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from my supervisor. The numerical methods for the PDEs were a joint e↵ort with

V. Triantafyllidis led by me (we worked independently on two methods for the
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by V. Triantafyllidis, with the results section and generation of results split between

us), before being edited by my supervisor.
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Abstract

Computer simulations are widely used in scientific research and engineering

areas. Thought they could provide accurate result, the computational expense is

normally high and thus hinder their applications to problems, where repeated eval-

uations are required, e.g, design optimization and uncertainty quantification. For

partial di↵erential equation (PDE) models the outputs of interest are often spatial

fields, leading to high-dimensional output spaces. Although emulators can be used to

find faithful and computationally inexpensive approximations of computer models,

there are few methods for handling high-dimensional output spaces. For Gaussian

process (GP) emulation, approximations of the correlation structure and/or dimen-

sionality reduction are necessary. Linear dimensionality reduction will fail when the

output space is not well approximated by a linear subspace of the ambient space

in which it lies. Manifold learning can overcome the limitations of linear methods

if an accurate inverse map is available. In this thesis, manifold learning is applied

to construct GP emulators for very high-dimensional output spaces arising from

parameterised PDE model simulations. Artificial neural network (ANN) support

vector machine (SVM) emulators using manifold learning are also studied. A gen-

eral framework for the inverse map approximation and a new e�cient method for

di↵usion maps were developed. The manifold learning based emulators are then to

extend reduced order models (ROMs) based on proper orthogonal decomposition to

dynamic, parameterized PDEs. A similar approach is used to extend the discrete

empirical interpolation method (DEIM) to ROMs for nonlinear, parameterized dy-
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Chapter 1

Introduction and literature

review

Modelling and simulation play important roles in modern science and engineering.

Mathematical models are typically based on conservation laws, expressed as ordi-

nary or partial di↵erential equations (ODEs or PDEs), together with constitutive

relations and boundary/initial conditions. Such models can be implemented on a

computer using a variety of numerical methods, e.g., the finite element or finite

volume methods in the case of spatially-distributed systems, together with a time-

stepping scheme for dynamic models. The resulting discretized (finite-dimensional)

system is often referred to as a computer model , simulator or high fidelity model .

Simulations can often be used to estimate properties or provide insight into

the behaviour of a physical system when such properties or behaviour cannot be

studied or measured experimentally (e.g., ab-initio simulations). They can also

dramatically reduce the timescales and costs associated with analysis, design and

testing. Simulators, however, can be highly computationally expensive. For appli-

cations in which repeated calls to a simulator are required, e.g., design optimization,

uncertainty quantification and sensitivity analysis, direct implementation of the sim-

ulator can be computationally infeasible, even when the computational time is only
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moderately long [2, 3]. For example, 10,000 Monte Carlo runs of a simulator that

takes 30 min per run would require more than 208 days of run time without a proper

parallelisation.

In order to overcome this problem, it is common practice to employ a sur-

rogate model (or simply ‘surrogate’), also referred as an emulator or a meta model,

in place of the simulator. These terms would be used interchangeably throughout

this thesis. The surrogate approximates the simulator, with the advantage that it

can be evaluated very cheaply, ideally in real-time [2–8].

Depending on the application, the target of interest and the form of the sim-

ulator, e.g., how the spatial grid is constructed, whether the simulator is dynamic

or steady state, or whether stochastic or deterministic components (in some aspects

of the specifications) are involved, surrogates can be constructed in di↵erent ways.

Broadly speaking, there are three classes of surrogate models [9]. Hierarchical or

multi-fidelity approaches construct surrogates from the original models via simpli-

fying assumptions, such as spatial uniformity, using coarse or successively refined

grids in the numerical implementations, or by relaxing error tolerances.

The most common approaches are data-driven (or statistical or black-box ),

which implement machine-learning techniques, e.g., polynomial response surfaces,

artificial neural networks (ANN), Gaussian process regression or emulation (GPR or

GPE) and support vector machines (SVM), to learn the mapping between the inputs

and outputs of the high-fidelity model based on a few selected runs at judiciously

selected design points [3].

A model order reduction approach can also yield a surrogate model. Such

approaches directly reduce the size of the original model or the numerical formulation

by projecting the system onto a space of lower dimension. The resulting reduced

order model (ROM) can be thought of as an surrogate, although typically the terms

‘emulator’ and ‘surrogate’ are avoided and such models are simply referred to as

ROMs.
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In this thesis, data-driven emulators and ROMs would be the focus. From

an algorithmic viewpoint, both involve two stages:

1. An o✏ine stage is where a simulator is explored to provide knowledge of the

system and to build a surrogate model. For data-driven methods, this stage

involves evaluating the simulator at carefully chosen input parameter values

(‘design points’) to generate solutions that are used as ‘training’ data, i.e. data

to approximate (‘learn’) the mapping between the inputs and the simulator

output of interest. For the ROM approaches, the solutions are used to find a

low-dimensional subspace that approximates the space in which the simulator

outputs lie. A ROM is then constructed by projecting the original system (the

high fidelity model) onto the approximating subspace. Selection of the design

points for both approaches is a process known as design-of-experiment (DOE).

2. An online stage in which the emulator is used as an alternative to the simulator,

i.e., to provide predictions corresponding to new (test or query) inputs. This

stage is typically very rapid.

In the next section, a literature review is provided for both types of emulators con-

sidered in this thesis, with the aim of outlining the current challenges with respect

to the main problem under consideration in this thesis:

The emulation of parameterized spatial and spatio-temporal PDE models

(involving high-dimensional output spaces).

The contributions of this thesis towards data-driven emulators and ROMs, in rela-

tion to the main problem above, are made clear in both cases.
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1.1 Data driven surrogates for outputs in high dimen-

sional spaces

A simulator can be represented as a mapping ⌘⌘⌘ : X ! Rd, taking inputs ⇠⇠⇠ 2 X ⇢ Rl

in some space X and generating outputs y 2 Rd. A data-driven (black-box) sur-

rogate aims to approximate the function ⌘⌘⌘(·) within a supervised machine learning

framework, i.e., based on so-called ‘training’ data in the form of inputs and corre-

sponding outputs from the simulator at carefully chosen inputs/parameters (‘design

points’) [2, 4, 10], Since data-driven surrogates are ‘blind’ to the underlying model

and are only dependent on the training data and the machine learning techniques,

they can be computationally cheap, are very versatile, and are able to handle non-

linearities readily to some extent when the problem is properly setted up. They are

applicable to a broad range of applications, e.g., uncertainty quantification (UQ)

[11–15] and sensitivity analysis as outlined in [16–19].

The machine learning method used is the most important factor in the de-

velopment of a data-driven surrogate (together with the choice of design points)

and should ideally be chosen according to our prior knowledge of the simulator

[20, 21]. Among the many methods available (excluding simple polynomial inter-

polations), GPE/GPR, ANNs and SVMs are the most widely used, especially GP

models since they are versatile (di↵erent covariance functions and structures, con-

venient analytical properties, explicit formulae in simple cases) and automatically

provide a probabilistic (Bayesian) framework, making it easier to avoid overfitting.

In this thesis, Gaussian process emulation (the term ‘emulation’ is more common in

this context) is used as our main data-driven technique due to the aforementioned

advantages, but ANNs and SVM regression are also implemented.

Emulation is usually limited to the approximation of a few scalar outputs

as functions of input variables or parameters. These are summaries of the outputs,

such as an average, a value at a specific point or time, a maximum or minimum, or
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some other quantity derived from the model outputs. In practice, however, partic-

ularly when the simulator involves numerical solutions of a set of PDEs, the goal

may require approximations to a spatial or spatio-temporal field as a function of

the inputs/parameters since such a result provides informations across the problem

domain. The solution (output) space of the simulator in this case is given by vec-

torized discrete field values y 2 Rd, the coordinates of which are the field values at

d locations on a spatial grid. The dimension d of the output space poses enormous

challenges in terms of computational e�ciency.

For even moderately coarse spatial discretizations, e.g., a 100 ⇥ 100 ⇥ 100

grid in R3, the value of d is very large. In problems involving complex geometries or

multiple spatial scales, a much finer grid may be required to adequately resolve small-

scale characteristics. A näıve approach is to treat the output index (representing

the field value at a particular location in the spatial domain) as an additional input

parameter [5] and to employ methods for scalar outputs. This approach is infeasible

for more than a few spatial locations, even for parsimoniously selected training

points [22]. On the other hand, with too few spatial locations, the emulator may

not provide su�cient information. ANNs can of course handle multiple outputs, but

are again impractical for very large values of d (the number of network weights and

subsequent optimisation would be prohibitive).

In GPE, the output of a simulator is modelled as a GP indexed by the

parameters [6, 23–26]. GP models were first used for emulation in [4, 10]. The GPE

framework (as well as SVM regression) is not naturally extended to multiple outputs.

Conti and O’Hagan [27] developed a method in which a multi-dimensional GP prior

is placed over the outputs and separability of the covariance structure is assumed;

that is, the between-output covariance and between-index correlations are factored,

and it is assumed that a single set of correlation lengths governs all points in the

spatial domain. This is essentially the linear model of coregionalization with a so-

called intrinsic formulation [28]. Although the resulting method is computationally
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practical, separability is a severe assumption to make. In many problems of practical

interest, e.g., when a phase change takes place or a shock is formed, this assumption

is invalid.

Recent extensions of this idea can be found in [29–31]. Fricker et al. [29]

made use of the linear model of coregionalization (LMC), which constructs a p-

variate GP using d0  d independent univariate GPs [28, 32]. Since the number of

hyperparameters increases with the value of d0 in this method (the GP distributions

are not identical), it is restricted to low dimensional outputs. Rougier [30] developed

an outer-product emulator that takes advantage of factorizations of the covariance

matrix to improve computational e�ciency. The method is, on the other hand,

based on a number of simplifying assumptions (including separability) in regard to

the regression functions and correlation structure.

An alternative approach based on dimensionality reduction of the output

space was developed by Higdon et al. [1], who used principal component analysis

(PCA) combined with separate GPE of the coe�cients in the PCA basis. Since the

coe�cients are uncorrelated, they can be treated as independent, with distinct sets

of correlation lengths. A similar approach based on a wavelet decomposition was

proposed by Bayarri et al. [33]. PCA will fail when the output space does not lie

close to a linear subspace of the original space, e.g., if abrupt changes take place

with variations in one or more input parameters. Other linear methods such as

independent component analysis and multidimensional scaling su↵er from the same

issues.

1.1.1 Thesis contributions on data-driven emulation

By combining manifold learning methods and scalar GPE, manifold-learning based

Gaussian process emulators are constructed for emulating vectorized field values

in very high dimensional spaces Rd. The manifold learning is shown that it can

be placed within the overall learning task. Essentially, the learning takes place
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in a feature space, defined by the low-dimensional approximations (dependent on

the method) of the physical points in Rd. Approximate inverse maps (the map

from reduced-dimensional space to physical space Rd) are employed to yield the

final predictions for new (test) inputs/parameters. Three di↵erent manifold learn-

ing techniques, namely, Isomap (in chapter 3), kernel PCA and di↵usion maps (in

chapter 4), are used in this thesis. Others (namely local tangent space alignment

(LTSA) and local linear embedding (LLE)) are also implemented, but the results are

omitted since further work is required to assess the results fully. The basic approach

is then extended by implementing di↵erent machine techniques: ANN (in chapter

5) and SVM regression (in Chapter 4).

A crucial step is the inverse mapping (pre-image) for the manifold learning

methods. For di↵usion maps there are current two existing solutions. In this work, a

new approach where only linear algebra is involved to construct the pre-image map

(based on a continuous state space spectral analysis of certain Markov operators

defined on a graph) is introduced . Unlike the existing solutions where complex

optimization algorithms are involved, our method is computationally cheap and free

from issues such as local optima trapping and sensitivity to initial guesses. The

existing methods were developed for 2-D and 3-D shape analysis, and would be

computationally infeasible for the problems considered in the thesis. Furthermore,

for techniques with existing pre-image solutions, e.g., kernel PCA and Isomap, a

new general framework for the pre-image map is also introduced (chapter 4).

1.2 Reduced order models

A reduced order model (ROM) is essentially a Galerkin projection of the simulator

onto the subspace spanned by an approximating basis. In the ROM area, a sim-

ulator is often termed a full order model (FOM). For PDE models, the Galerkin

projection can be performed on the original equations (including a weak form) or
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on the spatially discretized system. The final form is an algebraic system for steady

problems or an ODE system for dynamical problems. The approximating basis in

ROMs can be obtained through balanced truncation [34], Krylov subspace methods

[35] or proper orthogonal decomposition (POD) [36, 37]. The first two are largely

restricted to linear, time-invariant (LTI) systems.

A recent survey of projection methods can be found in [38]. The most widely

used technique for PDE systems is POD, in which the approximating subspace is

obtained from solutions (snapshots) generated by the discretized full-order model

(FOM) at selected time instances. Applications to dynamic, nonlinear parameter-

ized PDEs presents a number challenges: (i) constructing a basis that is valid across

parameter space; (ii) dealing with high dimensional parameter spaces; (iii) using

data parsimoniously; (iv) e�ciently computing the reduced-order system matrices

and reduced-order nonlinearities (in the state variable) during use of the surrogate

(online).

There are several approaches to incorporating parametric dependence: (a)

to use a global basis (meaning across parameter space); (b) interpolation of the

local basis (meaning for a particular parameter value); and (c) interpolation of local

system matrices. For linear time-invariant (LTI) systems, the system matrices often

take the form of a�ne combinations of constant matrices with parameter-dependent

coe�cients. In such cases the reduced order system is quickly and easily assembled

for a new parameter value [39–41]. A�ne forms can also be realised using Taylor

series expansions [39, 42] or by using an empirical interpolation strategy [43]. Global

basis methods extract a single basis by combining local snapshot matrices to form a

global matrix [39, 44–46]. Obvious drawbacks are the violation of POD optimality

and the growth in the size of the global matrix with the number of samples. There

are, however, e�cient sampling strategies for constructing global bases, such as the

greedy approach of [39] or by using a local sensitivity analysis [47].

An alternative to global basis methods is interpolation of local bases or local
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reduced model matrices. Lieu et al. [48] used the principal angles between two

POD bases for di↵erent Mach numbers in a linearized fluid-structure ROM model

to linearly interpolate a local basis for intermediate Mach numbers. This method

is restricted to single-parameter systems and small parameter changes. Amsallem

and Farhat considered the local bases as members of a Grassmann manifold, the set

of all subspaces (of a chosen low dimension) of the state space [49, 50]. The local

bases are mapped to a tangent space of the Grassman manifold using a logarithmic

map and Lagrange interpolation is performed in the tangent space, with an inverse

exponential map providing the required local basis.

Interpolation methods can also be used to approximate the reduced-order

system matrices, in order to circumvent the problem of computing these matrices

for each new parameter value. Degroote et al [46] proposed two methods: element-

wise direct spline interpolation of the reduced-order matrices or spline interpolation

of the matrices in a tangent space of a Riemannian manifold on which the matrices

are assumed to lie (a similar method was proposed in [51]). When a global basis

is not used to build the reduced-order model, a straightforward interpolation is

not possible because the reduced-dimensional coordinates do not (in general) have

the same physical meaning from one local basis to another. Thus a congruency

transformation to a common basis is required before direct interpolation [52] or

interpolation in a tangent space [50, 53].

Lieberman et al. used a greedy algorithm to construct projections for both

the state variable and the parameters simultaneously, minimizing a measure of the

error between the ROM and FOM outputs at each iteration [54] (di↵erent error

measures are considered in [55]). Hay et al [56, 57] used sensitivities (derivatives) of

the POD basis with respect to (w.r.t.) the parameters to either linearly extrapolate

the POD basis for a new parameter value or to expand the POD basis by augmenting

it with the corresponding sensitivities. The growth in the basis dimension with the

number of parameters is a limitation of this approach.
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The computational cost of evaluating a strong (high order polynomial or non-

polynomial) nonlinearity in the state variable in a ROM depends on the dimension

of the original state space. Expansions of the system nonlinearity using quadratic

reduction [58], bi-linearization [59], or Volterra series [60] are only applicable to

weak nonlinearities or confined regions of state space. Moreover, the computational

cost grows exponentially with the order of the approximating expansion. Recently, a

number of hyper-reduction methods have been developed to overcome the limitations

of linearization techniques. An early method was developed by Astrid et al. [61, 62],

based on selecting a subset of the FOM equations corresponding to heuristically

chosen spatial grid points, followed by a Galerkin projection of the resulting reduced

system onto the POD basis.

The empirical interpolation (EIM) method interpolates the nonlinear func-

tion at selected spatial locations using an empirically derived basis, and is applied

to directly to the governing PDE [40, 41]. A discrete version, termed the discrete

empirical interpolation method (DEIM), is applicable to general ODE or algebraic

systems arising from a spatial discretization [63, 64]. Both methods construct a

subspace for the approximation of the nonlinear term and use a greedy algorithm to

select the interpolation points. An extension to DEIM [65] generates several local

subspaces using a clustering algorithm and uses classification in the online phase to

select one of the local subspaces. These approaches can also be used for approximat-

ing system matrices in non-a�ne cases by vectorization of the matrices [38]. The

Gauss-Newton with approximated tensors (GNAT) method, on the other hand,

operates at the fully discrete level in space and time, and is based on satisfying

consistency and discrete-optimality conditions by solving a residual-minimization

problem [66]. This leads to a Petrov-Galerkin (rather than Galerkin) problem with

a test basis that depends on the residual derivatives w.r.t. the state variable.
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1.2.1 Thesis contributions on POD ROMs

In this thesis, an extension of POD for dynamic, parameterized, linear and nonlinear

PDEs is introduced. The method developed involves a computationally e�cient

approximation of the basis and nonlinearity for new parameter values. It can be

used in conjunction with many of the methods described above, e.g., greedy sampling

and methods for approximating non-a�ne system matrices. In order to avoid any

loss of information and inconsistency in the construction of new bases, snapshots

rather than the bases or system matrices are approximated directly.

The snapshots, however, lie in high-dimensional spaces so that direct ap-

proximations are computationally infeasible. This issue is overcomed by using the

manifold learning based emulation methods developed (described section 1.1.1) to

approximate the snapshots for new parameter values. To handle nonlinearities, the

DEIM is extended by using the same emulation approach to approximate snapshots

of the nonlinearity at desired locations in parameter space. The method is then

implemented for a finite volume (FV) approximation of a 2-D linear convection-

di↵usion problem with a stochastic velocity field as the input. An UQ analysis is

also performed to illustrate the application of our ROM. A second example, of a 1-D

(nonlinear) Burger’s equation, is also presented to demonstrate the use of the mod-

ified ROM with a simultaneously modified DEIM. In this case, finite element (FE)

formulation is considered. The results are compared to a global basis approach, and

are shown to yield a higher accuracy.

1.3 Thesis outline

In chapter 2 an outline of the techniques employed in this thesis is provided. These

include the regression techniques, Bayesian regularization, linear dimension reduc-

tion and manifold learning methods, pre-image maps, design-of-experiment, numer-

ical methods for PDEs, Galerkin projections and POD.
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The main problem considered for the data-driven emulation is formulated in

chapter 3. Linear (PCA) approach of Higdon et al. [1] is introduced in section 3.2

and motivate the implementation of Isomap and the improved version kernel Isomap

in section 3.3, providing full details of the methods. The approach for Isomap based

GP emulation is then presented, including the pre-image solution, and show results

on three di↵erent problems, with comparisons to Higdon’s method.

Chapter 4 extends the work in Chapter 3 by using kernel PCA and di↵usion

maps (full details in sections 4.1 and 4.2) in place of Isomap. The GPE emulation

approaches using these methods are then presented. The pre-image problem is

placed in a new general framework in section 4.4 for kernel PCA and di↵usion

maps. Our new pre-image solution for di↵usion maps is presented in section 4.4.2.

Numerical experiments are then shown, including comparisons with ANN and SVM

regression in place of GPE in our framework, as well as comparisons to Higdon’s

method.

An ANN emulator is implemented in chapter 5, in which AAN with Bayesian

regularization replaces GPE. The results of two numerical experiments shown are in

section 5.2, alongside comparisons with the GPE based emulators. In chapter 7 full

details of POD-based reduced order modelling are shown, with a specific example

of a nonlinear parabolic PDE. Details of the emulation of the snapshots and the

extension of DEIM to parametric cases are provided. Two examples (one linear and

one nonlinear) and compare the results to a global basis approach are then presented

as following. Finally, conclusions are drawn in Chapter 8.
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Chapter 2

Methodologies

2.1 Introduction

In this chapter, the basic concepts and methods employed throughout the thesis are

introduced. It starts with methods of regression (also known as function approx-

imation), which can be classed as supervised machine learning techniques. That

is, inferring a function given data that is labelled in some way by an input. The

dimensionality reduction methods are then outlined. These can be classed as unsu-

pervised learning techniques, i.e., inferring a function or mapping or categorisation

that reveals hidden structures from unlabeled data (no corresponding inputs or la-

bels). Linear methods are initially discussed before outlining nonlinear dimension-

ality reduction (also called manifold learning), including methods for inverse maps

(mapping dimensional representations back to the original space). A discussion on

design-of-experiments (choosing inputs in order to construct the data for building

an emulator) is provided. Numerical approximations for PDEs, namely the finite

di↵erence, volume and element methods, are then introduced. This chapter are

closed with a description of the Galerkin method and a detailed discussion of proper

orthogonal decomposition (POD). The POD is presented from several perspectives.

Given the numerous interpretations and labels given to POD in the literature, the
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connections between POD and other (equivalent but sometimes subtly di↵erent)

methods are detailed.

2.2 Regression methods

Regression methods can range from simple least squares fitting of polynomials to

advanced methods of Bayesian inference. In this section, the three methods used in

this thesis are outlined. Other than polynomial surface fitting, these methods are

by the far the most widely used in emulation tasks. The discussion is kept to the

univariate case. Extensions to multivariate (high-dimensional outputs) presented in

later chapters are based on the univariate models below.

2.2.1 Univariate Gaussian process emulation

Suppose that one wishes to approximate a scalar valued function y = ⌘(⇠⇠⇠) 2 R,

which maps inputs ⇠⇠⇠ = (⇠
i

, . . . , ⇠
l

)T 2 X ⇢ Rl to outputs y 2 R given values of the

function at selected (design) points.

In GPE, a prior distribution assumed over this function in the form of a

GP indexed by ⇠⇠⇠ 2 X . For each fixed ⇠⇠⇠, ⌘(⇠⇠⇠) is a random variable. A collection

of values of ⌘(⇠⇠⇠) at di↵erent values of ⇠⇠⇠, on the other hand, is a partial realization

(a deterministic function of ⇠⇠⇠) of the GP. The probability distribution of partial

realizations can be expressed as follows: The joint distribution of (⌘(⇠⇠⇠1), . . . , ⌘(⇠⇠⇠N ))

for an arbitrary finite collection ⇠⇠⇠1, . . . ,⇠⇠⇠N 2 X is multivariate Gaussian. A GP is

denoted by GP (m(⇠⇠⇠), c(⇠⇠⇠,⇠⇠⇠0)), where the first and second arguments are the mean

function and covariance function:

m(⇠⇠⇠) = E[⌘(⇠⇠⇠)]

c(⇠⇠⇠,⇠⇠⇠0;✓✓✓) = Cov (⌘(⇠⇠⇠), ⌘(⇠⇠⇠0)) = E[(⌘(⇠⇠⇠)�m(⇠⇠⇠))(⌘(⇠⇠⇠0)�m(⇠⇠⇠0))],
(2.1)

respectively. Here ✓✓✓ is a vector of hyperparameters that appear in the covariance
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function, i.e, in the specification of the probabilistic model. They are typically

unknown a priori and must be estimated as part of the GPE framework. The most

common choice for the mean function is a constant value (linear functions of ⇠⇠⇠ are

also frequently used). In this work, a constant zero value was assumed by centring

the data, that is m(⇠⇠⇠) = 0 for all ⇠⇠⇠. It is worth to point out that this is a prior belief

that is updated using the data to obtain a new ‘posterior GP distribution’, with

updated mean and covariance functions. The data centring makes this assumption

reasonable.

GPE is performed using training points y(i) = ⌘(⇠⇠⇠(i)) corresponding to design

points ⇠⇠⇠(i), i = 1, . . . ,m. a vector of targets is defined as:

t = (y(1)), . . . , y(m)))T . (2.2)

The GP prior over ⌘(⇠⇠⇠) is:

⌘(⇠⇠⇠)|✓✓✓ ⇠ GP
�
0, c(⇠⇠⇠,⇠⇠⇠0;✓✓✓)

�
, (2.3)

where the notation indicates that ⌘(⇠⇠⇠) is distributed according to a GP with an

identically zero mean function and a covariance function c(⇠⇠⇠,⇠⇠⇠0;✓✓✓) given the values

of ✓✓✓. The GP prior and the forms of the covariance and mean functions specify a

distribution over functions to which our desired mapping ⌘(⇠⇠⇠) belongs. A variety

of covariance functions have been employed for GPE, including the Matérn class,

piecewise polynomials, and the squared exponential, all of which define weak sta-

tionary processes. In this work, a square exponential covariance function is utilised,

which is the most common form:

c(⇠⇠⇠,⇠⇠⇠0;✓✓✓) = ✓0 exp
�
�(⇠⇠⇠ � ⇠⇠⇠0)Tdiag(✓1, . . . , ✓

l

)(⇠⇠⇠ � ⇠⇠⇠0)
�

(2.4)

, where ✓✓✓ = (✓0, . . . , ✓
l

)T . The parameters ✓1, . . . , ✓
l

are the inverse square correlation
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lengths. Use of this covariance function expresses the belief that the realizations of

the GP are continuous functions of ⇠⇠⇠ in a mean square sense.

GPE is also a Bayesian approach; the prior distribution (2.3) encodes the

model and the prior beliefs about ⌘(⇠⇠⇠) (types of functions to which it belongs). The

given data t is used to update the model in the form of another GP that represents an

improved prediction of ⌘(⇠⇠⇠). Thus, a point estimate of ⌘(⇠⇠⇠) but rather distributions

at each value of ⇠⇠⇠ over values that ⌘(⇠⇠⇠) may take, or equivalently a distribution over

functions of ⇠⇠⇠ is obtained. The updated mean function yields E[⌘(⇠⇠⇠)] at each value

of ⇠⇠⇠, while the covariance function provides predictive variances in this estimate.

Rather than integrating over the space of functions, which requires a definition for

a probability measure in the space of functions, the procedure in GPE is simplified

by the standard conditioning properties of Gaussian distributions.

The likelihood p(t |✓✓✓) is the probability distribution of the data given the

hyperparameters, which by the properties of a GP is distributed as a multivariate

Gaussian N (0,C(✓✓✓)) with mean 0 and covariance matrix :

C(✓✓✓) = [C
ij

], where C
ij

= c(⇠⇠⇠(i),⇠⇠⇠(j);✓✓✓), i, j = 1, . . . ,m (2.5)

The joint distribution p(⌘(⇠⇠⇠), t |✓✓✓) for ⇠⇠⇠ 2 X is likewise distributed according to

N (0,C(✓✓✓)0), where:

C0(✓✓✓) =

2

64
C(✓✓✓) c(⇠⇠⇠)

c(⇠⇠⇠)T c(⇠⇠⇠,⇠⇠⇠;✓✓✓)

3

75 , (2.6)

in which:

c(⇠⇠⇠) = (c(⇠⇠⇠(1),⇠⇠⇠;✓✓✓), . . . , c(⇠⇠⇠(m),⇠⇠⇠;✓✓✓))T , (2.7)

The conditional predictive distribution at new inputs ⇠⇠⇠ 2 X is obtained from the
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joint distribution p(⌘(⇠⇠⇠), t |✓✓✓) by conditioning on t to yield the updated GP:

⌘(⇠⇠⇠)|t ,✓✓✓ ⇠ GP (m0(⇠⇠⇠;✓✓✓), c0(⇠⇠⇠,⇠⇠⇠0;✓✓✓)) ,

m0(⇠⇠⇠;✓✓✓) = c(⇠⇠⇠)TC(✓✓✓)�1
t ,

c0(⇠⇠⇠,⇠⇠⇠0;✓✓✓) = c(⇠⇠⇠,⇠⇠⇠0)� c(⇠⇠⇠)TC(✓✓✓)�1
c(⇠⇠⇠0).

(2.8)

The expected value E[⌘(⇠⇠⇠)] of ⌘(⇠⇠⇠) at an arbitrary input is given by m0(⇠⇠⇠;✓✓✓) while

the predictive variance Var(⌘(⇠⇠⇠)) in the prediction is given by c0(⇠⇠⇠,⇠⇠⇠;✓✓✓).

The hyperparameters ✓✓✓ are, however, unknown. Point estimates [5, 67] such

as the maximum likelihood estimate (MLE) are typically employed; that is, the

predictive distribution is given by equation (2.8) using the MLE estimate. The

MLE is obtained by assuming a uniform distribution for the hyperparameters and

using Baye’s rule to obtain p(✓✓✓|t) / p(t |✓✓✓), where the latter is the known likelihood.

Thus, maximizing the (log of the) likelihood gives the the most likely value of ✓✓✓:

✓✓✓
MLE

= arg max
✓

✓

✓

log p(t |✓✓✓)

= arg max
✓

✓

✓

✓
�1

2
ln |C(✓✓✓)|� 1

2
t

TC(✓✓✓)�1
t

◆
.

(2.9)

A fully Bayesian inference requires integrating over ✓✓✓ in the joint distribution of

✓✓✓ and ⌘(✓✓✓). The integration is analytically intractable but can be approximated

using Monte Carlo (MC) integration, e.g., importance sampling, or a Markov Chain

Monte Carlo (MCMC) [20] method to sample from the posterior over the hyperpa-

rameters p(✓✓✓|t). This method is computationally intensive and does not always lead

to improved results. In this thesis, MLE estimates is implemented.

2.2.2 Bayesian regularisation neural networks

Artificial neural networks (ANNs) are widely employed for a vast number of learning

problems, due to their flexibility and accuracy (‘universal approximators’). Recent

developments in the form of deep learning networks [68, 69] have also revitalised
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the area. ANNs use a fixed number of basis functions that can be adapted to

di↵erent datasets to approximate an unknown mapping from inputs to outputs [20].

There are many types of ANN model, e.g., feed-forward neural networks, recurrent

networks, polynomial networks and modular networks.

In this thesis, a feed-forward neural network, also known as multiplayer per-

ceptron (MLP), is used as a regression model (a data-driven emulator) for multi-

variate emulation. The method is briefly introduced following Bishop et al. [20].

The basic idea of ANNs is to create a network of connected “neurons” that take

inputs from a specified subset of the neurons and return outputs that are in turn

used as inputs for another subset of neurons. They are, essentially, a complex ex-

pansion of a function in terms of a basis that depends on functions associated with

the neurons and the number of neurons, as well as the way in which the neurons

interact.

In MLPs, the output (activation) is defined as follows:

a(k+1)
j

= h

 
N

kX

i=1

w(k)
ji

a(k)
i

+ w(k)
j0

!
, (2.10)

where h(·) is an ‘activation function’ a(k)
i

indicates the i-th output in the k-th layer,

N
k

is the total number of activation functions in the k-th layer, and w(k)
ji

is the weight

(or parameter) associated with a(k)
i

, connecting it to neuron j in layer k. The most

commonly chosen activation function is the sigmoid function h(x) = 1/(1 + e�x).

Other popular choices includes the hyperbolic tangent h(x) = (ex � e�x)/(ex + e�x)

and rectified linear function h(x) = max(0, x).

Eq. (2.10) corresponds to a feedforward network, in which the inputs to layer

k are outputs of neurons from layers that strictly precede layer k. The number of

neurons in a layer N
k

and the number of layers n decide the complexity of a MLP.

The inputs {⇠
j

} are incorporated by setting a(0)
j

= ⇠
j

for all j = 1, . . . , N0 = l. This

18



gives the univariate output of a n+ 1 layer MLP as:

o(⇠⇠⇠) = a(n+1)
1 = h

 
N

nX

i=1

w(n)
1i a(n)

i

+ w(n)
10

!
, (2.11)

which is used to approximate ⌘(⇠⇠⇠). The MLP is naturally extended to multiple

output problems, where y = (y1, . . . , yd)
T = (⌘1(⇠⇠⇠), . . . , ⌘

d

(⇠⇠⇠))T 2 Rd, by setting

o
i

(⇠⇠⇠) = a(n+1)
i

⇡ ⌘
i

(⇠⇠⇠) for i = 1, . . . , d.

To train the model with a given dataset, a cost function is defined as:

E
D

=
mX

i=1

1

2

⇣
y

(i) � o(⇠⇠⇠(i)
⌘
T

⇣
y

(i) � o(⇠⇠⇠(i)
⌘
, (2.12)

where o(⇠⇠⇠(i) = (o
i

(⇠⇠⇠(i)), . . . , o
d

(⇠⇠⇠(i))T . One can define a vector of weights w =

(w(0)
10 , . . . ,w

(n)
dN

n

). Finding the w that minimises the square sum error defined in Eq.

(2.12) would give an optimal approximation to our training set {y (i)}m
i=1. This,

however, will not necessarily generate an accurate approximation to ⌘⌘⌘(⇠⇠⇠) at test

inputs (generalization of the model) as a consequence of over-fitting, which is a

major issue in basic ANN formulations. The problem can be alleviated by adding

a regularization term (a general method for optimization problems) to the cost

function as follows:

E = �E
D

+ ↵E
w

= �E
D

+ ↵
1

2
w

T

w , (2.13)

where E
w

is the sum of squares of the network weights and � and ↵ are param-

eters determining the weighting of each cost term. A large � could lead to good

approximations to the training data but may result in overfitting while a large ↵

would improve generalization but underestimate the error in fitting the model to

the training data.

Minimization of (2.13) can achieved with a gradient based optimisation al-

gorithm, e.g., gradient descent. These approaches, however, involve computing the

19



partial derivatives of E w.r.t. each weight, which is computational intensive. A

back-propagation is typically introduced to e�ciently calculate the partial deriva-

tives [20].

Other methods, e.g., early-stopping and cross-validation, could be imple-

mented to improve generalization and avoid over-fitting. Another choice is Bayesian

networks, in which a prior is placed on the weights, leading to improved generaliza-

tion. An e�cient approach, which avoids a full Bayesian estimation of all network

weights (highly computationally intensive and therefore rarely adopted) is Bayesian

regularization [70, 71], which is implemented in the thesis.

The weights are assumed to have zero-mean Gaussian prior distributions. Set

↵ to the inverse variance of the zero-mean (assumed) Gaussian noise and � to the

inverse variance of the weights. By Bayes law, the posterior density of the weights

is:

P (w |D,↵,�,M) =
P (D|w ,�,M)P (w |↵,M)

P (D|↵,�,M)
, (2.14)

where D = {y(i),⇠⇠⇠(i)}m
i=1 is the data set, M indicates the MLP model, P (w |↵,M) is

the prior density and P (D|w ,�,M) is the likelihood function. The optimal weights

should maximize the posterior likelihood P (w |D,↵,�,M). It is assumed that the

noise in the training data and the weight prior are both Gaussian:

P (D|w ,�,M) =
1

Z
D

(�)
exp (��E

D

) ,

P (w |↵,M) =
1

Z
w

(↵)
exp (�↵E

w

) ,

(2.15)

where Z
D

(�) = (⇡/�)m/2 and Z
w

(↵) = (⇡/↵)N/2 with N being the total number of

weights. Substituting these assumptions into Eq. (2.14) yields:

P (w |D,↵,�,M) =
(Z

D

(�)Z
w

(↵))�1 exp (�(�E
D

+ ↵E
w

))

P (D|↵,�,M)

=
(Z

F

(↵,�))�1 exp (�F (w))

P (D|↵,�,M)
.

(2.16)
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In a Bayesian framework, the optimal weights should maximise the posterior, which

is equivalent to minimising the regularised objective function E = �E
D

+↵E
w

. The

posterior of ↵ and � has the form (again using Bayes rule):

P (↵,�|D,M) =
P (D|↵,�,M)P (↵,�|M)

P (D|M)
. (2.17)

To derive the maximum of the posterior P (↵,�|D,M) a uniform prior den-

sity P (↵,�|M) is assumed so that the maximisation could be obtained by maximis-

ing the likelihood function P (D|↵,�,M). Notice that the likelihood function is also

the normalisation term shown in Eq. (2.14) and (2.16). One can thus solve Eq.

(2.14) for the normalisation factor:

P (D|↵,�,M) =
P (D|w ,�,M)P (w |↵,M)

P (D,↵,�,M)

=

⇣
(Z

D

(�))�1 exp (��E
D

)
⌘⇣

(Z
w

(↵))�1 exp (�↵E
w

)
⌘

(Z
F

(↵,�))�1 exp (�F (w))

=
Z
F

(↵,�)

Z
D

(�)Z
w

(↵)

exp(��E
D

� ↵E
w

)

exp(�F (w))

=
Z
F

(↵,�)

Z
D

(�)Z
w

(↵)
.

(2.18)

To solve for Z
F

, which is the only remaining unknown, a quadratic Taylor

expansion of F (w) around the minimum point wMP (i.e. a Laplace approximation)

is implemented. This yields:

Z
F

⇡ (2⇡)N/2
⇣
det

⇣�
HMP

��1
⌘⌘1/2

exp(�F (wMP )). (2.19)

Where H = �r2
w

E
D

+ ↵r2
w

E
w

is the Hessian matrix of the objective function and

HMP is the Hessian matrix evaluated at w = w

MP . Substituting Eq. (2.19) into

Eq. (2.18) and solving for the optimal values of ↵ and � by setting the corresponding
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derivatives to zero yields:

↵MP =
�

2E
w

(wMP )
,

�MP =
m� �

2E
D

(wMP )
,

(2.20)

where:

� =
N � 2↵MP

tr(HMP )
. (2.21)

To optimize ↵ and �, the Hessian matrix HMP is required. Using a Gauss-Newton

approximation to the Hessian matrix and the Levenberg-Marquardt algorithm, these

hyperparameters are calculated using an iterative procedure detailed in [72].

2.2.3 Support vector machine regression

Support vector machines (SVMs) are a widely used supervised machine learning

technique for classification and regression. SVMs were introduced by Vapnik [73]

and extended for non-linear problems using a ‘kernel trick’ by Boser [74]. Another

significant improvement for SVMs was the standard incarnation (soft margin) in-

troduced by [75]. In this section, idea of SVM regression for a univariate output is

briefly introduced, following [76]. Multi-outputs remain challenging for SVM regres-

sion. Thanks to the framework that would be developing later, only the univariate

version is needed and thus introduced here.

Suppose that one has a training data set D = {y(i),⇠⇠⇠(i)}m
i=1 as before, where

y 2 R and ⇠⇠⇠ 2 X ⇢ Rl. A SVM regression [75] assumes the regression function ⌘(⇠⇠⇠)

takes a linear form:

⌘(⇠⇠⇠) = w

T⇠⇠⇠ + b, (2.22)

where w 2 X , b 2 R. The aim of a so-called "-SVM regression [75] is to solve the
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following convex optimization problem:

minimize
1

2
w

T

w

subject to y(i) �w

T⇠⇠⇠(i) � b 6 "

w

T⇠⇠⇠(i) + b� y(i) 6 "

(2.23)

Eq. (2.23) is interpreted as follows: given an error precision ", find f(⇠⇠⇠) that has

most " deviation from the targets y(i), 8i, and is as ‘flat’ as possible. A feasible

solution (satisfying the constraints) is not always possible, or one may wish to allow

for some margin in the error tolerance. A “soft margin” loss function [75] involv-

ing slack variables ⇣
i

, ⇣⇤
i

is introduced as a consequence. The target formulation

becomes:

minimize
1

2
w

T

w + c
mX

i=1

(⇣
i

+ ⇣⇤
i

)

subject to y(i) �w

T⇠⇠⇠(i) � b 6 "+ ⇣
i

w

T⇠⇠⇠(i) + b� y(i) 6 "+ ⇣⇤
i

⇣
i

, ⇣⇤
i

> 0

(2.24)

The constant c determine the balance between ‘flatness’ (a small w) and deviation

of the function from the targets. Eq. (2.24) is solved by constructing a Lagrange

function L and a set of dual variables as follows:

L =
1

2
w

T

w + c
mX

i=1

(⇣
i

, ⇣⇤
i

)�
mX

i=1

↵
i

("+ ⇣
i

� y(i) +w

T⇠⇠⇠ + b)

�
mX

i=1

↵⇤
i

("+ ⇣⇤
i

+ y(i) �w

T⇠⇠⇠ � b)�
mX

i=1

(�
i

⇣
i

,�⇤
i

⇣⇤
i

).

(2.25)

The dual variables ↵
i

,↵⇤
i

,�
i

,�⇤
i

are strictly nonnegative. Optimization of

Eq. (2.25) is achieved through the saddle point condition with respect to the target
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variable w , b, ⇣
i

, ⇣⇤
i

:

@
b

L =
mX

i=1

(↵⇤
i

� ↵
i

) = 0,

@
w

L = w �
mX

i=1

(↵
i

� ↵⇤
i

)⇠⇠⇠(i) = 0,

@
⇣

i

L = c� ↵� �
i

@
⇣

⇤
i

L = c� ↵⇤
i

� �⇤
i

,

(2.26)

Substituting Eq. (2.26) into Eq. (2.25) yields the dual optimization problem,

maximize
1

2

mX

i,j=1

(↵
i

� ↵⇤
i

)(↵
j

� ↵⇤
j

)(⇠⇠⇠(i))T⇠⇠⇠(j),

� "
mX

i=1

(↵
i

+ ↵⇤
i

) +
mX

i=1

(↵
i

� ↵⇤
i

)y(i),

subject to
mX

i=1

(↵
i

� ↵⇤
i

) = 0,

↵
i

,↵⇤
i

2 [0, c].

(2.27)

From Eq. (2.26), it is known that w =
P

m

i=1(↵i

�↵⇤
i

)⇠⇠⇠(i). To compute b, the Karush-

Kuhn-Tucker (KKT) conditions [77] demand that the product of dual variables and

constrains must vanish:

↵
i

("+ ⇣
i

� y(i) +w

T⇠⇠⇠ + b) = 0,

↵⇤
i

("+ ⇣
i

+ y(i) �w

T⇠⇠⇠ � b) = 0,

(c� ↵
i

)⇣
i

= 0,

(c� ↵⇤
i

)⇣⇤
i

= 0.

(2.28)

With these conditions one can eventually compute b as:

b = y(i) �w

T⇠⇠⇠(i) � " for ↵
i

2 (0, c),

b = y(i) �w

T⇠⇠⇠(i) + " for ↵⇤
i

2 (0, c).
(2.29)
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Notice the inner product in Eq. (2.27) takes the linear form ⇠⇠⇠(i)
T

⇠⇠⇠(j). One could,

however, map the original data into a feature space and compute the inner product

in that feature space in the form of a kernel function k(⇠⇠⇠(i),⇠⇠⇠(j)) The advantage is

that through the mapping one could allow for a nonlinear data structure and the

mapping could be carried out implicitly. This is known as the kernel trick [74, 78].

The same idea (kernel trick) is also used in normal PCA to formulate kernel PCA,

introduced later in section 2.4.1.

2.3 Linear dimensionality reduction

For many data sets of high dimensionality, the data points actually lie (exactly

or approximately) in a subspace embedded in the original space. i.e., there are

underlying hidden features that describe the observed data in a more compact form.

Dimensionality reduction techniques approximate these features (the subspaces) and

lead to the representation of the data using fewer degrees of freedom by preserving

a preselected level of some important quantity, e.g., the ‘variance’ (a generalised

measure of the spread of the points in di↵erent directions).

Within the vast array of dimensionality reduction methods, distinctions be-

tween linear and nonlinear methods are clear. Linear methods look for a linear

subspace. All methods that do not fall into this category are nonlinear. It is

begun below by introducing two commonly used linear dimensionality reduction

techniques, namely, principal component analysis (PCA) [79] and multidimensional

scaling (MDS).

2.3.1 Principal component analysis

Principal component analysis (PCA) is the most popular technique for dimension

reduction. It has many applications, e.g., denoising, image compression and feature

extraction. It is simple and especially e↵ective when dealing with data that lives in
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a linear subspace. Consider a dataset Y = [y (1), . . . ,y (m)] 2 Rd⇥m, the columns of

which are vector valued data points y (i). PCA aims to find an r-dimensional linear

subspace of the original space Rd, spanned by a basis V
r

= [v1, . . . , v r

] such that

the projections of the original data onto the subspace preserve as much variance as

possible.

The projections are given by Z = V
r

Y, where Z = [z (1), . . . , z (m)] is a matrix

of the individual projections z

(i) corresponding to y

(i). The objective of PCA is

thus:

max
V

r

:VT

r

V
r

=I
Var (V

r

Y) . (2.30)

When r = d, PCA is a basis transformation without dimension reduction or any in-

formation loss (a concept from information theory that I do not touch upon directly

in this thesis). PCA requires Var(v1Y) > Var(v2Y) > · · · > Var(v
r

Y) to guarantee

that, with a specific r, the projections of the original data onto the subspace spanned

by the basis V
r

always preserve the maximum possible variance (among all possible

orthonormal bases). The v

i

are eigenvectors of the empirical covariance matrix C

(described in detail in a later chapter) of the observed data:

Cv = �v . (2.31)

The projections of the original data onto the new basis are easily computed by z

(i) =

VT

y

(i). These projections can be seen as the corresponding underlying coe�cients

or features, and the low-dimensional approximating subspace is span(v1, . . . , v r

).

2.3.2 Multidimensional scaling

Rather than trying to use a new basis that preserves the variances of data as much as

possible, which is the crux of PCA, MDS yields representative spatial configurations

to describe the target dataset such that ‘connectivity’ relations between points are as

close to the original ones as possible. When the connectivity relations are measured
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by Euclidean distances, MDS is equivalent to PCA.

Classic MDS was first introduced by Torgerson et al. [80] to solve the prob-

lem of obtaining a descriptive map of data points given only the Euclidean dis-

tances between the points. The Euclidean distances can be generalised to connec-

tivities/proximities that describe the (dis)similarity between data points in a way

that is more suitable for the nature of the data (e.g., categorical) [81]. MDS then

uses the proximities to find the optimal map (without any iterative procedures).

For the dataset y

(i) 2 M ⇢ Rd, i = 1, . . . ,m, the Euclidean distances be-

tween each pair are denoted by d(y (i),y (j)). the shorthand d(i, j) = d(y (i),y (j))

is used and a matrix D with entries d(i, j) is defined. Classic MDS is designed to

minimize the cost function:

E =
X

i 6=j

(d(i, j)� d0(i, j))2, (2.32)

where d0(i, j) is the Euclidean distance between the low-dimensional representations

of y (i) and y

(j). The optimisation is achieved by solving the eigenproblem:

Kv = �v, (2.33)

where K = �HP
s

H/2, P
s

= D �D (� denotes a Hadamard product) is the matrix

of square distances, H = I � 11T /m is the known centring matrix, I denotes the

identity matrix, and 1 is a vector of ones 1. The notation K is used since it could

be seen as a kernel matrix, as will be shown in chapter 3.

The non-zero eigenvalues �
i

, i = 1, . . . , d, of K are arranged in a non-

increasing order and the corresponding eigenvectors v

i

2 Rm are normalized. This

yields Z = V⇤⇤⇤1/2 2 Rm⇥d, where the columns of V are the v

i

. Truncating V at

the first r eigenvectors to form V
r

2 Rm⇥r yields low-dimensional representations

of the y

(i), as the rows of Z
r

= V
r

⇤⇤⇤1/2
r

.

Other measurements could be adopted to generate the proximities, which
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are the inputs to MDS. The proximities indicate the overall similarity or dissim-

ilarity of the target data based on the measurement assumptions. There are two

types of methods for obtaining the proximities: direct and indirect methods. The

direct methods aim to assign a (scale) value or ranking of (dis)similarity for each

pair of observations while the indirect methods derive the proximities from other

measurements, e.g. confusion data or correlation matrices [82].

For the direct methods, the classic approach is to use metric MDS where

a valid metric, e.g., Euclidean distances, is used to form the proximity matrix D.

Non-metric MDS, by contrast, assumes that only the ordering of proximities is

meaningful. Non-metric MDS is helpful when dealing with non-classical data.

2.4 Nonlinear dimensionality reduction (manifold learn-

ing)

When the underlying (hidden or latent) space is a linear subspace or is close to a

linear subspace of the original space, linear dimension reduction techniques, e.g.,

PCA and MDS, are e↵ective and e�cient methods. For complex data, however,

linear dimension reduction cannot adequately reveal the underlying subspace. This

motivated the development of many nonlinear dimensionality reduction techniques.

Rather than locating a linear intrinsic subspace, nonlinear methods attempt to char-

acterise a manifold on which the observed data lies [83]. For this reason, many of

the nonlinear dimension reduction methods are also called manifold learning meth-

ods. In general, neither the geometry nor the intrinsic dimensionality of the data

are known. Besides, in practice, the data is finite and is often corrupted with noise.

Manifold learning is thus inherently ill-posed [84] and can only be solved with certain

assumptions and heuristics.

From a machine learning point of view, dimensionality reduction and mani-

fold learning techniques are unsupervised methods, attempting to locate the patterns
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behind a dataset in the absence of corresponding inputs, in contrast to the regression

techniques discussed earlier. Manifold learning methods can be classified as kernel

based methods, embeddings, graph based methods and spectral methods (involving

an eigenspectrum of some quantity, e.g., a kernel or covariance matrix), often falling

into several categories.

Kernel methods, e.g. kernel PCA [85] and SVMs, apply a ‘kernel trick’,

i.e., they introduce a kernel function that specifies the inner product between any

two points mapped (implicitly) to a ‘feature space’ and deal only with quantities

in the feature space, which is a computationally cheaper task. This idea can also

extend linear methods to nonlinear counterparts. In contrast, graph based methods,

e.g., local linear embedding (LLE) [86], Laplacian eigenmaps ([87]) and Hessian

eigenmaps [88], aim to minimize some form of distortion of new configurations of

data, which is normally achieved via a spectral analysis of Laplace-type operators

(making them also spectral methods as well as embedding methods). In the section,

general discussions on manifold learning methods implemented in this thesis are

issued.

2.4.1 Kernel principal component analysis

The key ingredient of the kernel methods [89, 90] is to map the target data to a

feature space, where the nonlinearity in the original data space can potentially be

handled using linear methods. Rather than carrying out the mapping to a feature

space explicitly, a kernel method uses a kernel function to define a dot product

between points mapped to the feature space. Operations, e.g., feature extraction,

regression, classification and clustering in the feature space are based on the dot

product. Thus, kernel methods, unlike optimisation methods, are computationally

inexpensive and e↵ective.

The standard PCA fails when dealing with complex data sets (not lying in

or close to a linear subspace). Suppose one maps the data points, lying in some
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space M, to a higher-dimensional (possibly infinite dimensional) feature space F

by a mapping ��� : M ! F . If the mapped points lie close to a linear subspace of

F , linear PCA can be performed successfully. The mapping ��� is specified implicitly

via a kernel function k(·, ·). By adopting di↵erent kernel functions, kernel PCA is

capable of dealing with di↵erent types of nonlinear structures [74, 91].

Consider the dataset {y (j)}m
j=1 where y = (y1, . . . , yd)

T 2 M ⇢ Rd. For

standard PCA, the basis is found by solving Eq. (2.31). Denote the mapped data

as ���(y (i)) for i = 1, . . . ,m. Standard PCA could be carried out in the feature space

by solving:

CFw = �w , (2.34)

where CF is the covariance matrix of the mapped data points in feature space.

Kernel PCA does not solve Eq. (2.34) directly. Instead, it is reformulated as an

eigenvalue problem for a kernel matrix K, with entries k(y (i),y (j)), i, j = 1, . . . ,M .

The projections are computed with reference only to the (known) kernel values.

The choice of the kernel function is ideally based on prior knowledge of the data.

In practice, however, such knowledges are usually unclear and the choice of kernel

functions is di�cult to made. In such cases, one usually makes an assumption

that the data points are isotropic. The assumption does actually comply with our

understanding of many real-word process and does work well in many realistic cases

for this reason. One simple but commonly used kernel function to express such a

isotropic belief is the Gaussian kernel,

k(y (i),y (j)) = exp

 
�

dX

k=1

(y(i)
k

� y(j)
k

)2/2�2
!
, (2.35)

where � is a control parameter that is used to adjust the flexibility of the kernel,

when prior knowledges are not available. The kernel function here shares the same

definitions, and thus properties, as that defined previously for Gaussian process.

Notice that in here only one length scale parameter is designed. This implies the
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assumption that the data has euclidean distance indicating correlations which is

usually true for spatial data. This, however, does not hinder one from choosing the

more general form that is mentioned previously.

2.4.2 Isomap

Isomap was introduced by Tenenbaum et al. [92] as a method to find the nonlinear

degrees of freedom behind complex natural observations, e.g., human writing and

face images under di↵erent conditions. It is based on classic MDS, but uses the in-

trinsic geodesic distances between observations rather than the Euclidean distances

as proximities. For neighbouring data points, the Euclidean distance could be used

to well approximate the geodesic distance. The di�culty is to approximate the

geodesic distance between two far-away observations. The original Isomap approxi-

mates such distances by finding a shortest path through data points lying between

such two observations. The shortest path is obtained from Dijkstra’s or Floyd’s

shortest-path algorithm [93, 94].

Balasubramanian et al. [95] pointed out that the work of [92] was not new

since the framework had been explored in the context of flattening cortical surfaces

using geodesic distances and MDS [96, 97], where Dijkstra’s graph-based algorithm

was applied to approximate the geodesic distances [98]. Moreover, there was some

doubt as to the topological stability of the method, which in some cases can only

be implemented after some preprocessing of the input data. It may also lead to

erroneous connections on the neighbourhood graph. Attempts were made by Jenkins

et al. [99] to overcome these issues, extending Isomap to spatio-temporal datasets

(ST-Isomap).

Choi et al. [100] introduced a general framework called the kernel Isomap,

which was naturally derived from kernel PCA as a generalisation of the standard

Isomap. A method for eliminating critical outliers by investigating the network flow

was developed to deal with the problem of topological instability by Saxena et al.
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[101]. The main idea in their work was to remove the nearest neighbour that violates

local linearity of the neighbourhood graph. Other problems associated with Isomap

include the inability to handle ‘holes’ in the manifold, which can be dealt with by

tearing the manifold [102], and failure when the manifold is nonconvex [92]. Despite

these weaknesses, Isomap was widely and successfully applied in many tasks, e.g.,

head pose estimation [103], biomedical data visualization [104] and wood inspection

[105].

Isomap firstly determines which points are neighbouring points based on

Euclidean distances d(y (i),y (j)). A simple approach is to connect each point to all

other points that fall within some fixed radius or to connect the k closest points. A

weighted graph G is defined with nodes representing data points and edges equal to

Euclidean distances d(y (i),y (j)) between neighbouring points. Distances between

points that are not neighbours are defined as any arbitrarily large number.

The geodesic distances between non-neighbour points are estimated using

the shortest path in the graph G. The process is easily achieved through Floyd’s

algorithm which requires O(m3) operations, where m is the number of data points.

Define the graph distance matrix DG with entries equal to the geodesic distances

{dG(i, j)}m
i,j=1 among all data points. Then one simply apply MDS using DG as

the proximity matrix to construct an r-dimensional spatial configuration. Isomap

is thus designed to to minimize the cost function:

E =
X

i 6=j

(dG(i, j)� d0(i, j))2, (2.36)

where d0(i, j) is the Euclidean distance between the low-dimensional representations

of y (i) and y

(j). As in classic MDS, the optimization problem is solved through eigen

analysis of DG . It is clear that the Euclidean distances among new configurations

approximate the geodesic distances in the original data Y. Thus, Isomap, like MDS,

is an (approximate) optimal isometric embedding of the data in an r-dimensional
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space.

2.4.3 Di↵usion maps

As in Isomap, in di↵usion maps the data points y

(i) are identified as vertices on

a weighted undirected graph G, where the weight is defined by a symmetric and

positive definite kernel k(y (i),y (j)). A di↵usion process [106] on G is constructed by

normalizing the connectivity (or kernel) matrix K = [K
ij

], where K
ij

= k(y (i),y (j)).

The degree matrix is defined as:

D = diag

0

@
X

j

K1j , . . . ,
X

j

K
mj

1

A . (2.37)

From this, one may define a di↵usion matrix as P = D�1K, with entries P
ij

, which

is a Markov matrix. That is, the entry P
ij

is a transition probability from node i

to j in a random walk on G. A t step transition probability is given by the (i, j)-th

entry of Pt.

As is shown in [107], di↵usion maps define a di↵usion distance as:

D2
t

(y(i),y(j)) =
mX

k=1

(P t

ik

� P t

jk

)2. (2.38)

The di↵usion distances are set equal to the Euclidean distances of the low (r) dimen-

sional representations    
r

(y(i)) and    
r

(y(j)). The di↵usion map    
r

(y) : M 7! Rr em-

beds the original data into an r-dimensional space by selecting the di↵usion distance

as the best distance to preserve (in contracts to Eclidean distance in PCA/MDS or

geodesic distance in Isomap). The map is specified by conducting an eigen-analysis

of the Markov matrix P. Details are given in chapter 4.

33



2.4.4 Pre-image problems

For many applications, e.g., feature extraction, only the features, which are reduced-

dimensional configurations, are of concern. But there are also many applications,

e.g., image denoising, where a inverse mapping from the low-dimensional repre-

sentations to the original space is crucial. Another example is the application of

kernel-based clustering. In order to visualize the centroid, which exists in the re-

duced dimensional space, an inverse mapping is needed [108]. In our applications,

the predictions are only meaningful in the original (physical) space. Thus, the in-

verse map is a necessity.

The problem of finding an inverse map is often referred to as the pre-image

problem. For linear methods such as PCA, an inverse mapping is straight forward

and does not require anything more complex than a matrix transpose. For manifold

learning methods, the pre-image problem remains a challenge. Exact pre-image

solutions generally do not exist. Mika et al. [109] suggested an approximate solution

through optimization. This, along with other methods, is discussed below.

Since the exact pre-image solution b
y may not exist, Mika et al. [109] ad-

dressed this problem by minimizing the square distance between ���
r

(by) and ���
r

(y),

where ���
r

(by) is the reduced-dimensional form of the point by :

argmin
y

||���
r

(y)� ���
r

(by)||2 = argmin
y

(||���
r

(by)||2 � 2���
r

(y)T���
r

(by) + ✏), (2.39)

in which the remainder ✏ is independent of y . The problem can be solved using op-

timization algorithms [110] (e.g., fixed-point iteration) but will su↵er from trapping

in local optima and sensitivity to initial guesses. Moreover, it is computationally

expensive and unstable for complex and large data sets.

For many commonly used kernels, there is a simple relationship between dis-

tances in feature space and distances in the original space [111]. Kwok et al. [108]

used such relationships to find a non-iterative solution using only linear algebra. Ma
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et al. [112] improved this method to solve the pre-image problem for a stochastic in-

put model. An e�cient and e↵ective pre-image solution combining these approaches

will be introduced in chapter 4.

For graph based methods, Etyngier et al. [113] imposed a non-linear shape

prior to estimate the pre-image solution in di↵usion maps. Another method was

introduced by Thorstensen et al. [114]. They solved the pre-image problem in the

context of di↵usion maps for shape and image denoising. Their method defines a pre-

image solution as a Karcher-mean that is interpolated using neighbouring samples.

They claimed that the resulting Nystrom extension is more meaningful, which leads

to a better pre-image estimate even for heavy noise corrupted data. The method is

a nonlinear optimization: b
y ⇡ y

(✓) = argmin
y

||�(y (✓)) � �(by)||2, where y

(✓) is a

Karcher mean for neighbourhoodN , comprising them+1 closest (measured in terms

of di↵usion distances) sample points. The pre-image y is computed by gradient

descent, generating a family of samples. As with other non-linear optimizations,

such a solution may su↵er from trapping in local optima, instablity and limited

scalability. For the 2-D shapes considered in [113, 114] the method is feasible, but

for very high-dimensional problems as considered in this thesis, it is not practical.

2.5 Design of experiment

Apart from the model chosen for an emulator, the most crucial factor in building

an accurate emulator is the dataset that is used to train it. This training data are

obtained by running a simulator at di↵erent parameter/input values (design points)

to provide su�cient ‘information’ regarding the input-output relationship (response

surface). Obviously the particular parameter set for which the simulator is evaluated

should be carefully selected to cover the space of interest su�ciently well in order to

provide the required information about the simulator response surface, ideally with

a low number of simulator runs. Design-of-experiment (DOE) [115] is used to guide
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this process.

Like the situation in optimisation, DOE is problem dependent and there is

no systematic way to identify the best method. Of course the higher the number

of samples available, the more information is revealed but the number of samples

generated has to take into account the computational cost of the simulator. It is

desirable if possible to limit the number of parameters using prior knowledge of the

system behaviour w.r.t to the individual paramaters because the number of samples

required to fill the design space rises exponentially with the number of parameters

(the curse of dimensionality).

For continuous parameters, space filling DOE techniques [115] are widely

used. These techniques choose design points as uniformly as possible over the space

of interest. The Sobol sequence and Latin hypercube DOE are typically the best

performing and the most robust methods, according to [115]. A Sobol sequence

design is implemented in this thesis since it generates design points more uniformly,

which is important if the number is low. The area of DOE is vast and I do not touch

upon it much so a detailed discussion of methods is not provided. In the examples

considered in this thesis, a simple space-filling method su�ces.

2.6 Proper orthogonal decomposition

Let us first motivate the POD method. Consider the application of one of the spatial

discretisation methods, e.g., finite di↵erence, finite volume or finite element, to a

linear, homogeneous parabolic PDE for a field u(t,x ). In any of these cases, a linear

dynamical system is obtained:

u̇(t) = Au(t) (2.40)

with some initial condition, where the solution vector u(t) = (u1(t), . . . , u
d

(t))T

defines the values of u(t,x ) at d spatial locations (the number of degrees of freedom).
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The value of d could be the number of grid points, the number of control volumes

or the number of nodes in the FD, FV and FE (assuming it is nodal) schemes,

respectively. The matrix A 2 Rd⇥d is sparse.

A Galerkin projection approximates the problem (2.40) in a low dimensional

space spanned by orthonormal vectors v1, . . . , v r

. That is, one can define the fol-

lowing approximation:

u ⇡ u

r

(t) =
rX

j=1

a
j

(t)v
j

= V
r

a(t) (2.41)

where a = (a1(t), . . . , ar(t))T and V
r

= [v1 . . . v r

]. The Galerkin projection of

equation (2.40) onto the basis vectors v

i

, i = 1, . . . , r, consists of replacing u with

u

r

in (2.40) followed by left multiplication of each term by v

i

, repeating for each i.

This leads to a new system with only r unknowns, a
i

(t), i = 1, . . . , r, which can be

written as follows:

ȧ(t) = VT

r

AV
r

a(t) (2.42)

The basis V
r

can be constructed in number of ways, e.g., balanced truncation,

Krylov subspace methods or POD. The most widely used method is POD method,

particularly for nonlinear problems, and is implemented in this thesis in chapter 6.

Suppose one has solved (2.40) and recorded the solution at times {t(i)}m
i=1.

These solutions are labelled as {u (i) := u(t(i)) = (u1(t(i)), . . . , u
d

(t(i)))T }m
i=1 and call

them (discrete) snapshots . These snapshots are discrete time instances of u(x , t) at d

particular locations in the spatial grid ⌦, say {x (i)}d
i=1. That is, uj(t

(i)) = u(x
j

, t(i)),

8i, j.

POD extracts an optimal, in some well defined sense, representative basis for

a field u(x , t), (x , t) 2 D ⇥ [0, T ], given an ensemble of ‘snapshots’ {u(x , t(j))}m
j=1,

x 2 D. These are continuous (in space) equivalents of the discrete snapshots u

(i).

The field u(x , t) can be regarded as a realisation of a random field indexed by x and

t [36, 37, 116]. The underlying probability space is (⌦,A,P), where ⌦ is the sample
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space, A is the event space and P is a probability measure. It is assumed that:

1. The process is zero-mean (without loss of generality), E [|u(x , t)] = 0

2. u(x , t) is continuous in quadratic mean (q.m.) w.r.t. x , i.e.:

E
⇥
|u(x + �x , t)� u(x , t)|2

⇤
! 0

as �x ! 0, 8t 2 [0, T ]

3. u(x , t) is stationary w.r.t. t, i.e., the autocovariance E [u(x , t)u(x 0, t0)] depends

only on t� t0 so that the spatial autocovariance takes the form:

E
⇥
u(x , t)u(x 0, t)

⇤
= C(x ,x 0), x ,x 0 2 D

For a fixed t 2 [0, T ], u(x , t) defines a one-parameter random field indexed

by x 2 D [116]. Sample paths (for a fixed ! 2 ⌦) are deterministic functions

u(·, t) : D ! R. By the q.m. continuity assumption, u(·, t) 2 L2(D) for each

t 2 [0, T ] so that u(x , t) 2 L2(0, T ;L2(D)). Applying Karhunen-Loéve (KL) theory

[117] for a fixed t yields:

u(x , t) = lim
M!1

MX

i=1

a
i

(t)v
i

(x ) (2.43)

with convergence in q.m. In this separable form for u(x , t), the randomness enters

only through the dependence on t. The v
i

(x ) form an orthonormal basis for L2(D)

and are given by the eigenfunctions of the following integral operator:

Cv
i

(x ) :=

Z

D
C(x ,x 0)v

i

(x 0)dx 0 = �0
i

v
i

(x ) i 2 N (2.44)

with corresponding real, positive eigenvalues �0
i

> �0
i+1 8i 2 N. Furthermore, the

coe�cients a
i

(t) = (u, v
i

) satisfy E[a
i

(t)] = 0 and from the definition of v
i

(x ) and
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�0
i

It is straightforward to obtain:

E[a
i

(t)a
j

(t)] = �0
i

�
ij

(2.45)

where �
ij

is the kronecker-delta. Thus, the a
i

are mutually uncorrelated, and ranging

over t one obtains random processes a
i

(t). Implementations of the POD theory rely

on an approximation to the expectation (averaging) operator:

E[X] =

Z

⌦
X(!)P(d!) (2.46)

The assumption of ergodicity allows us to estimate expectations as time averages

(the ergodic hypothesis, which states that the system which reaches all possible

states ! given infinite time). That is, one can average over snapshots to estimate

expectations.

For an arbitrary orthonormal basis {'
i

}1
i=1 of L2(D), one has:

rX

i=1

E[(u, v
i

)2] =
rX

i=1

�0
i

>
rX

i=1

E[(u,'
i

)2] (2.47)

for any r 2 N. This criterion is equivalent to:

min
{'

i

}
E

2

4
�����

�����u�
rX

i=1

a
i

'
i

�����

�����

2
3

5 = min
{'

i

}

�����

�����u�
rX

i=1

a
i

'
i

�����

�����

2

L

2(0,T ;L2(D))

(2.48)

where the latter equality is based on the ergodic hypothesis. This criterion leads to

the eigenvalue problem (2.44) and alternatively defines the POD basis. It can be

generalized to:

min
{'

i

}

�����

�����u�
rX

i=1

a
i

'
i

�����

�����

2

L

2(0,T ;H)

(2.49)

for a general Hilbert space H. In this case the POD basis is defined by the H-

39



orthonormal eigenfunctions v(x ) 2 H of the operator:

Sv := E [u(u, v)H] =
Z

T

0
u(u, v)Hdt (2.50)

For H = L2(D), S = C using the commutativity of the time and spatial averaging

operations.

To implement the method in practice a matrix of solution vectors (the dis-

crete snapshots) is defined:

X :=
h
u

(1) . . .u (m)
i

(2.51)

and the spatial variance-covariance matrix:

C = XXT ⇡ E
⇥
u(t)u(t)T

⇤
(2.52)

A numerical approximation of (2.44) at the quadrature points {x (i)}d
i=1 and {t(i)}m

i=1

yields an eigenvalue problem in Rd. For equally spaced quadrature points, a mid-

point rule leads to a principal component analysis (PCA), i.e., Cv

i

= �
i

v

i

for

eigenvectors v

i

2 Rd and positive eigenvalues �
i

> �
i+1, 8i = 1, . . . , d. The j-th

component v
i,j

of v

i

can be identified with v
i

(x (j)) and the (i, j)-th entry of C

approximates C(x (i),x (j)) as a time average:

C(x (i),x (j)) ⇡ 1

m

X

k

u(x (i), t(k))u(x (j), t(k))

In principle, any valid interpolation procedure could be implemented (in space

and/or time) to discretize (2.44). For instance, in the FE formulation, one can

approximate u(x , t) and v
i

(x ) using a piecewise linear Lagrange basis { 
i

(x )}d
i=1 ⇢

L2(D), which leads to a new eigenvalue problem:

CMv

i

= �
i

v

i

(2.53)
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where M is a mass matrix (as defined in the previous section) with entries M
ij

=

( 
i

(x ), 
j

(x )). Defining v = M1/2
v , where M1/2 is a square root or Cholesky factor

of M, one obtains:

M1/2CM1/2
v = �v (2.54)

The eigenvalues/eigenvectors pairs {(v
i

,�
i

)}d
i=1 of M

1/2CM1/2 yield the POD basis

vectors v
i

= M�1/2
v

i

in the desired order.

In certain cases (depending on the relative sizes of m and d), it may be

computationally convenient to use variants of POD or PCA to determine the v
i

(x )

or v

i

. The method of snapshots is an indirect application of POD suitable for

problems in which m⌧ d. A temporal autocovariance function is defined:

K(t, t0) =
Z

D
u(x , t)u(x , t0)dx (2.55)

with associated operator:

Ka
i

(t) :=

Z
T

0
K(t, t0)a

i

(t0)dt0 (2.56)

The orthogonal eigenfunctions a
i

(t) of K are the POD coe�cients and the eigen-

values are identical to those of C. Using E[a
i

(t)a
j

(t)] = �0
i

�
ij

, the POD modes are

given by:

v
i

(x ) =
1

�0
i

Z
T

0
u(x , t)a

i

(t)dt (2.57)

The discrete form (in space and time) of the eigenvalue problem is:

XTXa

i

= �
i

a

i

(2.58)

where K := XTX is a kernel matrix with entries K
ij

= (u (i))Tu (j), i.e., the space-
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discrete form of K(t(i), t(j)). The eigendecomposition is:

K = A⇤⇤⇤AT , ⇤⇤⇤ = diag(�1, . . . ,�m) (2.59)

where the columns of A are given by the a
i

. The j-th component a
i,j

of a
i

approx-

imates a
i

(t(j)) yielding the discrete-time approximation:

v
i

(x ) =
1

�
i

mX

j=1

u(x , t(j))a
i,j

(2.60)

i.e., a linear combination of the snapshots. In the fully-discrete case, using the

normalization a

i

7! a

0
i

/
p
�
i

, one obtains:

v

i

= Xa

0
i

/
p
�
i

(2.61)

These relationships are also evident from the singular value decomposition (SVD)

of X, that is:

X = A0⇤⇤⇤1/2VT (2.62)

where the columns of V are given by the v

i

and the columns of A0 are given by the

a

0
i

. In this context, the columns of A0 and V, given respectively by the eigenvectors

of K and C, are referred to as left and right singular vectors . It is straightforward

to show that:

v

i

= kXa

0
i

, k 2 R (2.63)

Thus one recovers the earlier relationship by taking k = 1/
p
�
i

to normalise the v

i

.
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Chapter 3

Gaussian process emulators for

high dimensional output spaces

using Isomap

In this chapter, formulate the problem of data-driven emulation for spatial or

spatio-temporal fields originating from parameterized PDE computer models (high-

dimensional data) is firstly formulated. Followed by a discussion on the importance

of correlation structures and the need for dimensionality reductions. A detailed de-

scription of existing methods is provided, particularly that of Higdon et al. [1], which

is explained in detail. It is then the main concept: using a manifold learning method

(in this chapter Isomap) to replace PCA as the dimensionality reduced method for

GP emulation of parameterized spatio-temporal fields is introduced. Details of the

inverse mapping and examples of the application, comparing to Higdon’s method,

are fully described.

This chapter is based on the publication [118]: W. Xing, A. A. Shah, and P.

B. Nair,“Reduced dimensional gaussian process emulators of parameterized partial

di↵erential equations based on Isomap, Proceedings of the Royal Society of London
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A: Mathematical, Physical and Engineering Sciences , vol. 471, p. 20140697, 2015.

3.1 Statement of the problem

Consider a parameterized nonlinear, system of steady-state PDEs of arbitrary order

for dependent variables (scalar fields) u
i

(x ,⇠⇠⇠), i = 1, . . . , J , where ⇠⇠⇠ 2 Rl is a vector

of parameters and x is the spatial variable. To give a concrete example, the u
i

could refer to velocity components (say i = 1, 2, 3) and pressure (i = 4) in a fluid

flow model. The PDEs are permitted to be fully nonlinear and parameterized in

an arbitrary fashion (including the initial and boundary conditions). It is assumed

that the PDE model is well-posed (solutions exist and are unique) for the range of

values of ⇠⇠⇠ considered.

The quantities or quantities of interest can include any or all of the u
i

, or

functions derived from the u
i

. For the purposes of exposition, consider a single

quantity of interest, denoted simply as u(x ;⇠⇠⇠). The simulator provides values of

u(x ;⇠⇠⇠) at specified (fixed) locations, x (i), i = 1, . . . , d, on a spatial grid. For di↵erent

inputs ⇠⇠⇠(j) 2 Rl, j = 1, . . . ,m, the outputs of the simulator can be represented as

vectors:

y

(j) =
⇣
u(x (1);⇠⇠⇠(j)), . . . , u(x (d);⇠⇠⇠(j))

⌘
T

2 Rd. (3.1)

This process can be repeated for other spatial fields of interest to derive

multiple vectorized outputs in Rd. An example of the simultaneous emulation of

multiple field outputs is given in Section 3.4. It is assumed for now that a single

output y (derived from a single scalar field u(x ;⇠⇠⇠)) is the target for emulation. For

a time dependent problem where the properties of interest are u(x , t;⇠⇠⇠, ) at specified

(fixed) locations, x (i), i = 1, . . . , d and time step, t(j), j = 1, . . . , n, the vectorisation
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process in the thesis is carried out in a similar manner as:

y

(j) =
⇣
u(x (1), t(1);⇠⇠⇠(j)), . . . , (x (d), t(1);⇠⇠⇠(j)), . . . u(x (1), t(2);⇠⇠⇠(j)), . . .

. . . , u(x (d), t(n);⇠⇠⇠(j))
⌘
T

2 Rnd.

(3.2)

The simulator can be considered as a mapping ⌘⌘⌘ : X ! M (assumed to

be injective), where M ⇢ Rd (Rnd in the case of a time dependent system) is the

permissible output space and X ⇢ Rl is the permissible input space. That is,

⌘⌘⌘(⇠⇠⇠) = y = (u(x (1);⇠⇠⇠), . . . , u(x (d);⇠⇠⇠))T . (3.3)

(or in the form of Eq. (3.2) for a time-dependent system) for an arbitrary input ⇠⇠⇠.

The goal of data-driven emulation is to approximate the mapping ⌘⌘⌘ given training

points y

(j) = ⌘⌘⌘(⇠⇠⇠(j)) 2 M, j = 1, . . . ,m. The corresponding inputs ⇠⇠⇠(j) 2 X are

referred to as design inputs or design points.

To infer outputs of the simulator at new inputs, Conti et al. [27] took the

approach of placing a d-dimensional GP prior over ⌘⌘⌘, indexed by ⇠⇠⇠. E↵ectively, the

same assumption was made by Higdon et al. [1] but in that case the outputs were

a linear combination of PCA basis vectors with coe�cients treated as independent

univariate GPs indexed by ⇠⇠⇠. Since the method in [1] is closely related to our method

and is used for the purposes of comparison, it is described in detail in the following

section.

3.2 Principal component analysis based GPE surrogate

modelling for simulators

3.2.1 Principal component analysis on the output space

The given training points {y (j)}m
j=1 (values of y = ⌘⌘⌘(⇠⇠⇠) at the design points) lie on a

surface M, which is a subset of the high dimensional Euclidean space Rd. Without
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loss of generality, one could assume the data is centred. Our aim is to approximate

the random field ⌘⌘⌘(⇠⇠⇠) using a deterministic basis for Rd and coe�cients that are

independent scalar Gaussian processes1 indexed by the inputs ⇠⇠⇠.

Higdon et al. [1] used a linear subspace of Rd, formed by the span (all linear

combinations) of a small number of the basis vectors, to approximate all points in

M. This was achieved using principal component analysis (PCA) [79] applied to

the observed data, i.e., a linear transformation z = VT

y of points y 2M, in which

the d ⇥ d matrix V = [v1 . . . v
d

] is orthogonal and the principal components z
i

,

i = 1, . . . , d, of z are uncorrelated random variables. The d orthornormal principal

directions v
i

form a basis for Rd so that z
i

= v

T

i

y . The directions are chosen such

that the z
i

exhibit decreasing variance with i. Thus, it is easy to set:

v = arg max
v2Rd

Var[vT

y ] = arg max
v2Rd

v

T⌃⌃⌃v s.t. v

T

v = 1, (3.4)

in which:

⌃⌃⌃ = E[yyT ] = E[⌘⌘⌘(⇠⇠⇠)⌘⌘⌘(⇠⇠⇠)T ], (3.5)

is the symmetric and positive definite spatial variance-covariance matrix; that is,

the covariances between coordinates in y , which correspond to the values of y at

specific points on the spatial grid ⌦. The expectation operator E[·] in this definition

is with respect to an underlying probability space consisting of a sample space, events

defined on the sample space, and a probability measure. This space is common to

the entire family of random vectors {⌘⌘⌘(⇠⇠⇠);⇠⇠⇠ 2 X} generated by fixing the index ⇠⇠⇠. In

practice, an estimate of ⌃⌃⌃ from the observed data is required, i.e., {y (j)}m
j=1, which

requires the assumption that the expected value of⌃⌃⌃ can be estimated from di↵erent

realizations of y (j) as one ranges over values of the index. Such an assumption is

referred to as homogeneity or ergodicity (in ⇠⇠⇠).

1
They are usually referred to as ‘Gaussian random fields’ when l > 1, but the conventional term

in the GPR literature is ‘Gaussian process’ even in this case. This convention is adopted from here

on.
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The constrained maximization problem (3.4) is equivalent to the eigenvalue

problem ⌃⌃⌃v = �v , which yields orthonormal eigenvectors v1, . . . , v
d

and corre-

sponding real, positive eigenvalues �1, . . . ,�
d

, arranged such that �1 > · · · > �
d

.

The principal directions are given by the eigenvectors v1, . . . , v
d

. The variance of

z
i

is given by (noting that E[z
i

] = 0):

Var[z
i

] = Var[vT

i

y ] = v

T

i

E[yyT ]v
i

= v

T

i

⌃⌃⌃v
i

= v

T

i

�
i

v

i

= �
i

, (3.6)

and thus decreases with i. Moreover:

E[z
i

z
j

] = v

T

i

⌃⌃⌃v
j

= �
j

v

T

i

v

j

= 0 i 6= j, (3.7)

so the components are uncorrelated. Since {v
i

}d
i=1 forms a basis for Rd, a point

y 2M can be expressed as:

y =
dX

i=1

z
i

v

i

=
dX

i=1

(vT

i

y)v
i

, (3.8)

An r-dimensional approximation y

r

of y is given by truncating the expansion at

the first r coe�cients. Thus, PCA maps points y 2M to points y
r

= ⌘⌘⌘
r

(⇠⇠⇠) 2M
r

,

whereM
r

is a linear subspace of Rd formed by the span of {v
i

}r
i=1. By the properties

of the PCA basis and the coe�cients, it can be demonstrated [79] that:

E
⇥
ky � y

r

k2
⇤
=

dX

i=r+1

�
i

, (3.9)

which provides a method for selecting the value of r. For example:

dX

i=r+1

�
i

/
dX

i=1

�
i

> tol, (3.10)

for some tolerance tol.
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The coe�cients z
i

= v

T

i

y = v

T

i

⌘⌘⌘(⇠⇠⇠) depend on ⇠⇠⇠. An ansatz is assumed

therefore that they are realizations z
i

(⇠⇠⇠) of scalar, uncorrelated random fields. if

the assumptions that these random fields are GPs are valid, they are mutually

independent. Thus, the reduced-dimensional approximation is defined as follows:

y

r

= ⌘⌘⌘
r

(⇠⇠⇠) =
P

d

i=1 zi(⇠⇠⇠)v i

=
P

d

i=1(v
T

i

y)v
i

= V
r

(z1(⇠⇠⇠), . . . , zr(⇠⇠⇠))T = V
r

z

r

(⇠⇠⇠),

(3.11)

where V
r

= [v1 . . . v r

]. The approximations y
r

lie in the r-dimensional subset M
r

of Rd. LetY = [y (1) · · ·y (m)]. To implement PCA in practice, the sample covariance

matrix is implemented as followed:

C = (1/m)YYT , (3.12)

to approximate ⌃⌃⌃ based on the given points y

(j) 2 M. An eigendecomposition

C = V⇤⇤⇤VT yields the decreasing set of eigenvalues �
i

, . . . ,�
d

, which are entries

of the diagonal matrix ⇤⇤⇤, and the principal directions v1, . . . , v
d

, which are the

columns of V. It is important to realize that these eigenvalues and eigenvectors are

approximations to the true values and the accuracy of the approximation depends

on the number of training points m and their distribution on M. For any point

y

(j) 2M in the data set one has an approximation:

y

(j)
r

= ⌘⌘⌘
r

(⇠⇠⇠(j)) = V
r

z

r

(⇠⇠⇠(j))

z
i

(⇠⇠⇠(j)) = v

T

i

y

(j).

(3.13)

The approximation ⌘⌘⌘
r

(⇠⇠⇠) = V
r

z

r

(⇠⇠⇠) can also be interpreted as a linear model of
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coregionalization (LMC). The cross-covariance matrix function takes the form:

Cov (⌘⌘⌘
r

(⇠⇠⇠),⌘⌘⌘
r

(⇠⇠⇠0)) = E
⇥
(⌘⌘⌘

r

(⇠⇠⇠)� E[⌘⌘⌘
r

(⇠⇠⇠)])(⌘⌘⌘
r

(⇠⇠⇠0)� E[⌘⌘⌘
r

(⇠⇠⇠0)])T
⇤

= V
r

diag(c1(⇠⇠⇠,⇠⇠⇠0), . . . , cr(⇠⇠⇠,⇠⇠⇠0))VT

r

,

(3.14)

where:

c
i

(⇠⇠⇠,⇠⇠⇠0) = E[(z
i

(⇠⇠⇠)� E[z
i

(⇠⇠⇠)])(z
i

(⇠⇠⇠0)� E[z
i

(⇠⇠⇠0)])] (3.15)

is the covariance function for z
i

(⇠⇠⇠). If one were to assume that the z
i

(⇠⇠⇠) are i.i.d., the

covariance functions are identical, c
i

(⇠⇠⇠,⇠⇠⇠0) = c(⇠⇠⇠,⇠⇠⇠0), 8i, yielding a cross-covariance

matrix function c(⇠⇠⇠,⇠⇠⇠0)V
r

VT

r

. This is a separable model, as used by Conti and

O’Hagan [27] (although in that case the matrix V
r

is an arbitrary square root of a

valid covariance matrix that it is integrated out of the posterior distribution). The

model used here has a richer covariance structure (each of the z
i

has a distinct co-

variance function) and simultaneously o↵ers a justified reduction in dimensionality.

In summary, rather than approximating the outputs in y = ⌘⌘⌘(⇠⇠⇠) 2M, the

reduced-dimensional approximations in y

r

= ⌘⌘⌘
r

(⇠⇠⇠) 2 M
r

is approximated. By

our assumptions, the coe�cients z
i

(⇠⇠⇠), i = 1, . . . , r are realizations of mutually

independent GPs, so approximation of them separately for a chosen value of ⇠⇠⇠ using

GP regression is adopted.

3.2.2 GPE for field high-dimensional outputs

One could easily replace the problem of learning ⌘⌘⌘(⇠⇠⇠) with the problem of learn-

ing a reduced-dimensional approximation ⌘⌘⌘
r

(⇠⇠⇠). This is equivalent to learning the

values of z
i

(⇠⇠⇠), i = 1, . . . , r defined by equation (3.11). A GP prior is placed over

each of these coe�cients and the data z
i

(⇠⇠⇠(j)), i = 1, . . . , r, j = 1, . . . ,m (see equa-

tion (3.13)) are provided by PCA on the data matrix Y = [y (1) · · ·y (m)]. For each

i = 1, . . . , r, the known coe�cients {z
i

(⇠⇠⇠(j))}m
j=1 are centred by subtracting the mean

z
i

=
P

m

i=1 zi(⇠⇠⇠
(j)), to obtain ez(j)

i

= z
i

(⇠⇠⇠(j)) � z
i

. The coe�cients ez
i

(⇠⇠⇠) = z
i

(⇠⇠⇠) � z
i
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are then treated as realizations of mutually independent, zero-mean GPs, with prior

distribution:

ez
i

(⇠⇠⇠)|✓✓✓
i

⇠ GP
�
0, c

i

(⇠⇠⇠,⇠⇠⇠0;✓✓✓
i

)
�
, (3.16)

where c
i

(⇠⇠⇠,⇠⇠⇠0;✓✓✓
i

) is the covariance function, with hyperparameters ✓✓✓
i

. Equivalently,

z
i

(⇠⇠⇠)|✓✓✓
i

⇠ GP (z
i

, c
i

(⇠⇠⇠,⇠⇠⇠0;✓✓✓
i

)).

Scalar GPR as outlined in section 2.2.1 is then performed separately for each

ez
i

(⇠⇠⇠), i = 1, . . . , r by setting:

ez
i

(⇠⇠⇠) = ⇣(⇠⇠⇠),

t = t

i

= {ez(j)
i

}m
j=1,

(3.17)

with inputs ⇠⇠⇠(j), j = 1, . . . ,m. The posterior distribution:

ez
i

(⇠⇠⇠)|t
i

,✓✓✓
i

⇠ GP
�
em0
i

(⇠⇠⇠;✓✓✓), c0
i

(⇠⇠⇠,⇠⇠⇠0;✓✓✓
i

)
�
, (3.18)

is given by equation (2.8). The posterior mean em0
i

(⇠⇠⇠) and covariance function

c0
i

(⇠⇠⇠,⇠⇠⇠0;✓✓✓
i

) are given by m0(⇠⇠⇠) and c0(⇠⇠⇠,⇠⇠⇠0;✓✓✓) in equations (2.8). The posterior dis-

tribution for z
i

(⇠⇠⇠) is:

z
i

(⇠⇠⇠)|t
i

,✓✓✓
i

⇠ GP
�
m0

i

(⇠⇠⇠;✓✓✓), c0
i

(⇠⇠⇠,⇠⇠⇠0;✓✓✓
i

)
�
, (3.19)

where:

m0
i

(⇠⇠⇠) = E[z
i

(⇠⇠⇠)] = E[ez
i

(⇠⇠⇠) + z
i

] = em0
i

(⇠⇠⇠) + z
i

, (3.20)

Defining z

r

(⇠⇠⇠) = (z1(⇠⇠⇠), . . . , zr(⇠⇠⇠))T , one obtains:

E[z
r

(⇠⇠⇠)] = (m0
1(⇠⇠⇠), . . . ,m

0
r

(⇠⇠⇠))T = m

0(⇠⇠⇠). (3.21)
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The predicted variance of each coe�cient is:

Var(z
i

(⇠⇠⇠)) = Var(ez
i

(⇠⇠⇠)) = c0
i

(⇠⇠⇠,⇠⇠⇠;✓✓✓). (3.22)

The distribution over the model outputs is given by:

y

r

= ⌘⌘⌘
r

(⇠⇠⇠) =
rX

i=1

z
i

(⇠⇠⇠)v
i

= V
r

z

r

(⇠⇠⇠), (3.23)

with expected value (vector mean function for the distribution (3.23)):

E[y
r

] = E[⌘⌘⌘
r

(⇠⇠⇠)] =
rX

i=1

m0
i

(⇠⇠⇠)v
i

= V
r

m

0(⇠⇠⇠), (3.24)

and predictive variance:

Var[y
r

] = Var (V
r

z

r

(⇠⇠⇠)) = V
r

Var (z
r

(⇠⇠⇠))VT

r

= V
r

diag (c01(⇠⇠⇠,⇠⇠⇠;✓✓✓), . . . , c0r(⇠⇠⇠,⇠⇠⇠;✓✓✓)))VT

r

,

(3.25)

by virtue of the fact that Cov (z
i

(⇠⇠⇠), z
j

(⇠⇠⇠)) = 0 for i 6= j. The process is summarized

in the pseudocode given in Algorithm 1.
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Algorithm 1 GPE for field outputs.

1: Perform PCA on Y = [y (1) · · ·y (m)]

• Eigenvectors and eigenvalues: (v
i

,�
i

)

• V
r

 [v1 . . . v r

]

• y

(j)
r

 V
r

(z1(⇠⇠⇠(j)), . . . , zr(⇠⇠⇠(j)))T

• z
i

(⇠⇠⇠(j)) v

T

i

y

(j), i = 1, . . . , r, j = 1, . . . ,m

2: for i 1 to r do

• ⌘(⇠⇠⇠(j)) z
i

(⇠⇠⇠(j))

• t  (z
i

(⇠⇠⇠(1)), . . . , z
i

(⇠⇠⇠(m)))T

Perform GPR:

• ✓✓✓
MLE

 arg max
✓

✓

✓

log p(t |✓✓✓)
• (equation (2.8)) E[z

i

(⇠⇠⇠)] E[⇣(⇠⇠⇠)] Var(z
i

(⇠⇠⇠)) Var(⇣(⇠⇠⇠))

3: end for

4: Prediction
• y

r

= ⌘⌘⌘
r

(⇠⇠⇠) 
P

r

i=1 zi(⇠⇠⇠)v i

= V
r

z

r

(⇠⇠⇠)

• E[y
r

] 
P

d

i=1m
0
i

(⇠⇠⇠)v
i

• Var (y
r

) V
r

diag (c01(⇠⇠⇠,⇠⇠⇠;✓✓✓), . . . , c0r(⇠⇠⇠,⇠⇠⇠;✓✓✓)))VT

r

Note that each of the coe�cients is approximated without making an i.i.d.

assumption, i.e., they come from independent GPs with di↵erent covariance pa-

rameters. For complex response surfaces, PCA (and other linear methods such as

multidimensional scaling) may lead to poor results, and in many cases it could fail

altogether. A simple example is illustrated in Fig. 3.1, which shows low-dimensional

representations of data lying on a ’swiss roll’ in R3. Fig. 3.1 (a) shows 2000 points

randomly sampled from a swiss roll manifold, while Fig. 3.1 (b) shows the approxi-

mation of the data set using 2 principal components in PCA. Fig. 3.1 (c) shows the

reconstruction using only 1 component (defined later) in Isomap. Clearly, this simple

data set cannot be approximately well by a linear subspace of R3 (further examples,

comparisons and detailed analyses can be found in. e.g., [119–121]). Replacing PCA

with a nonlinear dimensionality reduction method is, therefore, a natural extension,

which forms the motivation for the method developed below.
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Figure 3.1: Swiss roll data and reconstruction. Fig.(a) is the original Swiss roll
data. Fig.(b) is reconstructed data using PCA with 2 preserved dimensions. Fig.(c)
is reconstructed data via Isomap with 2 preserved dimensions.

3.3 Dimensionality reduction via Isomap

3.3.1 Multidimensional scaling (MDS)

Classical MDS, which was motivated by the work of [80], provides a low-dimensional

Euclidean space representation of a data set that lies in a high-dimensional ambient

space. It does so by relating the distances �
ij

between data points in the low-

dimensional Euclidean space to dissimilarities d
ij

between the data points in the

ambient space. In ‘classical scaling’, the dissimilarities are Euclidean distances and

the Euclidean distances in the low-dimensional space satisfy �
ij

= d
ij

(in a least

squares sense). This can be viewed as an approximate isometric embedding of the

data in the low-dimensional space. Let D = [d
ij

] (dissimilarity matrix) denote the
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matrix of dissimilarities between data points y

(i) 2 Rd, i = 1 . . . ,m. In classical

scaling:

�
ij

= ||z (i) � z

(j)|| = d
ij

, (3.26)

for the representations z

(i), i = 1, . . . ,m of y (i) in the low dimensional Euclidean

space (|| · || is the standard Euclidean norm). Applying the centering matrix H =

I� (1/m)11T to the matrix Z with column corresponding to z

(i) yields:

eZ = ZH =
h
e
z

(1) . . . ez (m)
i
, (3.27)

in which e
z

(i) = z

(i) � z , with z =
P

m

i=1 z
(i). It is shown by [95] that:

� 1

2
H(D �D)H = eZ

T eZ = K, (3.28)

in which the right-hand side is the matrix of inner products of centred data points

in the low-dimensional space, i.e., a centred kernel matrix (� denotes a Hadamard

product). The spectral decomposition of K is K = V0⇤V0T , where:

⇤ = diag(�1, . . .�
d

) 2 Rd⇥d, V 0 = [v 0
1, . . . v

0
d

] 2 Rm⇥d. (3.29)

The non-zero eigenvalues �
i

, i = 1, . . . , d, are arranged in a non-increasing order

and the corresponding eigenvectors v 0
i

2 Rm are normalized. This procedure yields

a (non-unique) representation eZ = ⇤⇤⇤1/2V0T 2 Rd⇥m of the data. Dimensionality

reduction (i.e., the embedding of the data in an r dimensional manifold of Rd) is

achieved by selecting the first r eigenvectors corresponding to the largest r eigen-

values, i.e.:

eZ
r

= ⇤1/2
r

V0T
r

, (3.30)
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in which:

V0
r

= (v 0
1, . . . v

0
r

),

⇤⇤⇤
r

= diag(�1, . . .�r),

eZ
r

= (ez1, . . . ,ezm).

(3.31)

The columns ez (i)
r

of eZ
r

are the low-dimensional representations of the data points.

When Euclidean distances are used for the dissimilarities, MDS is equivalent to

PCA , the latter of which computes a representation Z
r

= VT

r

Y 2 Rr⇥m, where

V
r

is formed from the first r eigenvectors v
i

, i = 1, · · · , d, of the sample covariance

matrix (as columns) corresponding to the largest r eigenvalues. These eigenvalues

are identical to those of the kernel matrix. The singular value decomposition of Y

is given by Y = V⇤⇤⇤1/2V0T , where V = [v1 . . . v
d

], which gives:

Z
r

= VT

r

(V⇤1/2V0T ) = ⇤1/2
r

V0T
r

= eZ
r

. (3.32)

In other words, the coordinates of ez (i)
r

, i = 1, . . . ,m, computed by classical scaling

are identical to the first r coordinates using the principal directions v
i

as a basis for

Rd. The equivalence also arises from the least-squares optimality of both methods

in terms of reconstructing both data sets in a new orthogonal basis.

3.3.2 Isomap and kernel Isomap

Classical metric MDS is a linear method and in common with PCA it will fail to ac-

curately represent many surfaces. To overcome this weakness, Tenenbaum et al. [92]

developed the Isomap method, which uses geodesic distances rather than straight

line (e.g., Euclidean) distances as the dissimilarities. For neighbouring points, the

Euclidean distance o↵ers a decent approximation to the geodesic distance. For far-

away points, the geodesic distance can be approximated by finding a shortest path

distance. Applying classical MDS to a dissimilarity matrix based on such geodesic

distances leads to a low dimensional (approximately isometric) embedding that cap-
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tures the intrinsic geometry of the data. The main steps are given below [92]:

Algorithm 2 Isomap

1: Given data points y

(i) 2 Rd, i = 1, . . . ,m, choose neighbour points on the

manifold based on Euclidean distances: (i) any point lying within an ✏ ball is

considered a neighbour; or (ii) the N (neighbourhood number) closest points

are considered neighbours. Distances between non-neighbour points are defined

as infinity.

2: Construct the proximity matrix P = [d
ij

] using the dissimilarities. The proxim-

ities between neighbours are equal to their Euclidean distances. Distances be-

tween non-neighbour points are computed as the shortest path distances through

neighbouring points.

3: Apply MDS on the kernel matrix K = �(1/2)H(P � P)H to obtain a low

dimensional representation z

(i) 2 Rr, i = 1, . . . ,m, for some integer r ⌧ d.

The connection between this method and kPCA is worth elucidating ([100,

122, 123]) to explain the significance of the Isomap coordinates. The dissimilarity

matrix D can be considered to represent distances between points in a feature space

F , i.e.:

d2
ij

= (���(y (i))� ���(y (j)))T (���(y (i))� ���(y (j))). (3.33)

where ��� : Rd ! F is the feature map. A kernel function can be defined as:

k(i, j) = ���(y (i))T���(y (j)). (3.34)

For an isotropic kernel scaled so that k(i, i) = 1, one has:

d2
ij

= 2� 2k(i, j) or � 1

2
(D �D) = K0 � 11T . (3.35)

where K0 is a kernel matrix. The centered kernel matrix K is obtained from

� 1

2
H(D �D)H = HK0H. (3.36)

Classical scaling using this centred kernel matrix (derived from the dissimilarity
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matrix) is then equivalent to finding coordinates in a basis consisting of the normal-

ized eigenvectors of the sample (centred) covariance matrix in a feature space, i.e.,

exactly as in kPCA.

In kPCA, the eigenvectors of the centred covariance matrix in feature-space

are generally not known since the feature map is not specified. This covariance

matrix eigenproblem, in a possibly infinite dimensional feature space, can be recast

as the eigenproblem for the positive definite (centred) kernel matrix. Assuming

for simplicity that both matrices have a full set of eigenvectors, using only the

eigenvectors of the centred kernel matrix, v
j

, j = 1, . . . ,m, and the specified kernel

values, the projections of a data point y

(i) 2 Rd onto the new basis formed by

the generally unknown eigenvectors of the covariance matrix in feature space, f
j

,

j = 1, . . . ,min{dim(F),m}, can be computed as follows (full details and a derivation

are provided in Chapter 4):

ez(i)
j

= f

T

j

e���(y (i)) =
mX

l=1

v
lj

K
li

(3.37)

in which e���(u (i)) is the centered value of the data point in feature space, v
lj

is the lth

component of the eigenvector v
j

and K
li

is the dot product (kernel value) between

two points y (l) and y

(i) centred in feature space.

There is no theoretical guarantee, however, that the kernel matrix is positive

semi definite (p.s.d.), which would guarantee that the low-dimensional manifold,

onto which the data is mapped, is a Euclidean space (where the distances between

mapped points equals to their dissimilarities), and that a feature space exists. Dis-

similarity matrices that lead to p.s.d. kernel matrices are said to have an ‘exact

Euclidean representation’. To overcome the problem of non-Euclidean dissimilarity

matrices, [100] developed a variant of Isomap termed kernel Isomap, which exhibits

greater robustness. The algorithm is described below [123]: Step 4 is related to the

additive constant problem, which can be defined in the following way: find a value
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Algorithm 3 kernel Isomap
1: Determine the neighbours as in Isomap.

2: Form the proximity matrix using euclidean distance P = [d
ij

].

3: Construct the matrices K = �(1/2)H(P �P)H and J = �(1/2)HPH.

4: Compute the largest eigenvalue, c⇤, of the matrix eK :

 
0 2K

�I �4J

!
(3.38)

5: Apply classical scaling on eK to obtain e
z

(i)
r

2 Rr, i = 1, . . . ,m, for some integer

r ⌧ d.

of the constant c such that the modified dissimilarities matrices:

[ed
ij

] ⌘ [d
ij

+ c(1� �
ij

)], (3.39)

have a Euclidean representation for all c � c⇤ (�
ij

is the Kronecker-delta function).

An exact solution to this problem was given by [124] as the largest eigenvalue of the

matrix (3.38).

3.3.3 The Iso-GPE algorithm

For design points ⇠⇠⇠(i), i = 1, . . . ,m, the simulator ⌘⌘⌘(·) in Section 3.1 yields outputs

y

(i) = ⌘⌘⌘(⇠⇠⇠(i)). Analogously to the PCA method, one can view the simulator as

instead giving realizations e
z

(i)
r

2 Rr, i = 1, . . . ,m, of a random vector. These

realizations lie on or near an r-dimensional space (embedding) and are extracted

from the simulator outputs y (i) as described in section (3.3.2). For fixed j, univariate

GPE is performed on the set of coe�cients ez(i)
j

, with corresponding design inputs

⇠⇠⇠(i), i = 1, . . . ,m, to learn the mapping ⇠⇠⇠ 7! ez
j

for a test input ⇠⇠⇠. In the notation

of section 2.2.1, the training points are y(i) = ez(i)
j

, i = 1, . . . ,m, and the test

output is y = ez
j

. This procedure is repeated for j = 1, . . . , r, with r ⌧ d, to yield

e
z

r

= (ez1, . . . , ezr)T , which is a low dimensional representation of the desired output

y = ⌘⌘⌘(⇠⇠⇠). The predicted coe�cients ez
j

, j = 1, . . . , r, are precisely the coe�cients
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in an expansion using the PCA basis in a feature space, as demonstrated in the

preceding subsection (equation (3.37)). They are therefore uncorrelated and can be

treated as independent given the GP-prior assumption. The final step is to find

the inverse mapping from the Isomap representation e
z

r

2 Rr to the physical space

y 2 Rd, which is explained below. The Iso-GPE method can then be summarized

in the pseudo code given below.

Constructing solutions from the predicted Isomap coordinates

Given the predicted coordinates of a point ez
r

for a test input ⇠⇠⇠ (as described above),

the distances between such a point and the other points ez (i)
r

, i = 1, . . . ,m, can be

computed. Let d
i,⇤ denote the Euclidean distance between e

z

(i)
r

and e
z

r

. Then d
i,⇤

approximates the geodesic distance between y (the inverse image of ez
r

) and y

(i)

by the nature of Isomap. For neighbourhood points of y , these geodesic distances

are approximately equal to Euclidean distances. Local linear interpolation can be

used to approximate the coordinates of u by using the geodesic distances as weights

([112, 125]). Let w
i

= d
i,⇤; then y is approximately given by:

y =
N

nX

i=1

w
i

W
y

(i), (3.40)

where W =
P

N

n

i=1wi

and N
n

is the number of nearest neighbours selected for the

reconstruction (mapping of ez
r

to y). The natural choice for N
n

is the neighbour-

hood number N used in Isomap (recall that for neighbourhood points the geodesic

distances are set equal to the Euclidean distances in step 1 of Algorithm 2). The

accuracy of this procedure relies on: (a) the design-of-experiment (DOE) for select-

ing the inputs (see section 3.4) to provide ‘representative’ outputs in the window of

input space that is of interest; and (b) the number of neighbours selected for the

reconstruction. In some cases, e.g., precipitous changes in the outputs with small

changes in the inputs and/or small sample sizes, a more informed (based on prior
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information) DOE than uniform sampling may be required, although this problem

was not encountered with the examples considered in section 3.4.

Algorithm 4 Iso-GPE Algorithm

1: Select design points ⇠⇠⇠(i) 2 X ⇢ Rl, i = 1, . . . ,m, using design of experiments

2: Construct outputs y (i) = ⌘⌘⌘(x (i)) 2 Rd, i = 1, . . . ,m, from the simulator (section

2.2.1)

3: Perform Isomap (Algorithms 2 or 3) on y

(i), i = 1, . . . ,m, to obtain e
z

(i)
r

=

(ez(i)1 , . . . , ez(i)
r

)T , i = 1, . . . ,m.

4: Select a test point ⇠⇠⇠ for prediction.

5: for j = 1 : r do

6: perform scalar GPE on the training set ez(i)
j

, ⇠⇠⇠(i), i = 1, . . . ,m, to obtain ez
j

.

(find ✓✓✓
MLE

from (2.9) and use (2.8) with t = (ez(1)
j

, . . . , ez(m)
j

)T and y = ez
j

)

7: end for

8: Define ez
r

= (ez1, . . . , ezr)T and w2
i

= d2
i,⇤ = ||ez (i)

r

� e
z

r

||, i = 1, . . . , N
n

. Approxi-

mate simulator output y = ⌘⌘⌘(⇠⇠⇠) using equation (3.40)

3.4 Results and Discussion

The methodology developed in the previous section (Iso-GPE) was applied to data

sets from three problems: (i) a steady-state parameterized PDE model, (ii) an un-

steady parameterized PDE model and (iii) a parameterized ODE model in time.

The results were compared in each case to PCA method, also called HH in this

thesis.

Training and Testing. In each case, the data set consisted of 500 data points

(vectors), with inputs selected using a Sobol sequence design-of-experiment (DOE)

[126], which is specifically designed to generate samples as uniformly as possible over

the unit hypercube [127]. 400 points were reserved for testing and di↵erent numbers

(in an increasing manner) of the remaining 100 points were used for training. A
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relative error is defined to measure the generalization error as:

Relative error =
||y (i)

p

� y

(i)||2
||y (i)||2 , (3.41)

where || · || is the standard Euclidean norm. Selection of the design points using

DOE is vital for ensuring that an accurate response surface can be constructed from

the data [3, 4, 128]. In the examples below, inputs were sampled uniformly. If

prior knowledge of the input-output relationship is available, a more sophisticated

approach could be used. Since our focus is on the output space dimensionality, and

uniform sampling of the inputs su�ces for the examples considered, the readers are

referred to [3, 4, 127, 128] for detailed discussions on DOE issues, which are common

to all emulation methods.

Results are shown for di↵erent numbers of components in the two dimen-

sionality reduction methods. In the case of PCA, the first r components are the r

principal components corresponding to the r largest eigenvalues of the covariance

matrix. In the case of Isomap (or kernel Isomap) the first r components are the r

Isomap coordinates corresponding to the r largest eigenvalues of the kernel matrix

(corresponding to the r in the previous section and in the Iso-GPE algorithm).

3.4.1 Free convection in porous media

This example concerns subsurface flow in a porous medium driven by density vari-

ations that result from temperature changes [129]. The temperature varies from a

high value T
h

to a low value T
c

along the outer edges in a two-dimensional domain

(x1, x2) 2 ⌦ = [0, 10] ⇥ [0, 10] (in cm), which is filled with water (see Fig. 3.2).

Temperature gradients alter the fluid density and buoyant flow is generated. A

Boussinesq buoyancy term in Brinkmann’s equation accounts for the lifting force
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due to thermal expansion. The model equations are:

µ


w +rp�r · µ

✏

�
rw +rwT

�
= ⇢g�(T � T

c

),

⇢C
p

w ·rT �r · (�rT ) = 0.
(3.42)

which are combined with the continuity equation r ·w = 0. T represents tempera-

ture, p is pressure, g denotes gravitational acceleration, ⇢ is the fluid density at the

reference temperature T
c

, ✏ and  are the porosity and permeability of the medium,

� is the coe�cient of volumetric thermal expansion of the fluid, µ is the dynamic

viscosity, � is the volume averaged thermal conductivity of the fluid-solid mixture,

and C
p

is the specific heat capacity of the fluid at constant pressure. The Brinkman

equations are subject to no-slip conditions on all boundaries.

The model was solved in COMSOL Multiphysics 4.3b (‘Free convection in

porous media’ under the Subsurface Flow (Heat Transfer) module) without modifi-

cation. The input parameters were ⇠⇠⇠ = (�, T
h

)T 2 [10�11, 10�8] ⇥ [40, 60] in units

of K�1 and oC respectively. A total of 500 numerical experiments were performed

using a Sobol sequence for sampling the input space. 400 of the data points were

reserved for testing. For each input ⇠⇠⇠(i) 2 R2, i = 1, . . . , 500, the magnitude |w |

of the velocity was recorded on a regular 100⇥ 100 square spatial grid. The 10000

points in the 2D spatial domain ⌦ were re-ordered into vector form (as described

in section 3.1) to give data points y

(i) 2 Rd, where d = 10000. In the notation of

section 3.1, |w | = u(⇠⇠⇠;x ). To give some indication of the range of results, Fig. 3.3

shows the |w | fields in 6 di↵erent cases. The general trend was an increase in the

average value of |w | with increases in � and T
h

.

Results. For 40 training points, which are the first 40 of the reserved training

dataset, (Tukey) box plots of the relative errors (defined as: ||y (i)
p

� y

(i)||2/||y (i)||2)

are shown in Fig.s 3.4 (a) and (b), up to 5 components for both HH and Iso-GPE

(the horizontal axis is the number of components for the respective method, as
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⇠

⌘

Figure 3.2: Temperature boundary conditions for the free-convection example. � is
a variable that represents the relative length of a boundary segment and goes from
0 to 1 along the segment as x2 increases. The cut-o↵ shown by the horizontal dash
along x1 = 10 cm is located at x2 = 1 cm.

previously defined). On each box, the central line is the median, the lower and

upper edges signify the first (Q1) and third (Q3) quartiles, and the lower and up-

per lines (whiskers) define the errors within 1.5 ⇥ (Q3 � Q1) of the first and third

quartiles. All other points (considered outliers) are plotted individually using a

‘+’ symbol. For this number of training points, the two methods exhibit similar

accuracy, with little variation in the errors beyond the use of 1 component (linear

PCA shows that the first component contains over 95 % of the modal energy). For

higher numbers of training points, the Iso-GPE method is superior, as shown in

Fig.s 3.4 (c) and (d), which correspond to 80 training points. For the HH, the

MLE for the hyperparameters was very sensitive to the algorithm used. The steep-

est descent algorithm (used for Fig. 3.4) gave the most stable results, while the

other methods tested (conjugate gradient, L-BFGS, Hessian free Newton, Barzi-

lai & Borwein, all implemented using the Matlab library minFunc (available from

http://www.di.ens.fr/ mschmidt/Software/minFunc.html) typically led to complete
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failure, irrespective of the initial guess for the hyperparameters. The MLE problem

for Iso-GPE was found to be much more robust, in terms of both the method used

and the initial guess. Representative examples in the case of 80 training samples are

shown in Fig. 3.5. In both cases, 5 components were used. Iso-GPE performs well

in both cases, while HH exhibits noticeable quantitative and qualitative di↵erences

from the test output in both cases.
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Figure 3.3: The simulator velocity field in 6 di↵erent cases as indicated for the
free-convection example.
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Figure 3.4: Tukey box plots of the relative errors for HH and Iso-GPE in the free-
convection example. Fig.(a) and Fig.(b) are HH and Iso-GPE with 40 training point,
respectively, while Fig.(c) and Fig.(d) are HH and Iso-GPE with 80 training point
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Figure 3.5: Predictions of the velocity field using 80 training points and r = 5 co-
e�cients in the free-convection example for HH and Iso-GPE. Fig.(a) and Fig.(b)
are two actual velocity field using the simulator. Fig.(c) and Fig.(d) are the predic-
tions of Iso-GPE corresponding to Fig.(a) and Fig.(b) case, respectively. Fig.(e) and
Fig.(f) are the predictions of HH in the same corresponding to Fig.(a) and Fig.(b)
case, respectively.
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3.4.2 Continuously stirred tank reactor

The temperature profile of the startup phase of a continuously stirred tank reactor

(CSTR) used to produce propylene glycol (PrOH) from the reaction of propylene

oxide (PrO) with water in the presence of an acid catalyst (H2SO4): PrO+H2O
H2SO4�!

PrOH is considered. The liquid phase reaction takes place in a CSTR, equipped with

a heat-exchanger. Methanol (MeOH) is added to the mixture but does not react.

The mass balances for the species are:

V
r

dc
i

dt
= v

f

(c
f,i

� c
i

) + ⌫
i

V
r

R, i = PrO, MeOH, PrOH, H2O, (3.43)

in which: c
i

is the concentration, ⌫
i

is the stoichiometric coe�cient and c
f,i

is the

feed stream concentration of species i, respectively; v
f

is the volumetric flow rate;

and R = AcPrOe�E/(RT ) is the rate of reaction, with activation energy E and pre-

exponential factor A (R is the universal gas constant and T is the temperature of

the reactor). The energy balance is expressed as follows:

X

i

c
i

C
p,i

dT

dt
= �HR+

F
x

C
p,x

(T
x

� T )

V
r

⇣
1� eU/(F

x

C

p,x

)
⌘

+
X

i

v
f

c
f,i

(h
f,i

� h
i

)

V
r

,

(3.44)

in which the specific heat capacity is molar averaged over the specific heat capacities

of the individual species (C
p,i

) and H is the enthalpy of reaction. The first term on

the right hand side (rhs) represents the heat of reaction. The second term on the

rhs represents the heat loss to the heat exchanger, where F
x

is the flow rate, C
p,x

is the specific heat capacity and T
x

is the inlet temperature of the heat exchanger

medium. U (J s�1 K�1) is the heat exchange parameter. The third term on the rhs

is the enthalpy change due to the flow of species through the reactor. The molar

enthalpy of species i is given by h
i

= C
p,i

(T � T
ref

) + h
i,ref

, in which h
i,ref

is the

standard heat of formation of i at the reference temperature T
ref

. The feed stream
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molar enthalpies h
f,i

are calculated similarly. The model is completed by initial

values for T and c
i

.

Solutions were obtained using the ‘cstr startup’ model in the ‘Chemical Re-

action Engineering Module’ of COMSOL Multiphysics 4.3b without modification.

A total of 500 numerical experiments were performed using a Sobol sequence for

sampling the input space. 400 of the data points were reserved for testing. The

inputs were defined as ⇠⇠⇠ = (T0, c0, U)T 2 [297, 360] ⇥ [100, 1500] ⇥ [1000, 10000],

where T0 (K) is the initial temperature and c0 (mol m�3) is the initial concentration

of PrO. For each input ⇠⇠⇠(i) 2 R3, i = 1, . . . , 500, the temperature was recorded at

intervals of 14 s up to 7000 s, yielding 501 values for each of the 500 cases. The 501

values were re-ordered into vector form (as described in Eq.(3.2) to give data points

y

(i) 2 Rnd, where nd = 501. in the notation of section refsec:problem defin.

Results. Fig. 3.6 shows the boxplots of the relative errors for HH and Iso-GPE up

to 5 components for both 40 and 80 training points. The best performance is seen

with Iso-GPE. In fact HH failed to provide satisfactory for any number of training

points. Despite appearing to give similar results to Iso-GPE for 40 training points,

based on Fig.s 3.6 (a) and (b), HH exhibited spurious oscillations. A clear di↵erence

in the errors is seen in Fig.s 3.6 (a) and (b), which correspond to 80 training points.

Examples of the predictions for each method are shown in Fig. 3.7 (for 80 training

points using 5 components) demonstrating the failure of HH. Iso-GPE provided a

good fit to the trends and although it exhibited only a reasonably good quantitative

fit, the method did not su↵er from spurious oscillations. For a higher number of

training points up to 140, Iso-GPE exhibited slight improvements in the accuracy

of the predictions, while HH continued to fail.
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Figure 3.6: Tukey box plots of the relative errors for HH and Iso-GPE in the CSTR
example. Fig.(a) and Fig.(b) are HH and Iso-GPE with 40 training point, respec-
tively, while Fig.(c) and Fig.(d) are HH and Iso-GPE with 80 training point
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Figure 3.7: Actual response curves and predictions using 80 training points and r
= 5 coe�cients in the CSTR example for HH (Fig.(a)) and Iso-GPE(Fig.(b)) at 4
di↵erent parameter sets. The solid lines are the actual response curves while the
dash lines indicate the prediction using emulation.
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3.4.3 Metal melting front

A square cavity, (x1, x2) 2 ⌦ = [0, 10] ⇥ [0, 10] (in units of cm), containing both

solid and liquid is submitted to a temperature di↵erence between the left and right

boundaries. The fluid and solid phases are treated as separate domains sharing

a moving melting front. The position of the melting front is calculated according

to a Stefan condition ([130]). The liquid domain is governed by the Navier-Stokes

equations using a Boussinesq approximation:

⇢0
@w

@t
+ ⇢0(w ·r)w +rp�r · µ

�
rw +rwT

�
� ⇢g = 0,

r ·w = 0,

(3.45)

and the heat balances are:

⇢C
p

@T
l

@t
+ ⇢C

p

w ·rT
l

�r · (�rT
l

) = 0,

⇢C
p

@T
s

@t
�r · (�rT ) = 0,

(3.46)

in which w is the liquid velocity, T
l

(T
s

) is the liquid (solid) temperature, µ is the

dynamic viscosity, � is the (common) thermal conductivity of the liquid and solid,

C
p

is the heat capacity of the liquid at constant pressure, g denotes gravitational

acceleration, ⇢0 is the reference density of the fluid, ⇢ = ⇢0�(T
l

�T
f

) is the linearized

density, where � is the metal coe�cient of thermal expansion, and T
f

denotes the

fusion temperature of the solid. The liquid-solid front is defined by x = (x1, x2),

along which T = T
f

. An energy balance at the melting front is given by [130]:

⇢0�h
f

@a

@t
=

 
1 +

✓
@a

@y

◆2
!✓

�
@T

s

@y
� �@Tl

@x

◆
, (3.47)

where �h
f

is the latent heat of fusion. A no slip condition is applied at the other

boundaries.

The model was solved in COMSOL Multiphysics 4.3b (‘Tin Melting Front’
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Figure 3.8: Tukey box plots of the relative square errors up to 8 components for Iso-
GPE and HH. Fig.(a) and Fig.(b) are result of Iso-GPE and HH with 50 training
points while Fig.(a) and Fig.(b) are result of Iso-GPE and HH with 80 training
points.
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under the Heat Transfer (Phase change) module) without modification. A to-

tal of 100 numerical experiments were performed by selecting parameters e⇠⇠⇠
(i)

=

(�h
f

,�)T 2 [200, 1200]⇥ [30, 100], i = 1, . . . , 100, using a Sobol sequence (the units

are kJ kg�1 and W m�1 K�1 respectively). For each value of e⇠⇠⇠
(i)
, 5 snapshots of

the velocity field were recorded for t
i

= 50 + 50(i � 1), i = 1, . . . , 5 (in seconds).

For each of the 500 snapshots, the magnitude |w | of the velocity was recorded on a

regular 100 ⇥ 100 square spatial grid. The 10000 points in the 2D snapshots were

re-ordered into vector form (as described in section 3.1) to give data points y (i) 2 Rd

as a instantaneous state which is treated as a steady state , where d = 10000. In

the notation of section 3.1, |w | = u(x , t;⇠⇠⇠), time t is treated as an input parameter.

This gave a total of 500 data points (400 reserved for testing), with corresponding

inputs ⇠⇠⇠(i+100(k�1)) = (e⇠⇠⇠
(i)
, t

k

) 2 R3, i = 1, . . . , 100, k = 1, . . . , 5.

Results. For 40 training points, box plots of the relative square errors are shown

in Fig. 3.8 (a) and (b), up to 8 components for both Iso-GPE and HH. Iso-GPE

clearly exhibits the lowest errors of the two methods. The di↵erences in the errors

are significant, as demonstrated by the two representative examples shown in Fig.

3.9, corresponding to cases 145 and 301 of the 400 reserved for testing. In both

cases, 5 components were used. The performance of Iso-GPE in the first example

is very good, while it performs poorly in the second. HH is noticeably worse than

Iso-GPE, particularly in the second test, in which the fit is both qualitatively poor

and negative values are predicted. For 80 training examples, the boxplots of the

relative square errors are shown in Fig. 3.8 (c) and (d), again up to 8 components

for both Iso-GPE and HH. Both methods show improvement. Iso-GPE exhibited

very good performance with 80 training points in almost all cases, while the fit with

HH was still poor in many of the test cases. In fact, significant improvements were

seen with Iso-GPE using just 60 training points.
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Figure 3.9: Actual response fields and predictions using 40 training points and r =
5 coe�cients in the melting front example for 145th (left column) and 301th (right
column) observations of the 400 reserved testing points. Fig.(a) and Fig.(b) are the
actual response fields of the simulators. Fig.(c) and Fig.(d) are the predictive fields
of the Iso-GPE while Fig.(e) and Fig.(f) are the predictions of HH
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3.4.4 Computational details

The results of HH were highly dependent on the MLE algorithm and the initial guess

for the hyperparameters. Iso-GPE also showed sensitivity to the MLE algorithm

and the initial guess, but a much lesser degree; reasonable results were obtained with

all algorithms tested. At present, no reasons for these observations is clear, which

will require further investigations. One of many possible explanations would be

the way reduced-order data are orientated changes the gradient surface completely

and complicate (or maybe simplify) the optimisation problem. Again, this would

require a further look into the problem of dimension reductions and optimisations.

The computational times for training the algorithms using 80 training points and 9

components in the examples considered (on a 2.7 GHz i7core, 16 GB RAM laptop)

were all below 100 s when using the interior point method for the MLE (the most

computationally expensive). These times are determined primarily by the solution

to the MLE problem, and thus vary from method to method. The main limitation

with the MLE (or fully Bayesian approach) is the inversion of the covariance matrix

C and the calculation of |C| in equation (2.9), both of which are O(m3) calculations,

where m is the number of samples. As the input space dimensionality grows, m will

generally increase. The examples considered here have relatively low numbers of

inputs L, but much higher numbers can be used provided the number of training

points does not grow too large. A main consideration will be the DOE [3, 4, 127, 128]

as discussed earlier. Since the limitations on the input space dimensionality and

sample number are common to all GP emulation methods (including univariate),

a more detailed discussion is beyond the scope of this work, which is focused on

reducing the dimensionality of the output space.

The method used to determine the neighbouring points for Isomap (step 1

in Algorithms 2 and 3 of section3.3 and 3.3.2) was found not to influence the results

significantly. The results discussed above were generated using the neighbourhood

number method (N = 10 in all cases). Increasing the neighbourhood number above
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10 did not noticeably alter the results as is shown in previous experiments. Several

parameters and choices in the Iso-GPE algorithm will need to be optimized, on a

case by case basis. These parameters include the covariance function, the MLE

algorithm and the neighbourhood number (or ball radius) for Isomap.

3.5 Concluding remarks

In this chapter, a new method for GPE emulation of high-dimensional data sets

arising from parameter-dependent PDEs (dynamic and steady) is presented. The

method extends that of Higdon et al. [1] (HH) by replacing PCA with a manifold

learning method, able to overcome many of the limitations of PCA. The general-

ization to nonlinear dimensionality reduction is significant because many response

surfaces will not admit to a low-dimensional approximation using a linear subspace

of the ambient space. Implement of the methods is also shown, including an inverse

map approximation and applied the method to several data sets. Compared to HH,

our method performs better in the cases presented, for which HH can fail. The

method is also very e�cient in terms of computational cost, with dimensionality

reduction of several orders of magnitude.

Although the motivation was parameterized nonlinear PDE models, the

method developed can be applied to any problem involving vector-valued (steady-

state or time-dependent) targets and vector-valued inputs. It can be potentially

employed to dramatically reduce the time costs of numerical algorithms for uncer-

tainty quantification, optimal design, control and inverse parameter estimation (any

application that involves repeated solutions of high-fidelity computational models

where a spatial domain is of interest).

There are several powerful approaches to manifold learning other than Isomap,

including kernel PCA, di↵usion maps, Laplacian eigenmaps, local linear embed-

ding ([86]) and local tangent space alignment ([131]). Predicting which manifold
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learning method works best on a given data set is not straightforward. There are

cases where one may work very well, while another works poorly. Moreover, perfor-

mance on toy data sets can be misleading and each method requires tuning of free

parameters to best approximate the given data set. In the present context, there

must also exist an approximation to the pre-image map. In many cases, this is not

the case. In the next chapter, the idea of this chapter is extended by replacing

Isomap with other manifold learning methods, namely kernel PCA and di↵usion

maps.
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Chapter 4

Gaussian process emulators for

high dimensional output spaces

using kernel PCA and di↵usion

maps

In this chapter, the Isomap based GPE introduced in chapter 3 is extended by re-

placing Isomap with di↵usion maps and kernel PCA, each with their own challenges

in terms of constructing a valid basis and finding an inverse map approximation.

While a number of inverse map approximations exist for kernel PCA (kPCA), ap-

proximations for di↵usion maps are limited to low-dimensional embeddings [113]. A

new approximation that is computationally e�cient and stable is outlined. Its accu-

racy on a standard data set is demonstrated before it is used in the main algorithm

developed in this chapter.

The problem under consideration is the same as that outlined in Section 3.1.

In relation to the problem formulated in section 3.1, it is stared by implementing

the two manifold learning methods on the field output data, defining the reduced-
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dimensional spaces and the quantities that are used later in the GP emulations and

inverse map approximations. The overall strategy for emulating outputs in high-

dimensional spaces is explained in Section 4.3 and the inverse map approximations

are described in Section 4.4. Numerical examples are presented and discussed in

Section 4.5.

This chapter is based on the publication [132]: W.W. Xing, V. Triantafyllidis,

A.A Shah, P.B Nair, and N. Zabaras, “Manifold learning for the emulation of spatial

fields from computational models”, Journal of Computational Physics, vol. 326, pp.

666–690, 2016.

4.1 Kernel principal component analysis

kPCA [133] maps high-dimensional data in a space M to a higher-dimensional

feature space F via a mapping:

��� : M! F (4.1)

and performs linear PCA in F . In our case, the data consist of the training data

y

(i) = ⌘⌘⌘(⇠⇠⇠(i)) 2M ⇢ Rd, i = 1, . . . ,m, i.e., simulator outputs at the design points

⇠⇠⇠(i) 2 X ⇢ Rl. The eigen-problem for the sample covariance matrix in F is:

CFw =

 
1

m

mX

i=1

e���(y (i))
⇣
e���(y (i))

⌘
T

!
w = �w (4.2)

in which, w is the principal basis in the feature space, e���(y (i)) = ���(y (i))���� is the i-

th centred data point in feature space, with ��� = (1/m)
P

m

j=1���(y
(j)). The mapping

���(·) is implicitly defined via a kernel function:

k(y (i),y (j)) = ���(y (i))T���(y (j)), (4.3)
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which generates a kernel matrixK = [K
ij

] with entriesK
ij

= k(y (i),y (j)). A centred

kernel function ek(y (i),y (j)) = e���(y (i))T e���(y (j)) and a centred kernel matrix eK = [ eK
ij

]

with entries eK
ij

= e���(y (i))T e���(y (j)) are similarly defined. eK can be obtained from:

eK = HKH, (4.4)

where H = I� (1/m)11T is the centering matrix, in which I is the identity matrix

and 1 = (1/m)(1, . . . , 1)T 2 Rm. As mentioned previously, the most widely used

kernel functions is the Gaussian kernel:

k(y (i),y (j)) = exp (�||y (i) � y

(j)||2/s2), (4.5)

where s is a scale factor. This kernel function is particularly useful when one has no

prior knowledge on the data. This, however, does not imply such a kernel function

would always work. Guidelines on how to find proper kernel functions could be

found in [134] where a automatic process is proposed. Equation (4.2) shows that

the eigenvectors w are linear combinations of e���(y (i)), i.e., w =
P

m

i=1 ↵i

e���(y (i)).

Using this expression in Eq. (4.2) and premultiplying by e���(y (i))T (noting that eK is

positive semidefinite), yields the eigenvalue problem:

eK↵↵↵ = m�↵↵↵, (4.6)

where ↵↵↵ = (↵1, . . . ,↵m

)T . Once computed, the orthonormal ↵↵↵
i

are rescaled by

↵↵↵
i

7! ↵↵↵
i

/
p
�
i

= e↵↵↵
i

. This defines orthonormal eigenvectors:

e
w

i

=
mX

j=1

e↵
ji

e���(y (j)), (4.7)

for i = 1, . . . ,m where e↵
ji

= ↵
ji

/
p
�
i

and ↵
ji

denote the j-th components of e↵↵↵
i

and

↵↵↵
i

, respectively. Strictly speaking, there are min(dimF ,m) basis vectors e
w

i

, but
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assuming for the purposes of illustration that dimF > m, without loss of generality.

A mapped training point e���(y (j)) can be expressed in the basis {ew
i

}m
i=1 ⇢ F as:

e���(y (j)) =
mX

i=1

z
i

(y (j))ew
i

, (4.8)

where the i-th coe�cient is calculated as follows:

z
i

(y (j)) = e
w

T

i

e���(y (j)) =
mX

l=1

e↵
li

e���(y (l))T e���(y (j))

=
mX

l=1

e↵
li

eK
lj

= e↵↵↵T

i

e
k

j

= e↵↵↵T

i

H(k
j

�K1),

(4.9)

for i = 1, . . . ,m, where:

k

j

= (K1j , . . . ,Kmj

)T ,

e
k

j

= ( eK1j , . . . , eKmj

)T .

(4.10)

One can therefore define:

z (y (j)) = (z1(y
(j)), . . . , z

m

(y ,(j) ))T , (4.11)

where the z
i

(y (j)), i = 1, . . . ,m, are given by Eq. (4.9).

The main properties of PCA carry over to kPCA. With �
i

< �
i�1, i =

2, . . . ,m, the variance in the data along e
w

i

(equal to �
i

) decreases as i increases and

the coe�cients in an expansion of a mapped training point in the basis {ew
i

}m
i=1 are

uncorrelated. The goal is to find an r-dimensional approximation of the points

e���(y (j)), where ideally r ⌧ m. The reconstruction error [79] of the projection

e���
r

(y (j)) =
P

r

i=1 zi(y
(j))ew

i

of e���(y (j)) onto the subspace F
r

= span(ew1, . . . , ew r

)
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is given by:
mX

j=1

||e���
r

(y (j))� e���(y (j))||2 =
mX

i=r+1

�2
i

, (4.12)

where || · || is the standard Euclidean norm for dimF < 1 or the L2(M) norm

of (equivalence classes of) square integrable functions on M for dimF = 1. The

value of r is typically chosen according to a variance criterion (or modal energy) [79]:

Select r such that
P

r

i=1 �i/
P

m

i=1 �i > % for some threshold %.

One can now define a mapping e���
r

: M! F
r

as the orthogonal projection of

e���(·) onto {ew
i

}r
i=1:

e���
r

(y (j)) =
rX

i=1

z
i

(y (j)).ew
i

. (4.13)

Here the notation is used:

z

r

(y (j)) = (z1(y
(j)), . . . , z

r

(y (j)))T , (4.14)

which, from Eq. (4.9), is given by:

z

r

(y (j)) = [e↵↵↵1 . . . , e↵↵↵r

]TH(k
j

�K.1) (4.15)

Algorithm 5 summarizes kPCA for data {y (i)}m
i=1.

It is assumed that the training data captures the structure of M su�ciently

well to (implicitly) define a representative basis, e
w

i

, i = 1, . . . ,m, for the image

e���[M] ⇢ F of the entire space M under e���. Equation (4.13) then yields a reduced-

dimensional approximation:

e���
r

(y) =
rX

i=1

z
i

(y)ew
i

, (4.16)

for an arbitrary y 2M. Equivalently, by the injectivity of y = ⌘⌘⌘(⇠⇠⇠), and assuming
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Algorithm 5 kPCA

1: Form a kernel matrix K using a kernel function k(·, ·):

Centred kernel matrix: eK HKH.

2: Solve eigenvalue problem: eK↵↵↵ = m�↵↵↵ ! (↵↵↵
i

,�
i

), i = 1, . . . ,m,

e↵↵↵
i

 ↵↵↵
i

p
�
i

.

3: Select r < m according to
P

r

i=1 �i/
P

m

i=1 �i > %. Then compute:

z
i

(y (j)) e↵↵↵T

i

H(k
j

�K1) i, j = 1, . . . ,m,

z

r

(y (j)) (z1(y
(j)), . . . , z

r

(y (j)))T j = 1, . . . ,m.

that the feature map is injective, Eq. (4.13) defines a map:

(e���
r

� ⌘⌘⌘)(·) = e���
r

(⌘⌘⌘(·)) : X ! F
r

, (4.17)

i.e., directly from the entire permissible input space X to F
r

. The basis vectors are,

however, unknown without an explicit form for ���. For an arbitrary input ⇠⇠⇠ 2 X ,

the coe�cients z
i

(y) define computable maps:

z
i

(·) = z
i

(⌘⌘⌘(·)) : X ! R and z

r

(⌘⌘⌘(·)) : X ! Rr. (4.18)

Thus:

e���
r

(⌘⌘⌘(⇠⇠⇠)) =
rX

i=1

z
i

(⇠⇠⇠)ew
i

,

z

r

(⌘⌘⌘(⇠⇠⇠)) = (z1(⇠⇠⇠), . . . , zr(⇠⇠⇠))T .

(4.19)

The original problem of approximating ⌘⌘⌘ : X ! M given the training points

{y (j)}m
j=1 is replaced by the problem of approximating z

r

(⌘⌘⌘(·)).

A multivariate GP prior indexed by ⇠⇠⇠ is placed over z

r

(⌘⌘⌘(·)). Algorithm

1 applied to the original training set {y (i)}m
i=1 yields the new training points for
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emulation:

z

r

(⌘⌘⌘(⇠⇠⇠(j))) = z

r

(y (j)) = [e↵↵↵1 . . . , e↵↵↵r

]TH(k
j

�K1), j = 1, . . . ,m. (4.20)

4.2 Di↵usion maps

In di↵usion maps, the training data y

(i) 2 M ⇢ Rd, i = 1, . . . ,m is mapped to a

subset of Rm called the di↵usion space from which a reduced-dimensional approx-

imation is subsequently obtained [107, 135]. The mapping embeds the data points

in di↵usion space by preserving a di↵usion distance defined between the points in

physical space. The data points y

(i) are identified with nodes on a graph and a

Markov chain is constructed by specifying a measure of ‘connectivity’ (or a ‘ker-

nel’) between the nodes. Consider a weighted undirected graph G with vertex set

{y (1), . . . ,y (m)} representing the training points. Edge weights are defined by a

symmetric and positive definite kernel k(y (i),y (j)) between the data points, e.g.,

the Gaussian kernel k(y (i),y (j)) = exp(�||y (i) � y

(j)||2/s2). It is assumed that G

is connected (otherwise the maps can be constructed separately on each connected

component).

A di↵usion process [106] on G is constructed by normalizing the connectivity

(adjacency) matrix K = [K
ij

], where K
ij

= k(y (i),y (j)). The degree matrix is

defined as D = diag(d1, . . . , dm), where d
i

=
P

j

K
ij

, and an m⇥m di↵usion matrix

is defined by:

P = D�1K, (4.21)

where P = [P
ij

] is a Markov matrix; the entry P
ij

is considered to be a transition

probability p(y (i),y (j)) from node y

(i) to y

(j) in a random walk on G. The cor-

responding t step transition probability p
t

(y (i),y (j)) (from y

(i) to y

(j) in t 2 N =

1, 2, . . . steps) is given by the (i, j)-th entry of Pt = P⇥ · · ·⇥P.

Since G is connected, P is ergodic and, therefore, possesses a unique station-
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ary distribution ⇡⇡⇡ with entries [107]:

⇡
i

=
d
iP
j

d
j

. (4.22)

Define a symmetric matrix:

P0 = D�1/2KD1/2, (4.23)

which possesses the same eigenvalues �0
i

as P. A spectral decomposition yields:

P0 = S���0ST , (4.24)

where the columns of S are the orthonormal eigenvectors s
i

, i = 1, . . . ,m, of P0 and

���0 = diag(�01, . . . , �0m). The eigenvalues are arranged such that 1 = �01 > · · · > �0
m

and the eigenvector s1 has entries
p
⇡
i

[136]. P has the spectral decomposition:

P = Q���0Q�1, (4.25)

where Q = D�1/2S. The right and left eigenvectors of P are r

i

= D�1/2
s

i

and

l

i

= D1/2
s

i

, respectively. Therefore:

l1 = ⇡⇡⇡

sX

j

d
j

, r1 = 1T /

sX

j

d
j

. (4.26)

The right and left eigenvectors are bi-orthogonal, i.e., lT
i

r

i

= �
ij

, where �
ij

is the

Kronecker delta. By the orthogonality of S, one has:

Pt = Q���tQ�1 or Pt =
mX

i=1

(�0
i

)tr
i

l

T

i

, (4.27)

where the j-th row vector of Pt, denoted p

t

j

, is:

p

t

j

= (p
t

(y (j),y (1)), . . . , p
t

(y (j),y (m)))T =
mX

i=1

(�0
i

)tr
ji

l

i

, (4.28)
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where r
ji

is the j-th coordinate of r
i

. p

t

j

can be considered as a probability mass

function, where the i-th entry, i = 1, . . . ,m, is the probability of being at node y

(i)

after t steps of a random walk that started at node y

(j).

A di↵usion distance D
t

(in physical space) is then defined as follows [107]:

D
t

(y (i),y (j)) =
�
(pt

i

� p

t

j

)TD�1(pt

i

� p

t

j

)
�1/2

. (4.29)

One can now define a family of di↵usion maps    t : M ! D(t) ⇢ Rm between the

training points y (j) and di↵usion spaces D(t) as follows [107, 135]:

   t(y (j)) =
�
(�01)

tr
j1, . . . , (�

0
m

)tr
jm

�
T

. (4.30)

The maps are indexed by the free parameter t. The coe�cients of a mapped point

y

(j) are the coe�cients of pt

j

in the non-orthogonal basis {l
i

}m
i=1. Di↵usion maps

embed the data points in D(t) in the following sense [107, 135, 137]:

||   t(y (i))�   t(y (j))|| = D
t

(y (i),y (j)), (4.31)

where || · || denotes the standard Euclidean norm. Equation (4.31) follows from the

bi-orthogonality of the left and right eigenvectors. From Eq. (4.30) and the decay

in the eigenvalues, one can define mappings    t

r

(y (j)) : M! D(t)
r

⇢ Rr as follows:

   t

r

(y (j)) = ((�01)
tr

j1, . . . , (�
0
r

)tr
jr

)T , (4.32)

which give approximations of the training data {y (j) = ⌘⌘⌘(⇠⇠⇠(j))}m
j=1 in Rr, where

ideally r ⌧ m.

In practice, the value of r is usually selected according to a criterion on the

eigenvalues, e.g., as the largest index j such that:

|(�0
j

)t| > �|(�02)t|, (4.33)
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holds for a pre-selected precision � [107]. The di↵usion distance, and therefore the

di↵usion map, depends on t. As t increases, the di↵usion distances between points

decrease since each row of Pt approaches the stationary distribution (see Eq. (4.28)).

Algorithm 6 summarizes di↵usion maps for data {y (i)}m
i=1.

Algorithm 6 Di↵usion maps

1: Form a kernel matrix K using a kernel function k(·, ·).

Degree of node i: d
i

 
P

j

K
ij

i = 1, . . . ,m.

Degree matrix: D diag(d1, . . . , dm).

P0  D�1/2KD1/2.

2: Eigenvalue problem: P0
s = �s ! (s

i

, �0
i

), i = 1, . . . ,m.

r

i

 D�1/2
s

i

and l

i

 D1/2
s

i

.

3: Select r as the largest index j such that |(�0
j

)t| > �|(�02)t| for a precision �:

   t

r

(y (j)) ((�01)
tr

j1, . . . , (�
0
r

)tr
jr

)T j = 1, . . . ,m.

In order to develop an inverse map approximation, di↵usion maps is gener-

alised to all points in M by taking the limit m ! 1. In this limit, the random

walk on the discrete graph using a Gaussian kernel converges to a discrete-time walk

on the continuous state space M [107, 137, 138]. Full details of the following are

provided in Appendix 8.1. Here the key quantities needed to generalize di↵usion

maps for the analysis that follows in Section 4.4.2 on the inverse mapping is clearly

defined. Let µ be a probability measure on M defining the density of points. In

the limit m ! 1, a one-step transition kernel for the Markov chain on M can be

defined by:

p(y 0,y) = k(y ,y 0)/d(y 0), (4.34)
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from an arbitrary y

0 2M to an arbitrary y 2M, where d(y 0) is defined as:

d(y 0) =
Z

M
k(y ,y 0)dµ(y). (4.35)

A corresponding forward transfer operator is defined by:

L'(y) =
Z

M
p(y 0,y)'(y 0)dµ(y 0), (4.36)

for '(y) 2 L2(M, µ). This operator is the continuous analogue of multiplication of

P from the left. The t-step operator Lt' = L�L� · · ·�L' has a corresponding t-step

transition kernel p
t

(y ,y 0). One can similarly define a backward transfer operator:

R'(y) =
Z

M
p(y ,y 0)'(y 0)dµ(y 0), (4.37)

which is the analogue of multiplication of P from the right. The kernel p
t

(y ,y 0)

admits the decomposition:

p
t

(y ,y 0) =
1X

i=1

�t
i

r
i

(y), l
i

(y 0), (4.38)

where �
i

, r
i

(y) and l
i

(y) are the (common) eigenvalues and eigenfunctions of L and

R, respectively. They are, respectively, the continuous-space equivalents of �0
i

, r
i

and l

i

. Moreover 1 = �1 > �2 > · · · . The key to the inverse map developed in

Section 4.4.2 is the link between the eigenvalues/eigenvectors of P and the eigenval-

ues/eigenfunctions of L and R.

For a fixed y 2M, p
t

(y ,y 0) is the continuous version (a probability density

in y

0 2M) of the probability mass function defined by Eq. (4.28); in the latter case,

y = y

(j) and y

0 2 {y (1), . . . ,y (m)}, i.e., the finite set of states accessible from y

(j).

As explained in Appendix 8.1, the j-th components of r
i

and l

i

are, respectively,

approximations of r
i

(y (j)) and l
i

(y (j)) based on the training data. The di↵usion
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distances between any two points y ,y 0 2M are given by:

D
t

= ||p
t

(y ,y 0)� p
t

(y ,y 0)||1/d, (4.39)

where:

||'||21/d =

Z

y

02M
|'(y 0)|2/d(y 0)dµ(y 0), (4.40)

for functions {' : ||'||1/d < 1}. In turn, di↵usion maps    t : M ! D(t) ⇢ `2 are

defined on the whole space M by:

   t(y) = (�t1r1(y), �
t

2r2(y), . . .). (4.41)

Here, `2 denotes the space of sequences {(x1, x2 . . .) :
P1

j=1 x
2
j

< 1}. Truncating

the expansion of p
t

at the first r terms leads to r-dimensional approximations of

the di↵usion maps    t

r

: M! D(t)
r

⇢ Rr, i.e.:

   t

r

(y) = (�t1r1(y), . . . , �
t

r

r
r

(y))T . (4.42)

Given an isotropic kernel k(y ,y 0), di↵usion maps can be generalized by defining a

family of anisotropic kernels:

k(↵)(y ,y 0) = k(y ,y 0)/(d(y 0)↵d(y)↵), (4.43)

for ↵ 2 R, and normalizing the resulting kernel to generalize p(y 0,y) (or P in the

discrete case) [107, 139, 140]. The standard algorithm described above corresponds

to the limiting case of ↵ = 0 (isotropic kernel), and the anisotropic kernels is not

considered in this thesis due to limited space and the lack of inverse mappings for

such special cases. In Section 4.4.2, a new inverse map is developed for the isotropic

case only.
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Consider the mappings:

(   t

r

� ⌘⌘⌘)(·) =    t

r

(⌘⌘⌘(·)) : X ! D(t)
r

⇢ Rr, (4.44)

that map all points in the input space to D(t)
r

. The mapped point is given by

the first r coordinates of the transition kernel p
t

(y ,y 0) (considering y to be fixed)

in the basis {l
i

}1
i=1. The coe�cients are the products of the eigenvalues and the

corresponding eigenfunctions r
i

evaluated at y = ⌘⌘⌘(⇠⇠⇠). One can define composite

functions r
i

(·) = r
i

(⌘⌘⌘(·)) : X ! R to obtain:

   t

r

(⌘⌘⌘(⇠⇠⇠)) = (�t1r1(⇠⇠⇠), . . . , �
t

r

r
r

(⇠⇠⇠))T 2 D(t)
r

. (4.45)

The original problem of approximating ⌘⌘⌘(·) is replaced with the problem of approx-

imating    t

r

(⌘⌘⌘(·)) using the empirical eigenvalues �0
i

and empirical eigenfunctions

(eigenvectors) l
i

and r

i

.

A multivariate GP prior indexed by ⇠⇠⇠ is placed over    t

r

(⌘⌘⌘(⇠⇠⇠)). Algorithm 2

applied to the original data set {y (i)}m
i=1 yields the new training points for emulation:

   t

r

(⌘⌘⌘(⇠⇠⇠(j))) =    t

r

(y (j)) = ((�01)
tr

j1, . . . , (�
0
r

)tr
jr

)T , (4.46)

for j = 1, . . . ,m, obtained from the empirical eigenfunctions and empirical eigenval-

ues.

4.3 Multi-output emulation using manifold learning

Replace the problem of emulating ⌘⌘⌘ : X !M with the problem of emulating the

map z

r

(⌘⌘⌘(·)) defined by Eq. (4.19) or the map    t

r

(⌘⌘⌘(·)) defined by Eq. (4.45). Mul-

tivariate GP priors are placed over these maps, with training points for emulation

given by Algorithms 5 and 6 for kPCA and di↵usion maps, respectively. These mul-

tivariate GP priors take a particularly convenient form by assuming independence
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of the coordinates, as explained below. The details of a scalar GPE refers to section

2.2.1.

The kPCA coe�cients, z
i

(⇠⇠⇠), i = 1, . . . , r are mutually uncorrelated; fol-

lowing Higdon et al. [1] (see also the wavelet decomposition approach in [33]). The

approximations, therefore, are assumed arising from independent GPs. The di↵usion

map coe�cients �
i

r
i

(⇠⇠⇠), i = 1, . . . , r, on the other hand, are not uncorrelated. As

a simplification, however, the underlying GPs are treated as independent. For both

manifold learning methods, univariate GPE is then performed separately on each

coe�cient to approximate its value for a new input ⇠⇠⇠. The process is summarized

below for each case, making clear the link between the notation of Sections 4.1,4.2

and 2.2.1.

1. kPCA: For a fixed i = 1, . . . , r, one sets ⌘(⇠⇠⇠) = z
i

(⇠⇠⇠). The training points

are given by Eq. (4.9): ⌘(⇠⇠⇠(j)) = z
i

(⇠⇠⇠(j)) = e↵↵↵T

i

H(k
j

� K1), j = 1, . . . ,m.

Recall that z
i

(⇠⇠⇠(j)) = z
i

(⌘⌘⌘(⇠⇠⇠(j))) = z
i

(y (j)). The expected (mean) value at an

input ⇠⇠⇠, given by Eq. (2.8), yields a prediction that is denoted z
i

(⇠⇠⇠) (to avoid

introducing new notation, z
i

(⇠⇠⇠) and E[z
i

(⇠⇠⇠)]) are not distinguished. z
r

(⌘⌘⌘(⇠⇠⇠)) =

(z1(⇠⇠⇠), . . . , zr(⇠⇠⇠))T is setted as a notation. Again, this is the expected value

E[z
r

(⌘⌘⌘(⇠⇠⇠))].

2. Di↵usion maps: For a fixed i = 1, . . . , r, one sets ⌘(⇠⇠⇠) = r
i

(⇠⇠⇠). The train-

ing points are given by Eq. (4.32): ⌘(⇠⇠⇠(j)) = r
i

(⇠⇠⇠(j)) = r
ji

, j = 1, . . . ,m.

Recall that r
i

(⇠⇠⇠(j)) = r
i

(⌘⌘⌘(⇠⇠⇠)(j))) = r
i

(y (j)). For a new input ⇠⇠⇠, Eq. (2.8)

yields E[r
i

(⇠⇠⇠)], denoted simply as r
i

(⇠⇠⇠). One then obtains (the expected value

of)    t

r

(⌘⌘⌘(⇠⇠⇠)) = ((�01)tri

(⇠⇠⇠), . . . , (�0
r

)tr
r

(⇠⇠⇠))T , which approximates    t

r

(⌘⌘⌘(⇠⇠⇠)) =

(�t1ri

(⇠⇠⇠), . . . , �t
r

r
r

(⇠⇠⇠))T . Note that while the GPE provides a prediction of

the function r
i

(⇠⇠⇠), it can provide no information on the eigenvalues �
i

=

lim
m!1 �0

i

, which do not depend on ⇠⇠⇠. Thus, the �0
i

found from Algorithm 6

are used to compute the predicted value of    t

r

(⌘⌘⌘(⇠⇠⇠)).
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To take account of the correlations between the coe�cients when using dif-

fusion maps, the linear model of coregionalization (LMC) [28, 32] could be used

to emulate the coe�cients simultaneously. Alternatively, the GP model could be

replaced by an artificial neural network (ANN). Implementation details would be

drafted in chapter 5. For moderately sized r, neither approach is computationally

expensive. In this chapter, the approach of univariate GPs with ANN using Bayesian

regularization [70, 72] are compared. To complete the emulation, one must approxi-

mate the inverse map from the reduced-dimensional space F
r

or D(t)
r

to the physical

space M ⇢ Rd. This so-called pre-image problem can be solved in a number of ways

for kPCA but a stable, computationally e�cient solution for di↵usion maps in high-

dimensional spaces does not exist. In the next section, details of the inverse map

approximations are provided for both methods, including a new pre-image solution

for di↵usion maps. The main algorithm for GPE of outputs in high-dimensional

spaces is given in Section 4.4.3.

The GPE framework furnishes predictive variances, given by Eq. (2.8). The

variances pertain to the coe�cients (z
i

or r
i

) in an abstract space and there is

no obvious method to translate this information into variances in the predictions

y = ⌘⌘⌘(⇠⇠⇠) 2M. The inverse maps discussed below provide only the predictive means

of the points y . However, one can derive Monte Carlo (MC) estimates of higher-

order statistics for a fixed input ⇠⇠⇠ by drawing samples from the posterior predictive

Gaussian distribution (defined by Eq. (2.8)) over the coe�cients r
i

(y) = r
i

(⇠⇠⇠) or

z
i

(y) = z
i

(⇠⇠⇠) and using the deterministic inverse maps described below.

4.4 Inverse mappings: Reconstruction of points in M

The final step, as in chapter 3, is to find approximations of the inverse mappings:

����1
r

(·) : F
r

!M and (   t

r

)�1(·) : D(t)
r

!M, (4.47)
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for kPCA and di↵usion maps, respectively. Note, as in chapter 3, that these are the

inverse mappings for the manifold learning methods (from the reduced dimensional

space to physical space) and not the inverse mappings for the composite functions

���
r

(⌘⌘⌘(·)) and    t

r

(⌘⌘⌘(·)).

In practical terms (since the feature map is unknown), for kPCA, one seek

the mapping:

z

�1
r

(·) : Rr !M or z

r

7! y = ⌘⌘⌘(⇠⇠⇠). (4.48)

This can be achieved via a closed-form least-squares solution [108, 141]. This

method, however, can su↵er from numerical instabilities if m < d (number of train-

ing points is less than the dimension ofM), as can the fixed-point iterative algorithm

of Mika et al. [109] and other minimization routines.

For di↵usion maps there has been little progress towards finding an inverse

map approximation. Etyngier et al. [113] proposed an optimization procedure de-

signed for 2-d shapes embedded in R3 (a closely related method can be found

in [114]). This method uses a Delaunay triangulation into r-simplices of the embed-

ded points in D(t)
r

and takes the points in the simplex containing    t

r

(y) =    t

r

(⌘⌘⌘(⇠⇠⇠))

to be the mapped nearest r + 1 neighbours of y = ⌘⌘⌘(⇠⇠⇠) in M. It then proceeds to

minimize over the point y and its barycentric coordinates w.r.t. its r + 1 closest

neighbours. The particular choice of closest neighbours is problem and data density

dependent and there are no ”best” way of choosing such a number. A pre-seeking

process based on a given dataset using optimisation, e.g., stochastic gradient de-

scent or greedy algorithm, could be used to assist making such a decision. The

result,however, could be strongly biased or unstable, especially when the dataset is

considered small to reveal the data structure. The choice of r + 1 neighbours is de-

cided based on our reconstruction experiments including di↵erent toy dataset, e.g.,

Swiss roll and hyper-sphere, and real experimental dataset showed in 4.5 as it shows

stable and fairly accurate result with modest computational expense. For large val-
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ues of r and d, in particular for d� m, this procedure will be highly unstable and

computationally expensive.

Given the reduced-dimensional representation z

r

(y) or    t

r

(y) of an unknown

point y , a general method for finding the pre-image, a special case of which was used

in chapter 3, is to use a weighted average of N
n

neighbouring (in some well defined

sense) points of y . The neighbouring points are taken from the data set, for which

the reduced dimensional representations have been computed. In the present case,

the data set consists of the m training points {y (i)}m
i=1. The weighted average can

be written as follows:

y =
X

j2J
#(y (j))y (j), (4.49)

in which the weight #(y (j)) is associated with the data point y

(j), j 2 J , and

J ✓ {1, 2, . . . ,m}, which has cardinality N
n

, defines the neighbouring points. For

example, the weights can be defined in terms of the distances d
i,⇤, between y and

the data points y

(i), i = 1, . . . ,m. The simplest approach is the local linear inter-

polation [112, 125] in chapter 3, i.e., to set:

#(y (j)) =
d�1
j,⇤P

m

j=1 d
�1
j,⇤

(4.50)

and to select the index set J according to the N
n

points of {y (j)}m
i=1 with the largest

values of #(y (j)). A generalization of this approach uses an isotropic kernel density

�(y ,y 0) = �(||y � y

0||) to weight the samples [142]:

#(y (j)) =
�(y ,y (j))P
m

i=1 �(y ,y
(i))

=
�(d

j,⇤)P
m

i=1 �(di,⇤)
, (4.51)

The particular form of kernel density used in this chapter is �(y ,y 0) = exp(�||y �

y

0||2), which was found to yield more stable and accurate results than local linear

interpolation.

The problem is now reduced to finding the distances d
i,⇤, i = 1, . . . ,m,
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between y and the training points y (i). For both manifold learning methods, these

distances are calculated by finding the corresponding kernel values and exploiting

relationships between the kernel function and distances in M.

4.4.1 Kernel PCA

The data matrix � = [���(y (1)), . . . ,���(y (m))] can be centered in feature space by

e� = �H, yielding:

e
w

i

=
mX

j=1

e↵
ji

e���(y (j)) = e�e↵↵↵
i

= �He↵↵↵
i

, (4.52)

where the e↵↵↵
i

are known from Algorithm 5. The uncentered projection ���
r

(y) 2 F
r

of e���(y) 2 F onto the first r basis vectors is given by:

���
r

(y) =
rX

i=1

z
i

e
w

i

+ ��� =
rX

i=1

z
i

�He↵↵↵
i

+ �1

= � (H[e↵↵↵1 . . . , e↵↵↵r

]z
r

+ 1) = �⌧⌧⌧ .

(4.53)

To find the distances d
i,⇤, it is noted that the distance ed

i,⇤ between ���(y (i)) and ���(y)

in F is given by:

ed2
i,⇤ = ���(y)T���(y) + ���(y (i))T���(y (i))� 2���(y)T���(y (i)). (4.54)

Taking ���(y) ⇡ ���
r

(y) and substituting Eq. (4.53) into Eq. (4.54) yields:

ed2
i,⇤ ⇡ ⌧⌧⌧TK⌧⌧⌧ + k(y (i),y (i))� 2⌧⌧⌧Tk

i

, (4.55)

with ⌧⌧⌧ defined as in Eq. (4.53). Note that �T� = K and k

i

= �T���(y (i)). For an

isotropic kernel normalized such that k(y 0,y 0) = 1, Eq. (4.54) gives:

ed2
i,⇤ = 2� 2k(y (i),y) (4.56)
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which, equating to the right hand side of Eq. (4.55), yields k(y (i),y). For the

Gaussian kernel, therefore, one obtains d2
i,⇤ = �s2 ln k(y (i),y). Similar relationships

exist for other commonly used kernel functions [111], e.g., the polynomial kernel

k
n

(y ,y 0) =
�
y

T

y

0 + c
�
n

, c 2 R, n = N. In combination with Eqs. (4.49) and (4.51),

the values of d
i,⇤ yield an approximation of y = ⌘⌘⌘(⇠⇠⇠).

4.4.2 Di↵usion maps

It is assumed t = 1 (without loss of generality) to simplify the notation. At the

practical level, one must work within the finite-dimensional setting in which there

now is m+1 data points; the training points {y (i)}m
i=1, and the unknown prediction

y = ⌘⌘⌘(⇠⇠⇠). The original kernel, degree and Markov matrices (K, D and P) based on

the training points can be augmented to reflect the addition of the point y . The

augmented kernel matrix, denoted K, is:

K =

2

64
K (k(y (1),y), . . . , k(y (m),y))T

(k(y (1),y), . . . , k(y (m),y)) k(y ,y)

3

75 . (4.57)

The corresponding degree matrix, denoted D, is:

D =

2

64
bD 0

0 k(y ,y) +
P

j

k(y (j),y)

3

75 , (4.58)

where bD = D + diag(k(y (1),y), . . . , k(y (m),y)). The new Markov chain, denoted

P = D�1K, is given by:

P =

2

664

bD
�1

K bD
�1

(k(y (1),y), . . . , k(y (m),y))T

(k(y (1),y), . . . , k(y (m),y))

k(y ,y) +
P

j

k(y (j),y)

k(y ,y)

k(y ,y) +
P

j

k(y (j),y)

3

775 . (4.59)

The (m + 1)-st row vector of P is denoted p

m+1
. The i-th entry in p

m+1
is the

transition probability from y to y

(i), i = 1, . . . ,m (the last entry is the transition
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probability from y to y). From the discussion in Section 4.2 and Appendix 8.1,

the i-th entry of p
m+1

approximates (based on the finite set {y (i)}m
i=1) the value of

the transition kernel p(y ,y 0) =
P1

j=1 �jrj(y)li(y
0) with y = ⌘⌘⌘(⇠⇠⇠) fixed, and with

y

0 = y

(i); the last entry is the value at y 0 = y . Thus:

p

m+1
⇡

1X

j=1

�
j

r
j

(y)(l
j

(y (1)), . . . , l
j

(y (m)), l
j

(y))T

⇡
rX

j=1

�
j

r
j

(y)(l
j

(y (1)), . . . , l
j

(y (m)), l
j

(y))T ,

(4.60)

by virtue of the decay in �
i

. The value of l
j

(y (i)), i = 1, . . . ,m, is approximated by

the i-th component l
ij

of l
j

(the empirical eigenfunction obtained from the training

points). The predicted di↵usion coordinates satisfy:

   
r

(y) = (�01r1(⇠⇠⇠), . . . , �
0
r

r
r

(⇠⇠⇠))T = (�01r1(y), . . . , �
0
r

r
r

(y))T . (4.61)

Recall that r
i

(⇠⇠⇠) = r
i

(⌘⌘⌘(⇠⇠⇠)), which is numerically equal to r
i

(y) for i = 1, . . . , r, and

is thus known. Thus the i-th entry p
m+1,i

of p
m+1

can be approximated as follows:

p
m+1,i

⇡
rX

j=1

�0
j

r
j

(⇠⇠⇠)l
ij

, i = 1, . . . ,m. (4.62)

Equating this expression with that of the equivalent entry in Eq. (4.59), one obtains

the following:

rX

j=1

�0
j

r
j

(⇠⇠⇠)l
ij

=
k(y (i),y)

k(y ,y) +
P

m

j=1 k(y
(j),y)

, i = 1, . . . ,m. (4.63)

For a Gaussian kernel k(y ,y) = 1, so solving the system ofm equations above yields

the unknown kernel values k(y (i),y), i = 1, . . . ,m. The Euclidean distances d
i,⇤ are

recovered from the kernel values. For a Gaussian kernel, d2
i,⇤ = �s2 ln k(y (i),y). In

combination with Eqs. (4.49) and (4.51), these values of d
i,⇤ yield an approximation
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Figure 4.1: Illustration of the pre-image method for data lying on a conical spiral.
500 points were randomly sampled from the spiral, shown in Fig. (a). A 2-d approx-
imation using di↵usion maps is shown in Fig. (b). The reconstruction is illustrated
in Fig. (c). Each point in Fig. (a) has a unique color, which is retained in Figs. (b)
and (c).
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of y = ⌘⌘⌘(⇠⇠⇠).

The results of this inverse map approximation on a conical spiral are illus-

trated in Fig. 4.1. A conical spiral is a 1-d manifold embedded in 3-d, and is defined

by the following equations:

x1 = 4⇡t cos(4⇡t), x2 = 4⇡t sin(4⇡t), x3 = 40⇡t, (4.64)

for a single variable t 2 R. A total of 500 points were sampled from the spiral by

sampling 500 values of t from a standard uniform distribution U(0, 1). Fig. 4.1(a)

shows the sampled points, Fig. 4.1(b) shows the 2-d (r = 2) approximation of the

points using di↵usion maps, and Fig. 4.1(c) shows the reconstruction of the original

points using the inverse mapping described above. Here, t = 1 and a Gaussian

kernel with s2 given by the average square distance between observations in the

original space [110] are adopted , as detailed in Section 4.5.1. The SSE (square sum

error) is 2087, the average SSE, which is value of SSE divided by 500 in this case, is

4.17. The relative SSE is the average SSE divided by the square sum of true value

(also see Eq. 3.41) and the result is 0.049. These quantities show an very positive

reconstruction result.

4.4.3 Main algorithm

The proposed procedure for GPE of outputs in high-dimensional spaces is summa-

rized in the pseudocode Algorithm 7, based on a Gaussian kernel for both kPCA

and di↵usion maps.
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Algorithm 7 GPE for high-dimensional spaces using manifold learning.
1: Manifold Learning for reduced-dimensional space approximation

kPCA Di↵usion maps

Algorithm 1: Algorithm 2:
�
(z1(y (j)), . . . , z

r

(y (j)))T
 
m

j=1

�
(�01rj1, . . . , �0rrjr)T

 
m

j=1

z
i

(⌘⌘⌘(⇠⇠⇠(j))) z
i

(y (j)) r
i

(⌘⌘⌘(⇠⇠⇠(j))) r
i

(y (j)) r
ji

2: for i 1 to r do

kPCA Di↵usion maps
�

z
i

(⇠⇠⇠(j)) z
i

(⌘⌘⌘(⇠⇠⇠(j)))
 
m

j=1

�
r
i

(⇠⇠⇠(j)) r
i

(⌘⌘⌘(⇠⇠⇠(j)))
 
m

j=1�
⌘(⇠⇠⇠(j)) z

i

(⇠⇠⇠(j))
 
m

j=1

�
⌘(⇠⇠⇠(j)) r

i

(⇠⇠⇠(j))
 
m

j=1

Scalar GPE: z
i

(⇠⇠⇠) E[⌘(⇠⇠⇠)] Scalar GPE: r
i

(⇠⇠⇠) E[⌘(⇠⇠⇠)]

3: end for

kPCA Di↵usion maps

z

r

(⌘⌘⌘(⇠⇠⇠)) (z1(⇠⇠⇠), . . . , zr(⇠⇠⇠))T    t

r

(⌘⌘⌘(⇠⇠⇠)) (�t1ri

(⇠⇠⇠), . . . , �t
r

r
r

(⇠⇠⇠))T

4: Inverse map

y  
N

nX

i=1

 
�(d

i,⇤)P
N

n

i=1 �(di,⇤)

!
y

(i)

kPCA Di↵usion maps (t = 1)

k(y (i),y) 1
2

�
1� ⌧⌧⌧TK⌧⌧⌧ + 2⌧⌧⌧Tk

i

� rX

j=1

�0
j

r
j

(⇠⇠⇠)l
ij

 k(y (i),y)

1 +
P

m

j=1 k(y
(j),y)

d
i,⇤  

p
�s2 ln k(y (i),y) d

i,⇤  
p
�s2 ln k(y (i),y)

4.5 Results and discussion

In this section, three examples are considered and demonstrated. In the first ex-

ample, a single field is emulated, while the second example is concerned with the

emulation of three fields simultaneously. The final example considers a nonlinear

2-d model of a hydrogen fuel cell. Unless otherwise stated, for each example a total

of 500 inputs were generated using a Sobol sequence. A Sobol sequence [126] is

a quasi-random sequence that is specifically designed to generate samples as uni-
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formly as possible over the unit hypercube [127]. For each input ⇠⇠⇠(i), i = 1, . . . , 500,

simulations were performed to yield data points y (i) = ⌘⌘⌘(⇠⇠⇠(i)) 2 Rd. Of the 500 data

points, m
t

= 300 were reserved for testing and the training points were selected

(in an increasing manner) from the remaining 200 (m  200). y

(i)
p

= ⌘⌘⌘(⇠⇠⇠(i)) is

used to denote the predicted value of y (i) at a test input ⇠⇠⇠(i), i = 1, . . . ,m
t

using

Algorithm 7.

4.5.1 Computational details

Details of the scalar GPE, the manifold learning techniques and the software em-

ployed in the implementation of Algorithm 7 are provided below.

1. kPCA. A Gaussian kernel was used with the free parameter s2 taken to be

the average square distance between observations in the original space [110]:

s2 = (1/m2)
P

m

i,j=1 ||y (i) � y

(j)||2. Other popular kernels, e.g., polynomial

and multi-quadratic kernels were also tested but found to be inferior. A sig-

moid kernel was found to give similar results to those obtained with a Gaussian

kernel. In the inverse mapping, all m points were employed for the reconstruc-

tion in physical space (inverse mapping).

2. Di↵usion maps. A Gaussian kernel was used, in which the value of s2 was

determined as described above. Again, all m points were employed for the re-

construction. A value of t = 1 was used in the results presented below. Higher

values of t lead to no significant change in this case. One reason may be that

a GP with Gaussian kernel is essentially an exponential metric on the dataset

while t serves exactly as the power term in a exponential transformations

through di↵usion maps. Thus the GP always successfully find the mapping (if

it is reasonably possible to the learn the mapping). For the pre-image stage th

t would be cancelled out thus makes no di↵erence. A performance drop was

observed in practice when using very large or small t. This is likely to related
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to computer memory overflow issues.

3. Gaussian Process Emulation. The square exponential covariance func-

tion Eq. (2.4) was used and the mean function was taken to be identically

zero after centering the data (coe�cients extracted from the manifold learn-

ing technique). The hyper parameters were estimated using the MLE method

based on a gradient descent algorithm as it works well in this case.

4.5.2 Free convection in porous media

This is the same experiment demonstrated in section 3.4.1.

Training and Testing. In this example, the input parameters were ⇠⇠⇠ = (�[K�1], T
h

[oC])T 2

[10�11, 10�8]⇥ [40, 60]. For each input ⇠⇠⇠(i), i = 1, . . . , 500, the magnitude |v | of the

velocity was recorded at each grid point on a regular 100⇥ 100 square spatial grid

and the d = 104 values of |v | were vectorized to yield the data points y

(i) 2 Rd,

i = 1, . . . , 500. In the notation of Section 3.1, u(x ;⇠⇠⇠) = |v |, J = 1, l = 2 and d = 104.

Results. Fig. 4.2 shows Tukey box plots of the relative errors for the 300 test

cases as the number of training points m and the approximate manifold dimension

r are increased. A decrease in the relative error for an increasing r is seen for

both kPCA and di↵usion maps. For both methods, the errors converge at around

r = 6 dimensions. The median value of the error is marginally lower with kPCA,

but it was found that the number of outliers was slightly higher using this method.

For a high number of training points (m � 80), both methods provided accurate

predictions and the di↵erences in the errors were not significant.

Examples of the predictions are shown in Fig. 4.3 for 120 training points

and r = 5. For both kPCA and di↵usion maps, the error with respect to the

first test example (Figs. 4.3(a)-(c)) lies around the median of the r = 5 boxplot in

Fig. 4.2. The errors with respect to the second test example are close to the upper
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Figure 4.2: Tukey box plots of the relative error ||y (i)
p

� y

(i)||2/||y (i)||2 in the free-
convection example using Algorithm 7 with increasing approximate manifold dimen-
sion r on the 300 test points for: (a) kPCA with 40 training points; (b) di↵usion
maps with 40 training points; (c) kPCA with 120 training points; (d) di↵usion maps
with 120 training points.
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whiskers in the same boxplots. In both cases, Algorithm 7 with either kPCA or

di↵usion maps yields highly accurate predictions. An example of the outliers for

both methods in the r = 5 boxplots in Figs. 4.2(c) and 4.2(d) is shown in Fig. 4.4.

This figure demonstrates the worst level of prediction, which, nevertheless, captures

the qualitative features of the velocity field and remains quantitatively accurate to

a reasonable level ( visually no di↵erence. see Fig.4.4 for a full one-to-one compare).

Boxplots of the errors using an ANN with Bayesian regularization [70, 72]

and support vector machine regression (SVMR) for emulation of the coe�cients,

rather than GPE as comparison, are shown in Fig. 5.1 for m = 120 in chapter 5.

4.5.3 Lid driven cavity

A square 2-d cavity (x1, x2) 2 [0, 1] ⇥ [0, 1] filled with liquid water is considered

here. The top boundary represents a sliding lid, which drives the liquid flow. The

problem is governed by the steady-state, dimensionless Navier-Stokes equations:

(v ·r)v �Re�1r2
v +rp = 0,

r · v = 0,

(4.65)

where v = (v1, v2)T is the liquid velocity, p is the liquid pressure and Re is the

Reynolds number. The boundary conditions are v = (v01, 0) for x2 = 1, where v01 is

the lid velocity, and v = 0 on the other three boundaries. The model was solved

using finite di↵erencing on a staggered grid with implicit di↵usion and a Chorin

projection for the pressure [143].

Training and Testing. The Reynold’s number and lid velocity were used as in-

put parameters: ⇠⇠⇠ = (Re, v01)
T 2 [700, 1200]⇥ [0.01, 10]. All other parameters were

kept at the default values. For each input ⇠⇠⇠(i), i = 1, . . . , 500, the pressure p and
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Figure 4.3: Predictions of the velocity field using 120 training points and r = 5
coe�cients in the free-convection example. Fig. (a) is the test point corresponding
to ⇠⇠⇠ = (3.18⇥ 10�9[K�1], 56.7[oC])T , while Figs. (b) and (c) are the corresponding
predictions using kPCA (relative error=6.31 ⇥ 10�4) and di↵usion maps (relative
error=7.76 ⇥ 10�4), respectively. Fig. (d) is the test point corresponding to ⇠⇠⇠ =
(7⇥10�11[K�1], 46.7[oC])T , while Figs. (e) and (f) are the corresponding predictions
using kPCA (relative error=2.01⇥ 10�2) and di↵usion maps (relative error=1.25⇥
10�2), respectively.
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Figure 4.4: Predictions of the velocity field using 120 training points and r = 5
coe�cients in the free-convection example in the case of an outlier. Fig. (a) is the
test point corresponding to ⇠⇠⇠ = (1 ⇥ 10�9[K�1], 40.7[oC])T , while Figs. (b) and (c)
are the predictions using kPCA (relative error=0.057) and di↵usion maps (relative
error=0.062), respectively.
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the component velocities v1 and v2 were recorded at each grid point on a regular

100 ⇥ 100 spatial grid. The d/3 = 104 values of each field variable were vectorized

to yield vector outputs y

(i)
v1 2 Rd/3, y (i)

v2 2 Rd/3 and y

(i)
p

2 Rd/3. The three vectors

were then combined into a single vector y (i) = [y (i)
v1 y

(i)
v2 y

(i)
p

] 2 Rd to account for

the correlations between the fields. In the notation of Section 3.1 , J = 3, l = 2 and

d = 3 ⇥ 104. This is a multiple field example discussed in Section 3.1, with, e.g.,

u1 = v1, u2 = v2 and u3 = p.

Results. Tukey box plots of the relative error on the 300 test points are shown in

Fig. 4.5 for an increasing r (approximate manifold dimension) and m. Around r = 5

is su�cient for both values of m using both methods. In this case, the di↵erences

between the methods were almost negligible, except that again there were fewer

outliers for di↵usion maps, particularly for low numbers of training points. Fig. 4.6

shows the equivalent boxplots using Higdon’s method [1]. For this example, Higdon’s

method also performed well, with superior performance at the lower number of

training points and slightly inferior performance at a higher number of training

points.

Two examples of the predictions are shown in Fig. 4.7 for 120 training points

and r = 5. Here, the normalized velocity field is shown as a quiver plot and the

surface plot is the pressure field, with contours in black. Note that since only rp

is meaningful, homogeneous Neumann conditions are prescribed for the pressure

Poisson equation, so p is defined only up to a constant (hence the negative values).

Stream lines representing contour lines of a stream function ⇣ are also shown, in

white. The stream function is defined by �r2⇣ = @
x2v1 � @x1v2. For both kPCA

and di↵usion maps, the error with respect to the first test example (Figs. 4.7(a)-(c))

lies close to the median in the r = 5 boxplot in Fig. 4.5. The second test example

corresponds to an outlier for both methods (relative error around 0.07). The results

of Algorithm 7 remain accurate, especially for di↵usion maps. The error in kPCA
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Figure 4.5: Tukey box plots of the relative error ||y (i)
p

� y

(i)||2/||y (i)||2 in the lid-
driven cavity example using Algorithm 7 with an increasing approximate manifold
dimension r on the 300 test points for: (a) kPCA with 80 training points; (b)
di↵usion maps with 80 training points; (c) kPCA with 120 training points; (d)
di↵usion maps with 120 training points.
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Figure 4.6: Tukey box plots of the relative error ||y (i)
p

� y

(i)||2/||y (i)||2 in the lid-
driven cavity example using Higdon’s method [1] with an increasing approximate
manifold dimension r on the 300 test points for: (a) 80 training points; (b) 120
training points.

is primarily due to the prediction of the pressure field, in particular the maximum

value in the top right corner. Nevertheless, the profile is well captured.

As a further test, a modification of this example is also considered. in this

case, the number of inputs is increased to 13 (l = 13) using the following boundary

conditions:

v1(x1, 1) = 5c1 sin(c2⇡x1)e�c3x1 , v2(x1, 1) = 0,

v1(x1, 0) = 5c4 sin(c5⇡x1)e�c6x1 , v2(x1, 0) = 0,

v2(1, x2) = 5c7 sin(c8⇡x2)e�c9x2 , v1(1, x2) = 0,

v2(0, x2) = 5c10 sin(c11⇡x2)e�c12x2 , v1(0, x2) = 0,

(4.66)

for constants c1, . . . , c12. The inputs were defined as ⇠⇠⇠ = (Re, c1, . . . , c12)T 2

[500, 1000] ⇥ (0, 1) ⇥ (0, 1) ⇥ · · · ⇥ (0, 1). Inputs ⇠⇠⇠(i), i = 1, . . . , 1000 were gener-

ated using a Sobol sequence and simulations were performed to yield 1000 data

points. Of the 1000 data points, m
t

= 300 (rather than 100 that is used before

since this is more complex problem where more training points are needed) were

reserved for testing and the training points were selected from the remaining 700.
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Figure 4.7: Predictions of the velocity field using 120 training points and r = 5
coe�cients in the lid driven cavity example. Fig. (a) is the test point corresponding
to ⇠⇠⇠ = (874.8, 7.79)T , while Figs. (b) and (c) are the corresponding predictions using
kPCA (relative error 1.58 ⇥ 10�2) and di↵usion maps(relative error 1.33 ⇥ 10�2) ,
respectively. Fig. (d) is the test point corresponding to ⇠⇠⇠ = (773.24, 0.77)T , while
Figs. (e) and (f) are the corresponding predictions using kPCA (relative error 0.076)
and di↵usion maps(relative error 0.062), respectively.
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Figure 4.8: Tukey box plots of the relative error ||y (i)
p

� y

(i)||2/||y (i)||2 in the lid-
driven cavity example with boundary conditions as in Eq. (4.66). The trends are
shown for an increasing approximate manifold dimension r using 600 training points
and 300 test points for: (a) kPCA and (b) di↵usion maps.

Both kPCA and di↵usion maps exhibited excellent performance, as illustrated in

the boxplots in Fig. 4.8, showing the relative error on the 300 test points for an

increasing r (approximate manifold dimension) with m = 500. Two examples of the

fields are shown in Fig. 4.9 using kPCA with r = 10 and m = 500. The first example

corresponds to an error near the median (for r = 10) and the second example is an

outlier with a large relative error in the corresponding boxplot. As expected, for

a higher dimensional input space, more training points are needed to capture the

surface M accurately. In this case, any lower than 400 training points led to poor

performance from all methods.

4.5.4 Hydrogen fuel cell model

In this example, consider a hydrogen/oxygen polymer electrolyte membrane (PEM)

fuel cell model that incorporates species conservation, charge conservation and a

momentum balance in the porous layers is under consideration. The 2-d domain

includes the porous gas di↵usion layers (GDLs), through which the species (oxygen,

water and hydrogen) are transported from the channels to the reaction sites in the

catalyst layers, which are adjacent to the PEM (Fig. 4.10).
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Figure 4.9: Predictions of the velocity and pressure fields using m = 500 training
points and r = 10 coe�cients in the lid driven cavity example with the boundary
conditions of Eq. (4.66). Fig. (a) is a test point and Fig. (b) is the corresponding
prediction using kPCA, with a relative error of 0.0244. Fig. (c) is a second test
point and Fig. (d) is the corresponding prediction using kPCA, with a relative error
of 0.2275.
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Figure 4.10: A schematic of the PEM fuel cell and the components that form the
model domain.

The oxidation reaction in the anode is 2H4 ! 2H+ + 4e� and the reduction

reaction in the cathode is 2O2 +4H+ +4e� ! 2H2O, both of which are assumed to

be governed by a modified Butler-Volmer law for charge transfer [144]. The catalyst

layer morphology is approximated as clusters (agglomerates) of carbon-supported

platinum coated with the electrolyte. The transfer current densities are expressed

as follows [145]:

j
c

= �12L
act

FD
agg

R2
agg

CO2,agg(1� ✏mac

)(1� �
c

coth�
c

),

j
a

= �6L
act

FD
agg

R2
agg

CH2,agg

⇣
1� e�

2F
RT

⌘

a

⌘
(1� ✏

mac

)(1� �
a

coth�
a

),

�
c

=

s
i0cSR2

agg

4FCO2,refDagg

e
F

2RT

⌘

c �
a

=

s
i0aSR2

agg

2FCH2,refDagg

,

(4.67)

where j
a

(⌘
a

) and j
c

(⌘
c

) are the anode and cathode transfer current densities (over-

potentials); R
agg

and D
agg

are the radius of the agglomerate and the di↵usion coef-
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ficient of the reactant through the agglomerate; L
act

is the catalyst layer thickness

(same in both half cells); i0a and i0c are the exchange current densities of the anode

and cathode reactions; CO2,ref and CH2,ref are reference reactant concentrations;

CO2,agg and CH2,agg are the (catalyst) surface concentrations of the reactants; T

is temperature, F is Faraday’s constant and R is the universal gas constant. The

reactants dissolve in the electrolyte at the agglomerate surfaces at a rate governed

by Henry’s law, so that:

CH2,agg =
pXH2

KH2

CO2,agg =
pXO2

KO2

, (4.68)

where X
i

(K
i

) is the mole fraction (Henry constant) of species i and p is the gas

pressure.

The charge balances are given by:

�r · (�
e

r�
e

) = 0,

�r · (�
s

r�
s

) = 0,

(4.69)

in which �
e

(�
e

) and �
s

(�
s

) are the ionic and electronic potentials (conductivities),

respectively. These equations apply to the GDLs. The catalyst layers are approxi-

mated by infinitesimally thin surfaces, depicted by @⌦
a

and @⌦
c

in Fig. 4.10. The

overpotentials (defined only on these boundaries) take the form:

⌘
a

= �
s

� �
e

� E
eq,a

,

⌘
c

= �
s

� �
e

� E
eq,c

,

(4.70)

in which E
eq,a

and E
eq,c

are the equilibrium potentials for the reactions.
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Flow through the GDLs is governed by continuity and Darcy’s law:

r · (⇢v) = 0,

v = �k
p

!�1rp,
(4.71)

where ! is the gas viscosity and k
p

is the GDL permeability. The ideal gas law is

used to determine the density:

⇢ =
p

RT

X

i

M
i

X
i

, (4.72)

in which M
i

is the molecular weight of species i 2 {H2,O2,H2O,N2}. The transport

of species through the GDLs is governed by convection and multicomponent di↵usion

(Stefan-Maxwell) [146]. In the cathode, the species are I1 = {O2,H2O,N2} and in

the anode the species are I2 = {H2,H2O,N2}. The transport equations in the

cathode are given by:

�r ·
⇢
⇢Y

i

P
j2I1
j 6=i

D
i,j

(rX
j

+ (X
j

� Y
j

)rp/p)
�

= �⇢v ·rY
i

,

YN2 = 1� YO2 � YH2O,

(4.73)

for i 2 {O2,H2O}. Y
i

is the mass fraction of species i and the D
i,j

are binary

di↵usivities [146]. Identical equations for species I2 are solved in the anode.

The boundary conditions for the potential impose a cell voltage V
cell

:

�
s

= 0 x 2 @⌦
a,cc

,

�
s

= V
cell

x 2 @⌦
c,cc

,

�n ·r�
s

= 0 otherwise,

(4.74)

where n is the outwardly pointing unit normal. At the inlets (@⌦
a,in

and @⌦
c,in

)

and outlets (@⌦
a,out

and @⌦
c,out

), the total gas pressures and the mole fractions of
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the reactants are specified. At @⌦
a

and @⌦
c

, the gas velocity is calculated from the

total mass flow based on Faraday’s law [144]:

�n · v =
j
a

⇢F

✓
MH2

2
+ �H2OMH2O

◆
x 2 @⌦

a

,

�n · v =
j
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⇢F

✓
MO2

2
+


1

2
+ �H2O

�
MH2O

◆
x 2 @⌦

c

,

(4.75)

where �H2O is the water drag number [144]. At the other boundaries except the

inlets and outlets �n · (⇢v) = 0 is imposed. At the catalyst layer surfaces the mass

fluxes of reactants are determined by Faraday’s law:

�n ·NH2 =
MH2ja
2F

x 2 @⌦
a

,

�n ·NO2 =
MO2jc
4F

x 2 @⌦
c

,

�n ·NH2O =
MH2Ojc (1/2 + �H2O)

F
x 2 @⌦

c

,

(4.76)

where:

N

i

= �⇢Y
i

X

j 6=i

D
i,j

✓
rX

j

+ (X
j

� Y
j

)
rp
p

◆
+ ⇢vY

i

(4.77)

is the flux of species i. At all other boundaries except the inlets and outlets, N
i

= 0.

The model was solved using the FEM with 10236 triangular domain elements, 582

boundary elements and a Lagrange basis of order 2. Details of the implementation

and the default parameter values can be found in [147].

Training and Testing. The cell voltage V
cell

and the membrane/electrolyte con-

ductivity �
e

were used as input parameters: ⇠⇠⇠ = (V
cell

[V],�
e

[S m�1])T 2 [0.2, 0.8]⇥

[1, 15]. For each input ⇠⇠⇠(i), i = 1, . . . , 500, the mole fraction of water XH2O was

recorded at each point on a regular 150 ⇥ 300 spatial grid in the cathode GDL.

XH2O in the cathode (where water is produced) is a key quantity. High values can

lead to flooding of the electrode, which would prevent the fuel cell from operating.

The d = 4.5 ⇥ 104 values of XH2O were re-ordered into vector form to yield vec-
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tors y

(i) 2 Rd. In the notation of Section 3.1, u(x ;⇠⇠⇠) = XH2O, J = 1, l = 2 and

d = 4.5⇥ 104.

Results. Fig. 4.11 shows the Tukey box plots of the relative error for increasing

r (approximate manifold dimension) and m. The results using both methods are

highly accurate, particularly form = 120 (in fact, m = 80 was found to give a similar

level of performance). The performance with di↵usion maps is better for m = 60,

while the performance with kPCA is slightly superior with m = 120. Again there

are more outliers in the box plots for kPCA. Examples of the predictions are shown
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Figure 4.11: Tukey box plots of the relative error ||y (i)
p

�y

(i)||2/||y (i)||2 in the PEM
fuel cell example using Algorithm 7 with increasing approximate manifold dimension
r on the 300 test points for: (a) kPCA with 40 training points; (b) di↵usion maps
with 40 training points; (c) kPCA with 120 training points; (d) di↵usion maps with
120 training points.
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in Fig. 4.12 for 120 training points and r = 7. In the first example (Figs. 4.12(a)-

(c)), the error with respect to the test case lies close to the median in the r = 7

boxplot for kPCA (Fig. 4.11(c)), while for di↵usion maps the error is near the upper

whisker in the corresponding boxplot (m = 120, r = 7 in Fig. 4.11(d)). The second

example (Figs. 4.12(d)-(f)) is an outlier for both kPCA and di↵usion maps (second

and third highest errors, respectively). Even in the latter case, the predictions are

accurate.

4.6 Concluding remarks

The approach of chapter 3 is extended to other manifold learning methods, namely

di↵usion maps and kPCA. In order to do so, the interpretation of the basis is

firstly demonstrated. This is followed by a development of an inverse map for

both methods, and generalizing the local linear interpolation. For di↵usion map,

a new method to derive distances, and therefore to perform the pre-image map, is

developed. The method is both computationally e�cient and stable. In particular,

it is applicable to high-dimensional spatial problems. The accuracy of the methods

was assessed on several data sets. Both methods perform well, particularly kPCA.

A more extensive test on more complex data sets is needed to ascertain when one

method is more appropriate than another. It is also mentioned that other manifold

learning methods could be tested, e.g., LTSA, which has been implemented, and

shows promise. The results were not shown here since further studies are required

to fully assess the accuracy.
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Figure 4.12: Predictions of the water mole fraction using 120 training points and
r = 7 coe�cients in the PEM fuel cell example. Fig. (a) is the test point corre-
sponding to ⇠⇠⇠ = (0.525[V], 1.492[S m�1])T , while Figs. (b) and (c) are the corre-
sponding predictions using kPCA (relative error 1.16 ⇥ 10�5) and di↵usion maps
(relative error 1.73 ⇥ 10�5), respectively. Fig. (d) is the test point corresponding
to ⇠⇠⇠ = (0.301[V], 9.039[S m�1])T obtained using direct simulation, while Figs. (e)
and (f) are the corresponding predictions using kPCA (relative error 7.23 ⇥ 10�4)
and di↵usion maps (relative error 8.93⇥ 10�4), respectively.
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Chapter 5

Manifold learning based

Bayesian neural network

emulators

In this chapter, linear and nonlinear dimensionality reductions are combined with ar-

tificial neural networks to develop an e�cient approach to emulate high-dimensional

spatio-temporal models, without making any assumptions regarding correlations

between coe�cients. The approach is tested on models of electromagnetic wave

propagation. The necessity of nonlinear dimensionality reduction is highlighted.

The advantages of ANNs are that they are extremely versatile and learn

rapidly. They can also be used to learn multiple coe�cients in a reduced basis

simultaneously, in contrast to GPE. This has particular advantages in terms of

learning multiple spatio-temporal outputs from a model, accounting naturally and

e�ciently for correlations between the di↵erent outputs. Unlike GPE, ANN is a

parametric approach and it can su↵er from overfitting, as discussed in section 5.3.

It is therefore natural to use a Bayesian version of ANNs in which a prior is placed

over the weights, leading to a modified form of back propagation with a penalty term
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(Bayesian regularization); see section 2.2.2. This improves generalisation and leads

to stable results (the optimisation problem for the weights is far less sensitive to the

initialisation compared to standard back propagation with k-fold cross-validation).

This chapter is based on the publication [148]: V. Triantafyllidis, W. Xing,

A.A Shah, and P.B. Nair, “Neural network emulation of spatio-temporal data using

linear and nonlinear dimensionality reduction”, in Advanced Computer and Com-

munication Engineering Technology, Lecture Notes in Electrical Engineering , pp.

1015–1029, Springer, 2016.

5.1 Main algorithm

The emulation algorithm employing manifold learning on the output space is similar

to those in the previous two chapters. It is described in the pseudo code for mul-

tiple spatio-temporal datasets. Details of the manifold manifold learning methods,

namely, kPCA, di↵usion maps and Isomap were given in chapters 3 and 4.

Algorithm 8 Manifold learning based ANN for spatio-temporal models

1: Select design points ⇠⇠⇠(i) 2 X ⇢ Rl, i = 1, . . . ,m, using DOE and construct

outputs y (i) = ⌘⌘⌘(⇠⇠⇠(i)) 2M ⇢ Rd, i = 1, . . . ,m, from the computer model.

2: Perform manifold learning (PCA, MDS, Isomap, kPCA or di↵usion maps) on

y

(i), i = 1, . . . ,m, to obtain coordinates in a low-dimensional representation:

z

(i)
r

= (z(i)1 , . . . , z(i)
r

)T , i = 1, . . . ,m, with r ⌧ d (for multiple fields y

(i)
b

, b =

1, . . . , B, this would lead to B sets of coe�cients z (i)
r,b

= (z(i)1,b, . . . , z
(i)
r,b

)T .

3: Select a test point ⇠⇠⇠ for prediction and perform ANN on the training set

(z (i)
r

,⇠⇠⇠(i)), i = 1, . . . ,m, to obtain z

r

= (z1, . . . , zr)T . For multiple fields

the training set is ((z (i)
r,1, . . . , z

(i)
r,B

),⇠⇠⇠(i)), i = 1, . . . ,m, which yields z

r

=

(z1,1, . . . , zr,1, . . . , z1,B, . . . , zr,B)T 2 RrB for a test point ⇠⇠⇠.

4: Using z

r

approximate the computer model output y = ⌘⌘⌘(⇠⇠⇠) by solving the

pre-image problem (see section 4.4 and 3.3.3) for details.
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5.2 Results and discussion

5.2.1 Details of training and testing

In three examples below, the data set consisted of 500 points (y (i) = ⌘⌘⌘(⇠⇠⇠(i))), with

inputs ⇠⇠⇠(i) selected using a Sobol sequence. 300 points were used for training in

example 5.2.2 to have a like-to-like comparison to that in section 4.5.2. For the last

two examples, 400 points were reserved for testing and up to 100 points were used

for training (m  100). This number is selected since more than 100 training point

will not e↵ect the result significantly as would be shown. The relative square errors

(total square error divided by the number of grid points and the magnitudes of the

average values of the test points) were used to assess the generalization error. Results

are shown for di↵erent numbers of components r in the manifold learning methods.

In the case of PCA (kPCA), the first r ‘components’ are the r principal components

corresponding to the r largest eigenvalues of the (feature space) covariance matrix.

For Isomap, the first r components are the r Isomap coordinates corresponding to

the r largest eigenvalues of the kernel matrix.

The neighbourhood number method (10 neighbours) was used for Isomap

as it shows a stable and accurate result. The number is decided by testing on the

dataset with pre-image reconstruction to see the error level and Empirically 10% of

total data points,which in the case equals 10, generate stable result. Though our

experiment the number would make no significant change as far as it is not too large

or small. For kPCA, a Gaussian kernel was used, with a shape parameter dependent

on the data set. For reconstruction, N
n

= 10 points were used for both Isomap and

kPCA. Again such a number is decided by pre-testing over the dataset to ensure the

results are stable. The ANN architecture in all cases contained a single hidden layer

with 10 hidden units of sigmoid function. The ANN was trained using Bayesian

regularization [70]. The number of neurons for each example was selected using

sequential network construction [72]. In general, an arbitrary ANN architecture can
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be used within the framework.

5.2.2 Example: Free convection in porous media

This model considered here is exactly the same as that presented in section 4.5.2.

For more details, please refer to section 4.5.2. It use the same training and testing

points. Boxplots of the errors using an ANN and support vector machine regression

(SVMR) for emulation of the coe�cients, rather than GPE, are shown in Fig. 5.1

for m = 120. In the first case, the correlations between the coe�cients are naturally

taken into account by approximating the r coe�cients simultaneously. To avoid

overtraining and cross validation, Bayesian regularization [70, 72] was used for the

ANN, implemented in the Matlab Neural Network Toolbox. In this method, zero-

mean Gaussian priors are placed over the network weights and an additive noise.

Estimates of the weights and hyperparameters (variances in the priors) are found

by an iterative procedure based on a Laplace approximation to the posterior over

the weights and an evidence approximation for the hyperparameters [20]. A single

hidden layer was employed and the number of neurons was selected using a sequential

network construction [72]. For the SVMR, Gaussian and polynomial kernels (with

varying order) are tested, together with an L1 loss function.

Comparing with Figs. 4.2(a) and (b), it is easy to see that GPE and ANN

exhibit similar levels of accuracy. This indicates that in this example the assumption

of independent GPs for the coe�cients in di↵usion maps in the GPE framework did

not significantly a↵ect the accuracy. The same was true of the other examples (the

results are omitted given the limited space). Although this will not be true in gen-

eral, either ANN or LMC can be used to rigorously incorporate the correlations. For

SVRM (implemented in the Statistics and Machine Learning Toolbox in Matlab), a

Gaussian kernel gave the best results for both kPCA and di↵usion maps. Fig. 5.1

indicates that, at least in this example, GPE and ANN are superior.
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Figure 5.1: Tukey box plots of the relative error ||y (i)
p

� y

(i)||2/||y (i)||2 in the free-
convection example using Algorithm 7 with an ANN and SVMR for an increasing
approximate manifold dimension r on the 300 test points. In both cases, 120 training
points were used. (a) kPCA with ANN; (b) di↵usion maps with ANN; (c) kPCA
with SVMR; (d) di↵usion maps with SVMR.
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5.2.3 Example: 2D h-bend waveguide

This model examines a transversal electric (TE) wave in a h-bend waveguide with a

90 degree bend. The frequencies f are restricted so that TE10 is the single propagat-

ing mode. The electric field has only one nonzero component E
z

in the transversal

direction z. The model computes the electromagnetic field by solving Hemholtz

equation:

�r2E
z

� n2k20Ez

= 0, (5.1)

in which n is the refractive index, k0 is the free space wave number, and x1 and x2

are the in-plane directions.
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Figure 5.2: Boxplots of the relative errors for di↵erent numbers of components (r)
using ANN with PCA (M = 60) and GPE with PCA (M = 100) in the waveguide
example.

On the domain walls, the tangential component of the electric field is zero.

The input wave is determined by the boundary conditions for Maxwell’s equations:

b
n ⇥E = 0, (5.2)

where b
n is the unit normal. The incident field has the form:

E =

✓
0, 0, sin

✓
⇡(b/2� ⇠

b

◆◆
= <(Eei!t), (5.3)
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in which b is the width of the rectangular sections of the waveguide and ! is the

angular frequency of the incident wave. The model was solved (‘H-Bend Waveguide

2D’ in the ‘RF Module’ of COMSOL Multiphysics 5.0) for 500 frequency values

f between 4 and 6 GHz (⇠⇠⇠(i) = f (i), i = 1, . . . , 500). For each simulation, the

magnitude of the electric field E was recorded on a 100⇥100 regular grid in (x1, x2).

The d = 104 values of |E(x1, x2)| for each ⇠⇠⇠(i) at locations (x1i, x2j), i, j = 1, . . . , 100,

were vectorized (see section 3.1) to give 500 data points y (i) in Rd. Up to 100 were

used for training and the remainder for testing.

Results

All three dimension reduction methods (PCA, Isomap, kPCA) using ANN gave

excellent results for at least 20 training points (m = 20). In the case of PCA,

box plots of the relative errors for di↵erent numbers of principal components (on

the horizontal axis) are shown in Fig. 5.2 (a) for 60 training points. The other

methods gave similar results (with less than 5% measured in di↵erent rate). Also

remember that PCA is always recommended if it works since the pre-image solution

is more general, only the PCA method is demonstrated in this case. Higdon’s

method [1] using a maximum likelihood estimate (MLE) for the hyperparameters

failed to provide meaningful results, as demonstrated in Fig. 5.2 (b) for m = 100.

An example of the worst predictions for m = 60 using ANN with PCA (r = 12) is

shown in Fig. 5.3. The relative error is 2.3⇥ 10�3.

5.2.4 Example: 2D radar interaction with a boat (radar cross sec-

tion)

The interaction between a boat and the incident field from a radar transmitter is

simulated. The transmitter is distant enough that the field can be treated as a

plane wave (only the boat and its immediate surroundings are considered). The
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Figure 5.3: Representative examples of prediction using ANN with PCA (r = 5,
M = 60) for the 2D waveguide.

background field is swept over a range of angles of incidence and the far-field and

radar cross section (RCS) are computed. The 2D geometry consists of an inner

circle containing the boat and the surrounding air, together with an outer circle

representing a perfectly matched layer (PML). The background electromagnetic

field from the radar is described by its out-of-plane electric field component:

E

b

= exp(ik0(⇠ cos ✓ + ⌘ sin ✓))e
z

, (5.4)

where k0 = 2⇡f/c is the wave number in vacuum, c is the speed of light, f is the

frequency and ✓ is the angle of incidence. The time-harmonic wave equation is then

solved for the relative field, E
rel

= E �E

b

, where E is the total field:

r⇥
�
µ�1
r

r⇥E

rel

�
�
✓
✏
r

� i�

2⇡f✏0

◆
k20E rel

= 0, (5.5)

in which ✏, µ and � denote the permittivity, permeability, and conductivity of air,

respectively (subscripts r denote a ‘relative’ quantity). The RCS per unit length is

defined as

�2D = lim
r!1 2⇡r

|E
rel

|2
|E |2
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The model was solved (‘Radar Cross Section’ under the Radio Frequency module

in COMSOL Multiphysics 5.0) for 500 combinations of f and ✓ as input values;

that is ⇠⇠⇠(i) = (f (i), ✓(i))T , i = 1, . . . , 500. The magnitude of the electric field E was

recorded on a regular 500⇥500 square spatial grid in (⇠, ⌘). The d = 2.5⇥105 values

of |E(x1, x2)| for each x

(i) at locations (x1i, x2j), i, j = 1, . . . , 500, were vectorized to

form the data points y (i) 2 Rd used for testing and training.
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(a) 80 training points (ANN-Isomap)
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(b) 100 training points (ANN-Isomap)

1 2 3 4 5

Figure 5.4: Boxplots of the relative errors for di↵erent numbers of components (r)
using ANN with Isomap (M = 80 and 100) in the RCS example.

Results

PCA with both ANN and GPE (method of [1]) failed to provide meaningful results

for any number of training points m or components r. ANN with Isomap and

kPCA, on the other hand, exhibited good results, especially in the case of Isomap

for m > 60, which captured the trends precisely. Box plots of the relative square

errors are shown in Fig. 5.4 (a) and (b), up to 5 components (beyond which no

improvements were visible). Fig. 5.5 shows two representative examples of the

predictions using ANN with Isomap (r = 5 and m = 100). In the first case, the

relative error is 6.4⇥ 10�3 (near the maximum) and in the second case the relative

error is 2.2⇥ 10�3.
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Figure 5.5: Representative examples of the predictions using ANN with Isomap
(r = 5) and 100 training points in the RCS example.

5.3 Concluding remarks

Unlike GPE, ANNs do not place assumptions on the interdependency of the co-

e�cients generated by manifold learning algorithms. This can potentially lead to

more accurate predictions and is particularly useful when using manifold learning

methods does not generate independent coe�cients, e.g., di↵usion maps. The to-

tal learning and prediction time for all methods is on the order of a few minutes,

which is a dramatic reduction in computational e↵ort compared to the emulation

of d outputs simultaneously, which, in many cases, would not be computationally

feasible.

Results were compared in test cases to Higdon’s method [1]. In both cases
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(and in many other data sets tested) this standard method fails, while the linear

and/or non-linear methods exhibit accurate results. The second example demon-

strates again that manifold learning is necessary for some complex datasets as the

linear method such as PCA would fail or perform badly unless increasing the re-

duced dimensionality to a very high number. This may somehow defeat the purpose

of reducing the computational cost as our motivations. There are also cases where

manifold learning method would be inferior to linear method, e.g., PCA or MDS.

Usually the response surfaces in these cases are ’flat’ where linear method would

su�ce. In such a situation, a linear method could outperform a manifold learning

method easily to some extent due to the advantages of its existing general pre-image

solutions.
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Chapter 6

Reduced order modelling via

manifold learning based

Gaussian process emulators

Proper orthogonal decomposition (POD) (see chapter 2) is a popular reduced-order

model (ROM) method for solving PDE models. As discussed in Chapter 1, for

dynamic parameterized PDE models, the main challenge is to accurately and e�-

ciently approximate the POD basis for new parameter values, in order to use the

ROM model for applications such as uncertainty quantification and real-time con-

trol. A further challenge is posed by nonlinearities, which impede computational

e�ciency in the absence of further approximations. In this chapter, linear and

nonlinear parameterized dynamic PDE models are considered. A method that ex-

tends POD (in time) is presented to parametric problems by using our GP manifold

learning framework to predict the snapshots for new parameter values. The same

method is also used to extend the discrete empirical interpolation method (DEIM)

to parameterized nonlinearities.

Firstly, procedures for generating ROMs and POD bases are outlined and
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details of the DEIM method are also provided. The issues associated with param-

eterized and/or nonlinear problems and outline our approach are explained. In

Section 6.3, brief details of the feature-space emulation and inverse mapping (al-

ready explained fully in previous chapters) are provided. The approach to both

linear and nonlinear parameterized problems is summarised in Algorithm 9. In sec-

tion 6.5, two examples are presented, one linear and one nonlinear. The results are

compared to a global basis approach. Conclusion are drawn in Section 6.6.

This chapter forms the basis for the paper, A. A. Shah, W. W. Xing, V. Tri-

antafyllidis. Reduced-order modelling of parameter-dependent, linear and nonlinear

dynamic partial di↵erential equation models. Proc. R. Soc. A 2017 473 20160809;

DOI: 10.1098/rspa.2016.0809. Published 26 April 2017.

6.1 Problem definition and Galerkin projection

Let x = (x1, . . . , xL) denote a point in a bounded, regular domain in D ⇢ RL

(L = 1, 2, 3), let t 2 [0, T ] denote time and let ⇠⇠⇠ 2 X ⇢ Rl denote a vector of

parameters. For the purposes of illustration, consider a parameterised, parabolic

PDE for a dependent variable (field) u(x , t;⇠⇠⇠):

@
t

u+ L(⇠⇠⇠)u+N (⇠⇠⇠)u = g(x ;⇠⇠⇠) (x , t) 2 D ⇥ (0, T ],

u(x , 0;⇠⇠⇠) = u0(x ;⇠⇠⇠) x 2 D,

(6.1)

augmented by linear boundary conditions. Here, L(⇠⇠⇠) and N (⇠⇠⇠) are parameter

dependent linear and nonlinear partial di↵erential operators, respectively. The de-

pendence on the parameters can be through the operators, the source term g(x ;⇠⇠⇠)

or the initial/boundary conditions.

Let H be a separable Hilbert space with inner product (·, ·)H and induced

norm || · ||H, e.g., L2(D), the space of square integrable equivalence classes of func-
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tions with inner product:

(v, v0)
L

2(D) =

Z

D
v(x )v0(x )dx . (6.2)

From hereon, the subscript in the notation is dropped for the inner product and

norm in L2(D). It is assumed that for each ⇠⇠⇠, u 2 L2(0, T ;H), i.e., t 7! u(·, t;⇠⇠⇠) is

a measurable map from (0, T ) to H with finite norm:

||u||
L

2(0,T ;H) :=

Z
T

0
||u(·, t;⇠⇠⇠)||H. (6.3)

Then u(·, t;⇠⇠⇠) 2 H for each t 2 (0, T ). A spatial discretization of (6.1) leads to a

system of ODEs in time:

u̇(t;⇠⇠⇠) = A(⇠⇠⇠)u(t;⇠⇠⇠) + f (u(t;⇠⇠⇠);⇠⇠⇠),

u(0;⇠⇠⇠) = u0(⇠⇠⇠),

(6.4)

for a discrete state variable u(t;⇠⇠⇠) = (u1(t;⇠⇠⇠), . . . , u
d

(t;⇠⇠⇠))T , which is called the

solution vector . d is the number of degrees of freedom, e.g., the number of grid points

in a finite di↵erence (FD) approximation, the number of cells in a cell-centred finite

volume (FV) approximation or the number of nodes (basis functions) in a finite-

element (FE) approximation. The matrix A(⇠⇠⇠) 2 Rd⇥d arises from the linear term

L(⇠⇠⇠) and f (u(t;⇠⇠⇠);⇠⇠⇠) 2 Rd arises from N (⇠⇠⇠)u, g(x ;⇠⇠⇠) and possibly the boundary

conditions. It is nonlinear for N (⇠⇠⇠)u 6= 0.

The precise relationship between u(t;⇠⇠⇠) and u(x , t;⇠⇠⇠), the forms of A(⇠⇠⇠)

and f (u ;⇠⇠⇠) and the incorporation of boundary conditions depends on the method

used. For a FD approximation, problem (6.1) is solved directly and the boundary

conditions are incorporated in f (u ;⇠⇠⇠). In a FE approximation a weak form is solved

with test functions in H or a dense subspace V of H, with boundary conditions

incorporated in f and/or the definition of H. Solutions are then sought in a finite
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dimensional subspace of H or V.

The form of A(⇠⇠⇠) is determined by the form of L(⇠⇠⇠)u. In some cases it admits

an a�ne form or can be approximated as such:

A(⇠⇠⇠) =
X

i

c
i

(⇠⇠⇠)A
i

, (6.5)

where the functions c
i

(⇠⇠⇠) are known and the matrices A
i

are constant. For FD, FV

and nodal-basis FE discretizations, the coe�cients u
i

(t;⇠⇠⇠) of u(t;⇠⇠⇠) correspond to

the values of u(x , t;⇠⇠⇠) at locations x (i) 2 D, i = 1, . . . , d, i.e.:

u
i

(t;⇠⇠⇠) = u(x (i), t;⇠⇠⇠). (6.6)

It is assumed to be the case here. A numerical solution of (6.4) yields the solution

vector u(t;⇠⇠⇠) = (u1(t;⇠⇠⇠), . . . , u
d

(t;⇠⇠⇠))T at times {t(i)}m
i=1. Each of the discrete

solutions:

u

(i)(⇠⇠⇠) := u(t(i);⇠⇠⇠) 2 Rd, i = 1, . . . ,m, (6.7)

is referred to as a snapshot .

For a fixed input ⇠⇠⇠ 2 X , a Galerkin projection approximates the problem

(6.4) in a proper (low dimensional) subspace S of Rd. Let v
j

(⇠⇠⇠) 2 Rd, j = 1, . . . , r

be an orthonormal basis for S (dim(S) = r ⌧ d), where the notation makes explicit

the dependence on the input. An approximation u

r

(t;⇠⇠⇠) 2 S of u in the space

span(v1(⇠⇠⇠), . . . , v r

(⇠⇠⇠)) is assumed as:

u

r

(t;⇠⇠⇠) =
rX

j=1

a
j

(t;⇠⇠⇠)v
j

(⇠⇠⇠) = V
r

(⇠⇠⇠)a(t;⇠⇠⇠), (6.8)

where:

a = (a1(t;⇠⇠⇠), . . . , ar(t;⇠⇠⇠))T ,

V
r

(⇠⇠⇠) = [v1(⇠⇠⇠) . . . v r

(⇠⇠⇠)].

(6.9)
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The Galerkin projection of equation (6.4) onto the basis vectors v
i

(⇠⇠⇠), i = 1, . . . , r,

yields (replacing u with u

r

):

ȧ(t;⇠⇠⇠) = A
r

(⇠⇠⇠)a(t;⇠⇠⇠) + f

r

(a(t;⇠⇠⇠);⇠⇠⇠) ,

a(0;⇠⇠⇠) = a0(⇠⇠⇠) := V
r

(⇠⇠⇠)Tu0(⇠⇠⇠),

(6.10)

where:

A
r

(⇠⇠⇠) := V
r

(⇠⇠⇠)TA(⇠⇠⇠)V
r

(⇠⇠⇠),

f

r

(a(t;⇠⇠⇠);⇠⇠⇠) := V
r

(⇠⇠⇠)T f (V
r

(⇠⇠⇠)a(t;⇠⇠⇠);⇠⇠⇠) .

(6.11)

Equations (6.10) represent a system of r ODEs in time for the coe�cients a
i

(t;⇠⇠⇠).

The basic premise of POD, detailed in chapter 2, is the construction of a basis

{v
j

(⇠⇠⇠)}r
j=1 using the discrete snapshots {u (i)(⇠⇠⇠)}m

i=1.

6.2 Basis emulation and modified DEIM

The ROM is valid for a fixed input ⇠⇠⇠ 2 X ; that is, for each input the snapshot

matrix X(⇠⇠⇠) is obtained from the FOM and the basis V
r

(⇠⇠⇠) is constructed according

to section 6.12.6. To perform an analysis with respect to the parameters (e.g.,

uncertainty quantification), this procedure is computationally prohibitive. A global

basis across the parameter space of interest [44, 45] can be constructed by using a

design-of-experiment (such as a Latin hypercube or Sobol sequence [126]) to select

values ⇠⇠⇠(j) 2 X , j = 1, . . . , n, in order to compute a set of snapshot matrices X(⇠⇠⇠(j)).

The POD basis vectors are then extracted from the global snapshot matrix:

[X(⇠⇠⇠(1)), . . . ,X(⇠⇠⇠(n))] 2 Rd⇥nm, (6.12)

usually after a SVD to avoid rank deficiency. A consequence of this approach is

that the optimality of the POD method is violated. Furthermore, the range of

validity of the global basis could be limited for highly nonlinear mappings between
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the parameters and the outputs [48].

The computational cost of solving the reduced order system (6.10) also de-

pends on the form of f (·;⇠⇠⇠) in (6.4). When f (·;⇠⇠⇠) 2 Rd is a strong nonlinearity,

the computational e�ciency of the POD-Galerkin approach is compromised by the

fact that evaluation of f
r

in (6.10) has a computational complexity that depends

on d. In DEIM [63], one collects snapshots of the nonlinearity {f (u(t(i);⇠⇠⇠);⇠⇠⇠)}m
i=1

and form the matrix:

F(⇠⇠⇠) = [f (u(t(1);⇠⇠⇠) . . . f (u(t(m);⇠⇠⇠)]. (6.13)

For a nonlinear f 2 Rd, the DEIM method seeks a set of vectors w

i

(⇠⇠⇠) 2 Rd,

i = 1, . . . , d, such that the subspace spans(w1(⇠⇠⇠), . . . ,w s

(⇠⇠⇠)) ⇢ Rd for some s ⌧ d

well approximates f (u(t;⇠⇠⇠);⇠⇠⇠) for an arbitrary t. That is, an approximation:

f (u(t;⇠⇠⇠);⇠⇠⇠) ⇡W(⇠⇠⇠)h(t;⇠⇠⇠), (6.14)

where:

W(⇠⇠⇠) = [w1(⇠⇠⇠) . . .w s

(⇠⇠⇠)],

h(t;⇠⇠⇠) 2 Rs.

(6.15)

The basis {w
i

(⇠⇠⇠)}d
i=1 is obtained from a PCA on F(⇠⇠⇠)F(⇠⇠⇠)T or SVD of F(⇠⇠⇠), and

is arranged according to the sizes of the corresponding eigenvalues (in descending

order).

Since the system f (u(t;⇠⇠⇠);⇠⇠⇠) = W(⇠⇠⇠)h(t;⇠⇠⇠) is overdetermined in h(t;⇠⇠⇠),

the DEIM method selects s of the d equations to obtain an ‘optimal’ solution.

Let us introduce the matrix P = [e
p1 . . . ep

s

] 2 Rd⇥s, where e

p

i

is the standard

Euclidean basis vector in Rd with nonzero entry located at the p
i

-th coordinate.

Then, assuming PTW(⇠⇠⇠) is nonsingular, one obtains:

h(t;⇠⇠⇠) ⇡ (PTW(⇠⇠⇠))�1PT

f (u(t;⇠⇠⇠);⇠⇠⇠), (6.16)
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so that:

f

r

(a(t;⇠⇠⇠);⇠⇠⇠) = V
r

(⇠⇠⇠)T f (V
r

(⇠⇠⇠)a(t;⇠⇠⇠);⇠⇠⇠)

⇡ V
r

(⇠⇠⇠)TW(⇠⇠⇠)h(t;⇠⇠⇠)

= V
r

(⇠⇠⇠)TW(⇠⇠⇠)(PTW(⇠⇠⇠))�1PT

f (u(t;⇠⇠⇠);⇠⇠⇠)

= V
r

(⇠⇠⇠)TW(⇠⇠⇠)(PTW(⇠⇠⇠))�1
f (PT

u(t;⇠⇠⇠);⇠⇠⇠),

(6.17)

assuming that the function f (·;⇠⇠⇠) acts pointwise. The indices p
i

2 {1, 2, . . . , d},

i = 1, . . . , s are specified by using an iterative algorithm to limit the growth of the

standard Euclidean norm error in the approximation of f (u(t;⇠⇠⇠);⇠⇠⇠) in the space

Range(W(⇠⇠⇠)) [63].

In this chapter,a systematic and rigorous method are introduced to ap-

proximate local bases and the nonlinearity by first approximating the snapshots

{u(t(i);⇠⇠⇠)}m
i=1 and {f (u(t(i);⇠⇠⇠);⇠⇠⇠)}m

i=1 for an arbitrary input ⇠⇠⇠ using the methods

described in chapters 3 to 5, using any of the regression and manifold learning meth-

ods. Details are not repeated here, except that the learning problem is made explicit

below.

6.3 Formulation and solution of the learning problem

For an arbitrary input ⇠⇠⇠, the PDE model is a mapping ⌘⌘⌘ : X ! O ⇢ Rmd, defined

as follows:

y = ⌘⌘⌘(⇠⇠⇠) =
⇣
u(t(1);⇠⇠⇠)T , . . . ,u(t(m);⇠⇠⇠)T

⌘
T

, (6.18)

i.e., a vectorial rearrangement of snapshots for the given value of ⇠⇠⇠. It is often de-

sired to approximate the mapping ⌘⌘⌘(·) given training points y (j) = ⌘⌘⌘(⇠⇠⇠(j)) 2 O, with

corresponding design points ⇠⇠⇠(j) 2 X , j = 1, . . . , n. As discussed in previous chap-

ters, the main methods for dealing with such high dimensional (large md) output

problems are those of Conti and O’Hagan [27] and Higdon et al. [1]. The method
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of Higdon et al. was extended in the previous 3 chapters by replacing PCA with

nonlinear methods. In this chapter, this method to learn the snapshots y for new

parameter values ⇠⇠⇠ is employed. The same approach is also used for snapshots of

the nonlinearity, {f (u(t(i);⇠⇠⇠);⇠⇠⇠)}m
i=1, similarly arranged as in (6.18). The default

manifold learning method is kPCA.

Given training data y

(i) = ⌘⌘⌘(⇠⇠⇠(i)) 2 O, i = 1, . . . , n at design points ⇠⇠⇠(i) 2 X ,

kPCA defines a map ��� : O ! F , where F is a feature space. It is equivalent (see

section 4.1) to composite mappings:

z
i

(·) := z
i

(⌘⌘⌘(·)) : X ! R, i = 1, . . . , n, (6.19)

of the inputs ⇠⇠⇠ to a low number (q) of coe�cients. For the data points, the coe�cients

z
i

(y (j)) are defined as in Eq. (4.9). One can also define the map:

z

q

(⌘⌘⌘(·)) := (z1(·), . . . , zq(·))T : X ! Rq, (6.20)

from the input space X to a low dimensional space Rq. Note that q is used to

represent the dimensionality of the low-dimensional space in this case, as opposed to

r in previous chapters. Here r is reserved for the dimensionality of the approximating

POD space.

Approximating ⌘⌘⌘ : X ! M given the training points {y (j)}n
j=1 is thus re-

placed by the problem of approximating z

q

(⌘⌘⌘(·)). This is achieved as in chapter 4

by placing univariate GP priors indexed by ⇠⇠⇠ over the individual coe�cients z
i

(·),

assuming that they are mutually uncorrelated. The training data is obtained by

applying kPCA to the training set; that is:

z

q

(⌘⌘⌘(⇠⇠⇠(j))) = z

q

(y (j)) = [e↵↵↵1 . . . e↵↵↵q

]TH(k
j

�K1), j = 1, . . . , n, (6.21)

with terms defined as in Eq. (4.20).
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An inverse mapping is again given by a weighted average of the training

points: y =
P

j2J #(y
(j))y (j), with weights #(y (j)), as in Eq. (4.49), where J ✓

{1, 2, . . . , n}, defines the neighbouring points used for the averaging. The weights

are defined as in Eq. (6.22) in terms of the distances d
j,⇤, j = 1, . . . , n, between y

and y

(j):

⇢(y (j)) =
�(y ,y (j))P
i2J �(y ,y (i))

=
�(d

i,⇤)P
i2J �(di,⇤)

, j 2 J , (6.22)

where �(y ,y 0) = exp(�||y � y

0||2). The distances d
i,⇤ are calculated as in section

4.4.1.

6.4 Main Algorithm

As already stated, the kPCA coe�cients for the snapshots of the field variable and

the nonlinearity are assumed to be realisations of independent GPs. GPE is therefore

performed separately on each coe�cient to approximate its value for a new input ⇠⇠⇠.

This provides the new snapshots, which are then used for POD/DEIM. A pseudo

code is presented below. For convenience, the terminology ‘kGPE-POD’ is used to

denote the method of Algorithm 9 without the modified DEIM. With the modified

DEIM, the terminology ‘kGPE-POD-DEIM’ is instead used as shorthand.
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Algorithm 9 POD-ROM for parameterised PDEs using manifold learning and

DEIM.
1: Obtain snapshots from FOM using DOE: u(t(j);⇠⇠⇠(i))T , i = 1, . . . , n, j =

1, . . . ,m.

2: For nonlinear problems, collect snapshots : f (u(t(j);⇠⇠⇠(i));⇠⇠⇠(i)), i = 1, . . . , n, j =

1, . . . ,m.

3: Set: y (i)  ⌘⌘⌘(⇠⇠⇠(i)) (u(t(1);⇠⇠⇠(i))T , . . . ,u(t(m);⇠⇠⇠(i))T )T , i = 1, . . . , n.

4: For nonlinear problems, set :

y

(i)
f

 ⌘⌘⌘
f

(⇠⇠⇠(i)) (f (u(t(1);⇠⇠⇠(i));⇠⇠⇠(i))T , . . . , f (u(t(m);⇠⇠⇠(i));⇠⇠⇠(i))T )T

i = 1, . . . , n

5: Do kPCA for {y (i)}n
i=1 ! {(z1(y (i)), . . . , z

q

(y (i)))T }n
i=1

6: For nonlinear problems do kPCA for {y (i)
f

}n
i=1 ! {(zf1 (y

(i)
f

), . . . , zf
q

(y (i)
f

))T }n
i=1

7: for j  1 to q do

{⌘(⇠⇠⇠(i)) z
j

(⇠⇠⇠(i)) z
j

(⌘⌘⌘(⇠⇠⇠(i))) z
j

(y (i))}n
i=1

Scalar GPE: z
j

(⇠⇠⇠) E[⌘(⇠⇠⇠)]

For nonlinear problems :

{⌘
f

(⇠⇠⇠(i)) zf
j

(⇠⇠⇠(i)) zf
j

(⌘⌘⌘
f

(⇠⇠⇠(i))) zf
j

(y (i)
f

)}n
i=1

Scalar GPE: zf
j

(⇠⇠⇠) E[⌘
f

(⇠⇠⇠)]

8: end for

9: Inverse map: ⌘⌘⌘(⇠⇠⇠) 
P

N

n

i=1

⇣
�(d

i,⇤)/
P

N

n

i=1 �(di,⇤)
⌘
y

(i)

10: For nonlinear problems : ⌘⌘⌘
f

(⇠⇠⇠) 
P

N

n

i=1

⇣
�(d

i,⇤)/
P

N

n

i=1 �(di,⇤)
⌘
y

(i)
f

11: Snapshots for input ⇠⇠⇠: (u(t(1);⇠⇠⇠)T , . . . ,u(t(m);⇠⇠⇠)T )T  ⌘⌘⌘(⇠⇠⇠)

12: For nonlinear problems : (f (u(t(1);⇠⇠⇠);⇠⇠⇠)T , . . . , f (u(t(m);⇠⇠⇠);⇠⇠⇠)T )T  ⌘⌘⌘
f

(⇠⇠⇠)

13: POD with {u(t(i);⇠⇠⇠)}m
i=1

14: For nonlinear problems: combine 13 with DEIM on {f (u(t(i);⇠⇠⇠);⇠⇠⇠)}m
i=1
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6.5 Results and discussion

6.5.1 2D contaminant transport

The transport of a contaminant governed by a convection-di↵usion equation. is

tested here. This model can be used, e.g., for real-time prediction or for quantifying

uncertainty in the concentration to support decision making [46]. The problem is

specified as follows:

@
t

u+ q ·ru� µr2u = 0 x = (x1, x2) 2 D := [0, 1]⇥ [0, 1]

u = 0 x 2 @D, u(x , t) = u0 t = 0

(6.23)

where u(x , t;⇠⇠⇠) denotes the contaminant concentration (mol m�3), q is the fluid ve-

locity (m s�1) and µ is the contaminant di↵usion coe�cient (m2 s�1). The input ⇠⇠⇠ is

defined below. The initial concentration is given by u0(x ) = (2⇡k0)�1/2P3
i=1 ki exp(�k0(x�

x

i

)T (x�x
i

)/2), where x 1 = (0.2, 0.2)T , x 2 = (0.2, 0.8)T , x 3 = (0.8, 0.8)T , k0 = 0.01,

k1 = 1, k2 = 2 and k3 = 3. The magnitude of the velocity field is inversely propor-

tional to the distance from x = (bx1, bx2)T :

q(x ) =
a1(x1 � bx1)e1 + a2(x2 � bx2)e2

(x1 � bx1)2 + (x2 � bx2)2
(6.24)

where e1 and e2 are unit vectors in the x1 and x2 directions, respectively, and

a
i

2 R. To avoid the singularity at x = (bx1, bx2)T , the norm of velocity is set to zero

at this location. It is also setted a1 = a2 = 1 and µ = 1, and consider variations in

the input ⇠⇠⇠ = (bx1, bx2)T 2 X := [0, 1]⇥ [0, 1].

The problem was discretized in space using a cell-centered finite volume

method with d = 2500 square cells (control volumes). Central di↵erencing was

used for the di↵usive term and a first-order upwind scheme for the convective term,

defining the velocity values on a staggered grid. A fully implicit Euler method was

used to solve the resulting semi-discrete linear problem with 100 equal time steps in
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t 2 [0, T ], T = 0.2 s. A total of 500 inputs ⇠⇠⇠
j

2 X , j = 1, . . . , 500, were generated

using a Sobol sequence [126]. For each input, the FOM was solved to yield solution

vectors (snapshots) u

i

(⇠⇠⇠
j

) 2 Rd, i = 1, . . . , 100, j = 1, . . . , 500. The data points

(vectorized snapshots) y

j

= ⌘⌘⌘(⇠⇠⇠
j

), j = 1, . . . , 500, were obtained using Eq. (6.18).

H = L2(D) is setted to define the POD basis and optimality. Of the 500 data

points, n
t

= 300 were reserved for testing. Training points were selected from the

remaining 200 data points (n  200).

A Gaussian kernel was used for kPCA. The free parameter s2 was taken

to be the average square distance between observations in the original space [110]:

s2 = n�2Pn

i,j=1 ||y i

� y

j

||2. Polynomial, multi-quadratic and sigmoid kernels were

also tested. The best performance was achieved with the sigmoid and Gaussian

kernels. For the inverse mapping, N
n

= n was used (i.e., all training points).

For the GP emulation, a squared exponential covariance function and a zero mean

function (after centering the data) is used. The hyperparameters were found using

a MLE (gradient descent). Errors in the predictions of the vectorised snapshots y
j

were measured using a normalized error: ✏ = ||yp

j

� y

j

||/||y
j

||, where y

p

j

denotes

the prediction of the test point y

j

= ⌘⌘⌘(⇠⇠⇠
j

), j = 1, . . . , n
t

, using steps 1a-6a of

Algorithm 9. Errors in the predictions using kGPE-POD/kGPE-POD-DEIM at ⇠⇠⇠
j

were measured using a relative error ✏
r

:

✏
r

=
1

m

mX

i=1

||up

i

(⇠⇠⇠
j

)� u

i

(⇠⇠⇠
j

)||
||u

i

(⇠⇠⇠
j

)|| (6.25)

where up

i

(⇠⇠⇠
j

) is the prediction (steps 1a-7a in Algorithm 9) of the test point (snap-

shot) u
i

(⇠⇠⇠
j

).

One would naturally first examine the normalized errors ✏ in the predictions

of the test data points y

j

= ⌘⌘⌘(⇠⇠⇠
j

), j = 1, . . . , n
t

. Using m = 10 of the snapshots

(selecting every 10), Fig. 6.1 shows Tukey box plots of ✏ for the n
t

= 300 test cases

as the manifold dimension q is increased, using n = 80 training points. Outliers
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are plotted individually using a ‘+’ symbol. It is noted that when predicting the

training set in this case using q = 10 the maximum value of ✏ was around 10�11, while

the median was around 10�12. As a comparison, the result for Isomap (replacing

kPCA in Algorithm 9) is also included. The best results were obtained with kPCA,

for which the errors converge after q = 6 dimensions (negligible further decrease).

Di↵usion maps were also tested and gave results similar to kPCA. The same pattern

was observed at n = 40, 120 and 200 training points and also for all values of m

up to 100. Based on the results, the approximating manifold dimension was set to

q = 10 for all values of n and m (using kPCA).
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Figure 6.1: Tukey box plots of ✏ with increasing q for the contaminant transport
model (n

t

= 300, n = 80 and m = 10): (a) kPCA; (b) Isomap.

Fig. 6.2 compares kGPE-POD with a global basis method for increasing

POD dimension r. In the global basis method the snapshot matrices comprising

the global snapshot matrix corresponded to the n = 80 training points used for

kGPE-POD. An SVD was performed on the global matrix before extracting the

POD basis. For n = 40, the results were similar to the results depicted in Fig. 6.2,

with a slight decrease in accuracy for both methods. Using m = 10 snapshots, the

decrease in the relative errors ✏
r

in kGPE-POD is negligible for r > 15, while the

global basis method continues to improve beyond r = 50. In principle, kGPE-POD

uses the correct bases for the test parameter values. It is possible, therefore, that

kGPE-POD would approach the true result for a smaller value of r compared to the

global basis approach, which uses a single basis extracted from snapshots that do
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Figure 6.2: Tukey box plots of ✏
r

with increasing r for the contaminant transport
model (n

t

= 300 and n = 80). (a) kGPE-POD with m = 10; (b) global basis with
m = 10; (c) kGPE-POD with m = 100; (d) global basis with m = 100.
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not pertain to the test parameter values.
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Figure 6.3: Histograms of ✏
r

corresponding to m = 10, r = 15 in Fig. 6.2, using:
(a) kGPE-POD; and (b) a global basis.

For m = 10, kGPE-POD exhibits a minimum ✏
r

that is lower by more than

an order of magnitude, while the maximum ✏
r

for both methods is roughly the same

(0.04 for r � 15). At r = 15 in Figs. 6.2(a) and (b), the value of ✏
r

using kGPE-

POD is lower than the minimum ✏
r

in the global basis method in 109 of the 300 test

cases. For the global basis at r = 15, there are 131 cases with an error below the

median (3.9⇥ 10�3), while for kGPE-POD, 217 cases have errors below this value.

kGPE-POD clearly exhibits a broader range of ✏
r

values, with a higher median for

r > 25. Fig. 6.3 shows histograms of ✏
r

for the two methods in the case of r = 15,

m = 10. The broader range of ✏
r

is due to the much lower minimum and to the

presence of a greater number of cases with ✏
r

> 0.012. The number of such cases

(13) is, however, small. For m = 100 snapshots, both methods improve, with the

global basis method exhibiting the greater improvement (e.g., the maximum ✏
r

is

decreased by around an order of magnitude whereas for kGPE-POD the decrease

is by a factor of 4 at r = 15). The global basis method has a lower median ✏
r

for r � 20, but also again a considerably higher minimum (more than an order of

magnitude at r = 25). At r = 30, e.g., there are 77 cases in kGPE-POD with a

lower ✏
r

than the minimum for the global basis.

To gain an indication of the actual quality of the predictions for di↵erent ✏
r

,
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Figure 6.4: (a) The FOM and (b) the kGPE-POD prediction of the concentration
field (mol m�3) for the contaminant transport model at ⇠⇠⇠ = (0.7382, 0.4179)T and
t = 0.02s (✏

r

⇡ 0.0021). (c) The FOM and (d) the kGPE-POD predictions at
⇠⇠⇠ = (0.7539, 0.7461)T and t = 0.2s (✏

r

⇡ 0.0127). In all cases n = 80, m = 10
and q = 6. (e) Absolute pointwise error for the case ⇠⇠⇠ = (0.7382, 0.4179)T and (f)
absolute pointwise error for ⇠⇠⇠ = (0.7539, 0.7461)T .
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Figure 6.5: A close-up of (a) the kGPE-POD prediction and (b) the test correspond-
ing to Figs. 6.4(a) and (b).

Fig. 6.4 compares the predicted kGPE-POD concentration fields in two test cases:

(a) near the median (✏
r

⇡ 0.0021) and near the upper whisker (✏
r

⇡ 0.0127) at

r = 10 in Fig. 6.2(a). The change in the profiles from one input to the other is

well captured. Figs. 6.4(e) and (f) show the absolute pointwise errors for the two

examples. It can be seen that there are localized regions of high error. For the first

case (⇠⇠⇠ = (0.7382, 0.4179)T ), a comparison of the region of highest error (lower right

quadrant) with the test is shown in Fig. 6.5, which clearly highlights the fine-scale

di↵erences leading to the error. The trends and general profile (and in most of the

domain the actual concentration values) are nevertheless well captured even with a

small value of r.

In order to assess the generalization accuracy more fully, a UQ problem is

considered for the accumulated contaminant concentration ū(x ;⇠⇠⇠) :=
R
T

0 u(x , t;⇠⇠⇠)dt

at the location x

c

= (0.5, 0.5)T , by considering ⇠⇠⇠ to be a random vector distributed

according to p(⇠⇠⇠) = N (µµµ,�2I), where µµµ = (0.5, 0.5)T and �2 = 0.1. The distri-

bution of ū(x
c

;⇠⇠⇠) was estimated using Monte Carlo sampling with N
M

samples

⇠⇠⇠i (this notation is to avoid confusion with the design points) drawn from p(⇠⇠⇠).

It is setted as q = 6, n = 80, N
M

= 3000, and approximated ū(x
c

;⇠⇠⇠) with a

trapezoidal rule. Fig. 6.6 compares the histograms obtained from kGPE-POD, the

global basis method and the FOM, using m = 10 snapshots. The FOM took 55.18
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Figure 6.6: Estimated distribution of ū(x
c

;⇠⇠⇠) from N
M

= 3000 MC samples using
n = 80 and m = 10: (a) kGPE-POD with r = 10; (b) global basis with r = 10; (c)
kGPE-POD with r = 50; (d) global basis with r = 50.

h to complete and yielded µ
ac

= 0.011087 and �
ac

= 0.001218, obtained from

µ
ac

= (1/N
M

)
P

N

M

i=1 ū(x ;⇠⇠⇠
i) and �2

ac

= (N
M

� 1)�1PN

M

i=1 (ū(x ;⇠⇠⇠
i) � µ

ac

)2. For

r = 10, kGPE-POD exhibited reasonable accuracy with regards to µ
ac

(within 0.2

%) and �
ac

(within 8.7 %), while the global basis method was inaccurate (50 %

error in �
ac

). For m = 10, r = 50, both methods were accurate, with kGPE-POD

still providing better estimates of µ
ac

and �
ac

. For m = 100, the results are shown

in Fig. 6.7. kGPE-POD was again more accurate for r = 10, while for r = 30, the

two methods exhibited a similar level accuracy.

6.5.2 Burgers equation

A 1-D Burgers equation is considered here, with inputs ⇠⇠⇠ to be defined later:

@
t

u+
1

2
@
x

(u2)� 1

Re
@
xx

u = g(x), x 2 D := (0, 1)

u(0, t) = u(1, t) = 0, u(x, 0) = u0(x) := sin(k⇡x)e�(c1x+c2)

(6.26)
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Figure 6.7: Estimated distribution of ū(x
c

;⇠⇠⇠) from N
M

= 3000 MC samples with
n = 80 and m = 100: (a) kGPE-POD with r = 10; (b) global basis with r = 10; (c)
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where u(x, t;⇠⇠⇠) is the flow velocity, c1, c2 2 R, k 2 N, Re is the Reynold’s number

and g(x) is a source term. One seeks a weak solution u(x, t;⇠⇠⇠) 2 V := H1
0 (D)

satisfying:

(@
t

u, v) +
1

2
(@

x

(u2), v) +
1

Re
a(u, v) = (g, v) 8v 2 V (6.27)

where a('1,'2) := ('0
1,'

0
2), '1,'2 2 V , defines a bilinear functional, in which a

prime denotes an ordinary derivative w.r.t. x. The interval D = [0, 1] is parti-

tioned into N + 1 equally sized subintervals [x
i

, x
i+1], where x

i

= (i � 1)/(N + 1),

i = 1, . . . , d = N + 2. A standard piecewise linear basis { 
i

(x)}d
i=1 defines the

approximating space Vh := span( 1, . . . , 
d

) ⇢ V.

The FE approximation u(x, t;⇠⇠⇠) ⇡ uh(x, t;⇠⇠⇠) =
P

d

j=1 uj(t;⇠⇠⇠) j

(x) leads to

the weak formulation: find u = uh(x, t;⇠⇠⇠) 2 Vh such that (6.27) holds 8v = vh(x) 2

Vh. It is also convenient to make use of the group (product) approximation [149]:

u(x, t;⇠⇠⇠)2 ⇡
P

d

j=1 uj(t;⇠⇠⇠)
2 

j

(x) 2 Vh. Setting u = uh and vh =  
j

in (6.27) one

obtains the semi-discrete problem:

dX

i=1

u̇
i

(t;⇠⇠⇠)( 
i

, 
j

) +
1

2

dX

i=1

u
i

(t;⇠⇠⇠)2( 0
i

, 
j

) +
1

Re

dX

i=1

u
i

(t;⇠⇠⇠)( 0
i

, 0
j

) = (g, 
j

)

(6.28)

together with
P

d

i=1 ui(0;⇠⇠⇠)( i

, 
j

) = (u0, j

), 8j = 1, . . . , d. Defining the solution

vector u(t;⇠⇠⇠) = (u1(t;⇠⇠⇠), . . . , u
d

(t;⇠⇠⇠))T , Eq. (6.28) and the initial condition lead to:

Mu̇(t;⇠⇠⇠) + b(u(t;⇠⇠⇠)) +
1

Re
Su(t;⇠⇠⇠) = g, Mu(0;⇠⇠⇠) = u0 (6.29)

where the (i, j)-th elements of the mass and sti↵ness matrices M and S are given

by ( 
i

, 
j

) and
⇣
 0
i

, 0
j

⌘
, respectively, and the j-th components of u0 and g are

(u0, j

) and (g, 
j

), respectively, The nonlinear vector function b(u(t;⇠⇠⇠)) arises

from the second term in (6.28). a Runge-Kutta method with a variable time step

is used to solve the semi-discrete problems in this example.

The coe�cients u
i,j

(⇠⇠⇠), j = 1, . . . , d, of the snapshots u

i

(⇠⇠⇠) = u(t
i

;⇠⇠⇠),
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i = 1, . . . ,m, for an arbitrary value of ⇠⇠⇠ are the nodal coe�cients in the FEM

solution, and thus correspond to functions u
i

(x,⇠⇠⇠) :=
P

d

j=1 ui,j(⇠⇠⇠) j

(x) 2 Vh. For

the definition of the POD basis, it is natural to chose the L2(D) norm for optimality;

that is, H = L2(D). A FE approximation of the POD basis functions {vh
j

(x;⇠⇠⇠)}d
j=1

is given by vh
j

(x;⇠⇠⇠) =
P

d

i=1 vj,i(⇠⇠⇠) i

(x) 2 Vh, j = 1, . . . , d, in which the nodal

coe�cient v
j,i

(⇠⇠⇠) is the i-th component of the POD basis vector v

j

(⇠⇠⇠), given by

v

j

(⇠⇠⇠) = M�1/2
v

j

(⇠⇠⇠), where v

j

(⇠⇠⇠) is an eigenvector of M1/2C(⇠⇠⇠)M1/2. Note that

L2(D) orthogonality of the basis {vh
j

(x;⇠⇠⇠)}d
j=1 is equivalent to orthogonality of the

v

j

(⇠⇠⇠) w.r.t. hv
j

(⇠⇠⇠), v
i

(⇠⇠⇠)iM := v

j

(⇠⇠⇠)TMv

i

(⇠⇠⇠). The solution vector is then expanded

as in Eq. (6.8): u(t;⇠⇠⇠) ⇡ u(t;⇠⇠⇠) =
P

r

j=1 aj(t;⇠⇠⇠)v j

(⇠⇠⇠) = V
r

(⇠⇠⇠)a(t;⇠⇠⇠), leading to the

reduced order model:

ȧ(t;⇠⇠⇠) +V
r

(⇠⇠⇠)Tb (V
r

(⇠⇠⇠)a(t;⇠⇠⇠)) +
1

Re
V

r

(⇠⇠⇠)TSV
r

(⇠⇠⇠)a(t;⇠⇠⇠) = V
r

(⇠⇠⇠)Tg

a(0;⇠⇠⇠) = a0(⇠⇠⇠) := V
r

(⇠⇠⇠)Tu0

(6.30)

Another choice for optimality is H = H0
1 (D) with a(·, ·) as the inner product and as-

sociated semi-norm |'|1 = a(',')1/2. The POD eigenvalue problem
R
T

0 a(u, v)udt =

�v leads to the eigenvalue problem C(⇠⇠⇠)TSv
j

(⇠⇠⇠) = �v
j

(⇠⇠⇠). The POD basis vectors

are then given by v

j

(⇠⇠⇠) = S�1/2
v

j

(⇠⇠⇠), where v
j

(⇠⇠⇠) is an eigenvector of S1/2C(⇠⇠⇠)S1/2,

and are mutually orthogonal w.r.t. h·, ·iS. In the present example this approach gave

almost identical results.

Case 1. In the first example, g(x) ⌘ 0 and k = 1 are setted. The inputs were

defined as ⇠⇠⇠ = (c1, c2, Re)T 2 X = [2, 5] ⇥ [0.1, 1] ⇥ [10, 1000]. A total of 500

inputs ⇠⇠⇠
j

2 X were selected using a Sobol sequence and numerical experiments

were performed by solving the FOM model (6.29) with d = 64 nodes, for each

j = 1, . . . , 500, to obtain the solution vectors u(t
i

;⇠⇠⇠
j

) and nonlinearity b(u(t
i

;⇠⇠⇠
j

))

at times, t
i

= 0.25i, i = 1, . . . , 40 (m = 40). This yielded the data points (vectorized

snapshots) y
j

= ⌘⌘⌘(⇠⇠⇠
j

) and y

f

j

= ⌘⌘⌘f (⇠⇠⇠
j

), j = 1, . . . , 500, according to Eq. (6.18). Of
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the 500 data points, n
t

= 300 were reserved for testing, and training points were

selected from the remaining 200 points. The details of kPCA and GP emulation

were as described in the previous example.

Analysis of the normalized errors ✏ for the n
t

test cases with n = 160

training points showed convergence after q = 8 dimensions. Isomap gave similar

results while Di↵usion maps was inferior. q = 9 (kPCA) is used in the results

presented below. Fig. 6.8(a) shows the results of kGPE-POD-DEIM for an in-
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Figure 6.8: (a) Tukey box plots of ✏
r

with increasing r using kGPE-POD-DEIM for
Burgers model case 1 (n = 180, n

t

= 300 and m = 15). (b) Velocity profiles at
t = 0, 0.5, 1, 1.5, 2, 2.5, 5, 7.5, 10 s simulated with the FOM (filled circles, every third
node) and kGPE-POD-DEIM (solid lines) for a case with ✏

r

⇡ 0.041 at r = 10.
The inset in Figure (b) shows the absolute pointwise error at t = 2.5 s (dashed), 5
s (solid) and 10 s (dashed dotted).
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Figure 6.9: Tukey box plots of ✏
r

with increasing r for Burgers model case 1 (n
t

=
300, m = 40 and n = 180): (a) kGPE-POD; (b) a global basis.

creasing r (with s = r). The relative errors converge after r = 30, i.e., further

decreases are negligible. Fig. 6.8(b) compares the predicted velocity profiles at
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t = 0, 0.5, 1, 1.5, 2, 2.5, 5, 7.5, 10 s from kGPE-POD-DEIM and the FOM for a point

(✏
r

⇡ 0.041) above the upper whisker at r = 10 in Fig. 6.8(a). The two sets of

profiles are very close. The inset in Figure (b) shows the absolute pointwise error

at t = 2.5, 5 and 10 s. Inspection of the full set of profiles showed that the er-

ror grew with time until the front developed, after which the error decayed. The

highest absolute error was around 8.62 ⇥ 10�4 at x = 0.703, t = 5.65s, for which

u(x, t) ⇡ 0.103 m s�1. Thus, the maximum error was around 0.84 %.
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Figure 6.10: Tukey box plots of ✏
r

with increasing s for Burgers model case 2
(n

t

= 300, n = 180 and m = 200) using kGPE-POD-DEIM with: (a) r = 30; and
(b) r = 50.

With no approximation of the nonlinearity, a comparison between kGPE-

POD and the global basis method exhibited trends similar to those seen in the

previous example. For m < 30 and n  200, kGPE-POD required fewer POD

vectors to achieve a given level of accuracy; the lower bound for ✏
r

at r = 10 was one

order of magnitude smaller for kGPE-POD. Both methods improved with increasing

m, with the global basis method showing a greater improvement, especially in the

lower bound for ✏
r

. For m = 30 and n = 180 the results are illustrated in Fig. 6.9,

which shows that around r = 28 both methods exhibit similar levels of accuracy in

terms of the maximum, minimum and median ✏
r

.

Case 2. In a second case, g(x) = 0.02ex, k = 3 and c2 = 0.2 are selected with

inputs ⇠⇠⇠ = (c1, Re)T 2 X = [2, 5] ⇥ [10, 1000]. As before, 500 inputs using a Sobol

sequence are preselected and the FOM is run to generate data points, with n
t

= 300
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reserved for testing. In this case, d = 128 nodes is used and after inspection of the

normalized errors ✏ q = 9 is setted. In contrast to the previous case, a large m

(m > 120) was required for accurate results.

Fig. 6.10 shows the trends in the kGPE-POD-DEIM relative error ✏
r

on

the n
t

= 300 test points with increasing s for two values of r, using n = 180 and

m = 200. For a fixed r, the errors decrease with an increasing s. For a fixed s, the

errors were seen to decrease as r was increased up to a certain value. For higher

values of r the solutions became less stable, with a corresponding increase in the

error. This was more pronounced for small values of s. The optimal distribution of

errors (in terms of the median, quartiles and extrema) was achieved for values of s

between 5 and 10 higher than the value of r. Similar results for Burgers equation

can be found in, e.g., [150, 151].
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Figure 6.11: Velocity profiles predicted by the FOM (filled circles, every third node)
and kGPE-POD-DEIM (solid lines) at t = 0, 0.5, 1, 1.5, 2, 2.5, 5, 7.5, 10 s for Burgers
model case 2. (a) A point near the median (✏

r

⇡ 0.0022) at r = 30, s = 40 in Figure
6.10(a); (b) a point near the upper whisker (✏

r

⇡ 0.0154) at r = 30, s = 40; (c)
point with the highest error (✏

r

⇡ 0.0282) at r = 30, s = 40; (d) point with the
highest error (✏

r

⇡ 0.0072) at r = 50, s = 55 in Figure 6.10(b).
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For r = 30 and s = 40, Figs. 6.11(a) and (b) compare the FOM and kGPE-

POD-DEIM profiles at t = 0, 0.5, 1, 1.5, 2, 2.5, 5, 7.5, 10 s. The first of these corre-

sponds to a point near the median of the relevant box plot in Fig. 6.10(a), while

the second corresponds to a point near the upper whisker. Fig. 6.11(c) shows the

point with the highest error using the same values of r and s. In this case, insta-

bility develops as the front forms but eventually settles. Using r = 50 and s = 55,

the case with the highest error is shown in Fig. 6.11(d). In Fig. 6.11(d) It could

be seen that the solutions at early times are more stable. The observed instability

is a common feature of POD models [42, 49, 66]. Stabilization schemes, e.g., al-

ternative inner products, post-processing steps and modification of the underlying

model [49, 51, 86] can be incorporated within the framework developed in order to

eliminate or minimize such problems.

6.6 Concluding remarks

In this chapter, a new POD method is introduced for building parameterized ROMs

across potentially a broad window of parameter space for linear and nonlinear un-

steady PDEs. Since the method introduced here is a general framework, a number

of modifications could easily be made, e.g., changing the numerical method for the

PDE, the emulator and the manifold learning method, according to di↵erent types

of problems.

The manifold learning based GPE emulator could be treated as a general

data-driven machine learning technique to interpolate properties other than the

snapshots. For instance, one could employ it to learn the POD basis V
r

(⇠⇠⇠) in

Eq. (6.8) or the reduced-order system matrix A
r

(⇠⇠⇠) in Eq. (6.10), both of which

would reduce the computational time. Such approaches were, however, found to be

unstable in our numerical experiments. Further investigations are required.

Compared to the FOM, our method shows huge computational saving (388
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times faster than the FOM in the first example), while maintaining a high level of

accuracy. Compared to a global POD method, our method takes extra computation

e↵ort on at each run to diagonalize the snapshot matrix. The actual influence of

this is small (as the first example shows in the UQ) since most of the computational

time is spent on solving the ROM.

An broad question is whether the direct data-driven approach, e.g., GPE or

PCA-GPE, alone is better than kGPE-POD or kGPE-POD-DEIM. Such compar-

isons are not easy to find in the literature and are not of our focus here. Therefore

there are no attempts to make a comparison here either. The best choice is likely

to be problem dependent [152]. Researchers are no doubt also influenced by per-

sonal preference and the specific techniques with which they are most familiar, or

which are most widely accepted in their community. The ROM approaches are in-

herently linear in the sense that they use a linear subspace of the output space to

find approximate solutions. They are also less impressive in terms of computational

savings. Data-driven approaches may not, on the other hand, be able to capture the

nonlinear dynamical behaviour of some systems, in a way that the original model

(or a reduced form) can.
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Chapter 7

Conclusions and future work

In this thesis, our aim was to build e�cient and accurate surrogate models for param-

eterized PDE models, where the outputs of interest are spatial and spatio-temporal

fields. Applications include sensitivity analysis, optimization and uncertainty quan-

tification, in which the simulator is too costly. A manifold learning based statistical

emulation framework for emulating the discrete outputs in high-dimensional spaces

is introduced. It can be seen as a direct extension of the method in [1] to cases in

which the response surface generated by the data is too complex to be described

accurately by a linear subspace. It is worth emphasizing that, although the method

developed here may seem unsophisticated enough for real-world application where

complicated system with complex PDEs are coupled with complicated boundary

conditions, e.g. moving boundaries, and domains, the focus of this thesis is try-

ing to explore and extend existing general surrogate model for complex problems.

Considering that modelling a complicated system itself and coupling a surrogate

modelling could easily goes beyond the scope of the thesis, such kinds of applica-

tions are not demonstrated. This, however, does not hinder the applications to such

a problem.

In this thesis, various manifold learning techniques, namely, Isomap, ker-

nel PCA and di↵usion maps, and combined these with a number of emulation ap-
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proaches for scalar outputs are demonstrated. Pre-image solutions, which map the

predictive properties back to the physical space were placed in a general frame-

work. For di↵usion maps, a new and e�cient method based on a spectral analysis

of Markov operators is developed. As the experiments show, our methods show

improvements in some cases compared to the use of PCA. The latter method [1]

is, however, highly accurate in many cases. In such cases, it is advocated its use,

given the relative simplicity and given the access it provides to predictive variances

(estimates of the errors in the predictions) without resorting to Monte Carlo ap-

proximations. In cases where it fails, however, due to the limitations of PCA, our

methods may provide answers.

There are several powerful approaches to manifold learning other than those

used in this thesis, including Laplacian eigenmaps, local linear embedding (LLE) [86]

and local tangent space alignment (LTSA) [131]. These methods may o↵er improved

accuracy if solutions to the associated pre-image problems can be found. In tests

thus far, LLE often su↵ers form instability within our framework. In contrast, LTSA

shows huge advantages in terms of accuracy but is also unstable when using too high

a number of dimensions for the reduced space. These issues require further research.

A major limitation is in the accuracy of the pre-image map. Locally linear

(or similar) approaches are inherently limited by the distribution of, and distances

between points. There has been little progress on this issue for some time and

manifold learning methods would benefit greatly from a general method that is

stable, accurate and scalable. This issue is considered in our work and would propose

exploring several avenues, preferably of a probabilistic nature so that confidence

bounds in the predictions of the pre-image are available.

One approach may be Gaussian Process Latent Variable Models (GPLVMs)

[153], which are unsupervised methods used primarily for (nonlinear) dimensionality

reduction. Our group is currently exploring the application of these methods us-

ing variational inference and sparse approaches (inducing variables) combined with
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Markov Chain Monte Carlo to perform full Bayesian inference for PDE models (led

by Charlie Gadd), based on prior work by Titsias and Lawrence [154, 155]. The

framework is also worth exploring for standalone pre-image solutions, given that

GPLVMs are generative models that p rovides a joint probability over the high and

low dimensional points.

For steady-state problems, our methods are highly accurate and e�cient.

Solutions to a time dependent system are also discussed in this thesis by treating

time as an additional parameter. This is similar to the ‘time-input emulator’ in [27].

To take the influence of the dynamics into account more fully requires further work,

e.g., the iterative dynamic emulator introduced in [156].

The data-driven emulation methods is then implemented to develop a new

approach to POD reduced order modelling of linear and nonlinear parameterized

PDEs. This includes the extension of DEIM to parametric problems. The method

was shown to be more accurate than a global basis approach (for linear cases), while

of a similar computational costs. In theory, our method is applicable to a broader

class of problems and broader ranges of parameter space.
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Chapter 8

Appendix

8.1 Continuous state space di↵usion maps

Full details of the following can be found in the references [135, 137, 138]. In

the limit m ! 1, the Markov chain with transition matrix P generated from

a Gaussian kernel (with scale parameter s2) converges towards a Markov chain

on the continuous state space M [107, 135, 137, 138], with a discrete-time step

s2. Let µ be a probability measure on M defining the density of points, e.g., the

Lebesgue measure for a uniform density. In the limit m ! 1, a one-step (from

y

0 2 M to y 2 M) transition kernel for the Markov chain on M can be defined

by p(y 0,y) = k(y ,y 0)/d(y 0), where d(y 0) =
R
M k(y ,y 0)dµ(y) is a normalization

factor. p(y 0,y) is the continuous equivalent of the elements of P. The evolution of

a probability distribution '(y) is determined by the Markov operator L (forward

transfer operator or propagator) defined as follows [137, 138]:

L'(y) =
Z

M
p(y 0,y)'(y 0)dµ(y 0). (A1)

for '(y 0) 2 L2(M, µ)The distribution after t steps is given by Lt' = L�L� · · ·�L'.

L is equivalent to multiplication of P from the left in the case of a finite state space.
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The adjoint of L under the L2(M, µ) inner product h'1,'2i =
R
M '1(y)'2(y)dµ(y)

is given by the following backward transfer operator [137, 138]:

R'(y) =
Z

M
p(y ,y 0)'(y 0)dµ(y 0), hL'1,'2i = h'1,R'2i, (A2)

for '1,'2 2 L2(M, µ). In Eq. (A2), if '(y) is a function defined on M, then R'(y)

is the mean value of the function after one step of a random walk that started

at y . Rt' gives the mean value after t steps. The action of R is equivalent to

multiplication of P from the right in finite state space.

By defining a symmetric transition kernel p
s

(y 0,y) = k(y ,y 0)/
p

d(y 0)
p

d(y),

the following self-adjoint, compact operator S [137, 138] is obtained:

S'(y) =
Z

M
p
s

(y ,y 0)'(y 0)dµ(y 0), hS'1,'2i = h'1,S'2i, (A3)

for '1,'2 2 L2(M, µ). S is the continuous space equivalent of the action of P0 =

D�1/2KD1/2. From the spectral theory for compact, self-adjoint operators, S admits

a discrete eigendecomposition Ss
i

= �
i

s
i

, i 2 N, the eigenvalues (all positive) can

be ordered such that 1 = �1 > �2 > · · · , and the eigenfunctions form an orthonor-

mal basis for L2(M, µ). Moreover, the expansion p
s

(y ,y 0) =
P1

i=1 �isi(y)si(y
0) is

obtained. Since S is obtained via conjugation of the kernel p(y 0,y) with
p

d(y),

the operators L, R and S share the same eigenvalues �
i

, while the eigenfunctions of

L and R are given by l
i

= s
i

(y)
p

d(y) and r
i

= s
i

(y)/
p

d(y), i 2 N, respectively.

From the spectral expansion of p
s

(y ,y 0) and the above relationships between

the eigenfunctions, the expansion p(y ,y 0) =
P1

i=1 �iri(y)li(y
0) [138] is obtained.

The t-step transition probabilities p
t

(y (i),y (j)) defined in Eq. (4.28), i.e., elements

of Pt, are now given by the transition kernel p
t

(y ,y 0) of Rt = R � · · · �R, which

admits the expansion p
t

(y ,y 0) =
P1

i=1 �
t

i

r
i

(y)l
i

(y 0). Considering y 2 M to be

fixed, this gives a function of y 0 2M that is a continuous equivalent of the vector

of probabilities pt

j

given by Eq. (4.28), in which y = y

(j) and y

0 2 {y (1), . . . ,y (m)}

160



belongs to the finite set of states accessible from y

(j). The basis {l
i

}m
i=1 is replaced

with {l
i

}1
i=1 (defined on the whole of M) and the i-th coordinate (�0

i

)tr
ji

is now

replaced by the function �t
i

r
i

evaluated at the general starting location y 2 M.

Given the decay in the eigenvalues, the expansion for p
t

(y ,y 0) can likewise be

truncated at the first few eigenfunctions {l
i

}r
i=1.

A continuous version of the di↵usion distance can now be defined as [138]:

D2
t

(y1,y2) = ||p
t

(y1,y
0)� p

t

(y2,y
0)||21/d =

1X

i=1

�2t
i

[r
i

(y1)� r
i

(y2)]
2, (A4)

where ||'||21/d = h','i1/d =
R
y

02M |'(y 0)|2/d(y 0)dµ(y 0) for functions {' : ||'||1/d <

1}. The last step in Eq. (A4) follows immediately from the orthonormality of

{l
i

}1
i=1 w.r.t. the inner product h·, ·i1/d.

Thus, the di↵usion maps can be generalized to maps    t : M ! D(t) ⇢ `2

on the continuous state space M as follows:    t(y) = (�t1r1(y), �
t

2r2(y), . . .). Here,

`2 denotes the space of sequences {(x1, x2 . . .) :
P1

j=1 x
2
j

< 1}. Restricting the

expansion of p
t

(y ,y 0) to the first r eigenfunctions l
i

, one can define the maps    t

r

:

M! D(t)
r

⇢ Rr as follows:

   t

r

(y) = (�t1r1(y), . . . , �
t

r

r
r

(y)) 2 D(t)
r

. (A5)
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