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Abstract

The concept of structural identifiability for state-space models is expanded to

cover mixed-effects state-space models. Two methods applicable for the analyt-

ical study of the structural identifiability of mixed-effects models are presented.

The two methods are based on previously established techniques for non-mixed-

effects models; namely the Taylor series expansion and the input-output form

approach. By generating an exhaustive summary, and by assuming an infinite

number of subjects, functions of random variables can be derived which in turn

determine the distribution of the system’s observation function(s). By consid-

ering the uniqueness of the analytical statistical moments of the derived func-

tions of the random variables, the structural identifiability of the corresponding

mixed-effects model can be determined. The two methods are applied to a set

of examples of mixed-effects models to illustrate how they work in practice.

Keywords: Structural Identifiability, Mixed-Effects modelling, Taylor series

expansion approach, Input-Output form approach.

1. Introduction

Structural identifiability analysis tests if the parameters in a given model

structure can be uniquely determined with a given input design together with
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noise-free, continuous output function(s). If there exists a unique set of pa-

rameters for the output solution then the model is called structurally globally5

identifiable, if there exists a countable number of sets of parameters for an output

the model is called structurally locally identifiable and if there exist uncountable

numbers of parameter sets for a model output the model is called structurally

unidentifiable [1, 2].

Several methods have been developed for performing structural identifia-10

bility analysis including the Taylor series approach [3], the Laplace transfor-

mation approach [4], the similarity transformation approach [5], the Exact

Arithmetic Rank (EAR) approach [6], differential algebra based approaches [7],

input-output approaches [8], and the profile likelihood approach [9]. These

methods were originally developed to study structural identifiability in sys-15

tems of ordinary differential equations with no statistical element included.

Additional important publications regarding structural identifiability include

[10, 11, 12, 13, 14, 15].

An area where mathematical modelling and simulation plays an important

role is in drug discovery and development in the pharmaceutical industry. One20

of the motivations for using modelling in drug discovery and development is to

detect and quantify variations in both pharmacokinetics in a population, i.e.,

how the drug is distributed in the body, and in pharmacodynamics, i.e., what

effect the drug has on the body. This is essential for instance when finding

personalised dosing regimes and optimal dosing for different subgroups in the25

population. It is not uncommon that the pharmacokinetic properties and the

pharmacodynamic response for a particular treatment varies between different

patients, or groups of patients with different covariates (sex, age, weight, etc),

or even between different treatment occasions. In order to predict such future

scenarios with confidence having a structurally identifiable model is central. To30

model this, a so called mixed-effects framework is commonly used [16]. In such

a framework, all subjects in a population share the same structural model and

parametrisation, but not the same parameter values. By postulating the form

of the distribution of the model parameters in a statistical model, the inference
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problem is expanded to include variance parameters as well as the structural35

parameters.

However, the addition of a statistical model means that existing structural

identifiability methods are not directly applicable to mixed-effects models. Al-

though there has been some work done on the problem of structural identifia-

bility in mixed-effects models including [17], [18], [19], [20] and [21], the main40

efforts of developing methods to analyse structural identifiability have so far

been focused on non-mixed-effects, or fixed-effects systems. The two methods

presented in this paper are related to the Laplace transform approach for mixed-

effects system presented in [21] via the generation of the exhaustive summary

explained below. However, the Laplace transform for mixed-effects systems pre-45

sented in [21] is only applicable to linear systems whereas the two approaches

presented in this paper are appblicable to nonlinear system as well.

In this paper, we first define what we mean by structural identifiability in

systems of ordinary differential equations and mixed-effects systems, respec-

tively. Then, we present two existing structural identifiability analysis methods50

and how they can be extended to mixed-effects models. Lastly, we apply these

methods to a set of mixed-effects models to illustrate how the methods work in

practice.

2. Structural identifiability

2.1. State-space model55

Consider a model written in the following state-space form

ẋ(t,θ) = f(x(t,θ),u(t),θ) x(t0) = x0(θ)

y(t,θ) = h(x(t,θ),u(t),θ)
(1)

where x(t,θ) ∈ Rn is the state vector, u(t) ∈ Rq is the input vector, θ ∈ Rp is

the vector of the model parameters, y(t,θ) ∈ Rm is the output vector, t denotes

time and f and h are smooth functions.

Let the generic parameter vector θ belong to a feasible parameter space Θ,

i.e., θ ∈ Θ. Let y(t,θ) be the output function from the state-space model (1).60
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Further, consider a parameter vector θ̄ where y(t,θ) = y(t, θ̄) for all t. If this

equality, in a neighbourhood N ∈ Θ of θ, implies that θ = θ̄ then the model is

structurally locally identifiable. If N = Θ then the model is structurally globally

identifiable. For a structurally unidentifiable parameter, θi, every neighbour-

hood N around θi has a parameter vector θ̄ where θi 6= θ̄i that gives rise to65

identical input-output relations [1].

2.2. Mixed-effects state-space model

By a mixed-effects state-space model, subsequently denoted mixed-effects

model, we mean a system written in the following form

ẋi(t,φi) = f(xi(t,φi),ui(t),φi) xi(t0) = x0(φi)

yi(t,φi) = h(xi(t,φi),ui(t),φi)
(2)

where φi = g(θ,ηi,Ci) are the parameters for the i:th subject, ηi ∼ N(0,Ω) are

the random effects where N denotes a normal distribution, Ω is the covariance

matrix of the random effects ηi, θ is a vector of the population parameters and70

Ci are the covariates vector for the different subjects in the population.

As mixed-effects models give individual trajectories, the structural identifi-

ability concept needs to be extended from considering the uniqueness of model

parameters given a set of output signals to considering the uniqueness of model

parameters given a set of distributions of the output signals, i.e., whether dif-75

ferent parameter values may result in different or identical distributions of the

same given output signal(s).

Let p(y{θ,Ω}, t) denote the distribution of the output signals y at time t. Let

the generic parameter vector and matrix {θ,Ω} belong to a feasible parameter

space {θ,Ω} ⊂ Θ, and consider the following two sets of parameters {θ,Ω}80

and {θ̄, Ω̄}. If p(y{θ,Ω}, t) = p(y{θ̄,Ω̄}, t) for all t implies that {θ,Ω} = {θ̄, Ω̄}

in a neighbourhood N ⊂ Θ then the model is structurally locally identifiable,

and if N = Θ the model is structurally globally identifiable. For a structurally

unidentifiable parameter, θi, or ωi, every neighbourhood N around θi, or ωi,

has a parameter vector/matrix θ̄, or Ω̄, where θi 6= θ̄i, or ωi 6= ω̄i, that gives85

rise to the same distribution of identical input-output relations.
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3. Methods

In this section two structural identifiability analysis methods that were orig-

inally developed for non-mixed-effects state-space systems will be presented. It

will be shown how these methods can be extended to also study structural iden-90

tifiability in mixed-effects models by considering functions of random variables.

In a structural identifiability analysis the model structure itself is analysed

to see whether it allows for unique parameter estimates or otherwise. In such

an analysis, assumptions on having ideal experimental conditions are made.

For a fixed-effects state-space model, such ideal experimental conditions include95

noise-free and continuous-time data. In a mixed-effects system, ideal experi-

mental conditions also include having data from an infinite number of subjects.

In some sense, this concept is similar to the parallel experiment approach pre-

sented in [11] since each subject could be viewed as a single experiment resulting

in an infinite number of parallel experiments. As a consequence, the output100

signal(s) are continuous both in time as well as their distribution at all time

points. The distribution of the output signal(s) depends on the distribution of

the model parameters. Therefore, in order to study the structural identifiability

of a mixed-effects model, the distributions of the model parameters must be

studied analytically.105

3.1. Functions of random variables

In this paper we relate the structural identifiability problem in mixed-effects

systems to functions of random variables Zk(θ,η).

Let Z(θ,η) = (Z1(θ,η), Z2(θ,η), . . . )T be a vector of functions of random

variables. In our analysis we assume full knowledge of all of the statistical

moments and covariances of Z(θ,η). We are interested in whether the statis-

tical moments and covariance matrix of Z(θ,η) determines {θ,Ω} uniquely, or

otherwise. By calculating different orders m of the statistical moments and co-

variance of Z(θ,η), introducing alternative parameters {θ̄, Ω̄}, equating these
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such that

E[Zm(θ,η)] = E[Zm(θ̄, η̄)] (3)

Cov(Z(θ,η)) = Cov(Z(θ̄, η̄)) (4)

and solving for θ and Ω the uniqueness or otherwise of the parameters can be

determined. By E[Zm(θ,η)] we mean the m:th statistical moment element-wise110

in Z(θ,η).

As an example, consider the case of two functions of random variables Z.

To ensure positivity both functions are lognormally distributed. The associated

covariance matrix Ω is full. We therefore have the following:

Z =

Z1

Z2

 =

θ1e
η1

θ2e
η2

 (5)

η ∼ N(0,Ω) Ω =

 ω1 ω12

ω12 ω2

 (6)

with unknown parameter vector θ = (θ1, θ2, ω1, ω2, ω12). The first moment for

Z is

E[Z] =

θ1e
ω1
2

θ2e
ω2
2

 . (7)

The covariance matrix for Z is given by

Cov(Z) = E[ZZT ]− E[Z]E[Z]T =

=

 E[Z2
1 ]− E[Z1]2 E[Z1Z2]− E[Z1]E[Z2]

E[Z1Z2]− E[Z1]E[Z2] E[Z2
2 ]− E[Z2]2


where the diagonal elements, i.e., the variances of Z1 and Z2, are given by

E[Z2
1 ]− E[Z1]2 = θ2

1e
2ω1 − θ2

1e
ω1 (8)

E[Z2
2 ]− E[Z2]2 = θ2

2e
2ω2 − θ2

2e
ω2 (9)

and the off-diagonal element, i.e., the covariances between Z1 and Z2, are given

by

E[Z1Z2]− E[Z1]E[Z2] = θ1θ2e
1
2 (2ω12+ω1+ω2) − θ1θ2e

ω1
2 +

ω2
2 . (10)
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Setting up an equation system as in (3)–(4) from (7)–(10) we obtain:

θ1e
ω1
2 = θ̄1e

ω̄1
2 (11)

θ2
1e

2ω1 − θ2
1e
ω1 = θ̄2

1e
2ω̄1 − θ̄2

1e
ω̄1 (12)

θ2e
ω2
2 = θ̄2e

ω̄2
2 (13)

θ2
2e

2ω2 − θ2
2e
ω2 = θ̄2

2e
2ω̄2 − θ̄2

2e
ω̄2 (14)

θ1θ2e
1
2 (2ω12+ω1+ω2) − θ1θ2e

ω1
2 +

ω2
2 = θ̄1θ̄2e

1
2 (2ω̄12+ω̄1+ω̄2) − θ̄1θ̄2e

ω̄1
2 +

ω̄2
2 (15)

which has only one solution, namely θ1 = θ̄1, θ2 = θ̄2, ω1 = ω̄1, ω2 = ω̄2 and

ω12 = ω̄12. This means that the distribution of Z is uniquely determined by

the parameters {θ,Ω}.

To study structural identifiability in a mixed-effects system using functions115

of random variables, the corresponding exhaustive summary [22] for the mixed-

effects system must be found. The exhaustive summary is a vector σ(θ) which

contains all information about the model parameters θ that can be extracted

from the knowledge of the input and output signal(s) [23]. The functions of

random variables can be generated from the exhaustive summary for the corre-120

sponding non-mixed-effects system, i.e., where Ω = 0. Once the functions of the

random variables for the mixed-effects system have been found the structural

identifiability of the mixed-effects system can be considered. In Sections 3.2–3.3

it will be shown how the functions of random variables for the mixed-effects

system can be found using established techniques for performing a structural125

identifiability analysis of non-mixed-effects systems.

3.2. Taylor series expansion approach

The Taylor series expansion approach for the study of the structural iden-

tifiability of state-space systems was first presented in [3]. In this method, the

model output y(t,θ) is expanded around a known time point where there is

information about the state, typically at t = 0, as

y(t,θ) = y(0,θ) + y(k)(0,θ)
tk

k!
+ . . . (16)
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where k = 1, 2, . . . Since all coefficients in the Taylor series expansion are unique

for a particular model output, the uniqueness of the model parameters can be

determined from these coefficients. The exhaustive summary is therefore the

coefficients in the Taylor series expansion and by equating them as

σk(θ) = y(k)(0,θ) k = 1, 2, . . . (17)

σk(θ) = σk(θ̄) k = 1, 2, . . . (18)

and solving for θ the structural identifiability of the state-space model can be

determined.

In the mixed-effects case, under the assumption of an infinite number of

subjects, the coefficients σk(θ) become distributed over the population. This

distribution depends on the underlying statistical model. Therefore, the coeffi-

cients in the Taylor series expansion can, in the mixed-effects case, be regarded

as functions of random variables and given by

Zk(θ,η) = σk(θ,η) k = 1, 2, . . . . (19)

For a non-mixed-effects system, there exist different upper bounds for k depend-130

ing on the form of the system. For linear systems the upper bound is 2n−1 [24],

for bilinear systems 22n−1 [25], for homogeneous polynomial systems q2n−1
q−1 [25]

and for a generic state-space model on the form (1) the upper bound is n + p

[26].

A natural question is what upper bounds hold in the mixed-effects case.135

When studying the structural identifiability of a mixed-effects model we are

studying the distribution of the exhaustive summary σ(θ) of the correspond-

ing non-mixed-effects model. If the bounds are higher in the mixed-effects case

we would instead study the distribution of σ∗(θ), a vector containing redun-

dant information on θ at the individual level. The distributions of σ∗(θ) would140

therefore contain redundant information about {θ,Ω}. If the bounds instead

are lower for the mixed-effects case, then we study the distribution of σ∗∗(θ),

a vector containing some, but not all information on θ that is required to de-

duce structural identifiability from the output at an individual level. In other
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words, neither σ∗(θ) nor σ∗∗(θ) are exhaustive summaries. Therefore, the up-145

per bounds for the Taylor series expansion in the non-mixed-effects case are the

same for the mixed-effects case. To clarify, the number of statistical parame-

ters are not included in p when computing the upper bounds. Instead, p still

represent the number of parameters in the non-mixed-effects model.

Again, by combining (3)–(4) with the exhaustive summary from the Taylor150

series coefficients (19) the structural identifiability of mixed-effects models can

be studied.

3.3. Input-Output form approach

A second way of generating the exhaustive summary of a system and extend-

ing it to functions of random variables is to rewrite the model in an input-output

form. Starting with a non-mixed-effects state-space system, this can be done

by iteratively differentiating the output function y and substituting in place of

all of the model states x [8]. A system rewritten in an input-output form has

the following differential algebraic polynomial form

l∑
k=1

σk(θ)gk(y, ẏ, ÿ, . . . ) = 0. (20)

Together with the initial conditions of the system, (20) determines uniquely the

solution of the model output [8]. Therefore, by setting up the equation system

σk(θ) = σk(θ̄) k = 1, 2, . . . , l (21)

y(0,θ) = y(0, θ̄) (22)

y(k)(0,θ) = y(k)(0, θ̄) k = 1, 2, . . . , n− 1 (23)

and solving for θ the structural identifiability of the system can be determined.

Note that for this to be true the terms in gk(y, ẏ, ÿ, . . . ) must all be linearly155

independent.

In a mixed-effects model, using the same reasoning as for the Taylor series

approaches, the input-output form (20) becomes

l∑
k=1

σk(θ,η)gk(y, ẏ, ÿ, . . . ) = 0. (24)

9



and the full set of functions of random variables is therefore given by

Zk(θ,η) = σk(θ,η) k = 1, 2, . . . , l (25)

Zl+1(θ,η) = y(0,θ,η) (26)

Zl+1+r(θ,η) = y(r)(0,θ,η) r = 1, 2, . . . , n− 1. (27)

Again, by using (3)–(4) with (25)–(27) the structural identifiability of mixed-

effects models can be studied.

4. Examples

In this section the Taylor series expansion and the input-output approaches160

will be applied to generate the functions of random variables Z that can be used

to study the structural identifiability of three exemplar mixed-effects models.

4.1. Taylor series approach: Linear one-compartment model

To demonstrate that covariance parameters also are included in the struc-

tural identifiability analysis, consider the following simple linear one-compartment

model

ẋ1 = −θ10x1 x1(0) = D (28)

y = θcx1 (29)

with unknown parameter vector (θ10, θc) where θ10 denotes the rate of elimina-

tion and θc denotes the scaling of the output, and known initial condition, i.e.,

dose D. This model could for instance be used to describe the elimination of

a drug from the blood plasma while measuring the concentration in the blood

plasma. The first and second coefficients in the Taylor series expansion around

t = 0 are

σ1 = y(0) = θcD (30)

σ2 = ẏ(0) = −θ10θcD. (31)

10



It can be seen directly from (30)–(31) that both θc and θ10 can be uniquely de-

termined in a non-mixed effects framework. Introducing lognormally distributed

random effects on the structural parameters θc and θ10 to ensure positivity the

following two functions of random variables are derived:

Z1 = θce
ηcD (32)

Z2 = −θ10e
η10θce

ηcD (33)

where the random effects vector η = (ηc, η10) is normally distributed with full

covariance matrix

Ω =

ω10 ω10c

ω10c ωc

 . (34)

The unknown parameters in the mixed-effects model are θ = (θ10, θc, ω10, ωc, ω10c).

First we consider the first two moments of Z1 which are given by

E[Z1(θ,η)] = Dθce
ωc
2 (35)

E[Z2
1 (θ,η)] = D2θ2

ce
ωc (eωc − 1) . (36)

By equating and solving E[Zm1 (θ,η)] = E[Zm1 (θ̄, η̄)] for m = 1, 2 we obtain that

θc = θ̄c and ωc = ω̄c is the only solution. Let Z = (Z1, Z2)T and consider the

covariance matrix of Z, given by

Cov(Z) = E[ZZT ]− E[Z]E[Z]T =

=

 E[Z2
1 ]− E[Z1]2 E[Z1Z2]− E[Z1]E[Z2]

E[Z1Z2]− E[Z1]E[Z2] E[Z2
2 ]− E[Z2]2


where the diagonal elements, i.e., the variances of Z1 and Z2, are given by

E[Z2
1 ]− E[Z1]2 = D2θ2

ce
2ωc −D2θ2

ce
ωc (37)

E[Z2
2 ]− E[Z2]2 = D2θ2

cθ
2
10e

2(ωc+2(ω10c+ω10)) −D2θ2
cθ

2
10e

ωc+2ω10c+2ω10 (38)

and the off-diagonal elements, i.e., the covariance between Z1 and Z2, is given

by

E[Z1Z2]− E[Z1]E[Z2] = −D2θ2
cθ10e

2ωc+2ω10c+ω10 +D2θ2
cθ10e

ωc+ω10c+ω10 .

(39)
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By equating and solving Cov(Z(θ,η)) = Cov(Z(θ̄, η̄)), and using the previous

result θc = θ̄c and ωc = ω̄c, we have that the only solution is θ10 = θ̄10, ω10 = ω̄10165

and ω10c = ω̄10c. All model parameters, including the covariance parameters

ω10c, have been shown to be uniquely determined and the mixed-effects model

(28)–(29) is therefore structurally globally identifiable.

4.2. Input-Output form approach: Non-linear two compartment model

In this example we consider a model with slightly higher complexity in-

volving two compartments with both a non-linear and linear elimination from

the observed compartment. This model could be used to describe how a drug

distributes between the plasma compartment x1 and the rest of the body x2

while being eliminated from the plasma compartment by different routes, i.e.,

one non-linear route and one linear route. The model structure is given by the

following:

ẋ1 = −(
θVmax

θED50 + x1
+ θe + θ12)x1 + θ21x2 (40)

ẋ2 = θ12x1 − θ21x2 (41)

x1(0) = D (42)

x2(0) = 0 (43)

y = θcx1 (44)

with the unknown parameter vector θ = (θ12, θ21, θe, θc, θVmax, θED50) where

θ12 and θ21 denotes the transport rate between the compartments, θe and θc

is the elimination rate and the output scaling respecitively, θVmax and θED50

is the maximum elimination rate and the concentration level where half of the

maximum elimination rate is reached respectively, and known initial conditions,

i.e., D and 0. To generate the input-output form of the model the symbolic

computational software Maple was used. The model rewritten in input-output

12



form is

θeθ21y
3 + 2 y2θ21θcθeθED50 + y2θ21θcθVmax+

y2ẏθe + ÿy2 + y2ẏθ21 + y2ẏθ12+

yθc
2θ21θED50

2θe + 2 ÿθcθED50y+

2 yθ12ẏθED50θc + yθc
2θ21θED50θVmax+

2 yθ21ẏθED50θc + 2 yθeẏθED50θc + ÿθED50
2θc

2+

θc
2θeθED50

2ẏ + θc
2θ12θED50

2ẏ + θc
2θ21θED50

2ẏ+

θc
2θVmaxθED50ẏ = 0 (45)

and the initial condition for the output function is

y(0) = θcD (46)

ẏ(0) = −θc(
θVmax

θED50 +D
+ θe + θ12)D. (47)

Here we have chosen to add lognormal random effects to ensure positivity on

all structural parameters with a diagonal covariance matrix Ω. The follow-

ing functions from the coefficients of the input-output form (45) can then be

13



generated

Z1 = (θED50e
ηED50)2(θce

ηc)2 (48)

Z2 = θ21e
η21θee

ηe (49)

Z3 = 2θED50e
ηED50θce

ηc (50)

Z4 = θce
ηcθ21e

η21θVmaxe
ηV max + 2θce

ηcθ21e
η21θee

ηeθED50e
ηED50 (51)

Z5 = (θce
ηc)2θ21e

η21θee
ηe(θED50e

ηED50)2+

(θce
ηc)2θ21e

η21θVmaxθED50e
ηED50 (52)

Z6 = θ12e
η12 + θee

ηe + θ21e
η21 (53)

Z7 = 2θce
ηcθED50e

ηED50θ21e
η21 + 2θce

ηcθED50e
ηED50θee

ηe+

2θce
ηcθED50e

ηED50θ12e
η12 (54)

Z8 = (θce
ηc)2θ2

ED50θ12e
η12 + (θce

ηc)2(θED50e
ηED50)2θee

ηe+

(θce
ηc)2θED50e

ηED50θVmaxe
ηV max + (θce

ηc)2(θED50e
ηED50)2θ21e

η21 (55)

Z9 = θce
ηcD (56)

Z10 = −θceηc(
θVmaxe

ηV max

θED50eηED50 +D
+ θee

ηe + θ12e
η12)D. (57)

It is clear that both the model written in an input-output form (45) and the170

subsequent functions of random variables (48)–(57) are already quite complex

expressions. The details of the full analysis can be found in Appendix A for

brevity. We will now give an overview of how the analysis was performed.

First we consider Z9 by setting up the following system

E[Z9(θ,η)] = E[Z9(θ̄, η̄)] (58)

E[Z2
9 (θ,η)] = E[Z2

9 (θ̄, η̄)] (59)

which has has the single solution

θc = θ̄c (60)

ωc = ω̄c. (61)
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Equating and solving

E[Z3(θ,η)] = E[Z3(θ̄, η̄)] (62)

E[Z2
3 (θ,η)] = E[Z2

3 (θ̄, η̄)] (63)

using (60)–(61) we obtain one solution, namely

θED50 = θ̄ED50 (64)

ωED50 = ω̄ED50. (65)

By equating and solving the following:

E[Z6(θ,η)] = E[Z6(θ̄, η̄)] (66)

E[Z8(θ,η)] = E[Z8(θ̄, η̄)] (67)

E[Z2
8 (θ,η)] = E[Z2

8 (θ̄, η̄)] (68)

using the previous results from (60)–(61) and (64)–(65) we get one solution,

namely

θVmax = θ̄Vmax (69)

ωVmax = ω̄Vmax. (70)

Solving the equation system

E[Z2(θ,η)] = E[Z2(θ̄, η̄)] (71)

E[Z5(θ,η)] = E[Z5(θ̄, η̄)] (72)

E[Z2
5 (θ,η)] = E[Z2

5 (θ̄, η̄)] (73)

using the previous results from (60)–(61), (64)–(65) and (69)–(70) yields only

one solution

θ21 = θ̄21 (74)

ω21 = ω̄21. (75)

Using (74)–(75) the following equation system

E[Z2(θ,η)] = E[Z2(θ̄, η̄)] (76)

E[Z2
2 (θ,η)] = E[Z2

2 (θ̄, η̄)] (77)
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has the unique solution

θe = θ̄e (78)

ωe = ω̄e. (79)

Finally, we use (74)–(75) and (78)–(79) to solve

E[Z6(θ,η)] = E[Z6(θ̄, η̄)] (80)

E[Z2
6 (θ,η)] = E[Z2

6 (θ̄, η̄)] (81)

which has the unique solution

θ12 = θ̄12 (82)

ω12 = ω̄12. (83)

From (60)–(61),(64)–(65), (69)–(70), (74)–(75), (78)–(79) and (82)–(83) we can

conclude that the mixed-effects model (40)–(44) has θ = θ̄ and Ω = Ω̄ and is175

therefore structurally globally identifiable.

4.3. An unidentifiable mixed-effects model

In this last example, we consider a one-compartment model with linear elim-

ination rate θ10 and unknown scaling parameters θF and θc for both the input

u and output y. This model represent the scenario when both the dose of the

drug and its volume of distribution is unknown in addition to an unknown rate

of elimination. As will be shown below, this results in an structurally unidenti-

fiable model. The model structure is given by

ẋ1 = −θ10x1 + θFu x1(0) = 0 (84)

y = θcx1 (85)

with unknown parameter vector θ = (θc, θ10, θF ), and known input and output

functions u and y. By calculating the time derivative of the output signal y and

substituting it for the model state x1, the model (84)–(85) can be rewritten in

the following input-output form

ẏ + θ10y − θcθFu = 0. (86)
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It is clear from (86) that the structural part of the model is unidentifiable since

only the product θcθF can be determined but not their individual contribution.

By introducing lognormally distributed random effects, ensuring positivity, with

a diagonal covariance matrix Ω to all model parameters the corresponding func-

tions of random variables are given by

Z1(θ,η) = θ10e
η10 (87)

Z2(θ,η) = θce
ηcθF e

ηF . (88)

Calculating and equating the first and second statistical moments of Z1 as

E[Zm1 (θ,η)] = E[Zm1 (θ̄, η̄)] for m = 1, 2 yields

θ10e
ω10

2 = θ̄10e
ω̄10

2 (89)

θ2
10e

ω10 (eω10 − 1) = θ̄2
10e

ω̄10
(
eω̄10 − 1

)
(90)

which has only one solution, namely

θ10 = θ̄10 (91)

ω10 = ω̄10. (92)

Calculating and equating the first and second statistical moments of Z2 as

E[Zm2 (θ,η)] = E[Zm2 (θ̄, η̄)] for m = 1, 2 yields

θcθF e
1
2 (ωc+ωF ) = θ̄cθ̄F e

1
2 (ω̄c+ω̄F ) (93)

θ2
cθ

2
F e

ωc+ωF
(
eωc+ωF − 1

)
= θ̄2

c θ̄
2
F e

ω̄c+ω̄F
(
eω̄c+ω̄F − 1

)
. (94)

With the substitution βθ = θcθF and βω = ωc +ωF the equation system for the

statistical moments of Z2 becomes

βθe
1
2βω = β̄θe

1
2 β̄ω (95)

β2
θe
βω
(
eβω − 1

)
= β̄2

θe
β̄ω

(
eβ̄ω − 1

)
(96)

which has only one solution, namely βθ = β̄θ and βω = β̄ω. From this it is

easy to see that only the product θcθF and the sum ωc + ωF are structurally

globally identifiable but not their individual contribution. The mixed-effects180

model (84)–(85) is therefore structurally unidentifiable.
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5. Discussion

The two presented methods for the study of the structural identifiability

for mixed-effects models are similar in the sense that they both are used to

generate functions of random variables. However, there are a few differences185

between them that should be mentioned.

While the Taylor series expansion and the input-output approaches are ap-

plicable to both linear and nonlinear systems, the Taylor series expansion suffers

from computational problems even for relatively simple model structures. The

input-output approach can handle more complex model structures than the Tay-190

lor series approach, but there is still a limit of how complex the models can be in

order for a analytical approach to be feasible. With the input-output approach

it is necessary the check of linear independence among the terms. This can be

done by computing the Wronskian [27], a potentially computationally demand-

ing task. A structural identifiability analysis for a mixed-effects system is often195

more computationally demanding than its corresponding non-mixed-effects sys-

tem since the use of random effects introduces the covariance matrix Ω with

unknown variance parameters, and with a non-diagonal covariance matrix, un-

known covariance parameters as well. Nevertheless, the presented methods are

still useful since many mixed-effects models used within the pharmaceutical in-200

dustry are relatively simple in structure, e.g., compartmental models [28, 29, 30].

The two methods presented in this manuscript, the input-output form ap-

proach and the Taylor series expansion approach, are related to the Laplace

transform approach presented in [21] since all three methods derives the ex-

haustive summary, a vector which contains all information about the model205

parameters for a given set of input and output functions. However, while the

Taylor series expansion approach and the input-output form approach can be

applied to both linear and nonlinear models the Laplace transform approach in

[21] is limited to linear models only.

A future research topic that has come out of this work is with regard to the210

possible existence of upper and lower bounds of the order of statistical moments
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of the functions of random variables needed to determine structural identifi-

ability. Consider the case of some Zi being either normally, or lognormally

distributed. The first two moments fully characterise the distribution and the

upper and lower bound is therefore two. This was the case in the last example215

in Section 4.3 where both of the functions of random variables (87)–(88) are log-

normally distributed and therefore only the first two statistical moments were

considered. As the required relevant upper bound for structural identifiability

was reached it can be concluded that the model is structurally unidentifiable.

For a non-standard distribution for Zi, the lower bound is the same as the220

number of unknown parameters in Zi given that those unknown parameters do

not appear in any Zj where j 6= i. However, deriving an upper bound for non-

standard distributions will almost certainly require dividing them up in different

groups of distributions, a task for ongoing research. A consequence of having

unknown upper bounds is that it makes proving that a model is structurally225

unidentifiable impossible, since it is not known what the required number of

moments are.

Lastly, the presented methods open up the possibility of studying the struc-

tural identifiability of mixed-effects models analytically. This could potentially

have a big impact on modelling in the pharmaceutical industry since such types230

of models are routinely used. Knowing whether the structural and variance

parameters are structurally identifiable or otherwise increases the confidence in

the model parameter estimates, leaving only the experimental data as a source

of uncertainty for the model parameters. The presented methods should ideally

also be integrated into the model development process as well as experimental235

design in order to answer questions such as what to measure and what admin-

istration routes to use in order to ensure structural identifiability? For other

sources on how structural identifiability analysis affect experimental design see

[14, 31, 11, 16, 32].
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Appendix A. Appendix A: Nonlinear two-compartment model

In this Appendix a more detailed analysis of the nonlinear two compartment

model using the input-output approach presented in Section 4.2 is provided.

The model structure is given by the following

ẋ1 = −(
θVmax

θED50 + x1
+ θe + θ12)x1 + θ21x2 (A.1)

ẋ2 = θ12x1 − θ21x2 (A.2)

x1(0) = D (A.3)

x2(0) = 0 (A.4)

y = θcx1 (A.5)
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with the unknown parameters θ = (θ12, θ21, θe, θc, θVmax, θED50) and known

initial conditions, i.e, D. The model rewritten in an input-output form is

θeθ21y
3 + 2 y2θ21θcθeθED50 + y2θ21θcθVmax+

y2ẏθe + ÿy2 + y2ẏθ21 + y2ẏθ12+

yθc
2θ21θED50

2θe + 2 ÿθcθED50y+

2 yθ12ẏθED50θc + yθc
2θ21θED50θVmax+

2 yθ21ẏθED50θc + 2 yθeẏθED50θc + ÿθED50
2θc

2+

θc
2θeθED50

2ẏ + θc
2θ12θED50

2ẏ + θc
2θ21θED50

2ẏ+

θc
2θVmaxθED50ẏ = 0 (A.6)

and the initial condition for the output function is

y(0) = θcD (A.7)

ẏ(0) = −θc(
θVmax

θED50 +D
+ θe + θ12)D. (A.8)

The coefficients in the input-output relation (A.6) and the initial condition (A.7)

are given by

σ1(θ) = θ2
ED50θ

2
c (A.9)

σ2(θ) = θ21θe (A.10)

σ3(θ) = 2θED50θc (A.11)

σ4(θ) = θcθ21θVmax + 2θcθ21θeθED50 (A.12)

σ5(θ) = θ2
cθ21θeθ

2
ED50 + θ2

cθ21θVmaxθED50 (A.13)

σ6(θ) = θ12 + θe + θ21 (A.14)

σ7(θ) = 2θcθED50θ21 + 2θcθED50θe + 2θcθED50θ12 (A.15)

σ8(θ) = θ2
cθ

2
ED50θ12 + θ2

cθ
2
ED50θe + θ2

cθED50θVmax+

θ2
cθ

2
ED50θ21 (A.16)

σ9(θ) = θcD. (A.17)
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Lognormally distributed random effects were added to all parameters. From

this the following functions of random variables are derived

Z1 = (θED50e
ηED50)2(θce

ηc)2 (A.18)

Z2 = θ21e
η21θee

ηe (A.19)

Z3 = 2θED50e
ηED50θce

ηc (A.20)

Z4 = θce
ηcθ21e

η21θVmaxe
ηV max+

2θce
ηcθ21e

η21θee
ηeθED50e

ηED50 (A.21)

Z5 = (θce
ηc)2θ21e

η21θee
ηe(θED50e

ηED50)2+

(θce
ηc)2θ21e

η21θVmaxθED50e
ηED50 (A.22)

Z6 = θ12e
η12 + θee

ηe + θ21e
η21 (A.23)

Z7 = 2θce
ηcθED50e

ηED50θ21e
η21+

2θce
ηcθED50e

ηED50θee
ηe+

2θce
ηcθED50e

ηED50θ12e
η12 (A.24)

Z8 = (θce
ηc)2θ2

ED50θ12e
η12+

(θce
ηc)2(θED50e

ηED50)2θee
ηe+

(θce
ηc)2θED50e

ηED50θVmaxe
ηV max+

(θce
ηc)2(θED50e

ηED50)2θ21e
η21 (A.25)

Z9 = θce
ηcD (A.26)

Z10 = −θceηc(
θVmaxe

ηV max

θED50eηED50 +D
+ θee

ηe + θ12e
η12)D. (A.27)

The first and second moments of Z9 are given by

E[Z9(θ,η)] = Dθce
ωc
2 (A.28)

E[Z2
9 (θ,η)] = D2θ2

ce
ωc (eωc − 1) . (A.29)

Solving the equation system

Dθce
ωc
2 = Dθ̄ce

ω̄c
2 (A.30)

D2θ2
ce
ωc (eωc − 1) = D2θ̄2

ce
ω̄c
(
eω̄c − 1

)
(A.31)
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yields only one solution, namely

θc = θ̄c (A.32)

ωc = ω̄c. (A.33)

The first and second moments of Z3 are given by

E[Z3(θ,η)] = 2θcθED50e
1
2 (ωc+ωED50) (A.34)

E[Z2
3 (θ,η)] = 4θ2

cθ
2
ED50e

ωc+ωED50
(
eωc+ωED50 − 1

)
. (A.35)

Using (A.32)–(A.33) and solving the first and second moments of Z3 yields

2θcθED50e
1
2 (ωc+ωED50) = 2θcθ̄ED50e

1
2 (ωc+ω̄ED50) (A.36)

4θ2
cθ

2
ED50e

ωc+ωED50
(
eωc+ωED50 − 1

)
= (A.37)

4θ2
c θ̄

2
ED50e

ωc+ω̄ED50
(
eωc+ω̄ED50 − 1

)
(A.38)

which gives only one solution

θED50 = θ̄ED50 (A.39)

ωED50 = ω̄ED50. (A.40)
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The first and second moments of Z8 are given by

E[Z8(θ,η)] =

θ2
cθED50e

2ωc+
ωED50

2 (θED50e
3ωED50

2 (θ12e
ω12

2 +

θ21e
ω21

2 + θee
ωe
2 ) + θVmaxe

ωVmax
2 ) (A.41)

E[Z2
8 (θ,η)] =

θ4
cθ

2
ED50e

4ωc+ωED50(θ2
ED50e

3ωED50(θ2
12e

ω12(e4ωc+4ωED50+ω12

− 1) + 2θ12e
ω12

2

(
e4(ωc+ωED50) − 1

)(
θ21e

ω21
2 + θee

ωe
2

)
+

θ2
21e

ω21
(
e4ωc+4ωED50+ω21 − 1

)
+

2θ21θe

(
e4(ωc+ωED50) − 1

)
e

1
2 (ω21+ωe)+

θ2
ee
ωe
(
e4ωc+4ωED50+ωe − 1

)
)+

2θED50θVmax

(
e4ωc+2ωED50 − 1

)
e

1
2 (3ωED50+ωVmax)(

θ12e
ω12

2 + θ21e
ω21

2 + θee
ωe
2

)
+

θ2
Vmaxe

ωVmax
(
e4ωc+ωED50+ωVmax − 1

)
). (A.42)

The first and second moments of Z6 are given by

E[Z6(θ,η)] = θ12e
ω12

2 + θ21e
ω21

2 + θee
ωe
2 (A.43)

E[Z2
6 (θ,η)] = θ2

12e
ω12 (eω12 − 1) +

θ2
21e

ω21 (eω21 − 1) + θ2
ee
ωe (eωe − 1) . (A.44)

Using the previous results (A.32)–(A.33) and (A.39)–(A.40) the following equa-

tion can be generated from (A.41)

θ2
cθED50e

2ωc+
ωED50

2 (θED50e
3ωED50

2 (θ12e
ω12

2 +

θ21e
ω21

2 + θee
ωe
2 ) + θVmaxe

ωVmax
2 ) =

θ̄2
c θ̄ED50e

2ω̄c+
ω̄ED50

2 (θ̄ED50e
3ω̄ED50

2 (θ̄12e
ω̄12

2 +

θ̄21e
ω̄21

2 + θ̄ee
ω̄e
2 ) + θ̄Vmaxe

ω̄Vmax
2 ) (A.45)
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which can be simplified to given(
θ12e

ω12
2 + θ21e

ω21
2 + θee

ωe
2

)
+
θVmaxe

ωVmax
2

θED50e
3ωED50

2

=

(
θ̄12e

ω̄12
2 + θ̄21e

ω̄21
2 + θ̄ee

ω̄e
2

)
+
θ̄Vmaxe

ω̄Vmax
2

θED50e
3ωED50

2

. (A.46)

From the equation generated from (A.43) we use E[Z6(θ,η)] = E[Z6(θ̄, η̄)] to

simplify (A.46) further to give:

θVmaxe
ωV max

2 = θ̄Vmaxe
ω̄V max

2 . (A.47)

Using (A.32)–(A.33), (A.39)–(A.40) and (A.43), the following equation system,

where E[Z2
8 (θ,η)] = E[Z2

8 (θ̄, η̄)] has been omitted since the expression is very

large,

θVmaxe
ωV max

2 = θ̄Vmaxe
ω̄V max

2 (A.48)

E[Z2
8 (θ,η)] = E[Z2

8 (θ̄, η̄)] (A.49)

which has only one solution

θVmax = θ̄Vmax (A.50)

ωVmax = ω̄Vmax. (A.51)

The first and second moments of Z5 are given by

E[Z5(θ,η)] = θ2
cθED50θ21e

1
2 (4ωc+ωED50+ω21)

(θED50θee
1
2 (3ωED50+ωe) + θVmaxe

ωVmax
2 ) (A.52)

E[Z2
5 (θ,η)] = θ4

cθ
2
ED50θ

2
21e

4ωc+ωED50+ω21

(θ2
ED50θ

2
ee

3ωED50+ωe
(
e4ωc+4ωED50+ω21+ωe − 1

)
+

2θED50θeθVmax

(
e4ωc+2ωED50+ω21 − 1

)
e

1
2 (3ωED50+ωe+ωVmax)+

θ2
Vmaxe

ωVmax
(
e4ωc+ωED50+ω21+ωVmax − 1

)
). (A.53)

The first and second moments of Z2 are

E[Z2(θ,η)] = θ21θee
1
2 (ω21+ωe) (A.54)

E[Z2
2 (θ,η)] = θ2

21θ
2
ee
ω21+ωe

(
eω21+ωe − 1

)
. (A.55)
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Using (A.32)–(A.33),(A.39)–(A.40), (A.50)–(A.51) and (A.54) the equation sys-

tem

E[Z5(θ,η)] = E[Z5(θ̄, η̄)] (A.56)

E[Z2
5 (θ,η)] = E[Z2

5 (θ̄, η̄)] (A.57)

has the unique solution

θ21 = θ̄21 (A.58)

ω21 = ω̄21. (A.59)

Using (A.58)–(A.59) the following equation system

E[Z2(θ,η)] = E[Z2(θ̄, η̄)] (A.60)

E[Z2
2 (θ,η)] = E[Z2

2 (θ̄, η̄)] (A.61)

has the unique solution

θe = θ̄e (A.62)

ωe = ω̄e. (A.63)

Finally, we make use of (A.58)–(A.59) and (A.62)–(A.63) and solve

E[Z6(θ,η)] = E[Z6(θ̄, η̄)] (A.64)

E[Z2
6 (θ,η)] = E[Z2

6 (θ̄, η̄)] (A.65)

which has the unique solution

θ12 = θ̄12 (A.66)

ω12 = ω̄12. (A.67)

From (A.32)–(A.33),(A.39)–(A.40), (A.50)–(A.51), (A.58)–(A.59), (A.62)–(A.63)335

and (A.66)–(A.67) we can conclude that θ = θ̄ and Ω = Ω̄ which means that

the mixed-effects model (A.1)–(A.5) is structurally globally identifiable.
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Forsman Code



(4)(4)

(5)(5)

(3)(3)

(2)(2)

(1)(1)

2 compartments, 2 elimination from same compartment, MM and linear
Defining the system as:

Collecting the coefficients and setting up expression with alternative parameter vector



(8)(8)

(9)(9)

(6)(6)

(7)(7)

Setting up the equations for the inital conditions

Calculating the derivative of output function y, then evaluating the expressions for the initial 
conditions

Introducing alternative parameter vector and finalizing the expression for the initial conditions

Summary: The model is structurally globally identifiable.
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