attempting to relate the mini-

115



HYDRA’s performance back to compact-HYDRA, as the former will clearly

stress the level two cache bandwidth more. Apart from this difference in level

two cache reads, all other compact-HYDRA counters (with correlations above

0.8) exhibit a similar correlation with parallel inefficiency as mini-HYDRA.

Another performance feature that is visible in Figure 6.1 is that the runtime

of the second level of the multigrid is comparable to that of the first, even

though it contains 63% the number of edges. This is due to the nature of the

multigrid solver, in that the solver is called twice as frequently on the second

level as it is the first. This observation is consistent across both mini-HYDRA,

compact-HYDRA and HYDRA’s iflux kernel from version 7.3.4 (see Figure 3.7

for HYDRA runtimes).

6.3 Impact of Intel Haswell on mini-HYDRA

The introduction of the Intel Haswell architecture brought with it several new

features over its predecessor, the Ivybridge platform, such as increased cache

bandwidth for single core work loads, AVX2 and the addition of the fused-

multiply class (FM-*) of instructions [71]. The mini-application is used to ex-

amine the impact that these features have on unstructured mesh, geometric

multigrid codes.

The plots in Figure 6.3 present the scaling behaviour of compact- and mini-

HYDRA in terms of both runtime, and parallel efficiency for only the Ivybridge

platform as a per level breakdown of scaling behaviour on Haswell is already pro-

vided in Figure 6.1. These plots only include the results with auto-vectorisation

turned-off as using auto-vectorisation has a negative impact on performance

for this kernel. Figure 6.3 indicates that as the number of cores in use for a

node reaches the maximum, the runtime of the mini-application on both plat-

forms approach a similar value: a 1.16× speedup (≈1.5 seconds) when using

Ivybridge over Haswell. However, the Haswell chip has a lower TDP so there

is the potential to to achieve the same level performance with a lower overall

116



0 0.2 0.4 0.6 0.8 1

20

40

60

Fraction of threads used to total cores

R
u
n
ti

m
e

(s
e
c
o
n
d
s)

Mini-HYDRA Ivybridge

Compact-HYDRA Ivybridge

Mini-HYDRA Haswell

Compact-HYDRA Haswell

3 6 9 12 15 16 18 21 24

0

0.2

0.4

0.6

0.8

1

Number of Threads

P
a
ra

ll
e
l

E
ffi

c
ie

n
c
y

Mini-HYDRA Ivybridge

Compact-HYDRA Ivybridge

Figure 6.3: Comparison between OpenMP strong scaling behaviour between
Intel Ivybridge and Intel Haswell for both Compact- and Mini-HYDRA

Nodes
Compact-HYDRA Mini-HYDRA
SIMD no SIMD SIMD no SIMD

1 0.02 0.05 0.31 0.58
3 0.11 7.56 0.08 0.11
6 10.42 0.16 0.14 0.14
9 0.12 0.14 0.21 0.20
12 0.16 0.11 0.03 0.20
15 0.07 0.13 0.20 0.24
16 0.02 0.02 0.23 0.02
18 0.01 0.05 0.24 0.25
21 0.01 0.11 6.78 0.16
24 0.02 0.08 0.01 0.06

Table 6.2: Confidence intervals for Compact- and Mini-HYDRA’s runtime on
Napier

power consumption. Compact-HYDRA somewhat concurs with this but the

results indicate a slight performance gain in Haswell’s (1.06×) favour.

Next the impact of the fused multiply set of instructions is examined, exam-

ples of which are fused multiply-add, fused multiply-subtract and their negative

variants (e.g. fused negative multiply-add). These instructions were introduced

because it was recognised that pairs of multiply and addition/subtraction op-

erations are common in HPC codes (among others) and including a single in-

struction to handle this would reduce instruction latency [71]. In Figure 6.4 the

runtime is plotted for both compact- and mini-HYDRA compiled with and with-

117



1 2 3 4 8 12 16
0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

Number of Threads

S
p

e
e
d
u
p

fr
o
m

F
u
se

d
M

u
lt

ip
ly

-*
In

st
ru

c
ti

o
n
s

Compact-HYDRA w\ SIMD Compact-HYDRA w\o SIMD

Mini-HYDRA w\ SIMD Mini-HYDRA w\o SIMD

Single thread SAXPY w\ SIMD Single thread SAXPY w\o SIMD

Figure 6.4: Impact of using the Intel Fused Multiply-* instructions with and
without auto-vectorisation on both Compact- and Mini-HYDRA

out FM-* instructions and with and without auto-vectorisation. Additionally a

plot showing the impact of these instructions on a simple benchmark code which

implements Single-Precision AX Plus Y (SAXPY) (BlasBench [122]) which is

used as realistic upper limit on the achievable performance improvement.

From Figure 6.4 it can be seen that the impact of FM-* instruction is pos-

itive (1.06×) on a single core, but this gain quickly drops off as the number of

OpenMP threads increases. This is likely due to the FM-* instructions increas-

ing the intensity of memory operations coupled with the decrease in memory

bandwidth that is available per core as scaling occurs. When SIMD is used in

conjunction with FM-* instructions the benefit of using FM-* with this ker-

nel is negligible, presumably because SIMD instructions increase pressure on

the memory bandwidth through both a reduction in instruction latency and

the operation on larger registers. Both of these trends are also apparent in

compact-HYDRA.

Figure 6.5 indicates that auto-vectorisation is not suitable for an unmodified

118



version of this kernel. The performance for both Ivybridge and Haswell is at best

break even; on a single thread the speedup is 0.86 and 0.90 for mini-HYDRA

running on Ivybridge and Haswell respectively. This slowdown is due to a large

number of memory write stalls (data collected from the Performance Application

Programming Interface (PAPI) library) at lower thread counts. An attempt to

reduce the number of stalls was made by scattering the OpenMP threads across

the sockets, however this had no impact on performance.

When comparing the impact of auto-vectorisation when running on either

Haswell or Ivybridge, it is clear that the new features introduced for Haswell

(e.g. vector gathers) have not alleviated the underlying bottleneck preventing the

auto-vectorised code from out performing the non-vector code. When analysing

the PAPI counters for mini-HYDRA running on Haswell, it is seen that while

the total number of instructions is less for the auto-vectorised version of the

code, the total number of cycles is larger, presumably due to the number of

memory write stalls.

The performance trends which are represented in Figure 6.5 and their root

causes are also present in compact-HYDRA. This gives further evidence for the

suitability of this mini-application to represent the memory access patterns of

HYDRA.

6.4 Summary

The chapter has focused on the development, validation and initial use of a

mini-application representative of geometric multigrid, unstructured mesh ap-

plications.

First, existing research on mini-application development is distilled in to a

set of questions (items 1-4 below) and extended with a new consideration (item

5 below):

1. Where does the application spend most of its execution time?

2. What performance characteristics will the mini-application capture?

119



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Fraction of threads used to total cores

S
p

e
e
d
u
p

fr
o
m

a
u
to

-v
e
c
to

ri
sa

ti
o
n

Mini-HYDRA Ivybridge Compact-HYDRA Ivybridge

Mini-HYDRA Haswell Compact-HYDRA Haswell

Figure 6.5: Performance impact of using auto-vectorisation on both Compact-
and Mini-HYDRA on both Intel Ivybridge and Intel Haswell

3. Can any part of the development process be automated?

4. How can the build system be made as simple as possible?

5. Which aspects of the simulation contribute to the compute behaviour

within the most expensive regions of code.

This final consideration is helpful for the development of a mini-application

as it maps performance features to implementable code features. Following this,

a survey of already existing mini-applications was carried out to assess their

suitability at representing geometric multigrid, unstructured mesh applications.

A mini-application which was most similar in nature in terms of simulation

makeup to HYDRA’s core routines was extended to support HYDRA’s inputs

geometries by extending the code with multigrid behaviours.

Next, two previously developed mini-application validation techniques were

applied to a class of code which they have not previously been used on. This

validation highlighted that the mini-application was similar to HYDRA’s iflux

120



routine. This analysis highlighted that while the scaling behaviour achieved and

the PAPI counters largely indicate that the hardware was being stressed in a

similar way by both compact- and mini-HYDRA, the mini-application exhib-

ited a greater number (2-3×) of level two cache reads. This difference does not

necessarily need adjusting, but needs to be taken into consideration when inter-

preting performance results and considering them in the context of the parent

code.

Finally the use of the mini-application is demonstrated by assessing the im-

pact of the new architectural features added to Intel Haswell when compared

to Intel Ivybridge on geometric multigrid, unstructured mesh applications. It

is found that the iflux kernel is unlikely to benefit from the use of FM-* in-

structions or from auto-vectorisation without making significant code changes

(e.g. changes to memory layout). However, this does not exclude more compute

intensive kernels from benefiting from auto-vectorisation without code modifi-

cations. These results are validated successfully against the compact version of

iflux, further indicating the mini-applications suitability for use in studies by

third parties.

121



CHAPTER 7
Conclusions and Future Work

This thesis has detailed the development and deployment of a generalised run-

time performance model for unstructured mesh, geometric multigrid applica-

tions. Further, it has outlined the use and development of two mini-applications

to aid the performance engineering process.

In Chapter 3, the development of an automatic instrumentation process was

detailed, that allows unprecedented flexibility in terms of implementation lan-

guage, the language to be instrumented and the instrumentation to be inserted.

This process was implemented and then demonstrated by applying a common

set of instrumentation to three different variants of HYDRA, two being chrono-

logical releases and the third being optimised to reduce synchronisation costs.

This instrumentation tool was fundamental to the performance engineering ac-

tivities conducted in this thesis. It was used i) to compare historical changes

in performance and to quantify the impact of the synchronisation optimisation;

and, ii) to collect both static data from the source code and timing information

at runtime for use with the runtime performance model.

Chapter 4 detailed the development of a runtime performance model of un-

structured mesh, geometric multigrid codes, which was able to capture the ex-

pected scaling behaviour of HYDRA, and its proprietary communications li-

brary, Oxford Parallel Library for Unstructured Solvers (OPlus), when running

on a grid with one level. Through the introduction of a small number of addi-

tional model terms, this model was generalised to multigrid simulations. The

simple relationship between these two models significantly reduces the complex-

ity of benchmarking a new platform, as it enables the extrapolation of complete

production runtimes using data collected from the execution of small single-level

122



benchmarks. The power of the performance model was demonstrated by iden-

tifying a synchronisation issue which degraded performance by up to 29.22%

on machine configurations with poor support for overlapping computation with

communication. An optimisation was subsequently applied which decreased the

cost of communication and synchronisation by 3.01× and total runtime by up to

1.41×. That it was possible to accelerate HYDRA to such a degree demonstrates

both the accuracy of the model and the importance of reassessing whether an

application’s original design assumptions still hold on new hardware/software

configurations.

In Chapter 5 the analytical runtime model for multigrid applications was

further generalised to support multiple cycle types (e.g. V-Cycle, W-Cycle) and

a variable number of Runge-Kutta iterations. Additional details were incorpo-

rated in to the performance model: buffer pack/unpack costs, runtime costs

from all 300+ loops in the code base, and performance information for different

memory access patterns. These additional details were validated on up to 1,024

cores of a Haswell-based cluster, using both a geometric partitioning algorithm

and ParMETIS to partition the NASA Rotor37 input deck, with a maximum

absolute error of 12.63% and 11.55% respectively. These additions to the model

allow a wider range of unstructured mesh workloads to be successfully modelled.

Additionally, Chapter 5 detailed the development of Moses, an unstructured

domain decomposition mini-application, which was able to convert partition-

ing data from multiple algorithms/libraries (ParMETIS, METIS and Scotch)

up to 100,000 partitions in scale for use with the runtime performance model.

This data has allowed predictions to be made at scale without first running

HYDRA at equivalent process counts to collect set sizes. Runtime predictions

made using this data have an under prediction in runtime of at most 7.31%

over 512 processes, when compared against predictions made with empirically

collected partitioning data. The use of Moses is demonstrated in conjunction

with the runtime performance model to predictively compare the relative ef-

fect on HYDRA’s runtime of using Scotch, ParMETIS, METIS and a geometric

123



partitioning algorithm on up to 30,000 cores. Following this, the predicted ob-

servation that the geometric partitioning algorithm causes reduced performance

in HYDRA at 512 processes when compared with ParMETIS is validated.

Finally, this thesis documented a mini-application that performs computa-

tion over edges which operates on datasets with the following properties: i)

unstructured mesh, ii) geometric multigrid, and iii) a variable number of neigh-

bours per node. It was validated using two previously developed techniques

which have not previously been applied to this class of code. These techniques

provided evidence of the similarity between the mini-application and the par-

ent code in terms of their shared memory scalability. Finally, the use of the

mini-application was demonstrated by quantifying the impact of the new hard-

ware features introduced by the Intel Haswell platform over Intel Ivybridge for

geometric multigrid, unstructured mesh applications. It was found that FM-*

instructions and the AVX2 features have a limited impact on performance, but

there is potential for Intel Haswell to deliver application results at a much lower

total energy and to impact more compute heavy kernels. It is hoped that this

mini-application will be used in future as a vehicle for optimisation, porting and

execution on machines where HYDRA is not cleared for use.

7.1 Research Impact

The work in this thesis has enhanced the selection of tools and techniques avail-

able for Rolls-Royce to use in their mission to continuously move their codes

forward. The key impacts of these tools are highlighted below.

• Chapter 3 describes a flexible source instrumentation tool. It has eased the

collection of data from common performance libraries (e.g. Performance

Application Programming Interface (PAPI) and VTune) by allowing a

common set of instrumentation rules to be applied to all of HYDRA’s

source, over three different variants of HYDRA on a mixture of platforms

(Intel, BlueGene/Q and Power8). This tool is expected to be applied to

124



other codes, such as PRECISE, at Rolls-Royce in the near future.

• This thesis presents the first Message Passing Interface (MPI) perfor-

mance model (Chapter 4) of HYDRA and OPlus; it has been used support

Rolls-Royce in procurement activities by validating HYDRA’s scaling be-

haviour on a variety of machines at leading UK High Performance Com-

puting (HPC) installations such as The Hartree Centre, Edinburgh Paral-

lel Computing Centre and MidPlus resource locations. Most notably, the

performance model was used to i) give increased confidence of HYDRA’s

performant scaling behaviour on sample Intel Ivybridge-based hardware

delivered to Rolls-Royce for evaluation, and ii) identify an optimisation

that brought performance in line with expectations on a Haswell-based

machine, leading to a decrease the cost of communication and synchroni-

sation by 3.01×.

• This research has provided Rolls-Royce with a representative geometric

multigrid, unstructured mesh application (Chapter 6) which has been used

to provide feedback on the running of and the potential impact of new

hardware on HYDRA’s iflux kernel. Additionally, this mini-application

paves the way for comprehensive studies into the suitability of accelerator

cards and different parallel computing frameworks for this class of code.

7.2 Limitations

The limitations inherent to the auto-instrumentation tool are a direct result of

the trade-offs made when selecting the level at which the tool should instrument

the application (i.e. source, abstract syntax tree, or binary). As discussed in

Chapter 3 it was chosen to implement source based instrumentation due to its

flexibility and its potential lack of reliance on third-party libraries. This choice,

despite its advantages brings with it several limitations. For each new pro-

gramming language which needs to be instrumented, the auto-instrumentation

tool will need to be updated. This flaw is mitigated in part by the fact that

125



support for a language can be added by defining a few key properties, such

as the comment and line continuation characters. Furthermore, HPC applica-

tions tend to be written in a small subset of the languages available today, pri-

marily FORTRAN-like and C-like languages; good application coverage could

be achieved by handling just these. Another inherent limitation of the auto-

instrumentation tool is the requirement to have access to the source code (either

direct or indirect), which is problematic for some applications such as LS-DYNA

where the source code is not readily available.

The primary limitation of the runtime performance model, which was devel-

oped in Chapters 4 and 5, is the scale at which it has been validated for (up to

1024 processors). This severely limits the validity of the conclusions which can

be drawn from the performance models predictions at large scale. However, the

vast majority of HYDRA’s capacity runs fall within the range which the model

has been validated for, so it was justified for the work to begin by focusing on

this scale. However, the need to support capability runs of HYDRA is recognised

and as part of this, two challenges were identified: acquiring representative par-

titioning data, and then running the code at scale. Towards overcoming these,

Moses was developed in Chapter 5 to provide representative partitioning data.

However, Moses is not without limitation: i) the inaccuracy of the partition-

ing data generated for the coarser levels of the multigrid and ii) the current state

of its generality. The impact of this first limitation is discussed in Chapter 5

and despite this inaccuracy, Moses is still able to generate usable partitioning

data. However, this has only been tested on a single dataset (Rotor37) and this

error may cause issues with datasets or code changes where the higher levels

of multigrid contribute to an increased percentage of the runtime. This could

happen if higher order methods are applied to the coarser levels than to the

finer levels.

The second limitation of Moses relates to its generality with respect to other

unstructured mesh multigrid codes and their datasets. This mini-application

was developed for HYDRA, however HYDRA is an instance of the Access-

126



Execute abstraction and therefore Moses will be applicable to other codes which

instance this abstraction. However, codes which are of the same class but im-

plement different communication strategies such as those which do not overlap

computation and communication will need new partitioning rules. Likewise,

new rules will need to be implemented for datasets which use mesh features

other than nodes and edges, such as cells.

In Chapter 6, a mini-application is developed which is representative of

HYDRA’s edge-based computations with the intention for it to be used to aid

procurement, optimisation and porting activities. The main limitation of this

mini-application relates to its code coverage. As while it replicates the un-

structured memory access patterns that more than 70% of the code uses, it

only considers the arithmetic intensity exhibited by iflux. This means that

while optimisations to the memory access pattern are likely to relate directly to

the parent code, more specific compute optimisations are only likely to trans-

late back to iflux. In addition to the above limitation, the validation method

requires a compact version of the code to validate against which is a time con-

suming endeavour.

7.3 Future Work

It is planned to apply the auto-instrumentation tool developed in Chapter 3 to

additional codes in use at Rolls-Royce, to aid in the application of performance

engineering techniques such as those applied to HYDRA in this thesis. The

likely target for this study is PRECISE which is, like HYDRA, a Computational

Fluid Dynamics (CFD) code. PRECISE is written in C++ therefore, the auto-

instrumentation tool will need to be primed with the line continuation and

comment tokens in use by this language. Preliminary work on this saw C++

code being instrumented after only a few hours of development.

Also, the aim is to use the tool to apply instrumentation exposed by perfor-

mance engineering frameworks such as TAU and Intel VTune. The product of

127



this work would be several rule sets which could be applied to numerous codes

at Rolls-Royce to collect performance information for use in common analyses.

Preliminary work towards this includes a rule set to insert VTune instrumenta-

tion which is able to start and stop the collection of data around any subset of

OPlus loops.

To address some of the limitations of the runtime performance model devel-

oped across Chapters 4 and 5, the intention is to augment the model to cover

additional areas of the code (such as I/O and initial setup routines); accounting

for the effects of background noise (due to other users); and considering cache

effects (due to decreasing local problem size at scale).

The biggest limitation of the runtime performance model is the lack of val-

idation results at scale. To rectify this, validations will be performed at larger

scale and the increasing error due to synchronisation cost will be addressed

either through optimisations to the code or modelling additional performance

factors.

As part of Chapter 5 a mini-application (Moses) representative of the par-

titioning process internal to HYDRA was developed. Several improvements are

planned: i) decreasing the mini-application’s runtime error (7.31%) by increas-

ing the accuracy of predicting the set sizes on the highest levels of the multigrid;

ii) increasing the scale at which the mini-application is able to generate set and

halo data (beyond 100,000 and towards 1,000,000 partitions); and, iii) extend

Moses to support other unstructured mesh applications.

Moses, in conjunction with the runtime performance model of HYDRA, de-

livered several predictions which need validating or acting upon. First, HYDRA’s

partitioning process will be extended such that it is able to read in the mesh

partitioning data from serial algorithms and second, a performance analysis

must be run to determine if the effect of these partitions on HYDRA’s run-

time matches the predicted effect. Furthermore the intent is to predictively and

empirically analyse the effect of different partitioning algorithms on HYDRA’s

runtime when using a variety of datasets, as the plan is to use the runtime per-

128



formance model to examine the continued effectiveness of these algorithms as

new datasets are brought into use.

Expansions to the mini-application developed in Chapter 6 are planned to

cover more kernels so that a higher percentage of HYDRA’s performance can

be represented in code bases which are more readily available for use by third-

parties. This larger representation of the code base will increase the relevance of

performance engineering activities with the mini-applications. Preliminary work

has begun on developing compact-vflux but it has not been fully integrated

into the mini-application in the same way that iflux has. Work has not yet

started on a mini-application version of vflux; for this to become a reality a

potential developer must either already have or acquire a strong grounding in

CFD techniques, such as turbulence modelling.

7.4 Final Word

The push towards exascale has seen the end of Dennard scaling and caused a

fundamental shift in the degree of parallelism available in supercomputers. This

move towards multi-core, many-core and accelerator architectures has prompted

the development of a plethora of performance engineering techniques to support

them and the codes which they execute. The outlook is promising that through

these techniques, industry and the research community will overcome the known

and unknown challenges on the journey to realising the first exascale machine.

129



Bibliography

[1] M. F. Adams, J. Brown, J. Shalf, B. Van Straalen, E. Strohmaier, and

S. Williams. HPGMG 1.0: A Benchmark for Ranking High Performance

Computing Systems. Technical report, Lawrence Berkeley National Lab-

oratory, 2014.

[2] V. S. Adve. Analyzing the Behavior and Performance of Parallel Pro-

grams. PhD thesis, University of Wisconsin-Madison, 1993.

[3] V. S. Adve and M. K. Vernon. Performance Analysis of Mesh Intercon-

nection Networks With Deterministic Routing. IEEE Transactions on

Parallel and Distributed Systems, 5(3):225–246, March 1994.

[4] B. Agathangelou and M. Gascoyne. Aerodynamic Design Considerations

of a Formula 1 Racing Car. Technical report, SAE Technical Paper, War-

rendale, PA, February 1998.

[5] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman. LogGP:

Incorporating Long Messages Into the LogP Model for Parallel Compu-

tation. Journal of Parallel and Distributed Computing, 44(1):71–79, July

1997.

[6] G. M. Amdahl. Validity of the Single Processor Approach to Achieving

Large Scale Computing Capabilities. In Proceedings of the Joint Computer

Conference 1967 (SJCC’67), pages 483–485, Atlantic City, NJ, April 1967.

ACM, New York, NY.

[7] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,

K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams,

et al. The Landscape of Parallel Computing Research: A View From

Berkeley. Technical report, University of California, EECS Department,

University of California, Berkeley, CA, December 2006.

130



[8] M. K. Bane and G. Riley. Automatic Overheads Profiler for OpenMP

Codes. In Proceedings of the 2nd European Workshop on OpenMP 2000

(EWOMP’00), pages 162–166, Edinburgh, Scotland, September 2000.

Springer, Berlin, Germany.

[9] K. J. Barker, K. Davis, A. Hoisie, D. J. Kerbyson, M. Lang, S. Pakin, and

J. C. Sancho. Entering the Petaflop Era: The Architecture and Perfor-

mance of Roadrunner. In Proceedings of Supercomputing 2008 (SC’08),

pages 453–469, Austin, TX, November 2008. IEEE Computer Society, Los

Alamitos, CA.

[10] K. J. Barker, K. Davis, A. Hoisie, D. J. Kerbyson, M. Lang, S. Pakin,

and J. C. Sancho. A Performance Evaluation of the Nehalem Quad-Core

Processor for Scientific Computing. Parallel Processing Letters, 18(04):

453–469, December 2008.

[11] K. J. Barker, K. Davis, A. Hoisie, D. J. Kerbyson, M. Lang, S. Pakin, and

J. Sancho. Using Performance Modeling to Design Large-Scale Systems.

Computer, 42(10):0042–49, November 2009.

[12] D. A. Beckingsale. Towards Scalable Adaptive Mesh Refinement on Future

Parallel Architectures. PhD thesis, The University of Warwick, February

2015.

[13] D. A. Beckingsale, O. Perks, W. Gaudin, J. Herdman, and S. Jarvis. Opti-

misation of Patch Distribution Strategies for AMR Applications. In Com-

puter Performance Engineering, volume 7587 of Lecture Notes in Com-

puter Science, pages 210–223. Springer, Berlin, Germany, 2013.

[14] R. F. Bird, S. A. Wright, D. A. Beckingsale, and S. A. Jarvis. Performance

Modelling of Magnetohydrodynamics Codes. In Computer Performance

Engineering, volume 7587 of Lecture Notes in Computer Science, pages

197–209. Springer, Berlin, Germany, 2013.

131



[15] T. Brecht. On the Importance of Parallel Application Placement in NUMA

Multiprocessors. In Proceedings of USENIX Systems on USENIX Expe-

riences With Distributed and Multiprocessor Systems 1993 (SEDMS’93),

pages 1–18, San Diego, CA, September 1993. USENIX Association, Berke-

ley, CA.

[16] W. L. Briggs. Multigrid Tutorial. SIAM, Philadelphia, PA, 1987. ISBN

0898712211.

[17] R. Brightwell, K. Underwood, and R. Riesen. An Initial Analysis of the

Impact of Overlap and Independent Progress for MPI. In Recent Advances

in Parallel Virtual Machine and Message Passing Interface, volume 3241

of Lecture Notes in Computer Science, pages 370–377. Springer, Berlin,

Germany, September 2004.

[18] S. Browne, J. J. Dongarra, N. Garner, G. Ho, and P. Mucci. A Portable

Programming Interface for Performance Evaluation on Modern Proces-

sors. International Journal of High Performance Computing Applications,

14(3):189–204, August 2001.

[19] B. Buck and J. K. Hollingsworth. An API for Runtime Code Patching.

International Journal of High Performance Computing Applications, 14

(4):317–329, November 2000.

[20] T. N. Bui and C. Jones. Finding Good Approximate Vertex and Edge

Partitions Is NP-hard. Information Processing Letters, 42(3):153–159,

May 1992.

[21] J. M. Bull. Measuring Synchronisation and Scheduling Overheads in

OpenMP. In Proceedings of First European Workshop on OpenMP 1999

(EWOMP’99), pages 99–105, Lund, Sweden, September 1999.

[22] J. M. Bull and D. O’Neill. A Microbenchmark Suite for OpenMP 2.0. ACM

SIGARCH Computer Architecture News, 29(5):41–48, December 2001.

132



[23] R. A. Bunt, S. J. Pennycook, S. A. Jarvis, L. Lapworth, and Y. K. Ho.

Model-Led Optimisation of a Geometric Multigrid Application. In Pro-

ceedings of the 15th High Performance Computing and Communications &

2013 IEEE International Conference on Embedded and Ubiquitous Com-

puting 2013 (HPCC&EUC’13), pages 742–753, Zhang Jia Jie, China,

November 2013. IEEE Computer Society, Los Alamitos, CA.

[24] R. A. Bunt, S. A. Wright, S. A. Jarvis, M. Street, and Y. K. Ho. Predic-

tive Evaluation of Partitioning Algorithms Through Runtime Modelling.

In In Proceedings of High Performance Computing, Data, and Analytics

(HiPC’16), pages 1–11, Hyderabad, India, December 2016. IEEE Com-

puter Society, Los Alamitos, CA.

[25] D. Burger and T. M. Austin. The SimpleScalar Tool Set, Version 2.0.

ACM SIGARCH Computer Architecture News, 25(3):13–25, June 1997.

[26] D. A. Burgess, P. I. Crumpton, and M. B. Giles. A Parallel Framework

for Unstructured Grid Solvers. In Proceedings of the 2nd European Com-

putational Fluid Dynamics Conference 1994, pages 391–396, Stuttgart,

Germany, September 1994. Wiley, Hoboken, NJ.

[27] J. C. Butcher. A History of Runge-Kutta Methods. Applied Numerical

Mathematics, 20(3):247–260, March 1996.

[28] K. W. Cameron and X. Sun. Quantifying Locality Effect in Data Access

Delay: Memory logP. In Proceedings of the 17th International Parallel and

Distributed Processing Symposium 2003 (IPDPS’03), pages 8–pp, Nice,

France, April 2003. IEEE Computer Society, Los Alamitos, CA.

[29] M. S. Campobasso and M. B. Giles. Stabilization of a Linearized Navier-

Stokes Solver for Turbomachinery Aeroelasticity. In Proceedings of the 2nd

International Conference on Computational Fluid Dynamics 2002 (IC-

CFD’02), pages 343–348, Sydney, Australia, July 2002. Springer, Berlin,

Germany.

133



[30] M. S. Campobasso and M. B. Giles. Effects of Flow Instabilities on the

Linear Analysis of Turbomachinery Aeroelasticity. Journal of Propulsion

and Power, 19(2):250–259, March 2003.

[31] P. E. Ceruzzi. When Computers Were Human. Annals of the History of

Computing, 13(3):237–244, July 1991.

[32] J. W. Chew and N. J. Hills. Computational Fluid Dynamics for Turbo-

machinery Internal Air Systems. Philosophical Transactions. Series A,

Mathematical, Physical, and Engineering Sciences, 365(1859):2587–611,

October 2007.

[33] P. K. Chittimalli and V. Shah. GEMS: A Generic Model Based

Source Code Instrumentation Framework. In Proceedings of the Interna-

tional Conference on Software Testing, Verification and Validation 2012

(ICST’12), pages 909–914, Montreal, Canada, April 2012. IEEE Com-

puter Society, Los Alamitos, CA.

[34] A. Corrigan, F. F. Camelli, R. Löhner, and J. Wallin. Running Unstruc-

tured Grid-Based CFD Solvers on Modern Graphics Hardware. Inter-

national Journal for Numerical Methods in Fluids, 66(2):221–229, May

2011.

[35] P. I. Crumpton and M. B. Giles. Aircraft Computations Using Multi-

grid and an Unstructured Parallel Library. In Proceedings of the 33rd

Aerospace Sciences Meeting and Exhibit 1994, Reno, NV, January 1994.

American Institute of Aeronautics and Astronautics, Reston, VA.

[36] P. I. Crumpton and M. B. Giles. Mutigrid Aircraft Computations Us-

ing the OPlus Parallel Library. In Proceedings of Parallel Computational

Fluid Dynamics: Implementation and Results Using Parallel Computers

1995, pages 339–346, Pasadena, CA, June 1995. Elsevier, Amsterdam,

The Netherlands.

134



[37] D. E. Culler, R. M. Karp, D. Patterson, A. Sahay, E. E. Santos, K. E.

Schauser, R. Subramonian, and T. von Eicken. LogP: A Practical Model

of Parallel Computation. Communications of the ACM, 39(11):78–85,

November 1996.

[38] D. E. Culler, J. P. Singh, and A. Gupta. Parallel Computer Architec-

ture: A Hardware/Software Approach (The Morgan Kaufmann Series in

Computer Architecture and Design). Morgan Kaufmann, 1998. ISBN

1558603433.

[39] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le.

RAPL: Memory Power Estimation and Capping. In Proceedings of the

International Symposium on Low-Power Electronics and Design 2010

(ISLPED’10), pages 189–194, Austin, TX, August 2010. IEEE Computer

Society, Los Alamitos, CA.

[40] J. A. Davis, G. R. Mudalige, S. D. Hammond, J. A. Herdman, I. Miller,

and S. A. Jarvis. Predictive Analysis of a Hydrodynamics Application on

Large-Scale CMP Clusters. Computer Science - Research and Develop-

ment, 26(3–4):175–185, June 2011.

[41] K. Davis, K. J. Barker, and D. J. Kerbyson. Performance Prediction

via Modeling: A Case Study of the ORNL Cray XT4 Upgrade. Parallel

Processing Letters, 19(04):619–639, December 2009.

[42] T. Defraeye, B. Blocken, E. Koninckx, P. Hespel, and J. Carmeliet. Com-

putational Fluid Dynamics Analysis of Cyclist Aerodynamics: Perfor-

mance of Different Turbulence-Modelling and Boundary-Layer Modelling

Approaches. Journal of Biomechanics, 43(12):2281–2287, May 2010.

[43] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R.

LeBlanc. Design of ion-implanted MOSFET’s with very small physical

dimensions. IEEE Journal of Solid-State Circuits, 9(5):256–268, 1974.

135



[44] L. DeRose, T. Hoover, and J. K. Hollingsworth. The Dynamic Probe

Class Library – An Infrastructure for Developing Instrumentation for Per-

formance Tools. In Proceedings of the 15th International Parallel and

Distributed Processing Symposium 2001 (IPDPS’01), pages 10066.2–, San

Francisco, CA, April 2001. IEEE Computer Society, Los Alamitos, CA.

[45] J. J. Dongarra. The LINPACK Benchmark: An Explanation. In Proceed-

ings of Supercomputing 1987 (ISC’87), pages 456–474, Athens, Greece,

June 1987. Springer, Berlin, Germany.

[46] J. J. Dongarra and M. A. Heroux. Toward a New Metric for Ranking

High Performance Computing Systems. Technical report, Sandia National

Laboratory, Albuquerque, NM, June 2013.

[47] J. J. Dongarra, P. Luszczek, and A. Petitet. The LINPACK Benchmark:

Past, Present and Future. Concurrency and Computation: Practice and

Experience, 15(9):803–820, July 2003.

[48] M. C. Duta, M. B. Giles, and M. S. Campobasso. The Harmonic Adjoint

Approach to Unsteady Turbomachinery Design. International Journal for

Numerical Methods in Fluids, 40(3–4):323–332, September 2002.

[49] M. C. Duta, M. B. Giles, and M. S. Campobasso. The Harmonic Adjoint

Approach to Unsteady Turbomachinery Design. International Journal for

Numerical Methods in Fluids, 40(3-4):323–332, September 2002.

[50] J. Eisenbiegler, W. Lowe, and A. Wehrenpfennig. On the Optimization by

Redundancy Using an Extended LogP Model. In Proceedings of Advances

in Parallel and Distributed Computing 1997 (APDC’97), pages 149–155,

Shanghai, China, March 1997. IEEE Computer Society, Los Alamitos,

CA.

[51] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and

D. Burger. Power Challenges May End the Multicore Era. Communi-

cations of the ACM, 56(2):93–102, Februrary 2013.

136



[52] G. Faanes, A. Bataineh, D. Roweth, T. Court, E. Froese, B. Alverson,

T. Johnson, J. Kopnick, M. Higgins, and J. Reinhard. Cray Cascade: A

Scalable HPC System Based on a Dragonfly Network. In Proceedings of

the International Conference on High Performance Computing, Network-

ing, Storage and Analysis 2012, pages 103:1–103:9, Salt Lake City, UT,

November 2012. IEEE Computer Society, Los Alamitos, CA.

[53] W. Feng and K. W. Cameron. The Green500 List: Encouraging Sustain-

able Supercomputing. Computer, 40(12):50–55, December 2007.

[54] J. T. Feo. An Analysis of the Computational and Parallel Complexity of

the Livermore Loops. Parallel Computing, 7(2):163–185, June 1988.

[55] E. J. Fluhr, J. Friedrich, D. Dreps, V. Zyuban, G. Still, C. Gonzalez,

A. Hall, D. Hogenmiller, F. Malgioglio, R. Nett, J. Paredes, J. Pille,

D. Plass, R. Puri, P. Restle, D. Shan, K. Stawiasz, Z. T. Deniz, D. Wen-

del, and M. Ziegler. POWER8TM: A 12-core Server-Class Processor in

22nm SOI with 7.6Tb/s Off-Chip Bandwidth. In Proceedings of the IEEE

International Solid-State Circuits Conference Digest of Technical Papers

20014 (ISSCC’14), pages 96–97, San Francisco, CA, February 2014. IEEE

Computer Society, Los Alamitos, CA.

[56] S. Fortune and J. Wyllie. Parallelism in Random Access Machines. In

Proceedings of the 10th Annual ACM Symposium on Theory of Computing

1978 (STOC’78), pages 114–118, San Diego, CA, May 1978. ACM, New

York, NY.

[57] M. I. Frank, A. Agarwal, and M. K. Vernon. LoPC: Modeling Contention

in Parallel Algorithms. SIGPLAN Not., 32(7):276–287, June 1997.

[58] K. Frlinger and M. Gerndt. ompP: A Profiling Tool for OpenMP. In

OpenMP Shared Memory Parallel Programming, pages 15–23. Springer,

Berlin, Germany, 2008.

137



[59] H. Gahvari, A. H. Baker, M. Schulz, U. M. Yang, K. E. Jordan, and

W. Gropp. Modeling the Performance of an Algebraic Multigrid Cycle

on HPC Platforms. In Proceedings of the International Conference on

Supercomputing 2011 (ISC’11), pages 172–181, Tucson, AZ, June 2011.

ACM, New York, NY.

[60] H. Gahvari, W. Gropp, K. E. Jordan, M. Schulz, and U. M. Yang. Perfor-

mance Modeling of Algebraic Multigrid on Blue Gene/Q: Lessons Learned.

In Proceedings of the Workshop on High Performance Computing, Net-

working, Storage and Analysis 2012 (SCC’12), pages 377–385, Salt Lake

City, Utah, November 2012. IEEE Computer Society, Los Alamitos, CA.

[61] H. Gahvari, W. Gropp, K. E. Jordan, M. Schulz, and U. M. Yang.

Modeling the Performance of an Algebraic Multigrid Cycle Using Hy-

brid MPI/OpenMP. In Proceedings of the 41st International Conference

on Parallel Processing 2012 (ICPP’12), pages 128–137, Pittsburgh, PA,

September 2012. IEEE Computer Society, Los Alamitos, CA.

[62] P. Gepner and M. F. Kowalik. Multi-Core Processors: New Way to

Achieve High System Performance. In Proceedings of the International

Symposium on Parallel Computing in Electrical Engineering 2006 (PAR

ELEC’06), pages 9–13, Bialstok, Poland, September 2006. IEEE Com-

puter Society, Los Alamitos, CA.

[63] J. R. Gilbert, G. L. Miller, and S.-H. Teng. Geometric Mesh Partitioning:

Implementation and Experiments. SIAM Journal on Scientific Comput-

ing, 19(6):2091–2110, 1998.

[64] M. B. Giles, M. C. Duta, J. Mller, and N. A. Pierce. Algorithm Devel-

opments for Discrete Adjoint Methods. AIAA Journal, 41(2):198–205,

February 2003.

[65] M. B. Giles, G. R. Mudalige, Z. Sharif, G. Markall, and P. H. Kelly. Per-

138



formance Analysis of the OP2 Framework on Many-Core Architectures.

SIGMETRICS Performance Evaluation Review, 38(4):9–15, March 2011.

[66] M. B. Giles, G. R. Mudalige, C. Bertolli, P. H. Kelly, E. Laszlo, and I. Z.

Reguly. An Analytical Study of Loop Tiling for a Large-Scale Unstruc-

tured Mesh Application. In Proceedings of High Performance Computing,

Networking, Storage and Analysis 2012 (SC’12), pages 477–482, Salt Lake

City, Utah, November 2012. IEEE Computer Society, Los Alamitos, CA.

[67] M. B. Giles, G. R. Mudalige, B. Spencer, C. Bertolli, and I. Z. Reguly.

Designing OP2 for GPU Architectures. Journal of Parallel and Distributed

Computing, 73(11):1451–1460, November 2013.

[68] S. L. Graham, P. B. Kessler, and M. K. Mckusick. Gprof: A Call Graph

Execution Profiler. SIGPLAN Not., 17(6):120–126, June 1982.

[69] J. L. Gustafson. Reevaluating Amdahl’s Law. Communications of the

ACM, 31(5):532–533, May 1988.

[70] D. Hackenberg, R. Oldenburg, D. Molka, and R. Schone. Introducing

FIRESTARTER: A Processor Stress Test Utility. In Proceedings of the

International Green Computing Conference 2013 (IGCC’13), pages 1–9,

Arlington, VA, June 2013. IEEE Computer Society, Los Alamitos, CA.

[71] P. Hammarlund, R. Kumar, R. B. Osborne, R. Rajwar, R. Singhal,

R. D’Sa, R. Chappell, S. Kaushik, S. Chennupaty, S. Jourdan, S. Gun-

ther, T. Piazza, and T. Burton. Haswell: The Fourth-Generation Intel

Core Processor. IEEE Micro, 34(2):6–20, March 2014.

[72] S. D. Hammond, G. R. Mudalige, J. A. Smith, S. A. Jarvis, A. J. Herdman,

and A. Vadgama. WARPP: A Toolkit for Simulating High-Performance

Parallel Scientific Codes. In Proceedings of the 2nd International Confer-

ence on Simulation Tools and Techniques 2009 (ICSTT’09), pages 1–10,

Rome, Italy, March 2009. ICST, Gent, Belgium.

139



[73] S. D. Hammond, G. R. Mudalige, J. A. Smith, A. B. Mills, S. A. Jarvis,

J. Holt, I. Miller, J. A. Herdman, and A. Vadgama. Performance Predic-

tion and Procurement in Practice: Assessing the Suitability of Commodity

Cluster Components for Wavefront Codes. IET Software, 3(6):509–521,

December 2009.

[74] R. Hanna. Can CFD Make a Performance Difference in Sport? Sports

Engineering, 5(4):17–30, November 2002.

[75] A. Heinecke, K. Vaidyanathan, M. Smelyanskiy, A. Kobotov, R. Dubtsov,

G. Henry, A. G. Shet, G. Chrysos, and P. Dubey. Design and Implementa-

tion of the Linpack Benchmark for Single and Multi-Node Systems Based

on Intel R© Xeon Phi Coprocessor. In Proceedings of the 27th International

Parallel and Distributed Processing Symposium 2013 (IPDPS’13), pages

126–137, Boston, MA, May 2013. IEEE Computer Society, Los Alamitos,

CA.

[76] J. Hemminger, G. Fleming, and M. Ratner. Directing Matter and Energy:

Five Challenges for Science and the Imagination. Department of Energy’s

Office of Science, 2007.

[77] M. Heroux and R. Barrett. Mantevo Project. https://mantevo.org/

(accessed March 3, 2016), March 2016.

[78] J. M. Hill, P. I. Crumpton, and D. A. Burgess. Theory, Practice, and a

Tool for BSP Performance Prediction. In Proceedings of the 2nd European

Conference on Parallel Processing 1996 (Euro-Par’96), pages 697–705,

Lyon, France, August 1996. Springer, Berlin, Germany.

[79] R. W. Hockney. The Communication Challenge for MPP: Intel Paragon

and Meiko CS-2. Parallel Computing, 20(3):389–398, March 1994.

[80] H. P. Hodson and R. G. Dominy. Three-Dimensional Flow in a Low-

Pressure Turbine Cascade at Its Design Condition. Journal of Turboma-

chinery, 109(2):177–185, April 1987.

140

https://mantevo.org/


[81] H. P. Hodson and R. G. Dominy. The Off-Design Performance of a Low-

Pressure Turbine Cascade. Journal of Turbomachinery, 109(2):201–209,

April 1987.

[82] T. Hoefler, L. Cerquetti, T. Mehlan, F. Mietke, and W. Rehm. A Practical

Approach to the Rating of Barrier Algorithms Using the LogP Model and

Open MPI. In Proceedings of the International Conference on Parallel

Processing Workshops 2005 (ICPPW’05), pages 562–569, Oslo, Norway,

June 2005. IEEE Computer Society, Los Alamitos, CA.

[83] T. Hoefler, T. Mehlan, F. Mietke, and W. Rehm. LogfP - A Model for

Small Messages in InfiniBand. In Proceedings of the 20th International

Parallel and Distributed Processing Symposium 2006 (IPDPS’06), pages

319–319, Washington, DC, USA, April 2006. IEEE Computer Society, Los

Alamitos, CA.

[84] T. Hoefler, T. Schneider, and A. Lumsdaine. LogGOPSim: Simulat-

ing Large-Scale Applications in the LogGOPS Model. In Proceedings of

the 19th ACM International Symposium on High Performance Distributed

Computing 2010 (HPDC’10), pages 597–604, Chicago, Illinois, June 2010.

ACM, New York, NY.

[85] A. Hoisie, G. Johnson, D. J. Kerbyson, M. Lang, and S. Pakin. A Perfor-

mance Comparison Through Benchmarking and Modeling of Three Lead-

ing Supercomputers: Blue Gene/L, Red Storm, and Purple. In Proceedings

of Supercomputing 2006 (SC’06), pages 3–3, Tampa, FL, November 2006.

IEEE Computer Society, Los Alamitos, CA.

[86] S. Homer and M. Peinado. Design and Performance of Parallel and Dis-

tributed Approximation Algorithms for Maxcut. Journal of Parallel and

Distributed Computing, 46(1):48–61, October 1997.

[87] W. Hwu and Y. N. Patt. HPSm, a High Performance Restricted Data

141



Flow Architecture Having Minimal Functionality. SIGARCH Comput.

Archit. News, 14(2):297–306, May 1986.

[88] Intel Corporation. Intel MPI Benchmark User Guide and Methodology

Description 3.2.3. Technical report, Intel Corporation, Santa Clara, CA,

2011.

[89] Intel Corporation. Intel 64 and IA-32 Architectures Optimization Ref-

erence Manual. Technical report, Intel Corporation, Santa Clara, CA,

January 2016.

[90] Intel Corporation. And IA-32 Architectures Software Developer’s Man-

ual Instruction Set Reference. Technical report, Intel Corporation, Santa

Clara, CA, April 2016.

[91] M. Itzkowitz and Y. Maruyama. HPC Profiling With the Sun Studio

Performance Tools. In Tools for High Performance Computing 2009, pages

67–93. Springer, Berlin, Germany, May 2010.

[92] H. Jasak, A. Jemcov, and Z. Tukovic. OpenFOAM: A C++ Library

for Complex Physics Simulations. In Proceedings of the International

Workshop on Coupled Methods in Numerical Dynamics 2007 (CMND’07),

pages 1–20, Dubrovnik, Croatia, September 2007. University of Zagreb.

[93] F. T. Johnson, E. N. Tinoco, and N. J. Yu. Thirty Years of Development

and Application of CFD at Boeing Commercial Airplanes. Computers &

Fluids, 34(10):1115–1151, December 2005.

[94] G. Johnson, D. J. Kerbyson, and M. Lang. Optimization of Infiniband

for Scientific Applications. In Proceedings of the 22nd International Par-

allel and Distributed Processing Symposium 2008 (IPDPS’08), pages 1–8,

Miami, FL, April 2008. IEEE Computer Society, Los Alamitos, CA.

[95] T. Kalinowski, I. Kort, and D. Trystram. List Scheduling of General Task

Graphs Under LogP. Parallel Computing, 26(9):1109–1128, July 2000.

142



[96] I. Karlin, J. Keasler, and R. Neely. Lulesh 2.0 Updates and Changes.

Technical report, Lawrence Livermore National Laboratory, Livermore,

CA, August 2013.

[97] G. Karypis and V. Kumar. A Parallel Algorithm for Multilevel Graph Par-

titioning and Sparse Matrix Ordering. Journal of Parallel and Distributed

Computing, 48(1):71–95, January 1998.

[98] W. Kellar, A. Savill, and W. Dawes. Integrated CAD/CFD Visualisation

of a Generic Formula 1 Car Front Wheel Flowfield. In Proceedings of

the 7th International Conference on High-Performance Computing and

Networking 1999 (HPCN’99), pages 90–98, Amsterdam, The Netherlands,

April 1999. Springer, Berlin, Germany.

[99] D. J. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini, H. J. Wasserman, and

M. Gittings. Predictive Performance and Scalability Modeling of a Large-

Scale Application. In Proceedings of Supercomputing 2001 (SC’01), pages

37–37, Denver, CO, November 2001. ACM, New York, NY.

[100] D. J. Kerbyson, A. Hoisie, and H. J. Wasserman. A Comparison Between

the Earth Simulator and AlphaServer Systems Using Predictive Applica-

tion Performance Models. In Proceedings of the 17th International Parallel

and Distributed Processing Symposium 2003 (IPDPS’03), page 64, Nice,

France, April 2003. IEEE Computer Society, Los Alamitos, CA.

[101] D. J. Kerbyson, A. Hoisie, and H. J. Wasserman. Use of Predictive Per-

formance Modeling During Large-Scale System Installation. Parallel Pro-

cessing Letters, 15(4):387–395, December 2005.

[102] W. Kieffer, S. Moujaes, and N. Armbya. CFD Study of Section Charac-

teristics of Formula Mazda Race Car Wings. Mathematical and Computer

Modelling, 43(11):1275–1287, June 2006.

[103] N. Kurd, M. Chowdhury, E. Burton, T. P. Thomas, C. Mozak, B. Boswell,

P. Mosalikanti, M. Neidengard, A. Deval, A. Khanna, et al. Haswell: A

143



Family of IA 22 Nm Processors. IEEE Journal of Solid-State Circuits, 50

(1):49–58, January 2015.

[104] L. Lapworth. HYDRA-CFD: A Framework for Collaborative CFD Devel-

opment. In Proceedings of the International Conference on Scientific and

Engineering Computation 2004 (IC-SEC’04), Singapore, June 2004.

[105] J. Levesque and G. Wagenbreth. High Performance Computing: Program-

ming and Applications. Chapman and Hall, London, UK, 2010. ISBN

978-1420077056.

[106] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,

V. J. Reddi, and K. Hazelwood. Pin: Building Customized Program

Analysis Tools With Dynamic Instrumentation. SIGPLAN Not., 40(6):

190–200, June 2005.

[107] R. Lukes, S. Chin, and S. Haake. The Understanding and Development of

Cycling Aerodynamics. Sports Engineering, 8(2):59–74, December 2005.

[108] R. Lukes, J. Hart, S. Chin, and S. Haake. The Role and Validation of CFD

Applied to Cycling. In Proceedings of the Fluent User Group Meeting,

pages 65–75, Warwick, UK, 2005.

[109] P. R. Luszczek, D. H. Bailey, J. J. Dongarra, J. Kepner, R. F. Lucas,

R. Rabenseifner, and D. Takahashi. The HPC Challenge (HPCC) Bench-

mark Suite. In Proceedings of Supercomputing 2006 (SC’06), Tampa,

Florida, November 2006. ACM, New York, NY.

[110] A. C. Mallinson, S. A. Jarvis, W. P. Gaudin, and A. J. Herdman. Experi-

ences at Scale With PGAS Versions of a Hydrodynamics Application. In

Proceedings of the 8th International Conference on Partitioned Global Ad-

dress Space Programming Models 2014 (PGAS’14), pages 9–20, Eugene,

Oregon, October 2014. ACM, New York, NY.

144



[111] A. D. Malony, S. Shende, and A. Morris. Phase-Based Parallel Perfor-

mance Profiling. In Proceedings of Parallel Computing 2005 (ParCo’05),

pages 203–210, Malaga, Spain, September 2005.

[112] M. Martonosi, A. Gupta, and T. Anderson. MemSpy: Analyzing Memory

System Bottlenecks in Programs. SIGMETRICS Perform. Eval. Rev., 20

(1):1–12, June 1992.

[113] M. M. Mathis and D. J. Kerbyson. A General Performance Model of

Structured and Unstructured Mesh Particle Transport Computations. The

Journal of Supercomputing, 34(2):181–199, November 2005.

[114] D. J. Mavriplis. Unstructured-Mesh Discretizations and Solvers for Com-

putational Aerodynamics. American Institute of Aeronautics and Astro-

nautics Journal, 46(6):1281–1298, June 2008.

[115] J. D. McCalpin. Memory Bandwidth and Machine Balance in Current

High Performance Computers. IEEE Computer Society Technical Com-

mittee on Computer Architecture (TCCA) Newsletter, pages 19–25, De-

cember 1995.

[116] Message Passing Interface Forum. MPI: A Message Passing Inter-

face Standard Version 3.0. http://www.mpi-forum.org/docs/mpi-3.0/

mpi30-report.pdf (accessed May 2016), September 2012.

[117] O. E. B. Messer, E. D’Azevedo, J. Hill, W. Joubert, S. Laosooksathit,

and A. Tharrington. Developing MiniApps on Modern Platforms Us-

ing Multiple Programming Models. In Proceedings of Cluster Computing

2015 (CLUSTER’15), pages 753–759, Chicago, IL, September 2015. IEEE

Computer Society, Los Alamitos, CA.

[118] H. Meuer, E. Strohmaier, J. J. Dongarra, and H. Simon. Top 500 Super-

computer Sites. http://top500.org/ (accessed June, 2nd 2016), June

2016.

145

http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://top500.org/


[119] P. Moinier, J. Müller, and M. B. Giles. Edge-Based Multigrid and Pre-

conditioning for Hybrid Grids. AIAA Journal, 40(10):1945–1953, October

2002.

[120] G. E. Moore. Cramming More Components onto Integrated Circuits.

Electronics Magazine, 38(8):114–117, April 1965.

[121] P. J. Mucci, K. London, and J. Thurman. The Cachebench Report. Tech-

nical report, Innovative Computing Laboratory University of Tennessee,

Knoxville, TN, March 1998.

[122] P. J. Mucci, K. London, and J. Thurman. The BLASBench Report. Tech-

nical report, Innovative Computing Laboratory, University of Tennessee,

Knoxville, TN, November 1999.

[123] G. R. Mudalige, S. A. Jarvis, D. P. Spooner, and G. R. Nudd. Predictive

Performance Analysis of a Parallel Pipelined Synchronous Wavefront Ap-

plication for Commodity Processor Cluster Systems 2006. In Proceedings

of the IEEE International Conference on Cluster Computing 2006 (CLUS-

TER’06), pages 1–12, Barcelona, Spain, September 2006. IEEE Computer

Society, Los Alamitos, CA.

[124] G. R. Mudalige, M. K. Vernon, and S. A. Jarvis. A Plug-And-Play Model

for Evaluating Wavefront Computations on Parallel Architectures. In

Proceedings of the 22nd International Parallel and Distributed Processing

Symposium 2008 (IPDPS’08), pages 1–14, Miami, Florida, April 2008.

IEEE Computer Society, Los Alamitos, CA.

[125] G. R. Mudalige, S. D. Hammond, J. A. Smith, and S. A. Jarvis. Pre-

dictive Analysis and Optimisation of Pipelined Wavefront Computations.

In Proceedings of the Workshop on Advances in Parallel and Distributed

Computational Models 2009 (APDCM’09), pages 1–8, Rome, Italy, May

2009. IEEE Computer Society, Los Alamitos, CA.

146



[126] G. R. Mudalige, M. B. Giles, C. Bertolli, and P. H. Kelly. Predictive Mod-

eling and Analysis of OP2 on Distributed Memory GPU Clusters. SIG-

METRICS Performance Evaluation Review, 40(2):61–67, October 2012.

[127] National Aeronautics and Space Administration. Euler Equations.

https://www.grc.nasa.gov/www/k-12/airplane/eulereqs.html (ac-

cessed May 2016), September 2016.

[128] U. Naumann and O. Schenk. Combinatorial Scientific Computing. Chap-

man and Hall, London, UK, 1st edition, 2012. ISBN 1439827354,

9781439827352.

[129] N. Nethercote and J. Seward. Valgrind: A Framework for Heavyweight

Dynamic Binary Instrumentation. SIGPLAN Not., 42(6):89–100, June

2007.

[130] G. R. Nudd, D. J. Kerbyson, E. Papaefstathiou, S. C. Perry, J. S. Harper,

and D. V. Wilcox. PACEA Toolset for the Performance Prediction of Par-

allel and Distributed Systems. International Journal of High Performance

Computing Applications, 14(3):228–251, August 2000.

[131] P. Pacheco. An Introduction to Parallel Programming. Morgan Kaufmann,

2011. ISBN 978-0123742605.

[132] S. Pakin. Byfl: Analysis of Low-Level Application Characteristics. Tech-

nical report, Los Alamos National Laboratory, Los Alamos, NM, February

2011.

[133] S. J. Pennycook, S. D. Hammond, G. R. Mudalige, S. A. Wright, and S. A.

Jarvis. On the Acceleration of Wavefront Applications Using Distributed

Many-Core Architectures. The Computer Journal, 55(2):138–153, Febru-

ary 2012.

[134] S. J. Pennycook, C. J. Hughes, M. Smelyanskiy, and S. A. Jarvis. Ex-

ploring SIMD for Molecular Dynamics, Using Intel R© Xeon R© Processors

147

https://www.grc.nasa.gov/www/k-12/airplane/eulereqs.html


and Intel R© Xeon Phi Coprocessors. In Proceedings of the 27th Interna-

tional Parallel and Distributed Processing Symposium 2013 (IPDPS’13),

pages 1085–1097, Boston, MA, May 2013. IEEE Computer Society, Los

Alamitos, CA.

[135] O. F. J. Perks, D. A. Beckingsale, S. D. Hammond, I. Miller, J. Herdman,

A. Vadgama, A. H. Bhalerao, L. He, and S. A. Jarvis. Towards Automated

Memory Model Generation via Event Tracing. The Computer Journal, 56

(2):156–174, February 2013.

[136] F. Petrini, D. J. Kerbyson, and S. Pakin. The Case of the Missing Su-

percomputer Performance: Achieving Optimal Performance on the 8,192

Processors of ASCI Q. In Proceedings of Supercomputing 2003 (SC’03),

pages 55–55, Phoenix, AZ, November 2003. IEEE Computer Society, Los

Alamitos, CA.

[137] S. Plimpton. Fast Parallel Algorithms for Short-Range Molecular Dynam-

ics. Journal of Computational Physics, 117(1):1–19, March 1995.

[138] D. Quinlan. ROSE: Compiler Support for Object-Oriented Frameworks.

Parallel Processing Letters, 10(02n03):215–226, June 2000.

[139] B. R. Rau and J. A. Fisher. Instruction-Level Parallel Processing: History,

Overview, and Perspective. The Journal of Supercomputing, 7(1-2):9–50,

May 1993.

[140] I. Z. Reguly, G. R. Mudalige, and M. B. Giles. Design and Development of

Domain Specific Active Libraries With Proxy Applications. In Proceedings

of Cluster Computing 2015 (CLUSTER’15), pages 738–745, Chicago, IL,

September 2015. IEEE Computer Society, Los Alamitos, CA.

[141] L. Reid and R. D. Moore. Design and Overall Performance of Four Highly

Loaded, High Speed Inlet Stages for an Advanced High-Pressure-Ratio

Core Compressor. Technical Report NASA TP 1337, NASA Lewis Re-

search Center, Cleveland, OH, October 1987.

148



[142] R. Reussner, P. Sanders, and J. L. Träff. SKaMPI: A Comprehensive

Benchmark for Public Benchmarking of MPI. Scientific Programming, 10

(1):55–65, April 2002.

[143] R. Reussner, P. Sanders, L. Prechelt, and M. Müller. SKaMPI: A De-

tailed, Accurate MPI Benchmark. In Recent Advances in Parallel Virtual

Machine and Message Passing Interface, volume 1497 of Lecture Notes in

Computer Science, pages 52–59. Springer, Berlin, Germany, June 2006.

[144] A. D. Robison and R. E. Johnson. Three Layer Cake for Shared-Memory

Programming. In Proceedings of the 2010 Workshop on Parallel Program-

ming Patterns 2010 (ParaPLoP’10), page 5, Carefree, AZ, March 2010.

ACM, New York, NY.

[145] R. M. Russell. The CRAY-1 Computer System. Communications of the

ACM, 21(1):63–72, January 1978.

[146] N. Satish, C. Kim, J. Chhugani, H. Saito, R. Krishnaiyer, M. Smelyan-

skiy, M. Girkar, and P. Dubey. Can Traditional Programming Bridge the

Ninja Performance Gap for Parallel Computing Applications? SIGARCH

Computer Architecture News, 40(3):440–451, June 2012.

[147] D. M. Schuster. NASA Perspective on Requirements for Development of

Advanced Methods Predicting Unsteady Aerodynamics and Aeroelastic-

ity. Technical Report 20080018644, NASA, Langley Research Center, May

2008.

[148] J. P. Shen and M. H. Lipasti. Modern Processor Design: Fundamentals

of Superscalar Processors. Waveland Press, Long Grove, IL, 2013. ISBN

1478607831.

[149] S. S. Shende and A. D. Malony. The TAU Parallel Performance System.

International Journal of High Performance Computing Applications, 20

(2):287–311, May 2006.

149



[150] D. B. Skillicorn, J. Hill, and W. F. McColl. Questions and Answers About

BSP. Scientific Programming, 6(3):249–274, March 1997.

[151] D. P. Spooner, S. A. Jarvis, J. Cao, S. Saini, and G. R. Nudd. Local Grid

Scheduling Techniques Using Performance Prediction. IEEE Proceedings

– Computers and Digital Techniques, 2(150):87–96, April 2003.

[152] V. E. Taylor and B. Nour-Omid. A Study of the Factorization Fill-In

for a Parallel Implementation of the Finite Element Method. Interna-

tional Journal for Numerical Methods in Engineering, 37(22):3809–3823,

November 1994.

[153] X. Tian, A. Bik, M. Girkar, P. Grey, H. Saito, and E. Su. Intel R© OpenMP

C++/Fortran Compiler for Hyper-Threading Technology: Implementa-

tion and Performance. Intel Technology Journal, 6(1):36–46, February

2002.

[154] M. M. Tikir, M. A. Laurenzano, L. Carrington, and A. Snavely. PSINS:

An Open Source Event Tracer and Execution Simulator for MPI Applica-

tions. In Proceedings of the European Conference on Parallel Processing

2009 (Euro-Par’09), pages 135–148, Delft, The Netherlands, August 2009.

Springer, Berlin, Germany.

[155] A. Tiskin. The Bulk-Synchronous Parallel Random Access Machine. The-

oretical Computer Science, 196(1):109–130, April 1998.

[156] J. R. Tramm, A. R. Siegel, T. Islam, and M. Schulz. XSBench-the Devel-

opment and Verification of a Performance Abstraction for Monte Carlo

Reactor Analysis. In Proceedings of the Role of Reactor Physics To-

ward a Sustainable Future 2014 (PHYSOR’14), pages 1–12, Kyoto, Japan,

September 2014. Taylor and Francis, Oxford, UK.

[157] U. Trottenberg, C. W. Oosterlee, and A. Schuller. Multigrid. Elsevier,

Amsterdam, The Netherlands, 2001. ISBN 978-0127010700.

150



[158] UK Mini-App Consortium. UK Mini-App Consortium. http://uk-mac.

github.io/papers.html (accessed March 6, 2016), 2016.

[159] K. D. Underwood, M. Levenhagen, and A. Rodrigues. Simulating Red

Storm: Challenges and Successes in Building a System Simulation. In

Proceedings of the 21st International Parallel and Distributed Processing

Symposium 2007 (IPDPS’07), pages 1–10, Miami, FL, March 2007. IEEE

Computer Society, Los Alamitos, CA.

[160] University of Maryland, University of Wisconsin Madison. Dyninst:

An Application Program Interface (API) for Runtime Code Generation.

http://www.dyninst.org (accessed June, 15th 2016), 2016.

[161] L. G. Valiant. A Bridging Model for Parallel Computation. Communica-

tions of the ACM, 33(8):103–111, August 1990.

[162] H. Versteeg and W. Malalasekera. An Introduction to Computational Fluid

Dynamics: The Finite Volume Method (2nd Edition). Pearson, London,

UK, 2007. ISBN 0131274988.

[163] J. F. Wendt. Computational Fluid Dynamics: An Introduction. Springer,

Berlin, Germany, New York City, New York, March 2013. ISBN 978-3-

540-85056-4.

[164] R. D. Williams. Performance of Dynamic Load Balancing Algorithms for

Unstructured Mesh Calculations. Concurrency: Practice and Experience,

3(5):457–481, October 1991.

[165] S. Williams, A. Waterman, and D. Patterson. Roofline: An Insightful

Visual Performance Model for Multicore Architectures. Communications

of the ACM, 52(4):65–76, April 2009.

[166] M. Wu, J. L. Bentz, F. Peng, M. Sosonkina, M. S. Gordon, and R. Kendall.

Integrating Performance Tools With Large-Scale Scientific Software. In

Proceedings of the 21st International Parallel and Distributed Processing

151

http://uk-mac.github.io/papers.html
http://uk-mac.github.io/papers.html
http://www.dyninst.org


Symposium 2007 (IPDPS’07), pages 1–8, Miami, FL, March 2007. IEEE

Computer Society, Los Alamitos, CA.

[167] W. A. Wulf and S. A. McKee. Hitting the Memory Wall: Implications of

the Obvious. ACM SIGARCH Computer Architecture News, 23(1):20–24,

February 1995.

[168] R. Yang, J. Antony, P. P. Janes, and A. P. Rendell. Memory and Thread

Placement Effects as a Function of Cache Usage: A Study of the Gaussian

Chemistry Code on the SunFire X4600 M2. In Proceedings of the Inter-

national Symposium on Parallel Architectures, Algorithms, and Networks

2008 (I-Span’08), pages 31–36, Miami, FL, April 2008. IEEE Computer

Society, Los Alamitos, CA.

152


	Acknowledgements
	Declarations
	Sponsorship and Grants
	Abstract
	Abbreviations
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Motivation
	Problem Statement
	Contributions
	Thesis Overview

	Parallel Computing and Performance Engineering
	The Composition of a Parallel Machine
	Core
	cpu
	Accelerators
	Compute Node

	Parallel Data Decompositions
	Structured Mesh
	Unstructured Mesh

	Parallel Programming Laws and Models
	Speedup
	Parallel Efficiency
	Amdahl's Law
	Gustafson's Law

	Performance Engineering
	Profiling and Instrumentation
	Benchmarks, Mini- and Compact-Applications
	Modelling Parallel Computation
	Analytical Modelling
	Simulation

	Alternative Methods
	Summary

	Computational Fluid Dynamics, HYDRA and Tools
	Computational Fluid Dynamics
	Uses of cfd
	HYDRA
	Multigrid
	OPlus
	Datasets
	Mesh Partitioning Libraries

	Parallel Machine Resources
	Auto-instrumentation
	Instrumentation Process

	Auto-instrumentation Case Studies
	Effect of Power8 SMT Degree on Runtime
	Highlighting Historical Performance Differences
	Other Uses

	Summary

	Model-led Optimisation of an Unstructured Multigrid Code
	Experimental Setup
	Single-Level Model
	Model Construction
	Validation

	Model Analysis
	Communication in OPlus
	Communication Optimisations

	Multigrid Model
	Model Construction
	Validation

	Summary

	Enabling Model-led Evaluation of Partitioning Algorithms at Scale
	Runtime Model for Multigrid Applications
	Model of Solver Steps
	Model Integration
	Generalisation to W-Cycles

	Additional Performance Model Detail
	Experimental Setup
	Region Grind-time Data
	Complete Loop Coverage
	Buffer Pack Cost
	Performance Model Validation (ParMETIS)

	Set and Halo Size Generation
	Partitioning Mini-Driver and Mini-Application
	Validation
	Predictive Analysis of Partitioning Algorithms

	Summary

	Developing Mini-HYDRA
	Developing Mini- and Compact-HYDRA
	Mini-HYDRA
	Compact-HYDRA
	Supporting Tools

	Mini-HYDRA Validation
	Experimental Setup
	Validation

	Impact of Intel Haswell on mini-HYDRA
	Summary

	Conclusions and Future Work
	Research Impact
	Limitations
	Future Work
	Final Word

	Bibliography

