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Fundamental limits of quantum-secure covert optical sensingf]

Boulat A. Bash,! Christos N. Gagatsos,2 Animesh Datta,? and Saikat Guha'
! Quantum Information Processing Group, Raytheon BBN Technologies, Cambridge, Massachusetts, USA 02138,
2 Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom

We present a square root law for active sensing of phase 6 of a single pixel using optical probes that
pass through a single-mode lossy thermal-noise bosonic channel. Specifically, we show that, when the
sensor uses an n-mode covert optical probe, the mean squared error (MSE) of the resulting estimator
0,, scales as ((0 — 0,)%) = O(1/y/n); improving the scaling necessarily leads to detection by the
adversary with high probability. We fully characterize this limit and show that it is achievable using
laser light illumination and a heterodyne receiver, even when the adversary captures every photon
that does not return to the sensor and performs arbitrarily complex measurement as permitted by

the laws of quantum mechanics.

I. INTRODUCTION

Active probing with electromagnetic radiation is
used in many practical systems to measure physical
properties of objects. However, there are scenarios
where the detection of such probing by an unautho-
rized third party (which could be the target object)
is undesired. In these scenarios covert, or low prob-
ability of intercept/detection (LPI/LPD), signaling
must be used. While covertness is often required by
practical stand-off sensing systems, the fundamental
limits of sensing under the covertness constraints has
been relatively under-explored.

Recently, the fundamental limits of covert commu-
nication have been characterized for several classical
and quantum channels. Covert communication is
governed by the square root law (SRL): O(y/n) bits
can be reliably transmitted in n channel uses with-
out being detected by the adversary; transmission of
more bits results in either detection or uncorrectable
decoding errors. The SRL was first proven for the
classical wireless channels subject to the additive
white Gaussian noise (AWGN) [I], with follow-on
works extending this result to discrete memoryless
channels (DMCs) and fully characterizing the con-
stant hidden by the Big-O notation [2H4].

Now consider the lossy thermal-noise bosonic chan-
nel, which is the quantum-mechanical model for op-
tical communication. The SRL also governs covert
communication over this channel: provided that there
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and the National Quantum Technologies Programme
(EP/MO01326X/1, EP/M013243/1). This document does
not contain technology or technical data controlled under
either the U.S. International Traffic in Arms Regulations or
the U.S. Export Administration Regulations.

exists a noise source that the adversary does not con-
trol (for example, the unavoidable thermal noise from
blackbody radiation at the operating temperature
and wavelength), O(y/n) covert bits can be reliably
transmitted using n orthogonal spatio-temporal po-
larization modes. As in the SRL for AWGN channel,
transmission of more bits results in either detection
or uncorrectable decoding errors [5]. Remarkably,
the SRL is achievable using standard optical com-
munication components (laser light modulation and
homodyne receiver) even when the adversary has
access to all the photons that are not captured by
the legitimate receiver, as well as arbitrary quan-
tum measurement, storage and computing capabili-
ties. Conversely, entangled photon transmissions, as
well as arbitrary quantum measurement, storage and
computing capabilities do not permit one to reliably
transmit more covert bits than the SRL allows, even
when the adversary has access to only a fraction of
the transmitted photons and is only equipped with
a noisy photon counting receiver.

A covert communications adversary has to decide
whether or not a transmission takes place. Thus, the
transmitter has to render the adversary’s detector
ineffective by ensuring that it can only do a little
better than a random decision. The SRL for covert
communications arises because, for this to happen,
the average symbol power nig must scale in the block-
length n as ig = O(1/+/n). In the AWGN setting,
ng is the average squared symbol magnitude, while
in the bosonic channel setting it is the mean photon
number per mode. By standard arguments, the total
number of reliably transmissible bits thus scales as
niis = O(y/n). Since lim, o O(v/n)/n = 0, the
covert communication channel capacity is zero, how-
ever, a non-trivial number of bits can be transmitted
when n is large (see a tutorial survey in [6]).

The results for the fundamental limits of covert
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FIG. 1. Active probing of an unknown phase of a

pixel. Transmitted n-mode probe is corrupted by a lossy
thermal-noise bosonic channel with transmissivity n and
thermal background mean photon number 72p per mode.
Fraction 1 — 7 of the photons is lost and can be captured
by the adversary, while the remaining fraction n of the
photons is received by the sensor after the probe acquires
unknown phase 0 in each mode. An estimate 6,, is com-
puted from the measurement of the received probe state
and the reference state (which adversary cannot access).
The input-output relationship of the bosonic channel is
captured by a beamsplitter of transmissivity 7, with the
sensor’s transmitter at one of the input ports and the
phase rotation followed by the sensor’s receiver at one of
the output ports. The other input and output ports of
the beamsplitter correspond to the environment and the
adversary. Switching the order of the phase rotation and
the bosonic channel does not affect phase estimation [7}
App. A].

communication over lossy thermal-noise bosonic chan-
nel in [5] motivate our investigation of the fundamen-
tal limits of covert sensing. We begin by noting that
the most effective method of staying covert is passive
imaging, which emits no energy. Passive imaging col-
lects the scattered light from a naturally-illuminated
(or self-luminous) scene. However, this can be im-
practical, or even impossible, in many scenarios. For
example, the scene could be hidden from direct line of
sight or the signal to noise ratio (SNR) at the receiver
could otherwise be insufficient to obtain the desired
performance. In these situations, active transmitters
must be employed to illuminate the target.

We therefore study the fundamental limits of
quantum-secure covert active sensing. This notion
of security is more stringent than, for example, en-
suring that the return probes are not spoofed by the
target as done in [8] (undetectable probes cannot
be spoofed). As illustrated in Figure |1} we explore
covert estimation of an unknown phase 6 of a sin-
gle pixel using an optical probe that passes through
a lossy thermal-noise bosonic channel with trans-
missivity 1 and thermal background mean photon
number nnp per mode. Adversary captures up to

2

1 — n fraction of light from the probe. We assume
that the distance to the target pixel is known. The
focus on estimating the unknown phase allows us to
leverage the extensive literature in quantum metrol-
ogy (see [9] for a recent survey); however, we believe
that similar results hold in other sensing modalities
(such as ranging, reflectometry, target detection, and
target classification). Ensuring covertness of trans-
mitted probes imposes the same power constraint
ns = O(1/4/n) photons/mode as in communications.
We thus find that covert sensing is subject to its own
SRL:

Theorem (Square-root law for covert phase sensing).
Suppose the sensor attempts to estimate an unknown
phase 0 of a pizel using an n-mode optical probe
that passes through a lossy thermal-noise bosonic
channel, as described in Figure[1. Also suppose that
the adversary has access to fraction 1 —n of the
transmitted photons. Then the sensor can achieve
mean squared error (MSE) (0 — 0,)%) = O(1//n)
while ensuring the ineffectiveness of the adversary’s
detector. Attempting to decrease scaling for MSE
results in detection of the interrogation attempt with
high probability.

In addition to the scaling law above, we charac-
terize the constants hidden by the Big-O notation
for several covert estimation schemes. We find that
using laser pulse modulation and heterodyne receiver
yields MSE that is at most twice that of the laser
light modulation coupled with the optimal receiver,
and a factor ﬁ greater than the ultimate lower
bound. This limit on enhancing the design coupled
with the constraint on the power per mode imposed
by the covertness requirement implies that only in-
creasing the number of available orthogonal modes
n can improve the performance of covert sensing
systems.

After introducing the channel model and the back-
ground on our performance metrics in the next sec-
tion, we prove the square root law for covert sensing
of phase in Section [[T, We then conclude with a
discussion of future work in Section [Vl

II. PREREQUISITES
A. Estimation

Consider a single-mode lossy bosonic channel £7®
with path transmissivity n € (0, 1) and thermal noise
mean photon number ng > 0, as depicted in Figure
The sensor (an optical interferometer) interrogates



the target using an n-mode probe with average pho-
ton number g per mode, where 1—n fraction of these
photons is lost to the adversary, while the remaining
fraction 7 returns to the sensor after acquiring the
unknown phase 6 on each mode. The sensor esti-
mates 6 using the collected light and retained state
(e.g., a local oscillator for a coherent detector), and
outputs estimate 0,,. The sensor has to minimize the
MSE of the estimate ((§ — 6,,)%) while preventing
the detection of the probe by the adversary. The
quantum Cramer-Rao lower bound (QCRLB) for the
MSE of the estimate is [9]

(0~ 6,)%) > ngw (1)

where Jq () is the quantum Fisher information
(QFI) associated with the n-mode probe state that
acquires phase 6 on each mode. If n-mode probe
state is a tensor product of n identical probe states,
each of which acquires phase 6 independently, then

Jqn(0) = nJq(0), (2)

where Jq(6) is the QFI associated with each probe
state.

B. Detectability

The adversary performs a binary hypothesis test
on his sample to determine whether the target is
being interrogated or not. Performance of the hy-
pothesis test is typically measured by its detection
error probability P{Y = EeatPup where equal prior
probabilities on sensor’s interrogation state are as-
sumed, Pgy is the probability of false alarm and Pyp
is the probability of missed detection. The sensor de-
sires to remain covert by ensuring that Pngt) > % —€
for an arbitrary small e > 0 regardless of adversary’s
measurement choice (since Pédﬁ) = % for a random
guess). By decreasing the power used in a probe, the
sensor can decrease the effectiveness of the adver-
sary’s hypothesis test at the expense of the increased
MSE of the estimate.

IIT. PROOF OF THE SQUARE ROOT LAW
FOR COVERT SENSING

We begin by demonstrating in Section [[ITA]
that, no matter how one designs the transmitted
probe and the measurement (which may include
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arbitrarily-complicated entangled transmitted states
and quantum-limited joint-detection measurements
over n modes), the MSE cannot decay any faster
than O(1/4/n) without the probe being detected
by the adversary. Next, we establish the achiev-
ability of the SRL for covert phase sensing in Sec-
tion [[ITB] where we show that one can attain MSE
((0—0,)%) = O(1/+y/n) using laser light illumination
and coherent detection. Finally, we argue for this
scheme’s near-optimality.

A. Converse

Here we show that the SRL for covert phase sensing
is insurmountable. We denote the mean total photon
number of the probe sent to the sensing arm using n
modes by (Ng) = nfig and the total photon number
variance by (ANZ). Just as in [5, Theorem 5], we
restrict the sensor to using n-mode probes with total
photon number variance (ANZ2) = O(n). However,
this restriction is not onerous, as it subsumes all
well-known quantum states of bosonic mode.

We employ the asymptotic notation [I0, Ch. 3.1]
where f(n) = Q(g(n)) and f(n) = w(g(n)) denote
asymptotically tight and not tight lower bounds on
f(n), respectively.

Theorem 1 (Converse of the square-root law). Sup-
pose the target is interrogated using an m-mode
probe with a total of (Ng) = nnig photons, and that
the total photon number variance of the probe is
(AN3) = O(n). Then, the sensing attempt is ei-
ther detected by the adversary with arbitrarily low
detection error probability, or the estimator has mean

squared error (0 — 0,)2) = Q(1/y/n).

Proof. Suppose the optical interferometer depicted
in Figure uses a general pure state |1/1>Pan, where
n modes are used in both the probe and the ref-
erence systems. Denoting by Ny the set of all
non-negative integers, and by |k) = |k1) ® |k2) ®
-+ ® |k,) a tensor product of n Fock states, the
quantum state of the combined (and potentially
entangled) probe and reference states is formally

defined as [)7 " = 2 kenp weny Uk k) K,
where ZkeNg Zk/eNg lakw|? = 1. The state in
each system is obtained by tracing out the other,
for example, the probe that is used to interro-
gate the target is p©’" = Trg» (\1/1>PanRnPn<1/1|).
Therefore, the mean total photon number in the
probe is (Ns) = Yyenp Dweny izt ki) lar |



and the total photon number variance is (ANZ) =

Sy Swerg (Cimy ki) o [ = (Ns)? = O(n).

Provided that the adversary captures a fraction
of the transmitted photons, where 1 —n >~y > 0, in
Appendix [A] we show that the interrogation attempt
is detected with arbitrarily low error probability if
(Ng) = w(y/n). To detect the sensor, the adversary
uses a standard threshold test on the total photon
count output by a noisy photon number resolving
detector [

When an n-mode probe passes through a lossy
thermal-noise bosonic channel and acquires phase 6
on each mode, we have an upper bound Jq ,(0) <

Cq.n(9), where [11]

Cn(@) = TN ANS) (n(1 + 76 (1 = m) +n(Ns))

with

The sensor must use an n-mode probe with (Ng) =
O(y/n) photons to avoid detection, which implies
that, by the QCRLB in , the MSE for any estima-
tor of 6 is ((6 — 0,)%) = Q(1//n). O

B. Achievability

We now prove that the SRL for covert sensing is
achievable even when the adversary’s capabilities are
limited only by the laws of quantum mechanics. That
is, we allow the adversary to collect all the transmit-
ted photons that do not return to the sensor, perform
quantum-limited joint-detection measurements over
n modes, and use arbitrary quantum computing and
storage resources.

Theorem 2 (Achievability). Suppose the sensor at-
tempts to estimate an unknown phase 6 of a pizel
using an optical probe that passes through a lossy

1 We also note that, if the sensor is peak-power constrained
(i.e., restricted to a finite photon number per mode), then a
single photon detector is sufficient.
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thermal-noise bosonic channel, as described in Fig-
ure[dl Also suppose the adversary can perform an
arbitrarily complex receiver measurement as permit-
ted by the laws of quantum physics and capture all the
transmitted photons that do not return to the sensor.
Then the sensor can lower-bound adversary’s detec-
tion error probability Pgdeﬂ > % —¢ for any e > 0
while achieving the MSE ((0 — 0,))2) = O(1//n)
using an n-mode probe.

Proof. Coherent state is a quantum-mechanical de-
scription of ideal laser light. Let the sensor use an n-
mode tensor-product coherent state probe @', |v;)
with each «; drawn independently from an identical
zero-mean isotropic complex Gaussian distribution
pla) = e*|a‘2/ﬁs/7rﬁs, where photon number per
state ng = f(c la?p(a)d?a. Thus, p(Q;_, |ai)) =
[1", p(e;). In Appendix [Bl we show that then the
probability of detection by the adversary is lower-
bounded by

(1 —mn)nsy/n .
Vnns (1 +nng)

]P)gdet)

1
25—4 (4)

Thus, if the sensor sets

oo _ Aev/mn(l+ nig)
i Va(l—n)

then he can ensure that the adversary’s detection

(5)

error probability can be lower-bounded by IP’gdCt) >
% — € over n modes. In Appendix |C| we show that

the use of an ideal heterodyne receiver achieves the
MSE

9_96n2 %chet
(0= bneen)?’) = 252,

(6)
where the constant cpet 18

(1—n) (A +nas(l—n)
8nv/nns (1 +nnp)

(7)

Chet =

Practical heterodyne detectors operate close to the
ideal limit, which implies (8 — Onet,n)?) = O(1/y/n).
O

C. The constant in the SRL for covert phase
sensing

Let’s evaluate how far from optimal is the covert
phase sensing scheme that uses laser light illumina-
tion and heterodyne detection, as in the proof of
Theorem 2



In Appendix [D1] we show that, when a single-
mode coherent state probe is used (with an arbitrary
detector), the QFT is

an

coh ST

)= ——""""——. 8
Jo"(6) 1+ 2ng(1—n) ®)
Therefore, by , , and the substitution of in
(8), we have ((§ — 0,,)?) > feok, where

(1-n)(1+2ns(1 —n))

Ccoh = — — .
16nv/nns(1 + nng)

Thus, the MSE attainable using a coherent state
probe and an ideal heterodyne receiver is at most
twice the quantum limit for a coherent state probe.
We also note that phase can be estimated adaptively
using both homodyne and heterodyne receivers [12],
potentially closing the gap to @

Now consider the use of two-mode squeezed vac-
uum (TMSV) states, where one of the modes is re-
tained as reference while the other is used to probe
the phase of the target pixel. Such states improve
the scaling of the MSE in g when there are no losses
[9]. The partial trace over one of the modes of the
TMSV state yields a thermal state with the same
Gaussian statistics in the coherent state basis as the
states used in the proof of Theorem Therefore,
since the adversary cannot not access the reference
system, we can use the steps in the proof of Theorem
[2] to show the covertness. In Appendix [D2] we show
that the QFI from using the TMSV state is

(9)

sq _ dng(ns + 1)n
T 14+np(l—n)+ns(l—n)(1+2np)

(10)

Note that when 7 = 1 and ng = O(1), J5! = O(Rd),
consistent with previous findings that the TMSV
states improve the scaling of the MSE in ng in lossless
scenarios [9]. However, the substitution of (] in (10),

and the use of (1) and (@) yield ((§ — 6,,)2) > f\/%,

where cyq is approximated by discarding the low-order
terms as

_(d=n)(A+ns-n)

Coq = )
T 16ny/nas (1 + nis)

The covertness constraint g = O(1/y/n) pho-
tons/mode yields the same scaling of the QFI in ng
as the coherent state. While the TMSV state probe
outperforms a coherent state probe in phase sensing
at high average noise photon number np, since the
constant cpey attainable using a coherent state probe
and heterodyne detection is only twice that of the

(11)
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best attainable constant for a TMSV probe cyq, the
challenges associated with using squeezed states may
not be worth it.

In fact, we can use the bound on the QFT for an
arbitrary n-mode state to derive the ultimate limit
for the MSE of phase sensing over the lossy thermal-
noise bosonic channel. Since is increasing in the
total photon number variance (ANZ), we can upper-
bound the QFI as

o)< Jm  Can®)

_ An(Ns)(n(1 + (1 —n)ng) + n{Ns))

- (=D - ()
where

Dy = (1 +ag)n(1+ (1 —n)ag) +n(1 4 2ag)(Ns).

By , and the substitution of in (where we
note that (Ng) = nng), we have ((§ — 0,,)?) > :\}‘E,
where cyy, is approximated by discarding the low-order

terms as

(1-n)*(1+n8)
16n+/nngs(1 4+ nnp)
Therefore, the MSE attainable using a practical sens-

ing scheme is at most ﬁ times the ultimate lower
bound.

(13)

Clp =~

IV. DISCUSSION

Section [[ITC| shows that practically-attainable
MSE is a small constant factor above optimal. More-
over, since covertness imposes a strict power con-
straint unlike in other sensing scenarios, here one
cannot decrease the MSE by increasing power, The
only degree of freedom in covert sensing (and com-
munication) is n, the number of available orthogonal
modes. Now, n = np X ng X nt, where np = 2 is the
number of orthogonal polarizations, ng is the number
of orthogonal spatial modes (governed by the channel
geometry), and np ~ TW is the number of temporal
modes (time-bandwidth product) with 7" (in seconds)
being the transmission time window and W (in Hz)
being the total spectral bandwidth of the source (see
[B, Supplementary Note 1] for a deeper discussion).
Therefore, given a constraint on the available time
T, one could increase the number of spatial modes
ng, or increase the spectral bandwidth W, or both.
We will explore this in a follow-up work.



Finally, while here we focus on phase sensing (and
assume that the distance to the pixel is known), we
plan on investigating the limits of covert signaling
in other sensing tasks such as ranging, reflectometry,
target detection and classification. Since the error
measures (s.t., the MSE and the probability of error)
in many sensing problems are also inversely propor-
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tional to the total probe power, we believe that they
are governed by the SRLs similar to the one here.
Moreover, simultaneous covert estimation of several
parameters (e.g., range and phase) enables covert
quantum imaging with its many practical applica-
tions.
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Appendix A: Upper Bound for Adversary’s Detection Error Probability in Theorem

Here we adapt the analysis of the adversary’s detection error probability from the proof of [5], Theorem 5].

We assume that the sensing arm is lossy and that the adversary has access to the fraction 1 — 7 leaked
photons. Adversary measures the total photon count X, with a noisy photon number resolving (PNR)
receiver over the n modes in which the sensor could probe. For some threshold S (that we discuss later), the
adversary declares that the sensor interrogated the target when X,z > S, and did not interrogate it when
Xiot < S. When the sensor does not interrogate, the adversary observes noise: Xt(gt) = Xp + X7, where Xp
is the number of dark counts from the spontaneous emission process at the detector, and X is the number of
photons observed from the thermal background. We model the dark counts by a Poisson process with rate A
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photons per mode. Thus, both the mean and variance of the observed dark counts per mode is A\. The mean
of the number of photons observed per mode from the thermal background with mean photon number per
mode 7ip is nip and the variance is n?(fig + n%). Therefore, the mean of the total number of noise photons
observed per mode is Ny = A 4+ nip, and, because of the statistical independence of the noise processes, the
total variance over n modes is (ANZ) = n\ + nn?(np + 7). We upper-bound the false alarm probability
using Chebyshev’s inequality:

Pra = P(X{o > 9)
(ANR)
=5 ) (A1)

Thus, to obtain the desired P, , the adversary sets threshold S = niin + / (ANZ) /Py -
When the sensor uses a probe W)P?LR” to interrogate, the adversary observes Xt(;t) = X, + Xp + X1, where
X, is the count from the transmission of the probe. We upper-bound the missed detection probability using
Chebyshev’s inequality:

Pyp = P(X{) < 5)

(o}

<P <|Xé§2 — (1= n)(Ns) = (AN)| = (1~ n)(Ns) ~ ﬁ;i“)

_ (ANB)+(L-nHAND
(1 =n){Ns) = V/(ANR)/Ppy)?
where equation (A2)) is because the noise and the probe are independent. Since (ANZ) = O(n) and we

assume that (ANS) = O(n), if (Ns) = w(y/n), then lim, oo Pup = 0. Thus, given large enough n, the
adversary can detect the probes that have mean photon number (Ng) = w(y/n) with probability of error

P < ¢ for any € > 0.

(A2)

Appendix B: Lower Bound for Adversary’s Detection Error Probability

We adapt the analysis of the adversary’s detection error probability from the proof of [B) Theorem 2].
When the sensor is not probing the target, the adversary observes thermal environment that is described
by the following n-copy quantum state (written in Fock state basis):

o = (i‘””) i <z’|>®n (B1)
pars (1+nﬁB)1+z

When the sensor probes the target, it first draws a sequence a = {o;}?_; of independently and identically

distributed (i.i.d.) random variables from a zero-mean isotropic complex Gaussian distribution p(«) =
e~lal®/ns /mng. It then interrogates the target using n-mode tensor-product coherent state probe @, |a;).
Since the adversary does not have access to «, it effectively experiences thermal noise in addition to the
environment when the sensor probes the target. Therefore, the following n-copy quantum state describes his
observation in this case:

] ®n
son — (3 (1 —n)ns +nnp)’ o
p? - (2 (14 (1 —n)ns + nap)t*? |4) <l|> . (B2)

The adversary has to discriminate between po and p; given in (B1)) and (B2), respectively. By [5, Lemma 2,
Supplementary Information], adversary’s average probability of discrimination error is:

IO P
P > 5 1= 0 = 4671
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where a photon number resolving detector achieves the minimum in this case. The trace distance ||po — p1]1
between states g1 and p;p is upper-bounded by the quantum relative entropy (QRE) using quantum Pinsker’s
Inequality [13, Theorem 11.9.5] as follows:

160 — p1llr < /2D (pollpr),

which implies that

1 1 oni~on
(Y > o =[S DG A7), (B3)
Thus, ensuring that
D(pg"IpF") < 8€? (B4)

ensures that Pgw) > = — e over n modes. QRE is additive for tensor product states:

D(pg"1pF™) = nD(pollp1). (B5)

By [5l, Lemma 4, Supplementary Information],

1
2

(1+ (1 —mn)ns +nnp)nns 1+ (1 —n)ns +nnp

n B6
(1 —n)ns +nnp)(1 + nip) 1+ nngp (B6)

D(pollp1) = nnp In (

The first two terms of the Taylor series expansion of the RHS of with respect to ng at ng = 0 are zero
and the fourth term is negative. Thus, using Taylor’s Theorem with the remainder, we can upper-bound
equation by the third term as follows:

. (1 —n)*n
D < ——F—— B7
(Pollpr) < i (L + nap) (B7)
Combining equations (B3|), (B3], and (B7)) yields:

© 2 4\/nﬁB(1+77’7LB).

Appendix C: Achievability of the Square Root Law with a Heterodyne Receiver

Here we examine the performance of optical heterodyne receiver used with coherent state probes. We
assume ideal shot-noise limited operation without a drift in local oscillator (LO) phase. This assumption is
reasonable: we can reduce the impact of excess noise in the receiver by employing a sufficiently powerful LO
and high-bandwidth electronic components, as well as track the LO phase as it drifts. The sensor satisfies
the covertness condition by interrogating the target using fig photons/mode, where fig is defined in .

When a coherent state acquires a phase shift 8 and is transmitted through a lossy-noisy bosonic channel,
as depicted in Figure[I] a heterodyne receiver outputs a noisy in-phase and quadrature components of the
coherent state that is shifted by 6 + ¢, where ¢ is the relative phase between the probe and the LO. We
assume that each reading is corrupted by additive white Gaussian noise (AWGN), as is the case in the limit
of infinite-power LO [I4], [I5]; in practice, LO power substantially exceeds signal and noise power, ensuring
that AWGN is an accurate noise model. We also assume that the sensor knows the distance to the target
(simultaneous covert ranging and phase estimation is a challenging problem that we plan on addressing in
future work). Thus, the sensor controls ¢, and sets it to ¢ = 0. The noise in the measurement of the in-phase
component is independent of the noise in the measurement of the quadrature component and vice-versa.

The sensor collects two sequences of observations corresponding to in-phase and quadrature components:

{XZ-(I)} and {Xi(Q)}7 i =1,...,n. Here Xi(I) = /nng cos(f) + Zl-(I) and XZ-(Q) = /nigsin(f) + ZZ.(Q)7 with



9
{ZZ.(I)} and {ZZ(Q)} being sequences of i.i.d. zero-mean Gaussian random variables ZZ»(I) ~N (0, 71-””32(1_"))
and Zi(Q) ~N (0, W) [14]. Let’s normalize the observations by dividing them by /n7ig. The resulting
sequences are {Yl-(l)} and {Y;(Q)}, such that Yi(l) = Xi(l)/\/nﬁg = cos(0) + Zi(I’N) and Yi(Q) = Xi(Q)/ nns =
sin(0) + 29N where Z"Y) ~ N (0, 1+7337(1*”)) and Z\ N ~ N (07 HL(PW))

2nns 2nns
Consider the following estimator for 6:

N 1 n Y(Q)
Opet = tan ! <"1 Zlnzl I(I) (C1)
n Ei:l Y;

in(g) + 1y Z@QN
—tan! (SO T2 " (C2)
cos(f) + 5 i1 Zi
_, (sin(8) + Z2(Q
—tan ' — L1 Z C
an <cos(0) T 70 ) (C3)
where ZM ~ N(0,02,) and Z(®) ~ N(0,02,,). The variance o, is:
L +np(l —n)
2 _
evn | spy/nas(1+nns) |’

where ((C4]) is because independent Gaussian random variables are additive and ((C5|) is from substituting (5]).

The MSE is:
(oot ={(o- (i) )
(o () -

where in (C7)) we use circular symmetry of the two-dimensional AWGN to change from the rectangular to polar
coordinate system. Thus, the radius is distributed as a Rayleigh random variable R ~ Rayleigh(o?,,) while

the angle is distributed uniformly ¢ ~ 2([0,27]). Now, the Taylor series expansion of tan~* (M)

cos(0)+rsin(yp)
around r = 0 is:

_1 (sin(0) +rcos(p)) r? . 3 rt
tan <cos(6)+rs1n(<p)> =0+ rcos(f+ ) — 5 sin(2(0 + ¢)) — T cos(3(0 4 ¢)) + vy sin(4(6 + ¢))
5 o 7 =
+ 2 cos(5(0 + ) — 5 sin(6(6 + ¢)) — = cos(7(6 + ¢)) + - sin(8(0 + »))
¥ (C8)
SQ-ﬁ-rcos(@—l—gD)-i—i%z (C9)
=60+ rcos(f + ¢) — (l_og(l —r)+r) provided 0 <r <1, (C10)

where the upper bound in (C9) is because sin(x), cos(x) € [—1,1]. While this demonstrates the convergence of
the Taylor series converges for r < 1, the n'P root test shows that the Taylor series in (C8]) does not converge
for r > 1 (the series converges for » = 1 by the alternating series test, however, this is a zero-probability
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event). However, since tan™*(z) € [-3,%] and 6 € (—5,%), for any 7 and ¢,
tap—1 ((S(0) Freos(o)\ ol (1)
cos(6) + rsin(p) -

Therefore, using the Taylor series expansion of log(1—2) around « = 0 in (C10)), and (C11)), it is straightforward
to show there exist constants a € (0,1) and b > 0 such that:

P sin(f) +rcos(p)\ ol < [ reos(6+e)+ br? if r < a (C12)
cos(8) + rsin(p) I otherwise

We can use (C12)) to upper bound the MSE:

~ 1 2 @ —acz/QUﬁet Rl _7’.2/20}21et
<(9 - 9het)2> < %/ (/ (rcos(6 + o) + er)QTefdr + / ﬂz%dr de (C13)
0 0 a

Uhet Uhet
]_ ,i
= o + 80, — 3¢ 7o (2a%0 4 a®(1 + 8c0pgy) + 2000, (1 + 8c%01y) — 27%)  (C14)
= 0—}216‘5 + O(O—ﬁet) (015)

_ 1 {d-nd+ns—n)) 1
=/ | e Y ]Jr(’)(n). (C16)

Appendix D: Quantum Fisher information for phase estimation with coherent state and two-mode
squeezed vacuum input

Here we provide the details of calculating the quantum Fisher information (QFT) for estimating the unknown
phase 6 that is picked up by (a) a single-mode coherent state, and (b) by one of the modes of a two-mode
squeezed vacuum (TMSV) state. After the phase shift, the probe state passes through a lossy thermal-noise
bosonic channel. We note that the order of the phase shift and the bosonic channel does not affect the QFI
[7. Appendix A]; we picked the order for the clarity of exposition.

To obtain the QFI we employ the quantum fidelity F'(p1, p2) between two arbitrary Gaussian quantum
states p; and po [16]:

. 1 _
F(p1, p2) = Fyexp —iéT(V1+V2) s, (D1)

where V1 (Va2) is the covariance matrix corresponding to the density operator p; (p2), 9 is the difference of
the displacement vectors of each state,

6 =05 — 61, (D2)
the function Fj is,
Fi
FO — tot (D?))
vdet (V14 Va)
and
K 1/2
Foot = H {wk + 4/ w? — 1} ) (D4)
k=1

In (D4), twg, k=1,..., K are the (standard) eigenvalues of the matrix
W = -2iVQ, (D5)
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where  is the symplectic invariant matrix

Q- (01 é) o1, (D6)

1 is the identity matrix, and V is given by
T 1 (2
V=0 (Vi+Vy) <4 + VzﬂVl) . (D7)

We are now equipped to tackle the problem at hand.

1. Coherent State

Initially, we have a coherent state |a) with covariance matrix

1710
VCOh = 5 (0 1) (DS)

and displacement vector

deon = (ggg) . (DY)

The mean photon number of the coherent state is fig = |a|> = Ra? + Sa?. This coherent state picks up a
phase 6, which is described by the phase space transformation

cosf sinf
Xy = ( sinf cos 0) ) (D10)

Under this rotation, the covariance matrix of the coherent state remains the same,
Vcoh,@ = XGVcthg = VCOh) (Dll)

while the displacement vector is transformed to:

(D12)

deon,o = Xpdeon = (\@%a cosf + v23asin 9) .

V23 cos — v2Rasin 6

The rotated coherent state now passes through a lossy thermal-noise bosonic channel, where we denote
the mean photon number per mode of the thermal environment by ng. The transformation of the rotated
coherent state by the lossy thermal-noise bosonic channel is Vy = thVCOh,QX.g; + Yy, dg = Xdeon,o + denv,
where

X, = (\(/)ﬁ \%) (D13)

ng+1i 0
Ya=-n (™57 %)) (1)
2

and the displacement vector of the thermal environment is

deny = (x“‘> : (D15)

Yth
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From (D11)), (D12)), (D13}, (D14), and (D15)) we obtain the final covariance matrix Vy and the displacement
vector dq

_ (ms(1—n)+3 0
Vl_( o nB(l—n)+§> (D16)

4y — (a:th + V2 (Racos 0 + Sasin 0)> .

Yen + \/ﬁ\/ﬁ (Sacosf — Rasin §) (D17)

We want to compute the quantum fidelity between the final state described by V1 and d; and a state evolved
by df in parameter space, i.e., a state with covariance matrix

Vo=Vi(0 = 0+df) =V, (DlS)

and displacement vector

_ (e + /IV2 (Raccos(0 + df) + Sasin(f + df))
d2 = da(0 = 0+ df) = (yth + V2 (Sacos(0 + df) — Rasin(0 + d)) ) (D19)
Using (D), (D6), (D7), (D16), and (D1§) we derive:
2i — (ip(l — 2 _1
W — _ 7 0 e (nB(l 77)+2) il (D20)
L+ng(l—n) \(ag(1 —n)+3)" +; 0

The form of W as expressed in (D20) implies that it has two eigenvalues +w; with,

W= +ﬁ32(1 ) ((nB(l —n)+ ;) + i) : (D21)

Using (D2)), (D3)), (D4), (D16), (D17), (D18)), and (D19) we find the quantum fidelity F'(p1, p2) = F(df) in
(D1). The QFT is given by four times the second order term of the expansion of 1 — F(df) (the 1/2 factor in
front of the expansion’s second order term is not included):

d? 4dngn
=4 1— F(df = . D22
Jq d(d0)2( (a9)) 1+ 2ag(1—n) (D22)

d6=0
2. Two-mode Squeezed Vacuum (TMSV) State
The covariance matrix of the TMSV state is:

cosh 2|¢| sinh2[¢| 0 0

1 [ sinh2|¢] cosh2|¢| 0 0
Vaa=31 o 0 cosh2l¢| —sinh2l¢] ] (D23)

0 0 —sinh 2|¢| cosh 2¢|

noting that the coordinates representation we use is of the form (g1, g2, ..., p1,p2,...). Also, the TMSV state
is expressed in Fock (photon number) basis as follows:

1

100; [€]) = cosh €|

> tanh [¢[*|kk). (D24)
k

We use one of the modes of TMSV state for probing the unknown, and keep the other as reference. The
mean photon number for either mode of the TMSV state is fig = sinh?® |€|.
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The probing mode of the TMSV passes through the lossy thermal-noise bosonic channel, while nothing
happens to the reference mode. Therefore, the symplectic phase transformation is as follows:

cosf@ 0 sinf 0

;o 0 1 0 O
X'o = —sinf 0 cosf 0| (D25)
0 0 0 1

and the complete channel transformation, i.e., lossy thermal-noise bosonic channel for the probing mode and
identity for the reference modes, is as follows:

(D26)

0
0
ol (D27)
0

where 7 is the transmittance of the channel and np is the thermal background mean photon number.

The output covariance matrix is Vi = X'y X/ g Vo X' gX’ o1 + Y'q1. Note that the displacement vector of
the TMSV state is a zero-vector and the phase shifting information is carried by the output covariance matrix.
Following the same procedure as in and for the coherent state state probe, and the computing
the eigenvalues of the latter, we find the QFI for estimating phase 6 using a TMSV state:

. 21 sinh? 2|¢|
e . D28
Q " 145+ (1+2a)(1 —n)cosh 2 (D28)
Noting that 7ig = sinh® |¢| — |¢| = arcsinh \/fis, (D28) can be written as:
dng(n 1
g5 = ns(ns +1)n (D29)

1+np(l—n)+ns(l—n)(1+2np)

(
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