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Abstract

Floods are one of the most devastating types of worldwide disasters in terms

of human, economic, and social losses. If authoritative data is scarce, or un-

available for some periods, other sources of information are required to improve

streamflow estimation and early flood warnings. Georeferenced social media

messages are increasingly being regarded as an alternative source of information

for coping with flood risks. However, existing studies have mostly concentrated

on the links between geo-social media activity and flooded areas. Thus, there

is still a gap in research with regard to the use of social media as a proxy for

rainfall-runoff estimations and flood forecasting. To address this, we propose

using a transformation function that creates a proxy variable for rainfall by

analysing geo-social media messages and rainfall measurements from author-

itative sources, which are later incorporated within a hydrological model for

streamflow estimation. We found that the combined use of official rainfall val-

ues with the social media proxy variable as input for the Probability Distributed

Model (PDM), improved streamflow simulations for flood monitoring. The com-
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bination of authoritative sources and transformed geo-social media data during

flood events achieved a 71% degree of accuracy and a 29% underestimation rate

in a comparison made with real streamflow measurements. This is a significant

improvement on the respective values of 39% and 58%, achieved when only au-

thoritative data were used for the modelling. This result is clear evidence of

the potential use of derived geo-social media data as a proxy for environmental

variables for improving flood early-warning systems.

Keywords: social media, hydrological modelling, estreamflow estimation,

flood monitoring

1. Introduction1

Floods have been gradually increasing throughout the world, and causing2

serious levels of human, economic and social losses. For this reason, forecasting3

and monitoring have attracted a great deal of attention as a means of improv-4

ing early warning systems (Patankar and Patwardhan, 2016; Crochemore et al.,5

2016). Flood forecasting and monitoring are being increasingly characterised as6

a problem of “big data”, since there are different data sources that can be used7

to support decision making, such as satellites, radar systems, rainfall gauges8

and hydrological networks (Horita et al., 2017). However, in situations of crisis9

management, the apparent overabundance of data is often accompanied by a10

simultaneous “information dearth”: a lack of information may arise because sen-11

sors are not available for certain regions or the number of available sensors is not12

enough to cover the territory with a suitable resolution. In hydrology, this prob-13

lem is attributed to the so-called “ungauged” or “poorly gauged” catchments14

(Sivapalan et al., 2003). In response, big data sources are emerging that provide15

important information and can supplement traditional sensors. These sources16

include data provided by people directly linked to affected areas or flood-prone17

areas, which can be used in many natural disaster risk scenarios and assist in18

water resources management (Fraternali et al., 2012).19

Over the last few years, there has been a growing interest in using georef-20
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erenced social media to support urban resilience to flooding. The advance of21

mobile telecommunications and the widespread use of smartphones and tablets22

allow people to act as human sensors, and generate volunteered geographic in-23

formation (Goodchild, 2007). Moreover, they have been increasingly recognised24

and used as an important resource to support disaster management (Goodchild25

and Glennon, 2010; Horita et al., 2015). This spatial information is produced26

by ordinary people through different collaborative activities, such as exchanging27

information through geotagged social media messages (de Albuquerque et al.,28

2017).29

One of the advantages of using social media for monitoring flood events is30

the extensive spatial coverage of the measurements. These make it possible31

to obtain useful information at different points of river catchment areas and32

cities where the local inhabitants are able to supplement the static sensors of33

the hydrometeorological networks. However, even today there are still multiple34

challenges that have to be faced; these, include finding the best way to extract35

relevant information from social media and the difficulty of integrating this infor-36

mation with data from other sources to achieve greater reliability. Furthermore,37

an additional challenge is to ensure that these new information sources can be38

used to assist the hydrological models to support decision-making with regard39

to the early warning system (Mazzoleni et al., 2017; Horita et al., 2015).40

Most of the previous work in this area has concentrated on using social media41

data either for flood mapping or exploring spatiotemporal patterns (Smith et al.,42

2015; Weng and Lee, 2011; Tkachenko et al., 2017). In our previous work,43

we found there were close spatiotemporal links between social media activity44

and flood-related events (de Albuquerque et al., 2015), as well as social media45

activity and rainfall (de Andrade et al., 2017). However, to the best of our46

knowledge, so far no scientific work has used social media data quantitatively47

to estimate hydrological models for flood monitoring. This paper differs from48

our previous studies (de Andrade et al., 2017) by going one step further than49

simply establishing a correlation between social media activity and rainfall: it50

now examines the frequency of rainfall-related messages to define a data series of51
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non-authoritative rainfall. This data series can then be used as input to enable52

a hydrological model to predict streamflow.53

Our approach is based on the hypothesis that it is possible to use indica-54

tors derived from social media activity for flood monitoring and/or forecasting,55

in conjunction with data from hydrometeorological sensors in streamflow mod-56

elling, to make further improvements to early warning systems. In this paper,57

we seek to transform Twitter data into a proxy variable for precipitation. Trans-58

forming this data requires a function that converts Twitter messages into rainfall59

values. When setting up the transformation function, it is assumed that there60

is a direct relationship between the intensity of rainfall and the rainfall-related61

activity of geo-social media in a given geographical area. We can thus use the62

rainfall proxy variable in a rainfall-runoff model to estimate the streamflow.63

This paper is structured as follows. Section 2 introduces a discussion of64

related works. Section 3 describe the case study and data. Section 4 describes65

the methodology. Section 5 and 6 examine the main results that have been66

achieved and include a discussion of the work. Finally, Section 7 summarizes67

the general conclusions and makes recommendations for future work.68

2. Related work69

Modelling urban catchment behaviour requires high-resolution rainfall and70

detailed physical characteristics owing to the fast hydrologic response of the71

catchment (Hapuarachchi et al., 2011; Ochoa-Rodriguez et al., 2015; Wang et al.,72

2015). Rainfall data is the main input in rainfall-driven hydrological models for73

flood modelling and forecasting. Several approaches have been tested for differ-74

ent situations to highlight the use of remote sensing for rainfall-driven flood fore-75

casting (Skinner et al., 2015; Li et al., 2016) as an alternative to the traditional76

use of in-situ measurements. Boni et al. (2016) implemented a near real-time77

flood-mapping algorithm using Synthetic Aperture Radar (SAR) together with78

a satellite, coupled to a hydraulic model. Tiesi et al. (2016) used surface net-79

work data, radio-sounding profiles, radar and satellite (SEVIRI/MSG) data for80
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quantitative precipitation forecasting and found they had a positive effect on the81

intensity and distribution of the simulated rainfall. Studies such as Wang et al.82

(2015) and Chen et al. (2016) showed that although radar-based precipitation83

measurements have the advantage of being able to reproduce the spatial struc-84

ture of rainfall fields and their variation in time with regard to ground-based85

measurements, they still cannot achieve the accuracy and resolution required86

for urban hydrology.87

However, it is not always possible to have information from rain gauges, or88

radar and meteorological satellites. Thus, it is necessary to explore other alter-89

natives for forecasting and monitoring that can mitigate the effects of flooding.90

In response to this need, a new field has emerged to explore how social data91

can be combined with remote sensing information to improve flood forecasting92

in ungauged or poorly gauged catchments (Sivapalan et al., 2003).93

The use of geo-social media in disaster management has been explored in94

the literature for various types of hazards such as earthquakes (Crooks et al.,95

2013; Sakaki et al., 2010), forest fires (Crooks et al., 2013; Sakaki et al., 2010),96

hurricanes (Huang and Xiao, 2015), tsunamis (Mersham, 2010), agricultural97

droughts (Enenkel et al., 2015), and floods (Smith et al., 2015; Weng and Lee,98

2011; Tkachenko et al., 2017). In the particular area of flood management,99

scientific work has focused on using social media data for two requirements -100

flood mapping and exploring spatiotemporal patterns.101

Tweets have been quantitatively used in both forecasting and mapping.102

Schnebele et al. (2014) concluded that a fusion of multiple non-authoritative103

data sources helps to fill in gaps in the spatial and temporal coverage of au-104

thoritative data. They used aerial photos, Youtube videos, Twitter and Google105

photos to create maps of the damage caused by Hurricane Sandy. Brouwer et al.106

(2017) harvested 8000 flood-related tweets from York in England and used this107

information to create a probabilistic flood extent map. Patel et al. (2017) used108

tweets to produce population maps. Rathore et al. (2017) devised a system109

that uses geo-social media to harvest, process, and analyse a large amount of110

data at high-speed from Twitter and make decisions in real time. Li et al.111

5



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

(2017) collected tweets during a period of 18 days in South Carolina, USA,112

which involved filtering by means of flood-related keywords, and found 4,268113

flood-related tweets. Based on this information, and using temporal granularity114

on a daily basis, they found a close correlation between stream gauge levels and115

the absolute frequency of flood-related tweets. In these studies, tweets were a116

weighting factor for creating inundation maps.117

There are other studies that are confined to demonstrating the relationship118

between flood-related messages and flood events. Weng and Lee (2011) collected119

tweets for a month in June 2010 to detect events in Singapore, and based on120

this information, they built the signal events that were reported on Twitter121

automatically, by means of a wavelet transform. However, in this period, they122

only detected a single flood event. Smith et al. (2015) used tweets to improve and123

extrapolate data from hydraulic modelling to assess flooding. This was carried124

out through two events that occurred in the city of Newcastle. Tkachenko et al.125

(2017) also used flood-related geo-tagged messages from Flickr to detect floods126

in England.127

Going one step further towards achieving a quantitative integration of social128

media activities into flood forecasting models, is of value as a supplementary129

resource for monitoring catchments, given the fact that sometimes the rain130

gauges that are usually used for this activity, are not available or fail for various131

reasons, such as a lack of maintenance.132

3. Case study and Data133

This section describes the data that will be used, both authoritative and134

social media data, and conducts an exploratory analysis of spatial data.135

3.1. The Aricanduva Catchment136

The Aricanduva catchment (Fig. 1) is located in the city of Sao Paulo, Brazil,137

a metropolitan region with more than 20 million inhabitants, with the largest138

population density in Brazil. Aricanduva is a tributary of the Tiete River, the139
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main river of the city, and has a total drainage area of 100 km2. In this study140

we selected a sub-catchment of 88 km2, where the Sao Paulo Flood Warning141

System (SAISP)1 - the organization responsible for measuring water levels –142

has three water level sensors, of which one was selected because is close to a143

risk-prone area subject to frequent flash flooding (see Fig. 2). Water level sensor144

measurements are provided every 10 min by SAISP. The precipitation data is145

also provided every 10 min by the National Center for Monitoring and Early146

Warning of Natural Disasters (CEMADEN)2.147

Figure 1: Aricanduva watershed, Sao Paulo Metropolitan Region, selected for this study.

Figure 2: SAISP reported flood points.

1https://www.saisp.br/estaticos/sitenovo/home.xmlt
2http://www.cemaden.gov.br/
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3.2. Social media data148

The social media data used in this study were gathered from the Twitter149

platform using the public streaming Application Programming Interface (API)150

to obtain georeferenced tweets within a bounding box that encompasses the city151

of Sao Paulo. The total number of tweets collected was 15,883,710. The geo-152

referenced tweets (1,631,329) were then filtered by means of keywords (21,804).153

From the 1st to 30th January 2016 and from 8th November 2016, to 28th Febru-154

ary 2016, we found 6,651 geotagged tweets related to floods within the city of155

Sao Paulo. As in the case of our previous study (de Andrade et al., 2017), we fil-156

tered the messages to find words related to rain (chuva in Portuguese), intense157

rainfall and rainbows, but excluded common unrelated expressions (Fig. 3).158

Some examples for related tweets can be found in Table 1. Figure 4 shows the159

spatial distribution of the rainfall-related tweets in the city of Sao Paulo during160

this period.161

(a) Related words (b) Unrelated words

Figure 3: Frequently-related and unrelated words. All the keywords are in unicode standard.
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Figure 4: City of Sao Paulo during the analysed period, with related tweets as black points,

rainfall gauges as blue triangles and the Aricanduva catchment shaded in gray.

The geo-located tweets containing the keywords were collected and assigned162

to temporal bins of 10 minutes in a variable called “absolute frequency of real-163

time messages” fkw. Other variables obtained from the related tweets are the164

cumulative frequencies of every ∆t min.165

Table 1: Some related tweet messages collected in this study.

Date/Time Portuguese version Translated version

2016-11-09

20:34:23

“EM MINHA DEFESA......que fique claro

que vim por causa da chuva impraticável

e só tomando uma coca (@Hooters)

https://t.co/KEFYXy8YM4”

“IN MY DEFENSE ...... that it is clear

that I came because of the impractical

rain and only drinking a coke (@Hooters)

https://t.co/KEFYXy8YM4”

2016-12-03

21:43:25

“Ińıcio da noite sede sábado, com chuva...

que lindo presente de Deus! (Sem filtros)

https://t.co/Js7kmDrOZY”

“Early Saturday night, with rain ... what

a beautiful gift from God! (No filters)

https://t.co/Js7kmDrOZY”

2016-12-11

18:35:23

“Muita chuva ..... já vi que vou ganhar

chá de cadeira ...... partiu casa carioca

..... https://t.co/E1q4rM5ivE”

“A lot of rain ..... I’ve already seen that

I’m going to get a long wait ...... I left car-

ioca house ..... https://t.co/E1q4rM5ivE”

2017-02-27

0:38:15

“Chuva, chuva, chuva e mais chuva ...

https://t.co/wH2GOnqz80”

“Rain, rain, rain and more rain ...

https://t.co/wH2GOnqz80”

9
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3.3. Authoritative data166

Rainfall data were collected from CEMADEN with the aid of an API Appli-167

cation. The data is updated at intervals of 10 min when the cumulative volume168

in the period is higher than 0.2 mm. However, if no rainfall is recorded, the169

data are available every hour. Thus, since our modelling is aimed at providing170

a tool to predict floods, the rainfall-runoff calibration is carried out for some171

previous rainfall events, when there is a total precipitation greater than 10 mm.172

This meant that 30 rainfall events greater than 10 mm were chosen for model173

calibration (from 2015-04-06 to 2015-12-29 and 2016-02-05 to 2016-10-14) and174

another 15 were chosen for validation (from 2016-01-01 to 2016-01-30 and 2016-175

11-09 to 2017-02-27). The quality and consistency of the available rain gauge176

information were assessed by comparing it with the information gathered by the177

University of Sao Paulo (USP), Sao Paulo, and its observatory, which calculates178

the monthly rainfall rate3.This information allowed us to validate the accumu-179

lated magnitudes of the rainfall stations. As a result, we decided to use three180

sensors that showed values that were consistent with both sources.181

Figure 5 shows an example of the difficulties that a situation room, (such as182

the one in CEMADEN), may face when there are problems with authoritative183

data. The image was taken from the official interactive map on February 2nd184

20174. It can be seen that on this date, there were some sensors that did185

not report data at all (black points), as well as apparent inconsistencies in the186

measurements made by some sensors, concerning the amount of rainfall that fell187

on the city of Sao Paulo. These situations provide a further reason for using188

alternative information sources to assist flood monitoring and early warning189

systems.190

3http://www.estacao.iag.usp.br/
4http://www.cemaden.gov.br/mapainterativo/
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Figure 5: Problems with authoritative data, February 2nd, 2017.

3.4. Exploratory data analysis191

An initial exploratory data analysis is displayed in Fig. 6, which summa-192

rizes the absolute frequency of two time-series. One is carried out for the key193

words of Twitter phrases related to rainfall processes and collected at the same194

time. The other one corresponds to the rainfall depths measured by the author-195

itative sensors. Evidence obtained from plotting the two time series, reveal a196

time-dependent significant relationship between the frequency of the tweets and197

rainfall depths.198

Figure 6: Time series of rainfall depths (left) with frequency of tweets (right) for the period

of study January 2016 and from November 8th, 2016 to February 28th, 2017.

11
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As shown in Fig. 6, in some events the two series did not follow the same199

behaviour or have the same relative magnitude. For instance, on November200

12th, 2016, there was a peak in the frequency of tweets, which coincided with a201

live performance of Guns and Roses, an American hard rock band. Those who202

attended the concert filled Twitter with images and messages in Portuguese203

and English referring to “November Rain”, a well-known song played by this204

band. This reaction seems to have been heightened by the fact that it was sung205

while it was raining in the city. One example of how false positives can occur in206

detections is illustrated by the following tweet: “luizh.ap: November Rain com207

direito a chuva e balões vermelhos #GunsNRoses #gunsnrosesreunion #Axl208

#Slash #Duff #GNR” which can be translated as “November Rain with the209

right to rain and red balloons!!”. These constraints call for a methodology for210

refining geotagged data related to rainfall, as explained in the following section.211

4. Methodology212

Figure 7 displays the methodological structure adopted to transform data213

from social media into a hydrometeorological proxy variable. The methodol-214

ogy is divided into four stages: (a) hydrological data (calibration and rainfall-215

streamflow modelling) (b) social media data (fitting the transformation func-216

tion proxy) (c) social media data (transformation of social media signal into217

hydrometeorological data) (d) comparison with real data. In each stage, a se-218

ries of activities is carried out. Each of these processes are in turn explained in219

the next sections.220

12
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Figure 7: Methodological structure to transform authoritative and social media information

to improve flood monitoring.
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4.1. Hydrologic data221

The first methodological procedure carried out was the calibration of the222

hydrological model that was used to obtain a transformation of authoritative223

and social media rainfall values into streamflow. This is a classic procedure in224

hydrology where some hydrometeorological variables such as rainfall and stream-225

flow are used to calibrate the model (Muleta, 2011). In view of the fact that the226

methodology is designed to be used in ungauged and poorly gauged catchments227

or when there are sensors subject to failures, simple modelling seems to be more228

appropriate (Sivapalan et al., 2003).229

The Probability Distributed Model (PDM) and similar models derived from230

it, are conceptual rainfall-runoff models that are widely used in research and231

hydrological applications (Alvarez-Garreton et al., 2014), such as parameter pre-232

diction updating, flood forecasting, and the regionalization of parameters using233

the Kalman filter, (Lamb, 1999; Moradkhani et al., 2005; Kay et al., 2009).234

PDM transforms rainfall and the estimation of the evapotranspiration time se-235

ries of a catchment into streamflow at the outlet of the catchment. Moore (2007)236

provides a detailed description of the process modelled, parameters and model237

formulation. PDM has been chosen in preference to distributed and physically-238

based hydrological models because it requires a reasonable number of hydrom-239

eteorological variables (i.e. rainfall, potential evapotranspiration and stream-240

flow), and is a spatially-lumped, parsimonious and user-friendly model, which241

reduces the modelling time. In contrast, distributed and physically-based hydro-242

logical models involve high computational requirements for simulating spatio-243

temporal processes in multiple control sections through non-linear equations.244

In this paper, the PDM has been calibrated and validated with time-steps245

of 10 min, that take account of the available 10-min rainfall data and the rapid246

response time, (ca. 30min) of the studied catchment. Based on ArcGIS and247

ASTER GDEM, the catchment area was estimated to be 88 km2. An opti-248

mization protocol was developed to calibrate the parameters of the PDM us-249

ing Python 3.x language and DEAP (Distributed Evolutionary Algorithms in250

Python) Library. The PDM parameters were calibrated using Nash-Sutcliffe251

14
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Efficiency (NSE) as an objective function (Muleta, 2011; Nash and Sutcliffe,252

1970). Details of the model parameters have already been described in Moore253

(2007).254

The streamflow was calculated from both three rain gauges of the CE-255

MADEN official network, and two other approximations: the maximum inter-256

station rainfall depth every 10 min, and the spatially-estimated mean precipita-257

tion depth, which were estimated by means of the Inverse Distance Weighting258

(IDW) method. Table 2 summarises the NSE values for the calibration and259

validation of the PDM model.260

Table 2: NSE performance.

Sensor name NSE value (calibration) NSE value (validation)

Burgo Paulista 0.37 0.11

Cidade Tiradentes 0.39 -0.03

Boa Esperana 0.59 0.30

Max values 0.63 0.40

IDW 0.51 0.21

Transformation of authoritative rainfall data in streamflow depends on the261

calibration performed. In this case, the rainfall from authoritative gauges is262

used to model the streamflow in the same period of social media harvesting.263

The simulated streamflow will be later compared with the one obtained from264

the social media modelling and the real values from authoritative sources. Low265

performance in calibration and validation is probably due to problems in the266

rain gauges, as already mentioned.267

4.2. Parameter fitting for the transformation function268

To create the transformation function, three properties from people’s be-269

haviour in social media were assumed: proportionality, randomness and seman-270

tic singularity. First, it is supposed that people use more social media when271

discussing a phenomenon of great significance. In this case, the number of272

people talking about it will depend on how they were affected and thus, the273

15
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intensity of the phenomenon might be directly proportional to the number of274

related tweets. This behaviour can be measured using bins of cumulative tweets275

over a certain period, depending on the duration of the phenomenon. Second,276

people do not “speak” in a synchronous way, namely, the users randomly post277

messages, before, during or after the phenomenon occurs (de Andrade et al.,278

2017). Third, people tend to use related words when the phenomenon becomes279

more intense/weaker or singular/unusual, which can lead to semantic singulari-280

ties. For example, other hydrometeorological phenomena could be incorporated281

into the tweets because their beauty or intensity make people talk more about282

them. This brings about an increase in posting, with phrases, photos or videos,283

like a rainbow immediately after a storm, or the dazzling light of lightning flashes284

during a thunderstorm.285

We propose a linear regression model between the frequency of social media286

data and the rainfall authoritative data for the signal conversion function to287

predict a proxy variable of rainfall data, with the following functional structure:288

psocial = α(1 + ηstrong + ηsoft)
fkw

Ainterest
+

n∑
i=20

βi
Fkw(i)

Ainterest

where psocial is the proxy of the precipitation variable resulting from the289

transformation of tweets to rainfall. The variable fkw represents the absolute290

frequency of the number of tweets and the variable Fkw(i) represents the accu-291

mulated absolute frequency for the number of tweets for i cumulative periods292

(with i = 20, 30, 40, . . . min). Ainterest is the area where tweets are being har-293

vested, i.e. the city of Sao Paulo. Furthermore, ηstrong and ηsoft are two dummy294

variables that capture the multiplicative effect, in which some tweets have words295

that strengthen or reduce the intensity of the rainfall respectively. An example296

of a strong multiplicative effect is “heavy rain”, whereas a weak multiplicative297

effect might imply the word “rainbow”.298

The system collects social media data by means of an API to fitting the299

transformation function. Following this, the messages are filtered by geotag300

and keywords. As a result, the frequency of keywords is obtained and the301
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variables are created. Then, a 5-fold cross validation procedure for the fitting302

of the function is applied to regress the authoritative rainfall against social303

media data, which encompasses the whole city. In this procedure, one month is304

removed from the sample and used later to validate the transformation function305

of the same month, and avoid any bias in the resulting function. These stages306

are repeated to obtain a transformation function for each month.307

4.3. Rainfall-runoff estimation from social media data using the transformation308

function309

In transforming the social media data into a rainfall proxy, data were col-310

lected inside the catchment to obtain a rainfall proxy for this place. We collected311

the same variables with the same temporal resolution examined in Section 4.2.312

Once the tweets had been collected, the frequencies of the tweets were replaced313

inside the function created in the past section. However, since hydrological314

processes, like rainfall-runoff, are only possible in systems such as catchments,315

where the boundaries do not necessarily match the administrative boundaries316

of the city, a “regionalization” of the tweets within a catchment-area is carried317

out by dividing the frequencies of the related tweets every 10 min within the318

drainage area of the catchment. Thus, this process differs from the parameter319

fitting process where the whole area of the city is covered. Finally, the estimated320

rainfall values were used as input of the PDM hydrological model to generate321

the streamflow data.322

4.4. Comparison of the joint use of traditional hydrological modelling and mod-323

elling from social media324

This step involves comparing real streamflow values (from SAISP), with es-325

timated streamflow values calculated from social media messages (Sect. 4.2) and326

with authoritative rainfall (from CEMADEN)-runoff modelling (Sect. 4.1). This327

comparison is made by determining if the real streamflow values are found within328

the confidence interval of the models, or have been overestimated/underestimated329

instead. This assessment makes it possible to establish the accuracy of these330
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cases when the modelling is only carried out by means of social networks data,331

and employing the transformation function to estimate rainfall values for the332

“ungauged” catchments, i.e. when we do not have to rely on authoritative sen-333

sors. Additionally, we analysed the case when the results from both models334

are employed, by selecting the maximum and minimum values of the confidence335

interval of each model and evaluating their accuracy to predict real streamflow336

values. This scenario is equivalent to the case of “poorly gauged” catchments,337

where data from both sources is available but the authoritative data are inac-338

curate and/or imprecise.339

5. Results340

We estimated several linear regression models that were robust to heteroscedas-341

ticity to create the transformation functions for each month (see Table 3). Fol-342

lowing the 5-fold cross validation procedure, each column summarises the data343

for the transformation function of each month. A small coefficient indicates344

that for this specific month the people wrote tweets related to rain in a more345

synchronous way with the rainfall measurements. That is why in December all346

the coefficients decrease in magnitude.347

Based on these results, some simulations were carried out within the Aridan-348

cuva catchment using related tweets and authoritative rainfall data; these were349

incorporated into the PDM rainfall-runoff model. Figure 8.a shows the period350

from January 25th to January 31st, 2016. It can be seen that for the rainfall351

events of January 26th and 28th, the proxy variable from Twitter performed352

better than the one with authoritative rainfall data. However, in the period353

after January 29th, the behaviour of the variables generated by social media354

considerably overestimated the streamflow values.355

In turn, in Fig. 8.b, it was observed that on December 10th, there is a peak in356

the simulation carried out by the social media proxy, which was not found either357

in the real value or in the authoritative model. From the end of December 10th358

until December 12nd, it was observed that only the model with authoritative359
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data followed the streamflow pattern. However, none of them provided a suitable360

estimate for the highest peak streamflow, (the one above 200 m3/s).361

Moreover, in the period from January 20th to 28th, 2017, Fig. 8.c shows how362

the Twitter proxy variable reacted to all the observed peaks of the time series.363

It was only in some cases, such as on January 25th, that this reaction took364

place after the flood occurrence, except on January 26th, when the geo-social365

media reacted a bit earlier. In contrast, the streamflow only estimated from the366

authoritative data when the modelling was conducted in a suitable way.367

For the period from February 1st to February 9th, 2017 (Fig. 8.d), it was368

observed that both simulations, whether carried out with the social media proxy369

or with authoritative data, follow the pattern of the streamflow. However, the370

authoritative model did not perform well for the first peak of streamflow, (above371

200 m3/s); on the contrary, the social media-based model reacted late, although372

it had a suitable magnitude. Moreover, from the end of February 6th until373

February 7th, the model that was based on social media reacted better.374

In Fig. 8.e, there are 5 peaks close to 100 m3/s for the period from Febru-375

ary, 22nd to February, 28th, 2017 and it can be observed that sometimes the376

authorized data performs better while sometimes the social media proxy data377

does. However, on February 25th when there was a peak in the streamflow with378

a value greater than 700 m3/s, the social media streamflow proxy captured it379

more accurately. This pattern is probably due to convective rainfall, which is380

concentrated in some parts of the catchment area far away from the available381

rainfall gauges.382

Table 3: Regression coefficients for the parameter fitting of the transformation function of

geo-social data.

Coefficients January 2016 November 2016 December 2016 January 2017 February 2017

α 322.5 ± 214.4 436.0 ± 234.6 - 427.4 ± 268.0 231.3 ± 210.2

β 547.0 ± 83.2 607.5 ± 83.8 134.7 ± 23.4 558.5 ± 92.6 563.0 ± 80.2

ηstrong - - 329.0 ± 251.2 - 812.8 ± 497.8

ηsoft −872.4 ± 385.8 −1236.0 ± 312.2 −255.5 ± 76.4 −993.7 ± 443.0 −1129.7 ± 476.2

R2adj 0.283 0.294 0.220 0.257 0.255
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A summary of the streamflow simulation is shown in Table 4. Based on383

the values of the proxy variable obtained from Twitter, the simulation provides384

correct values in 31.3% of the cases, while overestimation is found in 19.0%385

and underestimation in 49.5% of the cases for the entire period. In the case of386

modelling with authoritative rainfall gauges, the real values are in the correct387

range of 38.6%, while underestimation and overestimation are found in around388

58.4% and 3.0% of the cases, respectively.389

We also simulated a combined rainfall variable consisting of the social media390

proxy variable and the rainfall gauge. In this case, the accuracy of the fore-391

casting significantly increases, since it is able to predict the value of the real392

streamflow correctly in about 70.9% of the cases. The underestimation is re-393

duced to 28.6% and there is no overestimation for the period. This significant394

result clearly shows the potential value of using data from social media to as-395

sist in monitoring environmental problems such as floods. An example of the396

combined simulation for the period from January 25th to January 31st, 2016 is397

shown in Fig. 8.f.398

Table 4: Percentage of correct estimates, and cases of overestimation and underestimation of

the streamflow within the confidence interval, with the use of social media and authoritative

data.

Social media

only

Authoritative

sensor only

Composite of

social media and

authoritative

sensors

Observations of estimates within

the model’s confidence interval 31.3 38.6 70.9

Observations of cases that were

underestimated 49.5 58.4 28.6

Observations of cases that were

overestimated 19.0 3.0 0.5

20



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Figure 8: Examples of social media rainfall (upper, time series) and authoritative rainfall

(centre, time-series), with simulated streamflow (shaded) and observed streamflow (line in

bold) at the Aricanduva catchment. Streamflow simulation using only authoritative sensors

are shaded in blue and simulation from social media are shaded in red.

6. Discussion399

The results of this study support the use of social media information to400

estimate the precipitation rate or flow in poorly gauged catchments, which could401

help in issuing early flood warnings. In the catchments that are currently in402

operation, but where there are incomplete records or with sensors undergoing403

maintenance, the use of alternative, social media proxy variables could become404

even more useful. Posting and sharing information through social media where405

it is capable of being transformed into viable proxy variables, as an alternative406

monitoring data source, is a means of heightening people’s awareness and is of407

value for fostering community resilience, especially for streamflow monitoring,408

and forecasting purposes. Another possible application of social media-based409

information lies in detecting authoritative sensors that have on-line problems,410
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and thus require maintenance.411

The results of this study complement and extend previous research in the412

area. For instance, Mazzoleni et al. (2017) designed a hydrological model with413

data collected by citizens to improve the accuracy of flood forecasts and showed414

that these data can reinforce the traditional monitored areas provided by static415

sensor networks. However, these data do not come from social media, but416

from citizen observatories, which are a more structured form of crowdsourced417

geographic data, based on dedicated data collection platforms (Degrossi et al.,418

2014; de Albuquerque et al., 2015), and are more difficult to disseminate than419

widely used social media platforms. In contrast, Rosser et al. (2017) used geo-420

referenced photographs from social media, optical remote sensing, and high-421

resolution terrain maps, to design a Bayesian statistical model that estimates422

the probability of floods through weight-of-evidence analysis. However, they423

only used these data to generate flood maps, which might detect the occurrence424

of floods through an ex-post evaluation, but were not able to assist forecasting425

impending events.426

In this paper, we obtained modest values for the Adjusted Coefficient of De-427

termination (R2adj < 0.30) in the equations that transforms social media data428

into precipitation, a result that complements our previous results discussed in429

de Andrade et al. (2017). The fact that these values are low, can perhaps be430

attributed to problems with a) the quality of the rainfall gauge information, b)431

the modelling resolution and c) the different time synchronism of the sensors432

collected from different sources, i.e. national centers, and state agencies with433

the social media posts. However, this temporal resolution is crucial for tim-434

ing hydrological responses like streamflows at an urban catchment. Moreover,435

these values could probably be improved with the aid of other social media436

platforms (e.g. Instagram, Flickr) or by including other variables such as infor-437

mation quality protocols, the spatiotemporal context, literacy and the economic438

circumstances of the citizens posting social media, as well as the content of in-439

formation, among other factors. In addition, other methods could be tested440

to transform the signal by using other transformation algorithms to achieve a441
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better performance.442

It is worth noting that the messages we used here are not discriminated by443

the temporal context in which they were published, but only filtered by types444

of keywords or by their spatial location, and this might be another limitation of445

the model. Additional research should be carried out to review the information446

with regard to the type of temporal context of the messages before, during or447

after the rainfall events or thunderstorms. In this area, the focal point of our448

study has been on monitoring but future studies should take into account how449

a real-time environmental application can be formed.450

7. Conclusion451

This paper provides strong evidence that data from geo-social media can be452

used to derive proxy variables for rainfall and streamflow. The frequency of453

related messages from social media was used as a proxy for rainfall, which in454

turn can provide input for hydrological models to predict streamflows and flood455

conditions. Data from social media could be used to assist in issuing early flood456

warnings and to improve rainfall-runoff from observational, authoritative net-457

works and even observed urban streamflow. Evidence showed that better results458

can be achieved by merging authoritative data with information from social me-459

dia. The available social media data on its own should be treated with caution,460

because of the risk of bias and uncertainty with regard to streamflow estima-461

tion. In future research, the methods and results might be further compared462

with other studies, i.e. from different catchments, with several rainfall-runoff463

events and various time-collection periods. Despite any limitations, it is hoped464

that the methods employed in this paper can assist in making multiple sources465

of data and information more available and thus make cities more resilient to466

extreme events such as floods.467
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• Authoritative and social media data are integrated for rainfall and flow estimation. 
• New transformation function of social media posts into rainfall. 
• Combined use of tweets and rainfall could be used in issuing early flood warnings. 
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