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INTRODUCTION

The idea that geometric methods can play an important role in the

resolution of topological questions, dormant since the turn of the century,

has been revived recently by the work of Thurston (see 1 14 ] for a summary).

Such methods are based on the notion of a geometric" manifold. This is a

manifold equipped with a Riemannian metric for which the pseudo-group of

local isometries is transitive. The universal cover of a geometric manifold is

also geometric and, in fact, has a transitive group of isometries since

any local isornetry of a simply connected Riemannian manifold is the restriction

of a global isometry. To determine which manifolds admit a geometric structure

it is, therefore, first necessary to determine which simply connected manifolds

admit such structures. Since several metrics on a given manifold may have

the same group of isometries - or at least the same connected component of

the identity - we are led to the following problem: Determine all simply

connected manifolds admitting a transitive Lie group action such the

stabilizer subgroup at each point is compact. Such a structure is called

a geometry in keeping with Klein's Erlanger Programme. The problem can be

reduced somewhat by noting that any group action with compact stabilizer

is contained in a largest such action so we need only classify maximal

geometries.

The most important subclass of geometries consists of the ones covering

compact manifolds or, more generallymanifolds of finite volume with respect

to the volume form coming from some locally homogeneous Riemannian metric.

In dimension 1 this problem is trivial and the classical Uniformization

Theorem gives the 2-dimensional geometries as the Euclidean plane, the
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Hyperbolic plane or the round 2-sphere. In dimension 3 the maximal

geometries covering manifolds of finite volume have been determined

by Thurston (see Scott [ 	 ] for a good survey of results in the

field of geometric 3-manifolds). It turns out that there are only 8

maximal 3-dimensional geometries covering manifolds of finite volume

and they all cover compact manifolds. These geometries are either the

3-dimensional spaces of constant curvature, have trivial stabilizer or

fibre over one of the two dimensional geometries.

In this thesis we extend the idea of fibering a geomtry over a lower

dimensional one to determine all the maximal 4-dimensional geometries. We

find that there is a countable infinity of inequivalent such geonitries two

of which have quotients of finite volume but no compact quotients. The

classification, is done on a case by case analysis of the possible stabilizer

subgroups which can be regarded as subgroups of SO(4). In Chapter 1 we

give a formal definition and collect together various results that will be

needed for the remainder of this work. In particular the possibilities for

the stabilizer are determined. In the last section of Chapter 1 we fix

some notation and assumptions. In Chapter 2 we show how the existence of

invariant distributions on a geometry gives rise to equivariant fiberings

over a lower dimenionsal homogeneous space. The geometries with stabilizer

not trivial or isomorphic to SO(2) are shown, in Chapter 3, to be

Riemannian globally syniiietric spaces. In Chapters 4 and 5 , the case where

the stabilizer is isomorphic to SO(2) is analysed. Finally the maximal

geometries with trivial stabilizer are determined in Chapter 6 where it is

shown 'Ehat there is a countable infinity of iriequivalent such geometries.

A summary of the maximal 4-dimensional goemetries determined in Chapters

3-6 is then provided.
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CHAPTER 1 : PRELIMINARIES,

1,0 Introduction

In this chapter we will define the objects to be studied and collect

together a few preliminary results concerning them. Since the purpose is

to classify four dimensional geometries we will need to know the compact

connected subgroups of S0(4) . These will be determined in Section 2.

Finally, in Section 3, a certain amount of notation will be fixed for the

rest of this thesis,

1.1 Geometries

The objects that will be of interest to us are defined as follows:

Definition

A geometry is a triple (M,G,ct) with M a connected, simply connected,

smooth manifold M , G a Lie group and c:GxM -'- M a smooth transitive

effective action of G on M such that the stabilizer subgroup G	 is

compact for each x € M

Two geometries (M 1 ,G,ct 1 ) and (M2 ,G,c 2 ) will be considered equivalent

if there is a diffeomorphism q:M 1 -- M2 such that a2 (g,(x)) =

for all x € M , g € G . Where the action of G on M is understood we

will generally write ct(g,x) as g.x or g(x) and the geometry as (M,G)

The coset space G/GX for x € M has a natural smooth (even analytic)

manifold structure, The mapping	 :G/G - M defined by c(gG) = g(x) is

a smooth bijection, By the Rank Theorem 	 is, in fact, a diffeomorphism
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and it is easy to see that it provides an equivalence between the left

action of G on G/G	 and the action of G on M . Hence the geometry

(M,G,c) can be identified with the coset space GIGX equipped with the

natural left action of G 	 Moreover in the definition of equivalence

above we may suppose the diffeomorphism is analytic since an equivalence

corresponds to left multiplication by an element of G

By the previous paragraph the set G1 . x is open in M for any

connected component G	 of G and any two such are disjoint or coincide.

Since M is connected this implies that the identity component G 0 of G

is transitive on M . Because of this we will henceforth assume that G

is connected0

Remark

M simply connected implies that it is orientable so if G is connected

it acts by orientation preserving diffeomorphisms0

Proposition lll

The stabilizer	 of any point x € M is connected.

Proof

Let (G)o denote the connected component of e in	 . Then we

have a fibre bundle:	 -

+	 + G/G	 M

Since	 is compact G/(G)o is finite so this is a covering map and
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hence a diffeomorphism by the assumption ¶ 1 (M) = 0 . Therefore

G = (G )
x	 xO	 0

It is possible that the action of G on M may extend to the action

of some larger group G' containing G as a proper subgroup. For example

if we equip M with a Riemannian metric A it may happen that the largest

connected group of isometries Isom0 (M,x) is strictly larger than G

The most obvious example of this comes from taking JR 2 acting on itself

by translations. The Euclidean metric on JR 2 is invariant under trans-

lations but also includes rotations in its group of isometries. However

we can simplify matters with

Proposition l.l2

Any geometry (M,G,ct) is contained in a maximal geometry (M,G',ct')

where G' is the connected component of e in Isom(M,x) for some

Riemannian metric A on M

Proof

If (M,G,c) is a geometry we can find a metric x on M such that

G acts as a group of isometries of (M,x) . If	 is the stabilizer of

x € M then the derivative dg 	 acts as an isometry on the inner product

space (T M,x) for each g € Gx	 Hence we obtain a representation

d:G	 - S0(m) where m = dim(M) . This representation is faithful (see

C	 ] Chap. I Sec. 11) so dim(G) ^ dim(S0(m)) = rn(rn-1)12 . Since

dim(M) = dim(G) - dim(Gx) we have dim(G) ^ m(m+l)/2 . If (M,&,ct) is
i	 i+l	 i

a sequence of geometries with G	 G	 and	 restricted to G xM
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i	 .	 i+l
is equal to ct , we must, therefore, have dim(G ) = dim(G 	 ) for

i large enough. Since each G' is assumed connected it follows that

i+l
G = G	 for all i large enough0

Clearly if (M,G,c) is a maximal geometry and A is any metric for

which G acts as a group of isometries then we must have G = Isom0(M,A)

U

It is an interesting question whether a given geometry is contained

in a unique maximal geometry. We will make a few remarks on this subject

at the end of this section. From now on all geometries will be assumed to

be maximal and G will be the connected component of e in the group of

isometries of (M,x) for some Riemannian metric A on N

To the G invariant metric A on M we can associate the G-invariant

smooth Riemanniari volume form w with its associated measure i and any

two such measures differ by a constant, If r c G is a discrete subgroup

such that the quotient r\M is a manifold then i descends to give a

measure	 on r\M . It is the purpose of this paper to classify four

dimensional geometriessuch that Pr(1'\M) is finite for some such r	 G

i.e. geometries which cover manifolds of finite volume. We will, therefore,

henceforth assume that all geometries considered possess such a quotient.

In the sequel we will need the following two propositions, the first

of which is an easy generalization to homogeneous spaces of standard results

on lattices in Lie groups.

Proposition 1.1.3

If there is a discrete subgroup r	 G such that r\GIG	 has finite
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volume then G is unimodular.

Proof

Let p denote the left invariant smooth measure on M = GIGX

associated to a left invariant Riemannian metric. If v denotes a Haar

measure on G and i:G - G/GX = M the quotient map then the measure p'

defined by p'(E) = v(ir(E)) is obviously left invariant. Since left

invariant measures on homogeneous spaces are unique up to a scalar multiple

we can assume, without loss of generality, that p =

For r c G a discrete subgroup let p:G/G ^ r\G/G	 and q:G - r\G

denote the quotient maps. Assume that pr( 1'V3/ t x) <	 . We can choose a

collection {V 1 } 1 of subsets	 c G/GX such that r\G/G = U p(V)

and	 . Setting W =	 we have r\G = U q(W1)

i€r	 i€I

and	 E v(W1 ) <	 . Let	 denote the measure on r\G induced by v

1EI

Then, if E c r\G , we have	 (E) = inf(	 v(F )) where the infimum
R

s taken over all covers of E . i.e. collections of sets {F }
a ct€A

with F	 G and E c U q(F ) . We have	 (r\G) c z v(W.) <	 . Let
a	 a	 1

1€

denote the modular function of G . If g € G then the collection

{W1 . g} is a cover of r\G so 	 (r\G) ^ E v(Wg) = ( g )	 v(W.) = c(g)
i€I	 iEI	

1

for some c E IR . If	 is non-trivial we can find a g € G such that

< 1 . Then A(g') -'- 0 as n - 	 . This implies that	 (r\G) = 0

contradicting the discreteness of r . Hence	 is trivial and C is

unimodular.

0



-6-

Proposition 1.1.4

Let G be a unimodular Lie group, N a closed normal subgroup and

-- GIN the quotient homomorphism. Then N is unimodular and, if

W	 N , we have vN(W) =	 where v and	 denote

Haar measure and the modular function.

Proof

We first show how Haar measure on G may be constructed from Kaar

measures on N and G/N . Let 	 and VG/N denote the Haar measures

on • N and G/N . If E	 G is a Borel subset we set

E X fl = VN(xEnN)	 for x e G

If y = xn for some n	 N then

-1 -1
= vN(n x E n N)

n N))
=

= VN(xE n N)	 since vN	 s left invariant.

Hence	 is a well defined map on G/N . In fact 	 is a Borel map

(see [ 4 1 Section 63) so we can define

VG(E) = JG/NEG/N

If g € G then fgE(1r(X)) = f ( 1r ( g Y(x ))	 so

\)G(E) 
= J	

f(1r(gYir(x))dv/
G/N
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= I	 f(lr(X))dvG/N	 since VG/N is left invariant.

GIN

Therefore	 is left invariant. It is easy to see that 	 is finite

on compact sets and so is a Haar measure for G

Since N is closed we can find a subset U c G/N such that

vGIN(U)	 O,co and there is a section	 :U - G . To show that N is

unimodular let W E N be a subset and set A =	 . By the above

construction we have VG(A)	 G/NN(	
. If n € N then An = (U).Wn

= G/N(U)N(Wn) . But G is unimodular and so 'J G( An ) = \)G(A)

Hence, since VG/N(U)	 O,co we must have "N1 = VN(WrI) and N is uni-

modular.

To prove the second part let W,U,A be as above. If g 	 G then

Ag	 = ((U).g).(gwg) and v(Ag) =

But	 (U)) = U and v(A) = VG(A) . So we have 	 G/N( U )N( W ) =

=	 . But vG/N( U1r ( g )) = A / (r(g))	 and

G/N(U)	 0 and therefore	 =	 .

Remarks on unique maximality

Consider the simplest case of a simply connected Lie group G acting

on itself by left translations. Let 	 Isom0 (G,x) denote the connected

group of isometries for some left invariant metric x on G . If there

is a normal subgroup G' E Isom0 (G,X) isomorphic to G then

Isom0 (G,X)	 G'EH where H is the stabilizer of e . This holds for

all left invariant metrics on G in the following cases:
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(1) G nilpotent : Wilson [ t. ]

(2) G compact : Ozeki (see [ 3 ] Chapter 3).

(3) G semisimple : Gordon 1 3 1.

In this case the unique maximal geometry containing G is clearly

(G,GvFI) where H is a maximal compact group of automorphisms of G

(any two such are equivalent since maximal compact subgroups are conjugate).

1.2 Subgroups of SO(4)

As the first step in classifying four dimensional geometries we need

to determine what groups can occur as the stabilizers G . From Prop-

ositions 1 .1.1 and 1.1 .2 G 	 must be isomorphic to a compact, connected

subgroup of SO(4) . This section will be devoted to classifying, up to

conjugacy in SO(4) , all connected compact subgroups of SO(4) . If

we let IT:SU(2)xSU(2) - SO(4) denote the universal covering map the task

is simplified by:

Lemma 1.2.1

Let H be a compact connected subgroup of S0(4) and denote by R

the connected component of e in ir(H) . Then H is compact, connected

and	 ir(i) = I-I .

Proof

Obvious.	 9

We will first determine, up to conjugacy, all compact connected sub-

groups of SU(2)xSU(2)
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Lemma 1.2.2

If K is a subgroup of SU(2)xSU(2) isomorphic to SU(2)/r with

r a discrete central subgroup then r = {e} and K is conjugate to one

of the following subgroups:

(1) I	 = {(x,e) I x € SU(2)}	 ;

(2) 12	 {(e,x) I x € SU(2)}	 ;

(3) Dl = {(x,x) I x € SU(2)}	 ;

(4) 02 = {(x, 4 (x))	 x € SU(2)}	 ;

*
where	 is the unique outer automorphism of SU(2) . (See footnote.)

Proof

Let i:K -'- SU(2)xSU(2) denote the inclusion and it1 ,rr2:SU(2)xSU(2)-*-SU(2)

the projection onto the first and second factors. Setting p 1 =

p2 = rro j it is easy to see that p	 is trivial or an isomorphism for

j	 1,2 . Since K	 {e} at least one of the p	 is non-trivial. So

r	 {e} and K ' SU(2) . If we represent SU(2) by matrices:

	

fa	 b
2

	

SU(2) = {(
b
	) 

€ GL(2,	 al + 1b1 2 = l}

then the unique outer automorphism	 :SU(2) + SU(2) is given by

(a,b) = (a,b). Hence there are g 1 ,g 2 € SU(2) such that Ad(9)oO

is either trivial, the identity or 4for j = 1,2 . Thus takinq the

conjugate of K by (g1 ,g 2 ) we can assume that p 	 is trivial, the

identity or	 . The result follows immediately.

0

* The outer automorphisni group of SU(2) is trivial so D 2 is redundant.

Whenever this redundancy occurs in this section an '* will be placed.
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Let T 1 and T2 denote the maximal tori (' S0(2)) of the

subgroups I. and 12

Proposition 1.2.3

Any compact connected subgroup of SU(2)xSU(2) is conjugate to one

of the following:

(1)	 SU(2) x SU(2)

(2) I 1 xT2 or T1x12

(3) I	 I2, D l ,D2

(4) A torus contained in	 x T2

Proof

If H is a compact, connected subgroup of SU(2)xSU(2) then

n .	..	 n
N = KxT /r where K is compact semisimple, T 	 is a torus and r is

a discrete central subgroup.

If the torus factor is trivial then K	 SU(2)xSU(2) or K	 SU(2)

Hence H = SU(2)xSU(2) or, by Lemma 1.2.2, H is conjugate to

0
1' 2

If K = {e} then H is a torus and, up to conjugacy, we can assume

that it is contained in the maximal torus T 1 x 12 of SU(2)xSU(2)

If both K and	 are non-trivial then K	 SU(2) . Let

p:KxTn	 H be the projection map. By Lemma 1.2.2 we can assume, up to

conjugacy, that p(K) is one of I 1 ,I 2 ,D 1 ,D2 . Now p(K) has a non-

trivi&1 connected centralizer and the centralizers of D1 and	 are

3
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discrete. So p(K) is conjugate to I.	 or I? . Since p(T) is

connected we must then have n = 1 and p(T)	 12 or	 . Since all

maximal tori in SU(2) are conjugate we have H conjugate to I. x T2

or T1x12 .

If the quaternions IH	 are provided with the usual Euclidean metric

such that {l,i,j,k} is an orthonormal basis, SU(2) is isomorphic to

the subgroup of unit quaternions and the universal covering map

ir:SU(2)xSU(2) - S0(4) is given by (y 1 ,y2 ) -* T(y 1 ,y2 ) € SO(4) where

T(y 1 ,y2 )(x) = yxy	 for x

Proposition 1.2.4

With respect to the basis {l,i,j,k} of 11-I any compact connected

subgroup of SO(4) is represented, up to conjugacy, by one of the following

groups of matrices:

(1) SO(4)

(2) The subgroup isomorphic to SO(3) which fixes 1.

(3) The subgroup isomorphic to SU(2) of the form:

f	 -B\	 GL(4, IR) I A = (a 1 -a 2'	 ,	 B = ía 3 a4\

	

AJ	
(a2 a 1)	 -	 (a4 -a3)

a. = l}.
1=1

(4) The subgroup isomorphic to SU(2) of the form:
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(

/ A	 B	 € GL(4, IR) I A	 / a 1	a2\	 ,	 B =	 a 3	a4\

	

B t	 At)	 -a2	 a 1 )	 (-a4	 a3)

4

a = 1 }
i=1 1

(5)	 The subgroup isomorphic to S(U(2)xLJ(1)) c SU(3)

/ 
AC	 BCt\ € GL(4, IR)

k-BC ACt)

A,B as in (3) above,

C= (x 1 x2\ , x+x=1}

Cx2 x1)

(6) The subgroup isomorphic to S(U(2)xU(1)) c SU(3)

/AC	 BC	 GL(4, IR)	 A,B as in (4) above,

-BC AtC)	 C =(x 1	x2	,	 x + x = 1 }

xl I
(7) The maximal torus of the form:

/A	 o\	 € GL(4, IR)	 A,B € SO(2)}

ii
\O	 B

(8) A subgroup isomorphic to SO(2) of the form:

	

0 '\	
GL(4, IR) I A< = ( Cosk	 Sinke

	

)	 \-Sinke	 Coske
\0 A /

me
n,m	 coprime}

Proof

If I-I is a compact connected subgroup of S0(4) then by Lema 1.2.1

H = ir(R) where R is a compact connected subgroup of SU(2)xSU(2) . Since
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conjugacy in SU(2)xSU(2) implies conjugacy in SO(4) we can assume

that A is one of the groups listed in Proposition 1.2.3.

(i) A = SU(2) x SU(2)

Then H = SO(4)

(ii) A = i

Then T(y,e) is the map x + yx . If we choose y = a 1 +ia 2+ja 3+ka 4 EIH

E a = 1 then:

T(y,e)(l) = a1-i-ia2+ja3+ka4

T(y,e)(i) = -a2+ia1-i-ja4-ka3

T(y,e)(j) = -a3-ia4+ja1-i-ka2

T(y,e)(k) = -a4+ia3-ja2+ka1

and H is the group (3).

(iii) A	 12

A similar calculation to (ii) above show that H is the group (4) . Here

T(e,y) is the map x	 xy

(iv) A = I 1 xT 2 or T1x12

Combining (ii) and (iii) above and using the fact that ir is a

homomorphism we obtain the groups (5) and (6). In both cases we have

Ker(ir) n A = { ( l,1),(-1,-1)} and SU(2)xSO(2)JKer('ir) ' S(U(2)xU(l))

(v) Then T(y,y)(x) = yxy 1 so T(y,y) fixes ± 1 for each y	 SU(2)

and we have the group (2).
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(vi) = D2

In terms of the basis {1,i,j,k} of 11 the outer automorphism

:SU(2) - SU(2) is given by c(a 1 +ia 2+ja 3+ka4 ) - a1-ia2+ja3-ka4

Hence T(y,(y))(x) is given by:

T(y,p(y))(x) = (a1-i-ia2+ja3-i-ka4)(x)(a1+ia2-ja3+ka4)

It is easy to see that T(y,(y)) fixes ± j for each y € SU(2) and

Ker(ir) n	 = {(1,1),(-1,-1)} so, again H is conjugate to the standard

representation of SO(3) in SO(4)

(vii) i	 is a torus

Then Fl is a torus. The subgroup (7) is a maximal torus in SO(4)

so H must be conjugate to a subgroup of (7). Hence H is conjugate to

the group (7) or a subgroup of the form (8).

In the next Chapter we will need the following:

Corollary 1.2.5

Any nontrivial compact subgroup of SO(4) not isomorphic to SO(3)

or SO(2) contains the mapping of	 which sends x to -x

Proof

If H E SO(4) contains this mapping then so does any subgroup conjugate

to H in SO(4) . The Corollary now follows by inspecting the possibilities

given by Proposition 1.2.4.

0

vof	 ,9
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1.3 Notation arid Assumptions

1.3.1 For a manifold M we have:

(i) M is assumed finite dimensional, smooth, paracompact with

countably many components.

(ii) The tangent bundle of M will be denoted TM with the

tangent space at X E M denoted TM . If D £ TM is a smooth

distribution on M then the corresponding subspace of TM will

be denoted

(iii) Diff(M) will denote the group of smooth diffeomorphisms of M

with Diff(M) denoting the orientation preserving ones.

C'-,
(iv) The universal cover of M is written M

1.3.2	 For a Lie group G we use the following notation:

(i) The identity element of G will be denoted e, id, or I

(ii) The subscript 0 will denote the connected component of the

identity in a Lie group. e.g. Aut 0 (G) denotes the connected

component of e in the automorphism group of G

(iii) The Lie algebra of a Lie group will be written in lower case

script letters. e.g. the Lie algebra of G is g , of

SL(2, IR)	 is .o(2, IR) etc.
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(iv) The centre of G is denoted Z(G)

(v) Ad (resp.ad ) will denote the adjoint representation of a

Lie group (resp. Lie algebra).

(vi) Aut(G), Der(g) will denote the automorphisni group of G and

the derivation algebra of g respectively. If c:H + Aut(G)

(resp. 4:h -'- Der(g)) is a homomorphism then G	 H (resp.

g	 h) will denote the semi-direct product of G by H

(resp. g by Ii) with action	 . If thereisno possibility

of misunderstanding then G	 H will be written G 	 H
cL

(vii) K > G —>H will denote a short exact sequence of groups

- i.e. ct injective,	 surjective, Im(c) = Ker()

1.3.3 The triple (M,G,c) will denote a Lie group G acting smoothly

on a manifold M via the map a:GxM + M . If there is no possibility

of confusion (M,G,c) will be written (I"l,G) and 	 (g,x) as gx or

g(x) . For x € M the stabilizer of x will be denoted G . If G

acts transitively on M with compact stabilizer and M is simply

connected then (M,G,c) is called a geometry. For a geometry we will

make the following assumptions:

(i) G is connected.	 -

(ii) (M,G,ct) is maximal.

(iii) M is equipped with some G-invariant Riemannian metric usually

denoted by <—,—>

(4iv) M has the real analytic structure induced from the equivalence

between (M,G,c&) and (G/G,G)
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(v)	 There is a discrete subgroup r £ G such that M/r is a

manifold of finite volume with respect to the measure inherited

from a G-invariant volume form on lvi

1.3.4 If f:A + B is a mapping and C E A a subset then f I C will

denote the restriction of f to C

1.3.5 The n dimensional sphere, Euclidean space and Hyperbolic space

will be denoted Sn , E	 and H	 respectively.

1.3.6 As usual IN,ZZ,	 , IR, U, 11-1 will denote the natural numbers, integers,

rationals, real numbers, complex numbers and quaternions. The orthogonal,

unitary and special linear groups will have their usual notation SO(ri)

SU(n) , SL(n, IR)

1.3.7 We assume some familiarity with the ideas associated with the theory

of foliations. (See [ 3 ] Chapter 1.)
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CHAPTER 2	 FIBERING GEOMETRIES.

2.0 Introduction

We will show that for a geometry (M,G) the existence of G-invariant

distributions on M will enable us, in some cases, to fibre a geometry

over a simply connected manifold of lower dimension. The fibering of M

is G-invariant so the action of G descends to give an action of G on

the quotient. However the action of G on the quotient space does not,

in general, have a compact stabilizer and is therefore not always a geometry.

In Section 1 we prove some general statements about G-invariant distributions

and their integrability. In Section 2 these results are applied in two

situations that will concern us in Chapters 3,4,5. We will assume that

M is provided with the analytic structure given by the equivalence between

(M,G) and (G/G,G) together with a G-invariant Riemannian metric.

2.1 G-invariant Distributions

If D is a distribution on M then for x E M we denote by Dx the

corresponding subspace of Tivi . We first have the following, standard,

proposition.

Proposition 2.1.1

Let F be a G-invariant foliation on M = G/GX . Then there is a

connected Lie subgroup L of G containing G	 such that the leaves of

F are the translates of L/GX by elements of G
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Proof

First note that if L is a connected Lie subgroup of G con-

taming G	 then the translates of L/GX by elements of G obviously

form an (analytic) foliation of GIG . For a G-invariant foliation F

we denote by TF the corresponding sub-bundle of TM . If p:G + G/GX

denotes the quotient map then it is easy to see that dp(TF) is a left

invariant distribution on G . If we identify the Lie algebra g of G

with the space of left invariant vector fields then dp(TF) is a sub-

space of g containing g . The integrability of TF obviously implies

the integrability of dp(TF) . Hence dp(TF) isa subalgebra of g

If L is the corresponding connected subgroup then L contains G 	 and

p(L) = L/G	 is a leaf of	 F . The result follows.
x	

U

It would seem that from the existence of a G-invariant foliation one

can construct a fibre bundle L/GX + G/GX + GIL . For this to hold it is

necessary that L be a closed subgroup of G

Proposition 2.1.2

Let F be a G-invariant foliation and let L be the corresponding

subgroup of G given by Proposition 2.1.1. Then L is closed if for each

x E M TF contains the space of vectors left fixed by the action of G

on TM . In this case the projection r:M + M/F has the G-equivariant

fibre-bundle structure L/ GX - G/GX + GIL with GIL simply connected.

If	 :G -'- Diff(MIF) denotes the G action on MIF then 	 (G) is

orientation preserving and Ker() n G = g€GIdgI(TF) 1 = id}

Here (TF)	 is the orthogonal complement of TF 	 in TM
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Proof

To show that L is closed it is sufficient to show that the leaves

of F are closed. By the transitivity of G on M we need only show

that one leaf of F is closed. Let F

	

	 denote the leaf of F through
0

the point x0 € M and exp :T M	 M the Riemannian exponential map at
x0 x0

x0 . If B(x0 ,E) is the ball of radius	 around 0 in TF	 we set

N (E) = exp (B(x ,c)) . Choose c	 sufficiently small that
x0	x0	 0	 0

(i) N () is an embedded disc transverse to F
x0

(ii) Any point x 1 € N () is joined to x 0 by a unique
x0

•geodesic lying in N ()
x0

Assume that there is a point x1	x0 in F	 n N (€) . If g €
0	 0

then g(F ) = F	 and g(N	 = N (c.) . Thus g(N () ri F ) =x0	x0	 0	 0	 0	 0

= N (ce ) n F	 . Since G	 is connected the subset {g(x 1 )g €	 }
0	

O	 x0	
0

is a connected subset of F	 n N () . But F	 n N (ce) is countablex0	x0	 x0	 x0

since N (c) is transverse to F . It follows that g(x 1 ) = x1 for
0

each g € G	 . If y:[0,l] ^ N ()	 M is the unique shortest geodesicx0	x0	 -

connecting x0 and x1 then each g € G	 must fix y pointwise. Thusx0

dg (y'(0)) = y'(0) and so, by hypothesis, y'(0) € IF	 . This is a con-
0	

x0

tradiction and we must therefore have F	 n N	 = {x0 } . This implies
x0	x0
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that L is locally closed in G i.e. there is a neighbourhood U of

L in G such that L = U n E . But a locally closed subgroup of a Lie

group is closed. Hence L is closed.

Since L is closed the quotient	 :M -* M/F is given by the fibre

bundle projection	 :G/G -'- GIL with fibre L/GX . Clearly 	 is G-

equivariant for the actions of G on GIG	 and GIL . From the exact

homotopy sequence of a fibre bundle we have

-' ir 1 (M) + ir 1 (M/F) -' ir0(F)

where F denotes a typical leaf of F . Now ir 1 (M) = 0 by hypothesis,

and ir0 (F) = 0 since F is connected. It follows that 7r 1 (M/F) = 0 and

M/F is orientable. Since	 (G) is connected it must preserve any choice

of orientation on M/F

To demonstrate the final statement let g € Ker() n G 	 and let
xO

N	 be the transverse neighbourhood defined above. If F	 is the
xO	x

leaf of F through x € M then g(F) = F 	 and so g(F n N (ce)) =x	 x0

= F n N ( ) . It follows that gN Cc 0 ) = id . Hence dg (IF ) = id

Now assume that there is a g c G	 such that dg I (TF ) = id . ThenxO	2(

clearly gJN ( c 0 ) = id and so	 (g) is the identity in a neighbourhood

0

of	 (x0 ) . But the action of	 (G) on M/F is analytic. Thus

(g) = id and g c Ker() n G
xO

U
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We pause to point out a trap for the unwary. It is tempting at

J_
this stage to try and project the metric on (TF) 	 down to a metric on

M/F . The idea is that the group	 (G) would act by isometries for

this metric and that (M/F,(G)) would be a geometry. That this is not

necessarily the case will be demonstrated by counterexample in Theorem

4.2.2. In the proposition below we give some simple conditions for

(M/F,(G)) to have a compact stabilizer.

We denote by exp:TM -'- M the Riemannian exponential map and by

B(x,c) E (TF)	 the ball of radius c around 0 . We choose 	 > 0

such that exp:B(x,c0) + N £ M is an embedding transverse to F for

each x E M . If x,,x0	F	 there is a holonomy map cr(x0,x1)

	

I	 X0

U	 c N	 -- U	 c N	 . Using this notation we have:
xO_ xO	xl— xl

Proposition 2.1.3

With the notation of Proposition 2.1.2 the following statements are

equivalent for F with closed leaves.

(a) The action of	 (G) on M/F has compact stabilizer.

(b) There is a G-jnvariant metric on M and a metric on M/F

such that for each x E M	 d: (TF) * T(X)M/F is an

iSometry.

(c) For some G-invariant metric on M we have

da(x,y):(TF)	 (TFYL an isometrytf(x) = (y)
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Proof

We first remark that for all x e M the map 
d: ( TF ) -- TM/F

is an isomorphism.

(a) <=> (b)

If the stabilizer in	 (G) of y € M/F is compact then there is

a	 (G) invariant metric X on M/F . If <,> denotes the original

G-invariant metric on M we define a new metric <,>' on M by the

conditions

(i) <u,v> =	 u,v € IF

(ii) <u,v> = 0 if u € TF , v € (TF)

(iii) <uV>x =	
if u,v c (TFX)L

To show that <,>' is G-invariant we need only show that dg:(TF) -'

(TFg(x))	 is an isometry for <,>' . But this follows immediately from

the fact that gIN =	 o ( I N ) . Conversely if

we have metrics satisfying (b) then the formula	 (g)(N) =

= (CI 11 g(x)) o (gIN)o(IN)	 shows that	 (G) acts by isometries

on (M/F,A)

(b) <=> (c)

We have, for	 x,y € F 3 ( I N )	 (N) o a(y,x) .

Hence (dcx I(TFx ) 1 Y (d	 (TFy ) 1 ) = di(x) . If (b) holds then

da	 is an isometry. Conversely if y € M/F and	 (x0 ) = y we can

definean inner product on TIM/F by:
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A (y)(u,v)	 <(dc	 TF1 )(u),(d	 ITF )1
=	

0	 0	 0

For another point x1	we have	 N	 = I No ( x1, xo) • Soxl	
0

if (c) holds we have X	 ') =	
(y) . Hence we obtain a well defined

0	 1

metric x satisfying (b).

Corollary 2.1.4

If Ker () is transitive on F	 for each x E M then	 (G) acts

on M/F with compact stabilizer.

Proof	 -

If x,y	 F	 and g(x) = y with g € Ker() then g I N = (x,y)

Since dg:TF ^ TF	 is an isometry the result follows from 2.1.3(c).

0

2.2 Applications

We present two simple applications of the propositions in 2.1.

Theorem 2.2.1

Let P denote the distribution defined by P = {v€TMIdg(v) = V

for all g € G} . Then P is G-invariant, parallelizable and integrable

with G-invariant foliation F . The projection	 :M ^ M/F	 gives M

the structure of a principal fibre bundle over M/F . In addition

(a)	 M/F is simply connected.

0
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(b) There is an orientation preserving action of G on M/F

such that r:M + M/F is G equivariant.

(c) If	 :G ^ Diff(M/F) denotes the action of G on P1/F

then Ker() n G = {e} for each x € M

(d) If g E G	 then gF = id
x	 x

Proof

Let V denote the vector space of G-invariant vector fields on M

Clearly V is a finite dimensional Lie algebra. If X E V and g € G

then dg(X(x)) = X(x) so we have a mapping p:V -- P	 for each x c M

Clearly 
p 

is injective. If X(x0) 
€ 

P

	

	 we can define a G-invariant
0

vector field X by X(x) = dg X(x0 ) if g(x0 ) = x . Hence p	 is

surjective. It now follows immediately that P is G-invariant, parallel-

izable and integrable. From Propositions 2.1.1 and 2.1.2 there is a closed

connected subgroup L E G such that the quotient	 :M - M/F is given by

the fibre bundle L/G	 - GIG	 - G/L	 We wish to show that L is the
xO	xO

connected component of e of the normalizer of G 	 which we denote
xO

NO ( GX ) . Clearly G	 acts trivially on L/G	 so gLi] = [2..] for
0	 xO	 xO

g € G , 2. € L where [2.] denotes the coset 	 ZG	 of £ in G
x	 x,

This means that g. = g' for some g' € G	 i.e. £ 'g2. €xo	
0

Hence L c NQ (G )	 It is also clear that G	 acts trivially onxO	xO

NQ(G )/G	 If VL(g ) denotes the subalgebra of g corresponding
0	 0	 X0
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to No(G) and p:G	
GIG	 is the projection then it follows that

xo

dg	 = id on dp(n(g )) for g E G	 Hence dp(vL(	 )) E
xO	 0	 xO•	 xo	 xo

and n (2 ) is contaifl ed in the subalgebra of g corresponding to L
xO

It follows that N (G ) £ L . Thus L = NQ (G ) and the fibre of
0 x0	 xo

(G )IG-' M/F is the group N0 x
0	x0

Both (a) and (b) are ilTillediate from Proposition 2.1.2 and (d) follows

since G	 acts by isometries on F	 in the metric induced from M

Finally (c) follows from Proposition 2.1.2 after observing that if g 	 G

is such that dg P = id then dg = id and then g must be the identity.

-.	 0

We now consider the case when G	 is isomorphic to a torus.

Theorem 2.2.2

If G	 is isomorphic to a torus and 	 =	 dg(v) = v V g€G}

is trivial for each x € M then any irreducible G-invariant distribution

Q is integrable. If F is the corresponding G-invariant foliation then

the projection	 :M ^ M/F gives M the structure of a fibre bundle over

M/F . In addition

(a) Mu	 is simply connected.

(b) There is an orientation preserving action of G on MIF with

respect to which r:M + MIF is G equivariant.
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(c)	 In the metric induced from a G-invariant metric on M

the leaves of F are isometric to E 2 ,H 2 or S2

Proof

If Q is a non-trivial G-invariant irreducible distribution on M

then dim(Q) = 2 . If we form the exterior power A 2Q there is an induced

action of G	 n A2Q . Since	 acts on Q	 with determinant 1 the

action of	 on (A2Q)	 is trivial. Hence, by Schurs Lenina, there are

no non-trivial G	 equivariant homomorphisms from (A2Q)x to

Let q:TM 4- Q	 be the orthogonal projection. If X 1 and	 are two

vector fields spanning Q over an open set U E M then (aX1+bX2)A(cX1+dX2)

= (ad-bc)X 1 AX2 and q[aX 1 +bX2 ,cX 1 -i-dX2 ] = (ad-bc)q([X 1 ,X2 ]) on U

Therefore there is a well defined G equivariant bundle homomorphism

2	 .	 .	 .
p:A Q -- Q	 given by X 1 AX2 + qLX 1 ,X2 ] which is linear over the ring of

C	 functions on M . Hence p must be trivial. It follows that [X1,X2]

is a vector field in Q if X,X2 are vector fields in Q . Thus Q is

integrable. The fibre bundle structure is given by Proposition 2.1.2.

The statements (a) and (b) follow from Proposition 2.1.2. To show (c)

let K = {g E G	 g(F) = F} .	 acts transitively by isometries on

in the induced metric. Hence the universal cover	 of	 with the

22	 2
metric lifted from	 is isometric to E ,H	 or S . If

p:K ^ Isom(F) is the obvious homomorphism then pIG	 is non-trivial

by the hypothesis	 = {O} . The only Euclidean or Hyperbolic manifolds

with a transitive group of isometries possessing a non-trivial connected
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stabilizer are E2 or H2 . Hence F	 isometric to E 2 or H2 implies

that F	 is isometric to [2 or H 2 . Assume that F	 is covered by

S2 . Since G	 is connected for each x M it preserves orientation

on Q	 and so the leaves of F are orientable. Therefore F must bex	 x

isometric to

U

Rema rks

(1) If the foliation F has leaves isometric to S 2 i cocw, 1-to.t

K = {g € G	 g(F) = F} is compact for each x € M . The action

of	 (G) on M/F has compact stabilizer.

(2) If the. leaves of F are isometric to H2 then K = {gEGlg(F) = F}

is isomorphic to a quotient of SL(2,IR) and is therefore simple and

non-compact.	 (K) is the stabilizer of	 (x) . There is a homo-

morphism p:(K) -' GL(2(n-1),IR) determined by the derivative. Then

Ker(po(IK)) is either	 or a discrete central subgroup of

(K	 is connected). If Ker(po((K))) K 	 then	 (K) contains a

non-compact closed subgroup and (M/F,(G)) is not a geometry. If

Ker(po(IK)) =	 then it is easy to see that (M,G) is equivalent

to (H2 ,PSL(2, IR)) x (M/F, G/Ker())
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CHAPTER 3 : SYMMETRIC SPACES.

3.0 Introduction

In this chapter we will consider the four dimensional geometries

whose stabilizer subgroup is non-trivial and not isomorphic to S0(2)

From Proposition 1.2.4 the remaining possibilities for G	 are S0(4),SW)

S0(3) , S(U(2)xU(l)) and S0(2)xSO(2) . It will be shown that the

maximal geometries are the simply connected four dimensional Riemannian

globally symetric spaces. If M is such a space then the existence of

a discrete group r of isometries of M with r\M a compact manifold

is shown in Borel [ . 1.

3.1	 S0(4),S(U(2)xU(l)),S0(2)xSO(2)

For these cases the classification is particularly simple.

Theorem 3.1.1

If (M,G) is a maximal four dimensional geometry with 	 ' S0(4),

S(U(2)xU(l)) or S0(2)xSO(2) then for some G invariant metric M is

isometric to one of the following spaces:

(a) Spaces of constant curvature : H4,E4,S4.

(b) Complex Projective space	 P 2 = SU(3)/S(U(2)xU(l))

Complex Hyperbolic space	 H 2 = SU(2,l)/S(U(2)xU(l))

(c) Products of two dimensional geometries:

22	 22	 22	 22	 22
ExS ,ExH ,SxS ,SxH ,HxH
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Proofs

(a) If	 S0(4) then, since	 is transitive on two-planes in

TM , any G-invariant metric on M must have constant curvature.

N is simply connected and therefore must be isometric to H 4 ,E 4 or S4

(b) If	 is isomorphic to S(U(2)xU(l)) then by Corollary 1.2.5 M is

a Riemannian symetric space with respect to any G-invariant metric.

The only irreducible Riemannin syniiietric spaces with this stabilizer

are (see Helgasori [ C ] pg.3):

Complex Projective Space	 P 2 = SU(3)/S(U(2)xU(1))

Complex Hyperbolic Space	 H 2 = SU(2,1)/S(U(2)xU(1))

and these spaces are both simply connected. As they are written here

G does not act faithfully on M since in both cases the centre Z(G)

of G is contained in	 . However Z(G) = {wI € GL ( 3 ,)I w3 = l}

and it is easy to see that S(U(2)xU(1)Z(G)	 S(U(2)xU(l))

(c) If	 is isomorphic to S0(2)xSO(2) then again, by Corollary 1.2.5,

M is a Riemannian symmetric space for any G-invariant metric. If M

22	 22
is reducible we must have N isometric to one of E xS , E xH

22	 22	 22
S xS , S xH , H xH . There are two further possibilities:

N = S0(4)/S0(2) x S0(2)

M = S00 (2,2)/S0(2) x S0(2)

where S00 (2,2) is the connected component of the identity in the

2222
subgroup of GL(4, IR) preserving the quadratic form q(x) = x1-i-x2-x3-x4
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If M = SO(4)/SO(2) x 50(2) then Z(S0(4)) 	 S0(2) x 50(2) and

S0(4) does not act effectively on M . It is easy to see that

S0(4)/Z(S0(4))	 S0(3)xSO(3) . Hence M is isometric to

S0(3)xSO(3)/S0(2)xSO(2) = S 2xS2 . Finally S00 (2,2) is isomorphic

to SL(2, IR) x SL(2, ]R)/C where C is the subgroup C = {(I,I),(-I,-I)}.

Thus the same argument shows that M is isometric to

PSL(2, IR)xPSL(2,IR)/S0(2)xSO(2) = H2xH2

D

3.2 W	S0(3)

In this case we know from Proposition 1.2.4 that the subspace of

vectors in TM left fixed by the action of 	 is one dimensional for

each x € M . If P denotes this distribution it is integrable with

G-invariant foliation F . By Theorem 2.2.1 the quotient space M/F is a

simply connected smooth manifold and we have a principal fibre bundle

F -'- M - M/F where F denotes a typical leaf of F . Since dim(P) = 1

F is diffeomorphic to R or S . There is also a homomorphism

-	 +
^ Diff (M/F) such that	 (G) acts smoothly and transitively on M/F

In the situation we are considering of dim(M) = 4 and	 S0(3) we have

the additional information.

Proposition 3.2.1

The pair (M/F,(G)) is a geometry equivalent to one of the spaces

E ,H ,S	 equipped with its maximal connected group of isometries. Ker()

is connected, central in G and transitive on each leaf of F
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Proof

We first note that by Theorem 2.2.1(c) the subgroup of 	 (G) fixing

a point of M/F contains a group isomorphic to SO(3) . We know that

dim(M/F)= 3 and M/F is simply connected. Therefore if (M/F,(G)) is

a geometry it is a maximal geometry and M/F has constant curvature for

any	 (G) invariant metric. Hence M/F with such a metric is isometric

to E 3 ,H3 ,S 3 and	 (G) is isomorphic to Isom 0 (E 3 ), SO(4), S00(3,l)

To show that (M/F,(G)) is a geometry it suffices, by Corollary

2.1 .4, to show that Ker(e) is transitive on each leaf of F . By Theorem

2.Z.t P is parallelizable and we have a G-invariant vector field X on

M such that X(x)	 0 ,	 IIX(x)II = 1 and X(x) E	 for each x € M

X is clearly globally integrable with a corresponding flow 	
t}	

that

conrnutes with the action of G on M . Now for each t JJ	 sends

each leaf of F onto itself and the group {4 t } t	acts transitively on

any leaf of F . Thus if we can show that	 is an isometry for each

t E IR then the maximality assumption on 	 (M,G) will imply that

	

€ Ker() for each t	 . Hence Ker() will be transitive on each

leaf of F and central on G . It remains, therefore, to show that

is an isonietry for each t ETR . Let Q denote the orthogonal complement

to P . For each t ]R	 conrnutes with the action of G on M so the

distribution 
Qt 

defined by Qt
	 = dt(Q ) is G-invariant. It now

/	 x x

follows, since the 	 invariant complement to	 is unique, that we

must have Q =
	

for each x	 M , t € IR . Hence Q is invariant under



- 33 -

the action of	
t}	

IR	
If v1 € Q , v	 Q	 and	 I	 = Iv Iix 1	2	 x2	 •l x1	2 x2

then there is a g € G such that g(x 1 ) = x2 and dg (v 1 ) = v 2 , and
xl

we have:

<d(v2),d(v2)>	 = <dtodg (v ),dtodg (v1)>

(x2)	
1	

(x2)

= <dgodt(v1),dgodt(v1)>

= <dt(v1),dt(v1)> t

(xl)

It follows that there is a homomorphism c: IR -'lR 	 such that

= a(t)2<v,v>	 for all x € M , v €	
. Hence dt

preserves angles and expands volumes by (c(t)) 3 . If r . G is a discrete

group and r\M is a manifold then the flow 	 descends to give a flow

t	 'ut	 3
on r\M . Then q	 still expands volume by (c(t)) . This contra-

dicts the existence of a quotient of finite volume unless c(t) = 1 for

all t € R . Hence	 is an isometry for each t € JR . Ker() is

connected since, for each x € M ,	 is connected, Ker0 () is transitive

on	 and Ker() n	 = {e}
EJ

We can now show that in the current situation the complementary

distribution to P is also integrable.
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Lemma 3.2.2

Let D be a smooth n-dimensional distribution on M and let

{X1 ,X 2 } , {Y 1 ,Y} be two pairs of vector fields in D such that for

some x0 € M X1 (x0 ),X2 (x0 ) are independent and the linear spans of

{X 1 (x0 ),X 2 (x0 )} and {Y 1 (x0 ),Y2 (x0 )} coincide.	 Then [X1,X2](x0) €

iff [Y 1 ,Y 2 ](x0 ) € D
xo

Proof

Choose vector fields X 3 ,...,X,. such that X1 ,...,X	 span D in

a neighbourhood of x0 . Then we can write	 and V 2 as:

n	 n

Y 1 (x) =	 z a.(x)X(x)	 ,	 Y(x) =	 b (x)X (x)

1=1 
1	 j=l :i

with ak( xO) = bk(xo) = 0 for 3 ^ k ^ n and a 1 (x0 )b 2 (x0 )-a2 (x0 )b 1 (x0 )	 0

Then we have

n
[Y 1 ,Y2 ](x) =	 f.(x)X.(x) + E (a b -a b )(x)[XX](x)

i=l'	
1	 iJ ji

for some smooth functions 	 . If x = x0 we obtain

[Y 1 ,Y2 ](x0 ) = zf(x0 )X(x0 ) + (a1b2-a2b1)(x0)[X1,X2](x0)

The result now follows since (a 1 b 2 -a 2 b 1 )(x0 )	 0
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If	 denotes the orthogonal complement to P	 in TM then

the	 form a smooth, G-invariant distribution on Fl . In the

current situation with 	 ' SO(3) we have

Proposition 3.2.3

The distribution Q is integrable.

Proof

We will first show that if there is a pair of vector fields X.,X2

in Q with X 1 (x0 ),X2 (x0 ) independent and [X,,X 2 J(x0 ) E Q	 for someI	 xo

x0 € Fl then Q is integrable. Secondly we will construct such a pair

of vector fields.

Let X 1 ,X2 be vector fields in Q with [X 1 ,X2 ](x0 ) € Q	 andxo

X 1 (x0 ),X2 (x0 ) independent. Let Y 1 ,Y2 be any two vector fields in Q

and set

= Ix € M	 [Y1,Y2](x) € Q}

Then c2 is closed and we wish to show that c = M . Let A denote the

set {x € M	 Y 1 (x),Y 2 (x) independent} and set B = M-A	 Now G is

transitive on M and	 is transitive on two-planes in	 . Therefore

if x E A we can choose g E G such that g(x) = x0 and the span of

{dg(Y1(x)),dg(Y2(x))} is the same as the span of {X1(x0),X2(x0)}

By Lemma 3.2.2 this implies that dg([Yi,Y2](x)) = [dg(Y 1 ),dg(Y 2 )](x0 ) E Qxo



- 36 -

Since Q is G-invariant, [Y 1 ,Y 2 ](x)	 . Thus A	 . Now let

x € Int(B) . If Y 1 (x)	 0 then Y 1 (y)	 0 for all y in some neigh-

bourhood N of x contained in B and we can write Y 2 (y) = ct(y)Y1(y)

for some function c:N #-]R . Hence [Y 1 ,Y 2 ] =	 on N	 and

[Y 1 ,Y 2 1(y) € Q, for all y € N . So x € 	 . Similarly if Y 2 (x)	 0

we have x €	 . Now assume that Y 1 (x) = Y 2 (x) = 0 . If either V1

or V2 is identically 0 in a neighbourhood of x then 11Y 1 ,Y 2 ] = 0

in a neighbourhood of x and so x €	 . If V 1 is not identically

zero in any neighbourhood of x there is a sequence of points	 xn}	 B

converging to x and such that Y 1 (x)	 0 for each n €IN . Now

x € c as already demonstrated. Thus x is a limit of points in c

and hence x € c since c2 is closed. We now have A £ 2	 and

Int(B)E c	 so M = A u Int(B) E

To complete the proof we must find two vector fields X 1 ,X2 in Q

such that X 1 (x0 ),X2 (x0 ) are independent and [X 1 ,X2 ](x0 ) E Q	 forxO

some x0 € M . Choose x0 € M and let Y 1 ,Y 2 ,Y 3 be a local basis for

Q in a neighbourhood of x 0 € M . Let X 1 = V3 and	 = aY 1 -l-bY 2 for

some a,b €IR . If	 :T M + P	 denotes the orthogonal projection then
xO	xO

the mapping X2 (x0 ) -	 is a linear functional on the span

of Y 1 (x0 ),Y2 (x0 ) in Q	 . It must have a non-trivial kernel so therexo

exist ct, €IR not both zero such that

[y3,cty1+y2](x0) €

0
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We can now determine the four dimensional geometries with stabilizer

isomorphic to S0(3)

Theorem 3.2.4

If (M,G) is a maximal four dimensional geometry with G	 isomorphic

to 50(3) then (M,G) is equivalent to (ExS 3 , IRxSO(4)) or

(ExH 3 , xS00(3,l))

Proof

By Proposition 3.2.3 the distribution Q is integrable and we denote

by L the corresponding G-invariant foliation. F will, as usual, denote

the foliation induced by P . We denote by F , L	 the leaves of F and

L through x € M . Combining Propositions 3.2.1 and 2.1.3 we see that

there is a	 (G) invariant metric X on M/F such that d: Q - T(X)M/F

is an isometry. We first wish to show that for any x € M the restriction

of	 :M -- M/F to L	 s an isometry onto M/F with respect to the induced

metric on L . Since	 :M - M/F is a bundle projection by Theorem 2.2.1

and L	 is transverse to F the map	 ^ (L) is a covering map onto

its image.	 Also, by the definition of the metric on M/F , 	 ^

is a local isometry. Since M/F is simply connected ft only remains to

show that	 (L) = M/F . Choose x0	M and denote by A the subset of

M A = ty E MIF n L	 . Then A = M iff	 (L ) = M/F . Using
y	 0	 x0

holonomy map of F it is easy to see that A is open. Now assume that

we have a sequence	 E A such that y ^ y0 . tIithout loss of generality
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we can assume that {y} c L	 . Then for each n € IN there exists a
yo

point x € F , n L	 . By Proposition 3.2.1 Ker() is transitive on

F	 so there is a g € Ker() such that 	 = x	 .	 Then
n

L	 so g(y0 ) € L	 . But g(y0 ) € F	 sog(L ) = g(L ) = L	 =

F	 n L	 0 . Hence A is closed. It follows that A = M since M
yO	 xQ

is connected.

By Proposition 3.2.1 the pair (M/F,(G)) is a geometry equivalent

to E3 , H3 , S 3 so we have an exact sequence Ker() >. G -Isom(M/F,x)

where Isom(M/F,x) is isomorphic to S0(4), S0(3,1), or Isom(E 3 ) and

Ker() is connected, central in G and isomorphic to IR or S 1 , Let

K	 denote the subgroup K	 = g € Gg(L ) = L } . Then G	 c KxO	xO	 xO	 xO	 xO	 xO

and K	 acts transitively on L 	 in the induced metric. By thexo	xo

previous paragraph 	 lL	 is an isometry onto (M/F,x) so we must have
0

(K ) = (G) . If g € Ker() n K	 then g(x0 ) € F	 n L	 . Butxo	
0	 0

from the previous paragraph we know that F	 n L	 = {x0 } . Therefore
0	 0

g € Ker() n G	 . Since Ker() n	 = {e} by Theorem 2.2.1(c) wexo	
0	 -

must have g = e . Hence	 JK	 is an isomorphism. The exact sequence
x0

Ker()	 G -->(G) now splits and, Ker() being connected and central

by Proposition 3.2.1, we have G 	 Ker() x K	 . Hence M	 Ker()xK /Gxxo	xO 0



- 39 -

Since M is assumed simply connected we must have Ker() 	 . The

result follows from Proposition 3.2.1 since (ExE 3 , IRxIsom(E 3 )) is not

maximal.

LI

3.3 Maximality

The geometries of 3.1 and 3.2 are simply connected Riemannian

globally symmetric spaces of the form (E nl x G h /K 1 , Isom(En ) x G')

where

(i)	 .G' is semi-simple and connected.

(ii.) There is an involutory autoniorphism a of G' such

that a(g) = g iff g € K'

For any metric on M = E'1 x G'JK' left invariant under the action of

Isom(En ) x G' it is known that Isom0 (M) = Isom(E) x G' (see [ , j

Chap. II, 4.1). Hence these geometries are maximal. The existence of

compact manifold quotients of a Riemannian globally symmetric space by

discrete subgroups of isometries is shown in Borel C . 1. Therefore the

geometries of 3.1 and 3.2 are maximal. 	 -
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CHAPTER 4: STABILIZER ISOMORPHIC TO SO(2):I.

4.0 Introduction

In this chapter we will determine the maximal four dimensional

geometries satisfying the conditions

Al : Gx is isomorphic to S0(2)

A2 : For each x € M there is a vector v € TM left

fixed by the action of

In the notation of Chapter 2 condition A2 means that the distribution

P of 2.2.1 is non-trivial. The case when 	 S0(2) and P is

trivial will be dealt with in the next chapter.

For the purposes of this chapter we denote P 1 by Q . Since

has even dimension dim(P) = dim(Q) = 2 . From Theorem 2.Z.i we know

that P is integrable with G invariant foliation F . There is also

a transitive action of G on the quotient space M/F such that the

quotient map	 :M -- M/F becomes a G equivariant principal bundle. In

Section 1 we show that there is a metric X on M/F for which 	 (G)

acts conformally. With respect to this metric (M/F,x) is conformally

equivalent to E2 , H2 or S2 . These three possibilities are considered

in sections 2-4. The geometries are, except for the one described in

Theorem 4.2.2, products of lower dimensional geometries.
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For the rest of this chapter the notations P,Q,t:M - M/F

+	 .
- Diff (M/F) will have the meanings ascribed in Theorem 2.2.1

and assumptions Al and A2 are in force.

4.1 Extensions of Theorem 2.2.1

We first show the existence of a metric on M/F with respect to

which	 (G) acts conformally.

Theorem 4.1.1

There is a Riemannian metric x on M/F with respect to which the

group	 (G) acts conformally and transitively. The pair (M/F,x) is

conformally equivalent to E2 , H2 , S2

Proof

We first note that d x : Qx + TC(X)M/F is an isomorphism for each

x	 M . Let x be a metric on M/F for which this map is conformal at

each x € M . Then the fact that	 :M -'- M/F is G-equivariant immediately

implies that	 (G) is a group of conformal diffeomorphisms with respect

to this metric. It remains to construct such a metric. If r(x) = (y)

we have a well defined map h(x,y) = dc,'od 	 :	 --'- Q . Now	 =

dim(Q) = 2 and	 is G equivariant. Hence h(x,y) is G	 equivariant.

It follows that h(x,y) is conformal since G	 preserves the metric on

and Q . Let {Ni}iEI be a collection of discs in M transverse
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to F and such that	 is a diffeomorphism onto its image V.

and the collection {Vj}jEJ is a locally finite covering of M/F

On each V 1 we can define a metric Xi such that d: Q + TC(X)M/F

is an isometry for x c 	 . If	
1iEI 

is a partition of unity

subordinate to {Vj}iEI then we define a metric A on M/F by

A(p)(u,v) =	 .(p)x(p)(u,v) . Since h(x,y) is conformal it follows

that if p E M/F the metrics x(p) are conformally equivalent. Hence

- T , M/F is conformal with respect to A

From Theorem 2.1.3(a) we know that M/F is simply connected.

Since dim(M/F) = 2 we can use the theorem giving the existence of

isothermal coordinates and the uniformization theorem to conclude that

22	 2
(M/F,x) is conformally equivalent to E , H	 or S . We therefore

choose the metric on M/F to be one of these three possibilities.

0

In the case being considered dim(G) = dim(M) + din1(G) = 5

Since dim(M/F) = 2 ,	 (G) is transitive on M/F and 	 IGX is an

isomorphism, by Theorem 2.2.1(c), we have dim((G)) 	 3 . Hence

dim(Ker()) ^ 2

Proposition 4.1.2

Suppose dim(Ker()) = 2 . Then Ker() is connected, abelian,

central in G and the pair (M/F,(G)) is a geometry.
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Proof

Assume that dim(Ker()) = 2 . We have dim(F) = 2 for each

leaf	 of F and so it follows from 2.2.1(c) that Ker() is

simply transitive on F . Since F	 is connected it follows that

Ker(r) is connected. Since dim(M/F) = 2 (M/F,(G)) is a geometry

by Corollary 2.1.4. Now Ker() is closed and normal in G and hence

2
unimodular by Proposition 1.1.4. Therefore Ker() =IR . To show that

Ker() is central we will use a technique similar to that used to prove

the analogous statement in Proposition 3.2.1. We recall that P is

parallelizable by G invariant vector fields (Theorem 2.2.1). Let X1

and	 be two such vector fields. The Lie bracket of two G-invariant

vector fields is G invariant. Hence, P being integrable, we have

[X 1 ,X 2 1 = aX 1 -i-bX 2 for some a,b €IR . Thus {X 1 ,X2} span a finite

dimensional subalgebra (a of vector fields on M . Both X1 and X2

are completely integrable and so by Palais C Q ] there is a connected

Lie group K acting on M with the following property (K integrates ía):

If kt is a one parameter subgroup of K and Y

is the vector field defined by Y(p) = ---- (kt(p))t	
t=o

then Y€la .

The action of K on M sends any leaf of F to itself and commutes with

the action of G . In particular the actions of K and Ker() restricted

to any leaf F	 of	 F cormiute. Since Ker() is abelian and simply
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transitive on	 this implies that if k	 K there is a g € Ker()

such that k I F = gIF . To see this represent the action of Ker()

on F	 as a group acting on itself by left translations. Then K must

act by right translations which coincide with left translations since

Ker() is abelian. It follows that K acts by isometries on F	 in

the induced metric and therefore acts on P by isometries. If k € K

the distribution 
Qk 

defined by Qk = dk(Q 
-1	

is G invariant.
X	

k(x)

Since the G_invariant complement to	 is unique we must have Qk = Q

for each k € K . Therefore Q is invariant under K . Now K comutes

with G so it is easy to show that if k € K there is an x(k) cIR

such that <dkx( v ) dk x( v ) > k(x) = cL(k)<v,v>	 for each x € M , v E

The action of K descends to give an action on any manifold of the form

r a discrete subgroup of G . The existence of such a quotient

with finite volume implies that ct(k) = 1 for each k E K and so K

acts by isometries. The action of G on M is assumed maximal so K £ G

Therefore K = Ker0 () = Ker(e) . Since K commutes with G we conclude

that Ker() is central.

For the next three sections we assume that M,'F is equipped with a

metric A satisfying 4.1.1 and such that (M/F,A) is isometric to

22	 2
E,H	 or S .
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4.2 M/F has Euclidean metric

We are assuming in this section that (M,G) is a four dimensional

geometry with N/F diffeomorphic to R2 and that	 (G) acts conformally

2	 .	 .	 .	 +2
on IR	 with respect to the Euclidean metric. If we denote by C (E

the group of orientation preserving conformal automorphisms of E 2 then

(G) is a connected subgroup of C(E 2 ) transitive on E 2 and containing

a compact subgroup isomorphic to SO(2)

Proposition 4.2.1

+2	 +2
The group	 (G) is isomorphic to either C (E ) or Isom (E )

Proof

Since	 (G) is transitive on N/F and has non-trivial stabilizer

at each point of N/F by 2.2.1(c) we have dim((G)) ^ 3 . If

+ 2
dim((G)) = 4 then r(G) = C (E ) since both these groups are connected.

If dim(r(G)) = 3 then, since dim(G) = 5 , dim(Ker(e)) = 2 . Therefore

by 2.1.4 (M/F,(G)) is a geometry. It is easy to see that in this case

2	 +2
(M/F,(G)) is equivalent to (E ,Isoni (E )) and so 	 (G) is isomorphic

+2
to Isoni (E )

El

We first show the existence of a geometry satisfying the first

possibility given by Proposition 4.2.1.
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Theorem 4.2.2

Let G be the group defined by	 IRxSO(2)) where a(t,O)

is given in matrix form by

etCoso

ct(t,O) =	 _etSino

0

t.
eSine	 0

etCoso	 0

0	 e2

and let K denote the subgroup of G defined by K = f(O,0,0,0,o) I

0 € [0,2ii)} . Then (G/K,G) is a maximal four dimensional geometry

satisfying the condition that (M/F,(G)) is equivalent to (E2,C(E2))

Proof

The proof will be in three parts. First we will show that there is

a discrete subgroup r £ G such that r\G/K is a compact manifold. Then

(G/K ) ) will be shown to be maximal. Finally we show that (M/F,(G)) is

equivalent to (E2,C(E2))

Let	 be the group	 IR where the action of IR on 1R 3 is

given by
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This group has a compact group of automorphisms isomorphic to SO(2)

given by

= (x1 Coso-i-x2 SinO,-x1Sino+x2Coso,x3,t)

It is easy to see that there is an isomorphism 	 :G + G 1 v SO(2) which

sends K onto the subgroup K1 = {e} x SO(2) . It follows that the

geometries (GfK)C) and (G1	 SO(2)1K1 , G 1	SO(2)) are equivalent.
2

It will be shown in 6.4.9 that for some X there is a discrete subgroup

r £	 , such that r\G 1 is compact. So l(r)\G/K is a compact

manifold. Therefore (G/K,G) is a geometry.

Assume that (G/K,CR) is not maximal. Then we can find a left

invariant metric A on M = G/K such that (M,X) is isometric to one

of the syninetric spaces of Chapter 3. Let	 (M,Isom0 (M,)) be the

corresponding maximal geometry. There is an embedding p:G + Isom0(M)

where ip(G) is a closed subgroup of Isom 0M . Since G/K is diffeo-

morphic to JR4 (M,A) cannot be isometric to E 2xS2 , S 2xK2 , S2xS 2 , ExS3,

4	 2	 ..	 ....	 2222	 344S	 or	 P	 . The remaining possibilities are E xH , H xH , ExH ,H ,E

all of which have non-positive curvature. Le	 be the group

1RM IR where JR acts by

/et	 0	 0

3 (t) =	 0	 et	 0

0	 0 e?t
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Clearly G ' G2 <SO(2) . A G invariant metric on G/K corresponds

to a left invariant metric on G 2 which is also invariant under the

action of SO(2) . The existence of such a metric of non-positive

curvature was shown above. Now	 is unimodular and
3

where

1	 0	 0

M 3 =	 0	 1	 0

0	 0	 -2

As noted in Theorem 1.6 of [ ' I one can use the results of sections

5.2, 4.4,6.2 of [ ! 1 to show that JR must be orthogonal to

1= P..	 and that M3 is skew-adjoint with respect to an inner

product on JR3 . If A is a positive definite matrix then the adjoint

of M3 with respect to the inner Product <Au,v> is given by M 3 = AMA'

where M 3 denotes the transpose. But 	 = 1 3 so	 = -M3 implies

that M 3 and -M3 have the same eigenvalues. This is clearly not the

case. Hence (G/K,G) is maximal.

Representing G/K as JR4 the action of g = (u 1 ,u 2 ,u 3 ,u4 ,e) on

G/K is given by

U	 U
g • (x 1 ,x2 ,x3 ,x 4 ) = (u 1 +e 4 (x1 Coso+x2Sine),u2 -e 4(x1Sino-x2Coso)

-2u4
u 3 +e	 x3,u4+x4)
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The leaf of F through (x 1 ,x2 ,x 3 ,x4 ) is given by

F(xxxx4) = {(x1,x2,t, ․ ) 
J 
t,s	 IR}

and therefore the action of G on M/F is

U	 U

g(x1 ,x2 ) = (u 1 ^e 4 (x1 Coso-t-x2Sino),u2 -e 4(x1Sino-x2Coso))

Clearly, then,	 (G) is the conformal group of E2 and

Ker() = {(O,O,u,O,O)(u €IR} which has dimension 1
0

In fact the geometry of Theorem 4.2.2 is the only four dimensional

one satisfying the condition that 	 (G) = C(E2)

Theorem 4.2.3

If (M,G) is a four dimensional geometry with the pair (M/F,(G))

equivalent to (E ,C (E )) then (M,G) is equivalent to the geometry

described in Theorem 4.2.2.

Proof

The following facts about C(E 2 ) will be needed:

+2.
Fl: The universal cover C (E ) of C (E ) is 	 v<t with

z
the multiplication (z 1 ,z 2 )(w1 ,w2 ) = (z 1 -i-e 2w1,z2-fw2)
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Topologically C(E 2 ) is JR4 with the multiplication

x
(x 1 ,x2 ,x3 ,x4 )(y1 ,y2 ,y3 ,y4 ) = (x1 + e 3(y1Cosx4-y2Sinx4)

x2 
+ eX3(y2Cosx4^y1Sjnx4)

x3 + y3,x4-Fy4)

F2: With respect to the multiplication on ]R 4 given by Fl a

basis for the Lie algebra c(E 2 ) is given by the left invariant

vector fields:

x	 x
x 1 = e 3 (Cosx4 /x1 +Sinx4 /x2 ) , X 2 = e 3(-Sinx4/x1^Cosx4/x2)

X3 = /x3, X4 =

and so the Lie algebra c.(E 2 ) is given by:

= {X1,X2,X3,X4 I [X 1 ,X2 1 = 0 , [X3 ,X4 ] = 0 , [X 1 ,X 3] = -X1

[X2 ,X3 ] = -X2 , [X 1 ,X4 ] = -X2 ,[X2 ,X4 ] = X1}

F3: Let g = (x 1 ,x2 ,x3 ,x4 ) then the adjoint map Ad:G - Aut(g) is given by:

X,

e Cosx
x

Ad(g)	 =	 e 3Sinx4

0

0

x',
-e Sinx4

e 3Cosx4

0

0

-xl - x2

-x2	-x1

1	 0

0	 1

The modular homomorphism A	
2	

of C(E2 ) is given by
Ct (E )
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C(E2)	
= Idet(Ad(9))I so we have:

C^(E2)(1234 
= e3

(i) We have an extension Ker()'^ G 4C(E 2 ) with dim(Ker()) = 1

Let Ker0 () denote the connected component of e in Ker() and let

4:C(E2 ) -'- Aut0 (Ker0 ()) denote the homomorphism induced by conjugation.

By Proposition 1.1.3 G must be unimodular since we are assuming the

existence of a quotient of finite volume. Since Ker 0 () is closed in

G it follows from Proposition 1.1.4 that 	 is non-trivial. This, in

turn, implies that Ker0 () cannot be isomorphic to SO(2) so we have

Ker0 () IR , Aut0 (Ker0 ()) ' IR	 and Idet d(g) = 4(g) for each

g € C(E2 ) . By Proposition 1.1.4 Idet d(g) =	 2 (g) so, from

-2x	 C(E)

F3 above,	 x1,x2,x3,x4)•t = e	 3t for t € Ker0 () . If

--1R is the induced homomorphism of Lie algebras then, for the

basis {X 1 ,X2 ,X 3 ,X4} of F2 above we have 4(X 1 ) =	 = 4(X4 ) = 0

= -2Y where V is a basis for I as a Lie algebra.

(ii) Fix a point x0 	M . Then, since IF1 is irreducible and

G-invariant there is an irreducible ad(g ) invariant two dimensional
x0

subspace	 g such that dq(k) = IF1 (here g is regarded as left

invariant vector fields on G and q:G + GIG	 is the quotient map).
xO

Let	 :g + (E 2 ) denote the homomorphism induced from	 and h. E (E2)
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the ideal corresponding to translations. Then 	 ri	 is

ad(g ) invariant since	 is an ideal of g . Now
xo

dim((k)) = 3 and dim(/L) = 2 SO /L n	 {O} . Hence

c	 . Now since IL is irreducible and	 ,Ker()] £ Ker()
0

we also have e, ii injective.

(iii) The Lie algebra of G is spanned by {Y 1 ,Y 2 ,Y 3 ,Y4 ,Y 5 } where

= 0 ,	 = X 1 for 2 ^ i ^ 5 . By (ii) we can assume that

=	 , [Y 3 ,YJ = -Y 2 , [Y2 ,Y 3] = aY 1 since {X 1 ,X2 ,X 3 } spans

the subalgebra of C(E 2 ) corresponding to Isom(E 2 ) . From (i) we

have [ Y 1 , Y 2 ] = [Y 1 ,YJ = [Y 1 ,Y5 1 = 0 , [Y4 ,Y 1 ] = -2Y 1 . Hence

9 =	 l23 ' 4 '5	 = 2Y 1 ,[Y 2 ,Y 3 1 = aY 1 ,[Y 2 ,Y5 1 =

[Y 3 ,Y 5 ] = 
''2	

=	 =	 = 0 , [Y 4 ,Y 2 ] = Y2-i-bY1

[Y4 ,Y 3 11 = V 3 + cY 1 , [Y 4 ,Y 5 ] = dY1}

is a presentation of g for some a,b,c,d €IR . Now we have:

2 Y 3 ' 4	 + [Y4,[Y2,Y3]] ^ [Y3,[Y4,Y2]] = -4aY1

[Y4,[Y3,Y5]] + [Y5,[Y4,Y3]] + [V 3 ,[Y 5 ,Y4 11 =

[Y4,[Y2,Y5]] + [Y 5 ,[Y 4 ,Y 2 ]J + [Y2,[Y5,Y4]] = cY1
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Therefore, since g is a Lie algebra, we must have a = b = c	 0

Now {Y 1 ,Y 2 ,Y 3} spans an abelian ideal with a complementary abelian

subalgebra spanned by {Y4 ,l/2dy 1 ^Y5 } . Hence g ' JR 3 	where

acts by the comuting matrices

1
	
00	 01	 0

T1 =	 0
	

1	 0	 ,	 T 2 = -1	 0	 0

0
	
0-2	 000

An easy calculation shows that the universal cover G of G is given

by P 3 r JR2 where

eSCost

c(s,t) =	 _eSSint

0

S.
eSint	 0

S
eCost	 0

0	 e2

The centre of G is Z(G) = {(0,0,0,0,2kir) €n 5 1k €} . Thus if

G is to act effectively on M we must have G = G/Z(G) and the maximal

compact subgroup of G is isomorphic to S0(2) . Clearly G is isomorphic

to the group of Theorem 4.2.2 so (M,G) is equivalent to the geometry

defined in 4.2.2.

U

+ 2	 .
Moving on to the case (G) = Isom (E ) we again have a unique

maximal geometry satisfying this condition. We denote by N the nilpotent

group of matrices:
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1'
	

x y

	

N = {(0
	

1	 z	 x,y,z€TR }

	

\0
	
01

and by K the group of automorphisms of N isomorphic to S0(2)

given by:

1	 x	 y	 1 xCoso-i-zSine	 y_xzSin2e+l/45jn20(z2_x2)

K(o)	 0	 1	 z	 =	 0	 1	 -xSino+zCose

001	 0	 0	 1

Lemma 4.2.4

The group K x {id} is a maximal compact group of automorphisms of

Nx.

Proof

Since N xIR is simply connected we need only show that the maximal

compact group of automorphisms of the Lie algebra n x ]R is isomorphic

to S0(2) . Now vi x]R is given by:

vi x IR = {X 1 ,X 2 ,X3 ,X4 1[X4 ,X.] = 0 for 1 ^ j ^ 3 , [X,X2 ] = 0

[X 1 ,X 3 ] = 0 , [X2,X3] 
=

With respect to this basis Aut(n x IR) is given by:

	

a
	

b1	 c1
	

d1

	Aut(vi xIR) = { 0
	

b2	 C2
	

0	 b2c3-b3c2 = a}

0 b3 C3 0

	

0
	

b4	 C4
	 d2



	1 	 b

	

R = {0	 1

00

	

0	 C1

b3

0	 b.,c.
13

0

C3

b2

0

1

C2

]R for 1 ^ j,j	 3 }

0

yl

0

0

xl

x2

0

x1y2-x2y1

S=f 0

0

0

0

0 I x1 y2 x2,	 0 }

0	
1

1
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It is easy to see that Aut(vi x IR) = R . S where

R is simply connected, closed, normal and solvable and S ' GL(2,IR)

It follows that a maximal compact subgroup of S is maximal compact in

Aut(vi. x IR) . The maximal compact subgroup of S is isomorphic to S0(2)

and so we conclude that K is maximal compact.

Theorem 4.2.5

Let G be the group (N xIR)	 S0(2) where ct(S0(2)) is the group

of automorphisms of N x IR described in 4.2.4. If we denote by K the

subgroup of G defined by K 	 {(e,0,A)IA € S0(2)} then (GJI<)C1 ) is a

maximal geometry such that (M/F,Z(G)) is equivalent to (E ,Isom (E ))

Proof

If r denotes the subgroup of N xIR consisting of the direct

product of	 LIR and the integral matrices in N then r\N xIR is



v\

1J

	

fl	 U
	n = 10	 1

0
t €TR , o E[O,27F)
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compact. Hence r\G/K is a compact manifold. Therefore (GJK)

is a geometry.

A G-invariant metric on G/K corresponds to a left invariant

metric on N xJR also invariant under the ad,joint action of K . Let

X be such a metric for which Isom 0 (N xlR,X) is maximal. By [	 I

N x R is normal in Isom0 (N x IR,x) so, denoting the stabilizer of e

by K' , we have a homomorphism c:K' + Aut(N) . Since K' is connected

and dke	 id for any k € K' the map c	 is injective and	 (K') is

a compact subgroup of Aut(N) containing Ad(K) . Since Ad(K) is

maximal by 4.2.4 we must have Ad(K) = (K') and so K = K' . It follows

that (G1Kç) is maximal.

Let g = (n,t,e) be an element of G with

If G/K is regarded as 1R4 with coordinates (x 1 ,x2 ,x 3 ,x4 ) then:

g(x1 ,x2 ,x 3 ,x4 ) = (u+x1Cose+x3Sino,x2-i-v-u(x1Sino-x3Coso)

+ 1I4(x-x)Sinae-x 1 x3Sin 2 ,w-x 1 Sin -fx3Coso

t + x4)

The leaf of F through (x 1 ,x2 ,x3 ,x4 ) is:
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F(xxxx) = C(x1,t,x3, ․ ) I t,s €}

and therefore the action of G on M/F is:

g . (x 1 ,x2 ) = (u,v) + A0 (x 1 ,x2 ) , A0 = I Coso Sing\
-Sino cose)

So	 (G) = Isom(E2 ) . We also have Ker() = {(O,t,O,s,O)It,s €IR}

which is the centre of N x IR, confirming Proposition 4.1.2.

LI

Theorem 4.2.6

If (M,G) is a four dimensional geometry with (M/F,(G)) equivalent

to (E2 ,Isom(E2 )) then (M,G) is equivalent to the geometry described

in Theorem 4.2.5.

Proof

We have an exact sequence Ker()>4- G --->Isom(E2) . By Proposition

4.1.2 we know that Ker() is abelian and central in G . At the Lie

algebra level, therefore, we have the exact sequence 	
2>4

2	 .	 +2where	 -óoni (E ) acts trivially on IR . The Lie algebra of Isom (E )

is given by:

om(E2 ) = {Y 1, Y2, Y 31 [Y 1 , Y2 ] = 0 , [Y 1 ,Y 3 ] = -Y2 ,[Y 2 ,Y 3 ] = Y}

Hence g is given by
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g = {X 1 ,X 2 ,Y 1 ,Y 2 ,Y 3	[X.,Y.] = 0 for 1 ^ i ^ 2 , 1 ^ j ^ 3

[Y 1 ,Y 2 ] = a 1 X 1 +a 2 X2 ,[Y 1 ,Y 3 ] = -Y2-1-b1X1+b2X2

[Y 2 ,Y 3] = Y 1 +c 1 X 1 ^c 2X 2 ,[X 1 ,X 2 ] = 0}

for some choice of constants a 1 ,a2 ,b 1 ,b 2 ,c 1 ,c2 . Choosing a new basis

= X2, ? = Y1^c1X1+c2X2, ?2 = Y2 -b 1 X 1 -b 2 X2 ,? 3 = V 3 we see

that g can be written	 -

9 = {X 1 ,X2 ,Y 1 ,Y 2 ,Y 3	[X,Y] = 0 for 1 ^ I ^ 2 , 1 ^ j ^ 3

[X 1 ,X 2J = 0 , [Y 1 ,Y 2 ] = a 1 X 1 +a 2X 2 ,[Y 1 ,Y 3 ] = -V2

[Y 2 ,Y 3 ] = Y1}

These are now two cases depending whether or not EY 1 ,Y2 ] is trivial.

Case (1)	 a 1	a2 = 0

4,
4, 2	 3	 4,4 2	 + 2

In this case g =IR x Lom(E ) so G =IR x Isoni0 (E ) . The group

G is given by G/D where D is a discrete central subgroup. Now

Z(Isom(E2 ))	 so D is a free abelian subgroup of 	
2 

xZZ . If

rank(D) ^ 2 then G contains a maximal torus I with dim(T) ^ 2

Up to conjugacy in G we can assume that 	 T and we have the fibre

bundles T/GX + G/GX + G/T . This gives an exact sequence
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Ir i( T/ G ) -- lri(G/G) . Now, by assumption, Ir1(G/G) = 0

and also G/T is contractible since G is solvable. Hence

Ti(T/G) = 0 , a contradiction. Thus rank(D) = 1 (rank(D)	 0 since

G contains no compact subgroups). We write G = R x G' where

G' = IR x Isom0 (E ) . Without loss of generality we can assume that

D E	 . If	 is written as R x (t DC fl) where a(t) . z = e1tz

then D = {(kc,0,2irkm) €IR x	 x]R	 k €} for some	 E]R , 0	 m €

Then D is contained in A = {(cLt,0,27rmt)lt € ]R} so G'/D ' (IRxt)	 AID

Since AID preserves the Euclidean metric on IR x	 it follows that

(M,G) = (IR xIR x U, IR x(IR x cE)D<A/D) is not maximal.

Case (2) : a 1	0 or a2	0

Choosing a new basis for g if necessary we can assume that

= X 1 and g	 x h where h is the Lie algebra

k = {Y,X 1 ,X 2 ,X 3	[X,X2] = V , [V,X.] = U for 1 ^ i ^ 3

[X 1 ,X3] = -X2 , [X2 ,X3 ] = X1}

The set {Y,X 1 ,X 2 } spans an ideal isomorphic to it and so Ii.	 vi c1R

Thus	 IRx(NK IR) where, if N is given by the upper triangular matrices:

Jo x

N =	 0
	

1
	

z	 x,y,z €IR }

0
	

1/
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then IR acts by the compact group K of Lemma 4.2.4. Topologically

'1.	 3	 5
G is lRxffi x JR =IR	 and it is easy to see that the centre is

Z() = {(t1,0,t2,0,2kir) EIR5It1,t2 €IR, k €} . We have G	 G/D

where D is a discrete central subgroup. The argument used in Case (1)

again shows that rank(D) = 1 . Hence D = (kn 1 ,0,kn2 ,0,2irkn 3 )(k €}

for some n 1 ,n 2 ,n 3 E	 . D is contained in the one parameter subgroup

A = {(tn1,0,tn2,0,2rrn3t) I t €IR} . If n 3 = 0 then AID . Z(G)

Since AID is isomorphic to S0(2) and is the maximal compact subgroup

of G this contradicts the fact that G	 acts faithfully on TM for

each x € M . Therefore n 3	0 and A n ( JR x N x {0}) is trivial.

(J(J.
Hence G = ( ! x N)	 A where A acts by conjugation and

f\J

G = (JR x N) K AID where A/D acts trivially on IR x {e} and by

rotations in the x-z plane of N . The result follows immediately.

4.3 M/F has spherical metric

We are now assuming that (M,G) is a four dimensional geometry with

M/F diffeomorphic to S 2 and that	 (G) acts conformally with respect

to the standard metric on S 2 . The group of conformal automorphisms of

s2 can be identified with the group PSL(2,) acting by fractional linear

transformations on the extended complex plane. Hence 	 (G) can be regarded

as a transitive subgroup of PSL(2,) whose stabilizer subgroup at each

point contains a compact subgroup isomorphic to S0(2)
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Proposition 4.3.1

The subgroup	 (G) has dimension 3.

Proof

Since	 (G) is transitive on S 2 with non-trivial stabilizer

we have dim((G)) ^ 3 . Also dini((G)) ^ dim(G) = 5 . Assume that

dim((G)) = 4 or 5. We set S 2 = tu{ co} and denote by A	 the stabilizer

of	 in	 (G) . Then A00 is contained in the complex Affine group:

a b\
Aff(E) = {	 GL(2,)	 ac = 1}

whose Lie algebra is:

x y\
a(E) = {	 M(2,II)	 x,y €	 }

0 -xl

The ad,joint action of Aff() on a(t) is given by

2

Ad(a,b) .
	 0	 =	 -x	

2abx)

	

(x	 y	 1x	 ay-

Choosing a = li ly if x = 0 and b = ay/2x if x 0 we see that the

orbits of the adjoint action are represented by the matrices:
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If we denote by a. , the Lie subalgebra corresponding to Aco we have,

by assumption, dim(a.) = 2 or 3 . Hence a.	 contains two elements of

a() independent over IR . Since A	 contains a compact subgroup

isomorphic to SO(2) we can assume, after conjugating by an element of

Aff() , that T 1 (i) € a.	 • There are now two possibilities.

Case 1 : yT € a.	 for y ^ 02

• Conjugating by an element of Aff() if necessary we can assume that

that y = 1 . Now [T 1 (i),T 2 ] = 2iT2 so for all	 €IR we have

(a-i-i)T2 € a. . Therefore a.	 contains the algebra:

=

 {(

al	 z\
,	 E	 }

0	 -aiJ

and hence A	 contains the subgroup

le	 z
K1 =	 0 €IR , z €	 }

'10	

)0	 e0

Since	 (G) is transitive on	 u {c} there is a g0 € (G) , such

that g0(oo) = 0 . Such an g0 must be of the fori:

0	 a0\

g0

 - (-l/ao b0J



=
fx

\0

Iz
K =2 I !z	 , z $ 0 }

1 / z/
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Then g0 K1 g	 £ (G) and it is easy to see that

/ -ie
fe

g0 K1 g	 =
ei0) 

I6EIR , w €	 }

Hence ç(g) contains	 T 3 for	 where T3 
= i

Now	 *() already contains aT2 for a E t so, since [aT 2 ,T3 ] =

= T 1 (a) we see that	 (g) contains all of	 Z(2,)	 This is a

contradiction since dim(e(G)) ^ 5

Case 2 : T 1 (x) + yT2 € a.	 for. x	 0

If cc contains an element V = T(x) + yT2 for x	 0 then

[T 1 (i),V] = 2iy T	 so we are again in Case (1) unless y = 0 in which

case, since T 1 (i) and V are independent, a	 contains the subalgebra

o\I	 x€}

- x/

and Ac contains the subgroup:

Since e(G) is assumed transitive on t u{ there is g 0	(G) such that

g0(oo) = 1 . This g0 is of the form

	

- (a0	b0
g0 -
	 a 0	b0+l/a0
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and so g0 K2g	 E (G) and it is easy to see that:

X(z-l/z) + z
	

A(l/z-z)	 \

g0 K2 g	 = {

	

3	
z €

(x+l ) (z-l/z)
	

(l/z-z) + liz!

where x = a 0 b0 . The Lie algebra of g0 K2 g	 is:

(2 x-'- 1
Ad(g0 ) . a2	 ° I

\2(x+l)

-2x

-(2x+l )J
c d }

fo	 —x'

(	 J	 E
\ A-Fl

Since	 (g) contains T 1 (x) Vx €	 we have

If A = 0 then	 (G) contains the subgroup:

(1
K =

z

o\
H z€}

lJ

but K3 fixes 0 € U as does K2 so the dimension of the stabilizer

is ^ 3 and we are back in Case (1). If A = -1 then e(G) contains

the subgroup:

11
KA -It'

z)	
z € ci; I

1

but K4 fixes	 as does K2 so the dimension of the stabilizer is

^ 3 and we are back in Case (1). Now x	 0,1 and setting



10
[X1,X2] 

=

-2x\

I	 €ct
oJ

/1

X1 =

\o
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0	 'O	 -x

_)	

,	 x2 =

	 0

we have

Therefore (	 ) and (	 ) €	 (g) for all ct, € I and, as in

Case (1), this implies that	 c	
0

We now go on to classify the geometries with (M/F,e(G)) E (S2,PsL(2,))

Theorem 4.3.2

If (M,G) is a four dimensional geometry with (M/F,(G)) equivalent

to (S 2 ,L) where L	 PSL(2,E) acts transitively on S 2 then (M,G) is

equivalent to either

(a) (E2x S2 , R2xSO(3))

(b) (ExS 3 , IRxH) where H is a subgroup of 50(4) preserving the Hopf

fibration of S3.

Neither of the geometries is maximal.

Proof

By Proposition 4.3.1 dim((G)) = 3 so that dim(Ker()) = 2

Hence by Proposition 4.1.2 (M/F,(G)) is a geometry which is easily seen

to be equivalent to (S2 ,S0(3)) . Again by 4.1.2 we know that Ker() is

abelian and central in G . Therefore at the Lie algebra level we have an



- 66 -

extension JR2 >* g	 -*> 40(3) with 40(3) acting trivially on

Since 40(3) is simple g must be isomorphic to JR2 x 40(3) and hence

2	 2
the universal cover G is isomorphic to R x SU(2) . Thus G =IR xSU(2)/D

where D is a discrete central subgroup. Now Z( ' ) ' 1R2 x	 and the

factor is contained in a maximal torus A £ SU(2) . If T is a

maximal torus in G then I E. ( R2xA)/D . Without loss of generality

we can assume that- G E I and we have the fibre bundle T/ GX + G/Gx -'- G/T

If dim(T) = 3 then G/T ' S2 and we have the exact sequence

^ Tr2(G/G) ^ i2 (G/T) -* 1 (T/G ) + rr1(G/G)

This is impossible since '1r2( T/ Gx) = Tr1(G/G) = 0 and ir 2 (G/T) 'ZZ

Hence dim(T) ^ 2 and we can assume that

G = JR x ((JR x SU(2))/D)

(i) D is trivial

Then G = JR2 x SU(2) . But any subgroup of SU(2) isomorphic to

S0(2) contains the centre of StJ(2) so G does not act effectively on

G/GX

(ii) D = {(n,0) €	 xZZ2 
J 

fl €

Then G JR x S0(2) x SU(2) . It is easy to see that any compact sub-

groups of G isomorphic to S0(2) must intersect the centre of G non-

trivially so G does not act effectively on G/Gx

(iii) D

Then G = JR2 x S0(3) and (M,G) = (E 2xS2 , IRxSO(3)) which gives (a)

of the theorem.
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(iv) D =	 x2

Then G = R x 50(2) x S0(3) . If	 is contained in the S0(3)

factor then rr 1 (G/G) $ {0} which contradicts the assumption on M

It is now easy to see that G n Z(G) 	 {e} , so, again, G does not

get effectively on G/GX

(v) D =	
(n,(-l))-€ Z X 2 I	 €

If we regard S0(2) as the group of all complex numbers of modulus 1

and SU(2) as the group of unit quaternions then there is a two-fold

covering map p:S0(2) x SU(2) - (R x SU(2))/D given by p(e 21t ,q ) =

= [2t,q] . Denoting the connected component of e in p1(G) by K

we have p(K) =	 and K is of the form

K •{( 
2TrinO	 2rrimO)	

€ R}=	 e	 ,e

for some n,m coprime and m ^ 0 . Here we are writing a quaternion as

z 1 -i-jz 2 for z 1 ,z 2 €

If m = 0 then	 is central in G so G does not act effectively

on G/GX . If we set o=l/2m then (e210,e2flm0) = (e in/m,_1) . This

is not in Ker(p) if m	 1 or if m = 1 and n is even. In these cases

p(eTmfh'm,_l) is a non-trivial element of 	 n Z(G) so G does not act

effectively.

We now assume that m = 1 and n is odd then Ker(p)	 K so K = p'(G)

and the induced map	 :S0(2) x SU(2)/K -'- D\RxSU(2)/G	 is a diffeomorphism.

Setting H = S0(2)xStJ(2) we have the exact sequence:

ii2 (d)	 2(H/K)	 (K)	 ¶ 1 (H)	 1(H/K)	 r0(K)
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Now ir 2 (H) = ir0 (K) = 0 , ir 1 (H/G )	 = 0 ,	 and 7r 1 (K)	 -r1(H)

We know that	 is injective and sends a generator of ir 1 (K) onto n times

a generator of ir 1 (H) . Hence	 is trivial, 7r2 (H/K) = tO} and

ir 1 (H/K)	 7L/rL . Since 7r 1 (H/K)	 ir 1 (M) = {0} we must have n = ± 1

2Trjt	 -2irjtUsing the automorph-ism of S0(2) x SU(2) given by (e ,q) - (e ,q)

we can assume that n = 1 . We have S0(2) x SU(2)/K ' SU(2) via the map

[e2t , q1 +qe2flt and the action of S0(2) x SU(2) on SU(2) is given

by (e2t,q) .w =qwe2flt . It is clear that this action preserves the

Hopf fibration whose fibre through w € SU(2) is given by the set

we2	 J s € JR} . The action is not maximal since it is a restriction

of the action of S(2) x SU(2) on SU(2) given by (q 1 ,q 2 )w = q1wq

Hence we have (a) of the theorem.

Since • (i)-(v) exhaust all the possible subgroups of	 x	 the

proof is completed.
0

4.4 M/F has Hyperbolic metric

In this, final, section of the Chapter we will consider the case

when (M/F,(G)) is equivalent to (H 2 ,L) where L acts by conformal

transformations on the hyperbolic plane. In fact any conformal trans-

formation of H 2 is an isometry so	 (G) can be regarded as PSL(2,B)actingon
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the upper half plane by fractional linear transformations. As in

Section 4.2 we give first an existence result and then show uniqueness.
C',

We let SL(2, IR) denote the universal cover of PSL(2,IR) and let K

denote the maximal compact subgroup of the group of inner automorphisms
1,

of SL(2, IR) . Then K ' SO(2) and we have

Theorem 4.4.1

Let G denote the group IR x (SL(2, IR)	 K) and K' the subgroup

{O} x {e} x K . Then (G,G/K') is a maximal geometry with (M/F,(G))

equivalent to (H 2 ,PSL(2, IR))

Proof

Any semi-simple Lie group has a discrete subgroup with compact

quotient (a result of Borel, see Ragunathan [ 't ] Chapter XIV). Hence

we can find a discrete group r £ SL(2, 1) such that	 xr\ IRx SL(2, IR)

is compact. Hence	 x r\G/K' is a compact manifold and (G,G/K') is a

geome try.

Next we show that (G/K',G) is maximal. If (M,G 1 ) is a maximal

geometry extending (G/K',G) then 	 must be isomorphic to one of the

groups considered in Chapter 3. Hence (M,G 1 ) must be a syninetric space

equipped with its maximal group of isometries. Now JR x SL(2, IR)	 G/K'

is diffeomorphic to JR 4 so (M,G 1 ) must be either E4 ,H4 ExH3 , E2xH2,

I-1 2xH2 , or	 H2 acted on by its group of isometries. This implies that
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there is a G-invariant metric of non-positive curvature on G/K'

This is the same as saying that there is a left invariant metric on
('I

P x SL(2,IR) of non-positive curvature also invariant under the maximal

compact subgroup of the adjoint group. This contradicts the fact, proved

in [	 I Corollary 2.6, that a Lie group posessing a left invariant metric

of non-positive curvature must necessarily be solvable. Thus (G/K',G)

is maximal.

To show that (M/F,(G)) is equivalent to (H 2 ,PSL(2, IR)) it is

clearly sufficient to show that G/Ker() is isomorphic to PSL(2, ]R)

This means,, in turn, that if we denote the Lie algebra of Ke r @) by it

we must show that gut	 (2,IR) . By Theorem 2.1.3 the foliation F

is given by the translates of	 where N0 (K') is the normalizer

of K' in G . The Lie algebra of G is:

[Y 1 ,X.] = 0 for 1 ^ i ^ 3 , [Y 1 ,Y 2 ] = 0

[X 1 ,X2 ] = 2X 3 , [X 1 ,X 3 ] = 2X2 , [X2 ,X 3 ] = 2X1

= -2X3 [Y2 ,X2 ] = 0 , [Y 2 ,X 3 ] = 2X1}

The subalgebra corresponding to N 0 (K') is vt(Y2 ) the normalizer of

in g . It is easy to see that n(Y 2 ) is spanned by" {Y1,X2,Y2}
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Now Ker() is the largest normal subgroup of N0 (K' )/K'. Therefore

)L is spanned by {Y 1 ,X 2 }	 . If p:g - g/' denotes the quotient

map we set V 1 = p(-X1 ), V2 = p(-(X2+Y2)), V 3 = p(X) . We have

[V1 ,V2 ] = 2V3 , [V 1 ,V 3 ] = 2V2 , [V2 ,V3 ] = 2V 1 and so g/ '	 e(2,IR)

But dim(M/F) = dim(G)-dim(N 0 (K')) = 2 so	 (G) is a covering space of

PSL(2, ]R) . If	 (G)	 PSL(2, IR) then any compact subgroup of 	 (G)

would contain the centre of	 (G) and	 (G) would not act effectively

on M/F . Therefore	 (G) ' PSL(2, IR) as required.

IJ

The geometry described in 4.4.1 is the only one satisfying the hypo-

thesis of this section.

Theorem 4.4.2

If (M,G) is a four dimensional geometry with (M/F,(G)) equivalent

to (H2 ,L) with L E PSL(2, IR) then (M,G) is equivalent to the geometry

described in Theorem 4.4.1.

Proof

Since the group IR x(SL(2, IR) K K) has {O} x {e} x K as a maximal

fJ
compact subgroup it is sufficient to show that G =IR x (SL(2,IR)	 K)

We know that	 (G)	 PSL(2, IR) since by Theorem 2.2.1(c) it is a tran-

sitive subgroup of isometries of H 2 of dimension ^ 3 . Hence

dim(Ker(e)) = 2 . By 4.1.2 Ker() is abelian and central in G . So,

2
at the Lie algebra level, there is an extension 	 >- 9 -'>	 ]R)
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where 4e.(2, IR) acts trivially on iR2 . Since 4.(2, IR) is simple

2	 2this implies that g = R x	 IR) and G =IR x SL(2, IR) . Therefore

G = G/D with D a discrete central subgroup. Since Z(SL(2,IR)) =

we can assume that D is a free abelian subgroup of	 x	 Now
r'J

SL(2, IR) can be written JR where J covers S0(2)	 SL(2, IR)

Z(SL(2, IR)) E J , and R is isomorphic to the group:

Aff() = if	 GL(2,IR)	 a >0 }
'a	 b)

\0 1/a

Hence G/D	 D\G = ((]R2xJ)/D).R. Therefore if T	 G is a maximal torus

G/T is contractible. Without loss of generality we assume that G	 T

From the fibration T/G - G/G -- G/T we have the exact sequence

2(/T) -'- 7r 1 (T/G ) -'- rr 1( G/ G ) .	 Since	 Tr 1( G/ G ) = ir 2 (G/T) = 0 it

follows that	 = 0 , and T =	 . Therefore rank(D) = 1 and,

without loss of generality, we can assume that G = JRx(( ]RxSL(2, IRfl/D)

There are two possibilities.

Case (1): DEJ

Then G R2 x PSL(2, IR) where PSL(2, ) denotes the n-fold

cover of PSL(2, IR) . Clearly G extends to an	 tion of

Isom(E2 ) x PSL(2, R) on M and so (M,G) is not maximal.
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Case (2)	 DJ

D is contined in a one parameter subgroup A of IR x J • The

condition D	 J implies that the projection p:SL(2, IR) x	 +]	 is

injective when restricted to A 	 It follows that

(RxSL(2, ))/D	 SL(2, ) vAd(A/ D ) where Ad(A/D) is non-ivial

since otherwise D LIR x{e} and G	 would be normal in G . Since

Ad(A/D) is maximal compact in Aut(SL(2, IR)) it follows that G is

isomorphic to the group defined in Theorem 4.4.1.

9
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CHAPTER 5	 STABILIZER ISOMORPHIC TO SO(2):II.

5.0 Introduction

In this Chapter we will determine the four dimensional geometries

satisfying the conditions

Bl: G	 isomorphic to SO(2)

B2: For each x c N the action of	 on TM

leaves no vector fixed.

From Theorem 2.2.2 we know that there are two smooth, G-invariant,

mutually orthogonal, integrable distributions 	 ),(2) on M with

dim(P 1 ) = dim(P 2 ) = 2 . The action of	 restricted to	 is

non-trivial for each x € N . If 	 are the corresponding

G-invariant foliations then M/F(1) is a smooth simply connected manifold

and	 : N - M/F(1) is fibre bundle for i = 1,2 . There is a smooth

action of G on M/F'	 equivariant with respect to the projection

N -- M/F(1) . Lastly we know that with respect to the metric

induced from M the leaves of F(1) are isometric to E 2 ,H 2 or s2

In Section 5.1 we show that the leaves of 	 cannot be isometric

to S2 for i = 1,2. This leaves two possibilities: either one of the

foliations	 has leaves isometric to H 2 or both of them have

leaves isometric to E 2 . The first possibility is taken up in 5.2 where
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it is shown that there are two geometries satisfying the required

condition. Both these geometries have quotients of finite volume but

no compact quotients. In Section 5.3 we show that the second possibility

implies that the geometry is not maximal and can be extended to the

4	 +4
Euclidean geometry (E ,Isom (E ))

For the rest of this Chapter (M,G) will be a four dimensional

geometry satisfying (1) and (2) above and P , F ,	 etc., will

have the meanings assigned in Theorem 2.2.2.

5.1 Extensions of Theorem 2.2.2

We first determine Ker() n G

Proposition 5.1.1

If F is one of the two G-invariant foliations on M then, in the

notation of Theorem 2.2.2, Ker() n G	 is finite.

Proof

From Proposition 2.1.2 we know that Ker() 	 G	 is given by

Ker() n G = { g € G	 dgTF = id} . Now with respect to some ortho-

normal basis in TF	 the action of G	 is given by the homomorphism

p : ]R/2rr	 -'- GL(2, IR) where, for some non-zero n E ZZ

I Cos no
p ( o ) =

\-Sin no

Sin ne\
, O€[O,2ir)

Cos nO/
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If p(0) = I then B = 2k'rr/n for 0 ^ k < n . Hence

Ker() n	 = {O	 [0,2ii) I p(e) = I} is finite.

From Theorem 2.2.2(c) we know that for a G-invariant metric on

(1)	 (2)	 .	 .	 22	 2
M the leaves of F	 and F	 are isometric to E ,H	 or S

In the current situation we can eliminate the case S2

Proposition 5.1.2

With respect to the metric induced from a G-invariant metric on M

the leaves of F 1	 and F 2	 are isometric to	 or H2

Proof

We must eliminate the possibility that the leaves are isometric to

Assume that the leaves of F 1	 are isometric to S 2 . If x € M

denote by F the leaf of	 through x and by K the subgroup

K = {g E G I g(F) = F} . Then it follows from Proposition 5.1.1 that

K	 covers S0(3) and is therefore compact. Now	 '(K) is the subgroup

of	 '(G) fixing	 (x) . Thus there is a	 '(G) invariant metric

on M/F	 . So, since dim(M/F) = 2 by Theorem 2.2.2 and	
1

is non-trivial by Proposition 5.1.1, we have dim((G)) = 3 and

dim(Ker()) = 2 . This implies that Ker() is a proper normal sub-

group of K	 contradicting the fact that K	 is simple. 'We conclude that

(1)	 (2)	 .	 .	 2	 2
the leaves of F	 ,F	 are isometric to E 	 or H

El
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5.2 Invariant Foliation with Hyperbolic Leaves

We consider the case when one of the foliations F 1 ,F 2) has

hyperbolic leaves. The existence of such a geometry is given by:

Theorem 5.2.1

Let c:SL(2, IR) - GL(2, IR) be a non-trivial homomorphism and let

G denote the group 1R2	SL(2,IR) . If K £ G is the subgroup

{O} x SO(2) then (G/K,G) is a maximal geometry. Furthermore if

q:G -- G/K denotes the quotient map then:

(a) - The action of K on Tq(e)G/K leaves no vector fixed.

(b) For any G-irivariant metric on G/K one of the foliations

has leaves isometric to H 2 and the other has

leaves isometric to E2

Proof

We first show that there is a discrete subgroup r £ G such that

r\G/K is a manifold of finite volume. Up to conjugacy in GL(2, IR) there

are only two homomorphisms ct 1 ,ct2 :SL(2, IR)	 SL(2, IR) . These are given

by

b'\	 [a

d)

	

b'	 /a

	

1	
,	 2 =C:	 :)•

Hence G is isomorphic to 	
2	

SL(2, IR)	 for i = 1 or 2.
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Now ct(SL(2,)) = SL(2,) for i = 1,2 	 so the group

C	 (	 x) x (SL(2, )) is a discrete subgroup of G . Since
1

SL(2, IR)/SL(2, ) has finite volume it follows that C\G/H has finite

volume. However C\G/H may not be a manifold. To avoid this problem

note that there is a subgroup r of finite index in SL(2,) which

contains no elements of finite order. If we set C' = ( 	 x7Z)x r thenct.

C'\G/H is a manifold of finite volume. Since G/K is diffeomorphic to

the pair (G/K,G) is simply connected and so a geometry.

We now wish to show that (G/K,G) is maximal. Suppose not. Then

we can find a G-invariant metric X on M = G/K such that Isom 0 (M,X)	 G

Then (M,Isom0 (M,X)) is equivalent to one of the symmetric space geometries

of Chapter 3. Furthermore, since G/K is diffeomorphic to 1R 4 , this

symmetric space must be E4 ,H4 ,ExH3 ,E 2xH2 ,H 2xH2 or	 H 2 . It follows

that the solvable group ]R2	Aff( IR)	 SL(2, IR) has a left invariant

metric of non-positive curvature where

ía	 b\
Aff(IR) =f (	 ) € GL(2,IR)	 a > 0 J.

\0 l/a/

The Lie algebras	 of IR2	 Aff( IR) are given by

(1) = {X1,X2,Y1,Y2 I [X 1 ,X 2 ] = 0 , [Y 1 ,Y 2 ] = 2Y 2 , 1Y 1 ,X 1 1 = X1

[Y 1 ,X2 ] - -X 2 , [Y 2 ,X 1 ] - 0 , [Y 2 ,X2 ] - X1}
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(2) = {X 1 ,X 2 ,Y 1 ,Y 2 I [X,X1	 0	 [Y 1 ,Y2 ] = 2Y 2 , [Y 1 ,X 1 1 = X1

[Y 1 ,X2 ] = -X2 ,[Y2 ,X 1 ]	 0 , [Y2 ,X 2 J = -X1}

In both cases the derived	 algebra L( ,t1)	
is spanned by {X1,X2,Y2}

With respect to this basis ad(Y 1 ) is given by the matrix:

	

/1	 0	 0

	

T = fo	 -1	 0

	

0	 2

and	 =	 for i = 1,2 . But from Proposition 5.6 of

[ I ] it follows that if g = [g,g]<IR is the Lie algebra of a Lie group

with a left invariant metric of non-positive curvature then the eigenvalues

of a(t) have all positive or all negative real parts. Clearly T does

not satisfy this condition. We can therefore conclude that (G/K,G) is

maximal.

If we denote by L 1 and L2 the subgroups L 1 =IR2DCSO(2)

L2 = {0} x SL(2, IR) then L 1 ,L 2 are closed and contain K . The translates

of L 1 /K and L2/K by elements of G form two complementary foliations

such that g(L 1 /K) and g(L 2/K) are sent into themselves by gKg 	 for

every g E G . Since K acts non-trivially on L 1 /K and L2/K we must

have F(1) = g(L/K)lg € G} for i = 1,2. It is now obvious that (a) and

(b) are satisfied.

El
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The geometries defined in Theorem 5.2.1 are the only ones satisfying

the conditions of this section.

Theorem 5.2.2

Let (M,G) be a four dimensional geometry satisfying Bi and B2

and such that for some G invariant metric on M the leaves of

are isometric to H 2 . Then (M,G) is equivalent to one of the geometries

described in Theorem 5.2.1.

Proof

Since {0} x S0(2) is a maximal compact subgroup of 1R 2 SL(2, IR)

it is sufficient to prove that G is isomorphic to 1R2 SL(2, IR) for

some representation c:SL(2, IR) - SL(2, IR) . Let	 v a. be the Levi

decomposition of g with 't. solvable and a. semi-simple. By Proposition

1.1.3 G is unimodular. It now follows from Proposition 1.1.4 that 	 =IR

Now let ía denote the Lie algebra corresponding to the subgroup

K = {g E G g(F) = F} where F is the leaf of FW through x E M

From Proposition 5.1.1 we see that ía '	 IR) . It follows immediately

f'J

that a	 .o(2, IR) and the universal cover G of G is isomorphic to

2
IR	 SL(2, IR) for some homomorphism a:SL(2, R) - SL(2, IR) . If

q:SL(, ) ^ SL(2, ) denotes the standard covering then either	 is

trivial or Ker(c) = Ker(q) £ Z(SL(2,IR)) . If a is trivial then (fvl,G)

must be the geometry described in Theorem 4.4.1 and hence does not satisfy



- 81 -

B2. Thus i' is non-trivial and it follows from the condition

Ker() = Ker(q) that there is an automorphism 4:SL(2, IR) + SL(2, IR)

such that	 = oq . It is easy to see that Z(G) = {O} x Ker(a)

t'J

Since Z(SL(2, IR))	 there is an isomorphism C:	 - Z(SL(2, IR))
1

such that Ker(ct) = c(2) . It follows that if D E Z(G) is such that

G	 G/D then 0 = {O} x c(2n) for some n 	 0 . Then G IRwSL(2,IR)

where SL'(2, IR) is an n-fold cover of SL(2, ]R) with covering map

and	 = coq . Now Z(G) = Ker(n) which is contained in the maximal,

connected, compact subgroup q(SO(2)) of SL'(2, IR) . Therefore G

does not act faithfully on M unless n = 1 . Thus G ' 'IR	 SL(2,IR)

as was to be shown.

0

The geometries constructed up until now have all had compact manifold

quotients. To show that this is not always the case we have:

Proposition 5.2.3

If (G/K,G) is one of the geometries described in Theorem 5.2.1 and

r E G is a discrete subgroup with r\G/K a manifold then r\G/K is non-

compact.

Proof	 -

We have G = R2 < SL(2, IR) and K = {0} x S0(2) . Assume that there

is a discrete subgroup r E G such that r\G/K is compact. Since K is

a compact subgroup this implies that G/r is compact. If q:G 	 SL(2,IR)
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denotes the quotient map then by Corollary 8.28 of C u I it follows
that TR2/Ker(qr) is compact. Hence Ker(qr) = {n 1 v 1 +n 2 v2 In 1 ,n 2 }€} for

some independent vectors v 1 ,v2 EIR2 . Since GL(2, IR)	 ]R x SL(2, ]R)

we can extend a to an automorphism & of GL+(2, IR) . Choose

B E GL(2, ]R) such that &(B)(	 x) = Ker(qjr) . The mapping 	 :G + G

defined by setting 4(v,T) = (&(B)(v),(B)T(B)) is an automorphism of

G and maps Ker (qjr) onto Ker (q(r)) . Hence, without loss of

generality, we can assume that Ker(q Ir) =	 dR2 . We must now have

q(r)	 SL(2, ) . Since G/r is compact there is a compact set C E G

such that for each g € G there is a y	 r such that gy E C . If

I € SL(2, IR) there is a g € G such that q(y) = T so if gy € C we

have T . q(y) E q(C) . Hence SL(2, IR)/q(r) is compact contradicting the

fact that SL(2, IR)/SL(2, ) is non compact. Therefore there are no

compact quotients.	
U

Remark

Let	 = 1R2 K j SL(2 IR) where ct . ,a2 are the two inequivalent auto-

morphisms described in the proof of Theorem 5.2.1. Then, since (a 2 ) = id

the mapping	 :G 1 - G2 defined by (v,A) -- (v,a2 (A)) is an isomorphism

sending {O} x SO(2) onto {O} x SO(2) . Thus 4 induces an equivalence

between (G 1 /{O} x SO(2),G 1 ) and (G 2/{O} x SO(2),G 2 ) . However, this

equivalence is orientation rvers-zng.



- 83 -

5.3 Both Invariant Foliations have Flat Leaves

We wish to show that a four dimensional geometry satisfying Bl and

B2 is not maximal if the leaves of F( ' ) and F 2	 are isometric to E2

Let Isom(E 2 ) denote the unique n-fold cover of Isom(E 2 ) .	 Then

Isom(E2 ) ' II	 S' where an( z ) •w = zw for z,w E tjzI = 1

Lemma 5.3.1

Let	 :Isom(E2 ) ^ GL(2, R) be a homomorphism which is non-trivial

on {O} x s1 . Then	 x {l} £ Ker() and, up to conjugacy in GL(2, )

= Ake for k E , k	 0 , where Ake is the matrix:

	

/Cos ke	 Sin ko

Ak	
= k-Sin ke	 Cos ke

Proof

Let det:GL(2, IR) +IR.k denote the determinant map. Since {0} x

is compact and connected we must have (det)I({O} x S 1 ) trivial. The

	

+2	 ..	 1.	 +2
only normal subgroup of Isoni(E ) containing {O} x s	 is Isomn( E )

Therefore the image of	 is contained in SL(2, IR) . Now	 cannot

be injective, since SL(2, IR) has no two dimensional abelian subgroups.

Hence Ker() n ( x {1}) must have dimension greater than 0 . But it

is easy to see that any normal subgroup of Isom(E 2 ) containing a one

dimensional subgroup of U x {1} must contain all of L x {1} . Therefore

{l}	 Ker() . By hypothesis 	 {O} x S 1 ) is non-trivial and hence

conjugate to S0(2) . The second statement follows immediately.

El
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Lemma 5.3.2

If (M,G) is a four dimensional geometry satisfying Bi and B2

and such that for any G invariant metric on M the leaves of

and F 2	 are isometric to E 2 then (M/F(1),1)(G)) is a geometry

equivalent to (E2,Isom(E2))

Proof

We consider only	 as the proof for F 2	 is the same. Let

F 1 , F 2) denote the leaves of 	 and F 2	 through x € M . If

y1 ,y2 € F )	then we denote by	 (y 1 ,y2) the holonomy map

a(y 1 ,y2 ):N	 .^ N	 where N	 is a neighbourhood of y. in F' 2	for
y1	

'2	 y-	 1

i = 1,2 . To demonstrate the fact that (M/F, W (G)) is a geometry

it suffices, by Proposition 2.1.3, to show that da(y 1 ,y,)):P2

is an isometry for any pair of points (y 1 ,y2 ) of M with

y2 ) . Choose x0 € M and let x1 € F 1	. As usual

we set	 = {g € GIg(F) = F} . If y0 =	 then

is the stabilizer of y0 in	 . From Proposition 5.1.1

	

is isomorphic to Isom(E2 ) for some n	 0 . The subgroup
xO	-

L 1 cK' corresponding to It x {1} in Isom(E2 ) is transitive on
xO	xO

Let p:W(KW) - GL(2, IR) denote the representation coming
xO	 xo

from the derivative. Then by Lemma 5.3.1 we have 	 Ker(po1). Let
xO
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g E L 1	be such that	 (x 0 ) = x 1 . By the definition of
xo

N ) = (cT(x 1 , x 0 )og) N	 on the arJpropriate
((1) N)o ((l)(g)	

(1)(N))=((l)	
x	 XO

domains of definition. NOW (poça) is trivial so d)(q)	 is trivial.
yo

Hence d(cog) is the jdentity on 	 (2) . It follows that dcr(x1,X2)xo

(2)	 (2)
P	 is an isometry. The points x0 ,x 1is an isometry since dg:P

being an arbitrary pair on the same leaf of 	 we conclude that

has isometric infinitesmal holonomy as required.

To show that (M/F, W (G)) is equivalent to (E 2 ,Isom(E2 )) we

choose a	 (G) invariant metric X on M/FW such that

:	 2) - T ) M/F O) is an isometry for some G invariant metric

on M (Proposition 2.1.3). Then if U c F 2' is such that	 1) U is

a diffeomorphism then	 -	 U) c	 is an isometry. But

the leaves of	 are isometric to E2 and hence (M/F,x) is flat.

The conclusion follows since	
1) 

G	 is non-trivial by Proposition 5.1.1.

LI

We show that there are no maximal geometries fulfilling the

requirements of this section.	 -

Theorem 5.3.3

If (M,G) is a four dimensional geometry satisfying the conditions

Bi and B2 and both foliations	 F2	 have leaves isometric to
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E2 for any left invariant metric on M then there is a subgroup

G'	 Isom(E4 ) isomorphic to G	 such that (M,G) is equivalent to

(E4,G')

Proof

We first show that if F 1	and F 2	denote the leaves of

and F 2	 through x E M then	 F2 = {x} . Let x0 € M and

assume that there is a point x 1	x0 in	 F) . Since
xo	 0

and F 2	 are transverse the set F 1 n F 2	is countable. If
xO	xO

g € G	 then g(F	 n	 = F 1 n F 2	. Therefore, since
xO	xO	 xO	 xO	 xO	 0

is connected, we have g(x 1 ) = x 1 for each g € G	 . Since F1
0	 0

is isometric to E2 in the induced metric there is a unique geodesic y

in	 joining x0 and x1 . Now if g € G	 then 
gF(fl	 is

xO	
0

an isometry and therefore fixes y pointwise. Hence dg (y'(0) =
xo

for each g € G	 contradicting B2. Therefore	 n F 2 = {x0}
xo	xO	 xO

By Lemma 5.3.2 there is an exact sequence Ker(e)>-'- G -s--->> Isom+(E2)

Thus dim(Ker()) = 2 . Furthermore Ker0 () ,	 the connected component

of e in Ker() , is a closed subgroup of G and so, by Proposition

1.1.4, Ker0 () ' JR2 . It is easy to see that Ker() = Kerü().(Ker()nG)

for any x € M . It now follows by Proposition 5.1.1 that the quotient

map q:G/Ker0 () -- G/Ker()	 Isom(E2 ) is a finite covering. We deduce
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that for some n €	 there is an exact sequence

= Ker0 () >-'- G -->> Isom(E2 ) . Let g €	 and assume that

g) = e . Then g E K 2 n Ker0 ()	 and so g(F	 n	 =

=	 n F 2	. But F 1 n F 2 = {x } as shown above. Therefore
xo	xo	 xo	 xo	 0

g E	 n Ker0 () and g has finite order. Since Ker 0 ()	 we
0

deduce that g = e . 	 is thus injective. Both K 2 and

Isom(E2 ) are connected and of dimension 3 and it follows that

K 2	Isom(E2)
n	 x0	 n

>-- G ->> Isom(E2 ) therefore splits and a short calculation using

Lemma 5.3.1 shows that G is isomorphic to ]R4 S0(2) where S0(2)

acts by

/ A0
	 0

c(0) =
	

with n,mQ	 , 0 € E0,2rr)

\0
	

A0

+4
Hence G E Isom (E ) and the result follows.

U

is an isomorphism. The sequence
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CHAPTER 6 : SOLVABLE GROUPS.

6.0 Introduction

In this chapter we consider the last class of geometries; those

satisfying

C : The stabilizer of each point is trivial.

It is easy to see that such a geometry is equivalent to a connected,

simply connected Lie group acting on itself by left translations. Such

a geometry will be denoted (G,G) . In Section 6.1 we show that if (G,G)

is maximal then it is solvable. In the case dim(G) = 4 we show further

that G	 H	 where I-I is one of the two nilpotent groups of dimension

3 and IR acts on F-I by volume preserving automorphisnis. The groups of

this type with H =IR	 are determined in 6.2 and those with H non-abelian

are determined in 6.3. In 6.4 we investigate which of those groups con-

structed in 6.2 and 6.3 have a quotient of finite volume (such a quotient

is necessarily compact - see [ \ ] Chapter III). Finally in 6.5 we

determine all the maximal geometries with trivial stabilizer.

Throughout this chapter N will denote the rion-abelian nil-potent

group of dimension 3 presented as:

fi	 y

1

0
)	

: GL(3, IR) }

ii
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A basis for the Lie algebra n of N is given by

	

o	 ü
	

/0	 1
	

000

	

x 1 = 0	 ü
	

x 2 = (o	 U	 o).
	

x 3 =	 0	 0	 1

	

o	 o	 0/
	

\o	 0	 0/
	

000

So vi is presented as:

vi = {X 1, X2, X 31 [X 1, X2 ] = [X 1 ,X3 ] = 0 , [X,X] = X1}

6.1 Preliminaries

We first state the obvious equivalence between geometries with

trivial stabilizer and Lie groups.

Proposition 6.1.1

If (M,G) is a geometry with G = {e} then (M,G) is equivalent

to G acting on itself by left translations.

Proof

(M,G) is equivalent to standard left action of G on G/GX . The

result follows since GIG = Gx	
0

From now on we identify a geometry (M,G) having trivial stabilizer

with the group G and abuse notation by speaking of the geometry (G)
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Lemma 6.1.2

If (G) is a maximal geometry then Aut(G) contains no non-trivial

connected compact subgroup.

Proof

Let K c Aut(G) be a connected, compact subgroup. The semi-direct

product G D< K acts transitively on 0 by (g,k) . x = L g (k(X)) where

Lg denotes left translation by g c 0 . This action clearly extends

the left action of 0 on itself and the stabilizer of e - is K which

is compact. By the assumption that 0 is a geometry there is a discrete

subgroup r E 0 such that r\G has finite volume. It follows that

r\G < K/K is a manifold of finite volume. Hence (G,G v K) is a geometry.

Since (G) is maximal we conclude that K = {e}

LI

Proposition 6.1.3

If (0) is a maximal geometry then 0 is a connected, simply

connected, unimodular solvable Lie group and Aut(G) is solvable and

simply connected.

Proof

By the definition of a geometry 0 is connected and simoly connected

and by Proposition 1.1.3 G is unimodular. Since G is simply connected

we can assume that G = (R 	 S 1 ) x S 2 where:
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(i) R,S 1 ,S 2 are connected and simply connected.

(ii) R is isomorphic to the solvable radical of G and

S 1 ,S2 are semi-simple.

(iii) Ker(c) has finite index in Z(S 1 ) since a semi-simple

matrix group has finite centre (see L 	 I Chapter 18,

Prop. 4.1).

If S2	{e} then there is a non-trivial connected maximal compactly

embedded subgroup 1(2	 S 2 i.e. Ads (K2 ) is a compact subgroup of
2

Aut(S 2 ) . Since 1(2 commutes with (R '<S 1 ) x {e} it is clear that

AdG(K2) is a compact subgroup of Aut(G) which contradicts Lemma 6.1.2.

Therefore	
2 

= e} . j	 S	 {e} then, again, we have a non-trivial

connected maximal compactly embedded subgroup K 1	S1 . It is easy to

see that Ker ( AdG (Kl)) = Ker(cz) n K 1 . But the fact that Ker(c) has

finite index in Z(S 1 ) implies that Ker(c) n K 1 has finite index in

Z(S 1 ) n K. It follows that Z(S 1 ) n K1/Ker(c) ii K1 ^ K1 /Ker(ct) riK 1 '

K1 /Z(S 1 )	 K = Ad5 (K1 ) is a finite covering. Hence, since Ad (K1)1	 1	 1

is compact, AdG(Kl) is a compact subgroup of Aut(G) contradicting

Lemma 6.1.2. Therefore S. = {e} and G	 R which is solvable.

Since the mapping c:Aut(G) -'- Aut(g) is injective we can regard

Aut(G) as a subgroup of GL(n, IR) for some n . It follows that if

S E Aut(G) is a maximal, non-trivial connected semi-simple analytic
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subgroup then S has finite centre ([ 	 ] Chapter 18 Proposition 4.1).

Then any maximal compactly embedded subgroup of S is compact in S

and hence a compact subgroup of Aut(G) . This contradicts 6.1.2 so

we must have S = {e} . Hence Aut(G) is solvable. Finally Aut(G)

must be simply connected since a non-simply connected solvable group

contains a non-trivial maximal torus again contradicting 6.1.2.

0

1e now prove a number of propositions describing the structure of a

maximal four dimensional geometry with trivial stabilizer.

Proposition 6.1.4

If (G) is a maximal four dimensional geometry then G 2 Ft	 IR

where H is either 1R3 or N and ct(IR) consists of volume preserving

automorphi sms.

Proof

By Proposition 1.1.3 G is unimodular. If G is of the form

described it follows from Proposition 1.1.4, since N, 1R3 and IR	 are

unimodular, that IR acts by volume preserving automorphisms on H

If G is nilpotent then the Lie algebra g of G has a nilpotent

ideal h. with dim(h) = 3 . Then h is isomorphic to JR3 or vi and

g	 D<IR or vi vlR . Since G is simply connected this implies that

G1R3 1R or GN1R
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If G is not nilpotent it is solvable by Proposition 6.1.3. Let

h denote the nilradical of g . Since G is simply connected the

connected subgroup H corresponding to h is closed, simply connected

and normal in G . The result will follow if we can show that h is

isomorphic to 1R3 or n . Now [g,g]	 h so we have an extension

H >^ G ->> JR'1 for 1 ^ n ^ 3 and it follows from Proposition 1.1.4

that AdGH is a group of volume preserving transformations. To demonstrate

the proposition we need to show that h is not isomorphic to JR or 1R2

If (	 ]R then g/h	 and H	 1R . The action of ]R3 on JR is

trivial since JR has no non-trivial connected group of volume preserving

transformations. Hence k is central in g and so g is nilpotent, a

contradiction. If h JR2 then g/h	 and we have a homomorphism

a: JR2 - SL(2, IR) . Since 	 2, ]R)has no two dimensional abelian subalgebras

the induced homomorphism of Lie algebras a : JR2 --	 JR) has a non-

trivial kernel. Let ( be a non-zero vector in Ker(a * ) and choose X

in g which projects to Y under the quotient map g -' gik 1R2 . It

is easy to see that h and X together span an abelian ideal in 	 g

This contradicts the assumption that h is the nilradical of	 g
0

Let h be any Lie algebra. Then, since the Lie algebra of Aut(h)

is isomorphic to the derivation algebra Der(h) , Aut(h) acts on Der(h)

via the adjoint action of Aut(h.) on its Lie algebra. This action

preserves the ideal of inner derivations Inn(h) . We denote the action
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of q € Aut(h) on Der(h)/Inn(h) by Ad() . [D] where D € Der(h)

Proposition 6.1.5

Let h be an arbitrary Lie algebra, {Y} a basis for IR as Lie

algebra and ct l, ct 2	 JR - Der(h) homomorphisms defined by ct(Y)

for i = 1,2. If there is q € Aut(h) such that Ad()[D 1 ] = k[D2]

for k € JR then h. t	 JR and h t	 JR are isomorphic
al

Proof

Let
	

denote h.	 JR for i = 1,2 . By hypothesis

Ad()(D 1 ) = k(D2 ^ T) for some I	 Inn(h) . Define a homomorphism

JR -- Der(h) by	 (Y) = D2 ^ T and set	 = h	 JR . Then the mapping

-- g defined by	 (h,t) = ((h),kt) is easily seen to be an iso-

morphism. To show that g	 2 it is sufficient to show that there is

a vector V € g such that V 4 h and [Z,V] = D2 (Z) for all Z € Ii

Now there is an X € k such that [Z,X] = T(Z) for each Z € h

Also [Z,YI1 = (D2 + T)(Z). in g . Hence the vector V = Y-X has the

required properties. Thus	 as was to be shown.

El

Corollary 6.1.6

The Lie algebras of the groups in Proposition 6.1.4 are given by

3
semi-direct products h. K 0 JR where h = JR	 or vt and 0 is a trace 0



Jo 0

	

= (o	 a

	

\o	 0

o	 fo

o , D2 = (0

o

o\	 (a

aj	 ID 3 = (0

0/

10

01

00

1

a

0

1
	

1	 0\	 lÀ
D4 =	 0
	

1	 a) , D5 (x) = f_i
0
	

0 -2/
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outer derivation. Two such algebras h	 IR and 1	 IR are isomorphic

	

1	 2

iff	 D 1 '= kD2+T for some	 Aut(h) , k	 , T	 Inn(k)

Proof

Combine Propositions 6.1.4 and 6.1.5.

U

In the next two sections we determine, up to isomorphism, all simply

connected Lie groups satisfying 6.1.6.

6.2 Extensions G	 x]R

The Lie algebra of trace 0 outer derivations of 1R 3 is 4€.(3, IR)

The orbits of the adjoint action of GL(3, IR) or	 IR) correspond

to Jordan canonical forms of matrices in .o(3, IR) . Up to a scalar

factor they are:

1	 0'	 1	 0	 0

A	 0 )
	

= 0	 x	 0

0 -2x/	 0	 0 -(l+x)

The corresponding Lie algebras arid groups are numbered

g1,...,g6(X),G1,...,G6(x)
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6.2.1

Then	
i	

IR4 ,

6.2.2	 G2

G 2 ' N x

6.2.3	 G3

g 3 = {X1,X2,X3,Y I [X.,X.1 = 0 for 1 ^ i,j ^ 3 , [Y,X 1 ] = 0

[Y,X2 J = X 1 , [Y,X 3] = X2}

1	 t t2/2\

Exp(tD3 ) =	 0	 1	 t

001

and G3 is 1R4 with multiplication:

2
(x,y,z,t)•(u,v,w, ․ ) = (x+u+tv+.w,y+v+tw,z+w,t+s)

6.2.4	 G4

=	 [XX.] = 0 for 1 ^ i,j ^ 3 , [Y,X 1 ]	 X1

[Y,X2 ] = X 1 + X2 , [Y,X3 ] = -2X3}



- 97 -

et

Exp(t D4 ) =	 0

0

So G4 is ii	 with multiplication

(x,y,z,t).(u,v,w, ․ ) = (x^e tu^tetv , y+etv , z+e2t, t^s)

6.2.5	 G5(X)

g 5 (x) = {X 1 ,X 2 ,X 3 ,Y	 [X.,X.] = 0 for 1 ^ i,j ^ 3, [Y,X] =

[Y,X2 ] = X 1 -fAX 2 ,[Y,X 3 ] = -2X3}

I eX Cost eAtCost	 0

Exp(t D5 (X)) = 1_eAt Sint	 eXt Sint	 a

a	 0	 e_2At

So G5 (X) is 1R4 with multiplication

(x,y,z,t).(u,v,w, ․ ) = (x+ue tCos t + ye

At.	 At	 2Aty-ue Sint + ye Cost, z+e	 w, t+s)

It is easy to check that g 5 (x)	 9 5 (11 ) iff A = ±11 so we can assume

that A ^ 0 . If A = 0 then G (0) is isomorphic to Isom(E 2 ) xIR

and hence is not maximal as Aut(G 5 (0)) has a compact group of inner

automorphi sms.

tet
	

0

et
	

0

0
	 e2t
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6.2.6	 G6(X)

= {X1,X2,X3,Y I [X.,X.] = 0 for 1 ^ i,j ^ 3, [Y,X 1 ] = X1

[Y,X2] = AX2 , [Y,X 3] = -(1^A)X3}

t

Exp(tD6 (A)) =	 0

\0

o	 0

eXt	 0

o	 e(1)t

So G6 (X) is 1R4 with multiplication

(x,y,z,t)(u,v,w, ․ ) = (x+etu,y^eXtv,z+e_)tw,t+s)

The isomorphism classes of the G 6 (A) are as follows:

(a) G6 (X) ' G6 (0) iff x = 0, -1

(b) If p	 0 then G6 (X)	 G6(p)

-pA = it, l/i.i, -(l+), -
	 ,	 ,

There is a better way to express the isomorphism classes of the G6(A)

If X 1 ,X 2 ,X 3 dR are such that	 A2 
^ 

A 3 and A1 
+ 

A2 
+ 

A 3 = 0 we

define M(A 1 ,X 2 ,A 3 ) to be:

X l 0	 0

M(A 1 ,A 2 ,A 3 ) =	 A2	 0

0	 0	 A3



0

0

0

0

1

0

0

0

0

1

0

0

•	 fo

xl 
= ( 0

0

/0

o). x2=(o

0/

o\ fo

0), x3=(o

0/
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It is clear that any diagonalizable matrix in SL(3, IR) is conjugate

f'J3
to a unique one of these matrices. Hence g6(X) =

	
M(X) IR for some

x = (x 1 ,x 2 ,x 3 ) .	 Furthermore lR3t<M (x) 	 =

for c	 0 in IR

6.3 Extensions G = N x]J

We recall the presentations of N and its Lie algebra n

	

/1	 y	 x\

N =	 0	 1	 z	 € GL(3, IR) J
0	 1)

n = {X 1 ,X 2 ,X 3 I [X,X] = [X 1 ,X 3 ] = 0 , [X2 ,X 3 ] = X1}

where	 are the matrices:

With respect to this basis Aut(n) is given by

	

fa	 b 1	c1	-

	

Aut(vt) = (0	 b2	c2	 E GL(3, IR)	 a = b2c3-b3c2}

\o b3 c3

The corresponding automorphisnis of N a'e given by:
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(1	 y	 x\	 fi b2y+c2z ax+b1y+c1z+(b2b3y2+2b3c2yz+c2c3z2)

	

0	 1	 z) -'-0	 1	 b3y+c3z

	

\o	 0	 1/	 \o	 0	 1

The algebra ou.t(vt) of trace 0 outer automorphisms of vi is the

subalgebra of Der(n) given by:

10	 o\
4oLLt(n) =	 M) € Der(vi)	 M € 4!.(2, IR) } .

The adjoint action of Aut(n) on sot(n) is:

'a v)	 (0 o)	 (0	 o\
Ad!	 •	

=	 _1MA)0 A	 0 M	 0 A

where v €1R2 , A € GL(2,IR), M €	 2,TR), a = det(A) . Hence, up to

scaling, the orbits of the adjoint action are represented by the

Derivations:

	

fo 0 o\	 fo	 0 o\	 fo 0 0'\	 /0 0 0

0	 o)	 D8=fO	 1	 0, D9 =jO	 0	 l),D10 =(0	 0	 1

\o	 0	 0/	 o	 0 -1/	 \0 -1	 0/	 0 0

The corresponding algebras and groups will be denoted 97 •..

6.3.1

N xIR which has already been dealt with.



/1 y

	

0	 1

	

\.0	 0

/1 ety	 x\

z	 = (o	 1	 e_tz)

iI	 \o	 0	 1 1
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6.3.2	 G8

= {X 1 ,X 2 ,X 3 ,Y	 [X 1 ,X 2 ] = [X 1 ,X 3 ] = 0 , [X 2 ,X 3] =

[Y,X 1 ] = 0 , [Y,X2 ] = X, [Y,X 3 ] = -X3}

The 1-parameter subgroup of Aut(N) corresponding to 	 is:

So	 is	 with multiplication

-t	 t	 -t
(x,y,z,t)•(u,v,w, ․ ) = (x^u+ye w,y+e v,z+e w,t+s)

6.3.3	 G9

= {X 1 ,X2 ,X3 ,Y I [X,X 2] = [X 1 ,X3] = 0 , [X2 ,X 3 ] = X1

[Y,X 1 ] = 0 , [Y,X2 ] = -X 3 , [Y,X] = X2 }

The 1-parameter subgroup of Aut(N) corresponding to D 9 is:

/	 .	 .2	 .	 22
/1 y X\ /1 y Cost + z Sint	 x-yz Sin t+Sin2t(z -y )\

	ag(t) ( 0 1 z ) 
= ( 

0	 1	 -y Sint + z Cos t

0 1/	 \.o	 o	 1
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Hence	 is JR4 with multiplication:

(x,y,z,t)(u,v,w, ․ ) = (x+u-y(xSint + wCost) + vwSin

22
+ Sin2t(w -v ),y+vCost + wSint

z-vSint + wCost,t +s)

6.3.4	 G10

l0 
= {X 1 ,X 2 ,X 3 ,Y I [X,X2 ] = [X 1 ,X 3 ] = 0 , [X 2 ,X3 ] = X1

[Y,X 1 ] = LY,X2 ] = 0 , [Y,X 3 1 = X2}

Now {X 1 ,X 2 ,Y} spans an abelian ideal in g 10 and so g 10 is

isomorphic to one of the Lie algebras 91,...,g5(x),96(x) of Section 6.2.

6.4 QuotIents of finite volume

We wish to determine which of the solvable groups	 ,... ,G 9 con-

structed in 6.2 and 6.3 possess a discrete subgroup r such that the

quotient G1 /r has finite volume. We will use the following known results

on discrete subgroups of solvable groups. For proofs see [ 	 ] Chapters

II and III.

Proposition 6.4.1 (Mostow)

Lt G be a solvable group and r c G a discrete subgroup such
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that G/r has finite volume. Then G/r is compact.

Proposition 6.4.2 (Mostow)

Let G be a simply connected, solvable Lie group and H c G its

maximal, connected normal nilpotent subgroup (necessarily closed). Then a closed

r	 G has G/r compact iff the following conditions both hold:

(a)	 H/H n r is compact.

(b)	 If p:G - G/FlR'	 is the quotient map then p(r) is a closed

subgroup of ]R with ]Rn/p(r) compact.

Proof

The sufficiency of the conditions is obvious since if (a) and (b)

hold then G/r is a fibre bundle over a compact base with a compact

fibre. The necessity of (a) is demonstrated in Theorem 3.3 of [ '.' I

and the necessity of (b) then follows from Theorem 1.13 of [ 	 I
9

Remark

For G nilpotent 6.4.2 is trivial. However it is known that a

connected, simply connected nilpotent Lie group G has a subgroup r

with G/r compact iff g	 IR where IL is a nilpotent Lie algebra

defined over	 (see [	 I Theorem 2.12).

For our purposes we need the following corollary.
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Corollary 6.4.3

If 0 = TRn	 IR is unimodular and not nilpotent then there is a discrete

subgroup r	 0 with G/r compact 1ff there is a non-zero A € IR	 such

that a(A) has a characteristic polynomial with integral coefficients.

Proof

We recall that c(t) € SL(n, IR) since G is unimodular. If A	 0

exists with the stated property then there is a basis V1 .	 for IR

with respect to which cL(X) is represented by a matrix in SL(n, )

The set r = {(r1 v 1 +...+	 sA)	 rs € } is a discrete subgroup

and 6.4.2 implies that GIr is compact.

Conversely assume that r E 0 is discrete with G/r compact. Let

p:G ^IR be the obvious quotient map. Then from 6.4.2 we see that for

some basis v 1 ,...,v	 of 
lR	

we have r fl iRn x {Q} = fr1v I r €}

and p(r) = {kA0 Ik €} for	 A0	 0 in IR . Let y € r be such that

=	
. Then, since 1R	 is abelian, we have yxy 	 = ct(X0)x for

each x 
€ IRn x {0} . Hence a(A0 ) preserves r n lRT x C0} and is

therefore conjugate to an integral matrix in SL(n, ) . It follows that

the characteristic polynomial of a(A 0 ) has integral coefficients.

D

We wIll now consider each of the groups G 1 - G 9 individually to

determine whether or not they have a compact quotient.
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6.4.4	 G1

Since G 1	1R4 it clearly has a compact quotient.

6.4.5	 02

It is easy to see that G 2	N x	 and so clearly has a compact

quotient. For example take the direct product of the integral matrices

in N and	 €IR

6.4.6	 03

In this case c(t) is given by the matrix:

/1	 t	 t2/2

1	 t

\o	 0	 1

So for all t € IR the characteristic polynomial of o(t) is (x-l)3

and the minimum polynomial for ct(t) is x 3 -3x2-i-3x-1 . Therefore for

any t0	0 we can find e 1 € JR3 such that e1 ,e2 = a(t0 ) •e1

e 3 = ct(t0 ) . e 2 are independent and c(t0 ) . e 3 = 3e 3-3e 2+e 1 .	 Then

(e1,O),(e2,O),(e3,O) and (0,t0 ) generate a subgroup of G 3 with

compact quotient.

6.4.7	 G4

Here ct(t) has the form:

let tet	 0

	

ct(t)=(0	 et	 0

	

a	 a	 e2t
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arid the characteristic polynomial of c(t) is:

t -2t 2	 2t
p(t,x) = x3 -(2e +e	 )x + (e +2e_t)x_l

Since G4 is not nilpotent then, by 6.4.3, if	 has a co-compact
t0	-2t

subgroup we need to find t0 IR , t0	0 such that 2e	 + e

2t0	-to	 to
e	 + 2e	 €	 . Setting A 0 = e	 this means that there are

n,m	 , n > 0 , m > 0 such that:

2x0 + 1/Ag = n	 ^ 2/A0 =

In other words	 is a root of the polynomials:

f(x)	 2A 3 - nx2 + 1 , g(x) 
=	

- m ^ 2

If f is irreducible then it is the minimum polynomial for A0 and

hence must divide g which is clearly impossible. Hence f is reducible.

Similarly g is reducible.

Factorinqs of f

The only possible rational roots of f are ± 1 , ± 1/2

(i) If f(l) = 0 then n = 3 and f(x) = (A-l)2(2A-i-l)

(ii) If f(-l) = 0 then n = -1 contradicting n > 0
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(iii) If f(fl = 0 then n = 5 and f(x) = (2x-1)(x2-2X+1)

(iv) If f(-fl = 0 then we are back to (1).

Factorings of g

The only possible rational roots are ± 1 , ± 2

(i)	 If g(i) = 0 then m = 3 and g(x) = (A-l)2(x^2)

(ii)	 If g(-l) = 0 then m = -1 contradicting m > 0

(iii) If g(2) = 0 then m = 5 and g(A) = (x-2)(x2+2x--i)

(iv)	 g(-2) = 0 as in (i).

Then the only way that f and g can share a common roots is when

n	 m = 3 and	 = 1 i.e. t0 = 0 . Hence G4 does not have a co-

compact subgroup.

6.4.8	 G6(x)

If x = 0,-i then, .as noted in 6.2.6, G6 (0) is isomorphic to

S xlR where S is the group

	

fx
	

0

	

S ={ ( 0
	

l/x	
z ) 

€ GL(2, IR) 3.

	

0
	

0	 1/

If we define r E S to be the discrete group:
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7(3+/5/2)1
	

0	 n2(/541) + 2n3

0
	

(3+/5/2)1	 n 2 (/5-1) - 2n 3	n1,n2,n3 €	 }

O	 1

then G6 (0)/r xZZ is compact. If x = 1 , - , -2 then the characteristic

polynomial of a(t) is the same as for G4 . The same argument as in

6.4.7 then shows that G6 (x) has no co-compact subgroups if X = 1

-	 , -2

We now assume that x	 -2 , -1 , - , 0 , 1 . Let H(k 1 ,k 2 ) denote

the group 1R3 i<IR where IR acts by

/ eklt
c(t) 

= ( 

0

0	 0
kt

e 
2	

0	 , k ^ k2 ^ -(k1+k2)

0	
e (k1+k2)t)

Then, as noted in 6.2.6, G6 ()	 H(k 1 ,k 2 ) for some k 1 ,k 2 €IR . The

characteristic polynomial of a(t) is

k 1 t	 k2t	 -(k1-i-k2)t
(x-e	 )(x-e	 )(x-e	 ) so, by 6.4.3, H(k 1 ,k2 ) has a co-compact

k 1 t0	k2t0	 -(k1^k2)t0
subgroup iff e	 , e	 , e	 are th .e roots of a polynomial

with integral coefficients for some t 0	0 in IR . Conversely let

f(x) = x3-px2+qx-1 be a polynomial with integral coefficients and with

Then the characteristic polynomialthree real roots p 1 > p	
1	

> o
2

for c(1)	 in H(log p.1 . log p 2 )	 is f and so H(log 
'l' 

log p2 ) has a
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co-compact subgroup. Now given two polynomials f(x) = x3-px2+qx-1

f'(x)	 x3-p'x2+q'x-1 with roots p 1 ^ p2 ^ (P1P2	 > 0

^ (ii)1 
> 0 then H(log p 1 , log p2 )	 H(log p, log p)

iff log p1/log 2 = log p/log p	 . It is therefore a priori possible

that the H(k 1 ,k 2 ) obtained in this way fall into a finite number of

isomorphism classes. We will show that this is not the case. In fact

we will show that there is a countably infinite sequence of pairs

such that, setting H = H( ') ,4 ') ) , we have
2	 n€IN	 r

Hr	 H	 iff r = s and Hr has a co-compact subgroup. The investigation

will be in two parts. First we determine the reyion ç2 cIR	 formed

by pairs (p,q) such that x 3-px2+qx-1	 has three non-zero positive

real roots. We show that 	 n	 xZZ is infinite. Then we will show that

there -is a foliation F of c whose leaves correspond to the isomorphism

classes of the H(k 1 ,k2 ) . Infinitely many leaves of F contain points

of

(i) Description of c

Let D denote the discriminant leaves of polynomials of the form

x3-px2+qx-1 . Let 2 denote the subset

= C(p,q) E 
2	

x 3-px2+qx-1 has three distinct,

positive, real roots}.
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Then Q is a connected component of 1R2-D . If F is the polynomial

F(X,Y) = X 2 Y 2 -4(X 3^Y 3 ) ^ 18XY-27 then

D = {(p,q) €IR2 F(p,q) = 0}

(j

To describe D we make the transformation F = FoT where T is the

affine map T(X,Y) = (X+Y+3,X-Y^3) . Then

422	 4	 3
F(X,Y) = Y -2Y (X ^18X^54) ^ X ^ 4X

If F(X,Y) = 0 then

= A(X) ± /(A(x)) 2 - B(X) where A(X) = X2+18X^54

B(X) = X4-i-4X3

Since (A(X))2-B(X) = 32(X-f9/2) 3 we must have X ^ -9/2 if F(X,Y) = 0

There are two components of the set ID = {(pq)	
2	

(p,q) = 0}

Branch 1 : Y = ±

We must have /(A(X))2-B(X) ^ -A(X)	 If A(X) ^ 0 this is always

true for X ^ -9/2 and if A(X) < 0 it implies that B(X) ^ 0	 Now

X € [-4,0] and so, since the larger root of A(X) is -9^3/3 > -4 and

the smaller is -9-3/3 < -9/2 this branch is defined only for X ^ 4



// -
/

/:
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Branch 2 : Y =±hX)/(A(X))2B(X)

If X ^ 0 then A(X),B(X),(A(X))2-B(X) ^ 0 so this branch is

defined for X € [0,o) . The branch is undefined if B(X) < 0 , which

occurs for X € (-4,0) , or if A(X) < 0 , which occurs if X € [-9/2,-4]

Hence this branch is defined only for X ^ 0

I',

The locus F(X,Y) = 0 looks like Fig. 1 below.

4,

It is easy to see that the shaded region c2 is sent on to c by T

4,
In fact it suffices to find one point (x,y) E	 such that T(x,y) E 2

Now 1(1,0) = (4,4) and the polynomial x 3-4x2+4x-1 has roots l,(3±/3)

which are all real and positive. Now we have

T(ZZ x) = {(x,y)	 J 2	x and y are both integral

or both half integral}



4tc

rS reui€.

,'	 -,øo-

fle. .re3
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Therefore, since ±i(X4AXfl2_B	 ± as X	 , the set

c2 n T (	 x) is infinite and so Q n	 x is infinite. The discriminant

locus looks like Fig. 2.

Remark

The region between the two branches corresponds to polynomials with

one real root and two complex roots. It clearly contains integral points

e.g.	 (O,O),(1,l),(2,2),(O,n),(n,O)	 for n ^ -1

(ii)	 Let 2 be the region described in (i). We define an equiva-

lence relation on c as follows:

If (p0 ,q0 ),(p 1 ,q 1 ) € c^ and the roots of

x3 - p0x2 + q0x-1 are	
> 

A 2 > A 1 > 0

x 3 - p 1 x2 + q 1 x-1 are p3 
> 
p 

>	
> 0



log A3 = log p3

log A 1	 log 1.11

then (p0,q0) " (p 1 ,q 1 ) iff
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We will show that the equivalence classes foliate	 in such a way that

infinitely many leaves contain points of c2 n xZZ . As noted above

this implies that there are infinitely many non-isomorphic groups of the

form G6 (A) containing a discrete co-compact subgroup.

Let A.:c -IR for 1 ^ i ^ 3 denote the functions defined by taking

the roots of x3-px2+qx-1 in increasing order for (p,q) €	 . i.e.

A 3 (p,q) > A 2 (p,q) > x(p,q) > 0

x 3-px2 + qA - 1	 0 on	 for 1 ^ i ^ 3
ii	 i

Applying the implicit function theorem to the function f(p,q,x) = x3-px2+qx-1

we see that the A. are smooth. Differentiating with respect to p we

obtain

A.
(3x - 2px. + q)	 = A	 for i = 1,2,3

1	 1

Now 3x(p,q) - 2pA(pq) + q is non-zero for (p,q)	 c2 since (p,q) / D

So, setting h(p,q,t) = 3t2 - 2pt + q we have	 -

A.	 A.

= h(A)

	
for i = 1,2,3

Similarly, differentiating with respect to q , we obtain
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=	
for i	 1,2,3

log X3(p,q)
Define	 :c2 -]R by	 (p,q) =	 . The sets	 (p,q) = const

log x1(p,q)

are the equivalence classes for the relation above. Differentiating

we obtain

-	 1	 [A3 log	 A1 log X3j

- (log x1)	
L 

h(x 3 )	 - h(x1)

-	 1	
flog x 3	log x11

- (log A1)2 L h(x 1 ) - h(x3) j

Now A 1 X 2 X 3 = 1 so A 3 > 1 , A 1 < 1 and therefore log(A 1 ) < 0 and

log(x 3 ) > 0 . For (p,q) €	 the graph of x3-px2+qx-1 looks like:

So h(p,q,A1(p,q)) > 0 and h(p,q,x3(p,q)) > 0 . It now follows that

< 0 and	 /q > 0	 Hence	 is a submersion. The sets

= const. form a foliation F whose leaves are never horizontal or

vertical. We can write the leaf through (p 0 ,q 0 ) as (p(q),q) where

p(q0 ) = p0 and	 = -	 /q	 /p	 > 0 . The foliation looks like

Fig. 3:
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\\	
1'	 /

/ /

3; /N\

	

/ //	 -

(Io

Fig. 3.

If	 is the curve (x,-x+k) for k c	 it is clear that the family

has the following properties:

P1: Each leaf of the foliation intersects 
1k 

exactly once

if k > 6

P2: The length of	 fl c2) goes to	 as k --

P3: xc

k€IN

P4: If A 
=	

n (	 n c) then IAI <	 and

A +	 as n
n

Define a sequence	 as follows:

(a) Let n0 be the smallest integer such that IA	 ^ 0 . If the
0

points of A	 are (v1,w1) - ( Vk Wk )	 set	 (p.,q.) = (v.,w.)
nO	

0	 0	 11	 1 1

for i = 1,. .,k0 .	 -

(b) Assume that (p 1 ,q 1 ) - have been defined and denote by L

the leaf of F through ( p , q ) . By P1 and P4 we can choose

a smallest n	 such that IA	 - (L1	 ... Lr) I ^ 1 . If the points

of A	 - (L1	 ... Lr) are	 v1,w1) - ( Vk,Wk) we set

(P +p j ) = (v 1 ,w) for i = 1,...,k3



/ eAtCost

/	 At
c(t) =	 -e Sint

0

At
e Sint

At
e Cost

0

0

0

-2xt
e
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From P3 above (	 x	 n c) E U Lr so any group G 6 (x) with a co-
r=1

compact discrete subgroup is represented by one of the leaves Lr 	 If

the roots of x 3_ px2+qx_1 are 2jr)(r)(r) then the groups

G6 (log x/1og x) are all non-isomorphic and have a co-compact

discrete subgroup.

6.4.9	 G5(A)

In this case we have

By the remark following the discussion of the discriminant in 6.4.8 we

know that there are n,m €	 such that x 3-nx2-1-mx - 1 has one positive

real root, say e 2 , and two complex roots e50 . If we set

t0 = 0 and A0 S/0 then for the group G 5 (A0 ) a(t0 ) has a character-

istic polynomial with integral coefficients. Hence G5 (A 0 ) has a lattice.

6.4.10

Since	 N x JR this group has been dealt with in 6.4.5.
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6.4.11 : G8

We will show that G8 has a discrete co-compact subgroup. Recall

that G8 = N k	 where:

fi
a(t)	 (0

0

	

'	 I	 t

	

Z\	 ,l	 ex	 z

	

y )	 =	 (o	 1	 e_ty

	

iJ	 0	 1

It is clearly enough to show that for some non-zero t0 €IR there is a

lattice 1' E N preserved by cL(t0 ) . It is easy to see that if we set

	

1	 (a15+a+2b)	 .-.(5c+(b2-a2)/5+ab(/5-5)

	

y(a,b,c) = 0	 1	 .--((a+2b)v'5-5a)

	

0	 0	 1

to
then r = {y ( n , m , p )l n , m , p E} is a lattice in N .	 If e	 = (3+i/5)/2

then it is easy to see that a(t0 )y(n,m,p) = y(2n-Fm,n-I-ni,p+2n2+2nm+n12)

Hence rx{O} and (e, log (3/"5)) generate a lattice in G8

6.4.12 : G9

G9 = N	 1R where c(2kir) = id for k €ZZ . If r 	 N is co-compact

then r x {2} is a discrete co-compact subgroup of G 9 since (e,2kir)

is contained in the centre of G9

6.5 Maximal Geometries

In this, last section we draw together the results of 6.1-6.4 and

detetmiine the maximal four dimensional geometries with G = {e}
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Theorem 6.5.1

The group G3 defined in 6.2.3 acting on itself by left translations

is a maximal geometry.

Proof

We have already shown in 6.4.6 that G 3 has a co-compact discrete

subgroup. It remains to show that 	 is maximal. The Lie algebra 93

is given by 1R 3 ' JR where

	

/0
	

t	 0

	

(t) =1 0
	

0	 t

- 0	 0

Hence	 is nilpotent since c(t) is a nilpotent endomorphism for

each t JR . It now follows from Theorem 2 of I \. ] that any maximal

geometry extending (G3 ) is of the form (G3 ,G 3 i K) where K is a

connected compact group of automorphisnis of G3 . But if 93 is given

the presentation

9 3 = {X1,X2,X3,X4 
J 

[X 9 X] = 0 for 1 ^ -i,j ^ 3 , 1X4 ,X 1 ] = 0

[X4 ,X 2 ] - X1 , [ X4 , X 3 ] - X2}

then, with respect to the basis {X 1 ,..,X4 } we have



b1

a/d4

0

0

ci

b / d4

a 1 / d

0

dl\

d2 \€ GL(3,IR) I d4 > 0

d3

d4

/a.

Aut0 (g 3 ) ={ ( 0

\0
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This group is solvable and simply connected and so has no non-trivial

connected compact subgroups. Hence Aut0 (G 3 ) has no non-trivial connected

compact subgroups. We conclude that (G 3 ) is a maximal geometry.

0

Theorem 6.5.2

The group G6 (X) acting on itself by left translations is a maximal

log 1
geometry iff A =	 where	 > 0 are roots of a polynomial of

log it2

degree 3 with integral coefficients. There are countably many non-isomorphic

such geometries.

Proof

The existence of a discrete co-compact subgroup in G6 (A) iff

has the stated form was established in 6.4.8. The fact that there are

infinitely many distinct such geometries was also shown in 6.4.8. It

remains to show that if (G6 (x)) is a geometry then it is maximal. If

(G6 (x)) is a geometry but is not maximal then there is art injective

homomorphism 4:G6 (x) -- L where L denotes the transformation group

associated to one of the maximal geometries described in Chapters 3,4,5.
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If Le denotes the stabilizer of e for the action of L on G6(x)

then either Le	 SO(2) or the geometry ( L/ Le L ) is equivalent to

one of the symmetric space geometries of Chapter 3. We will show that

either assumption leads to a contradiction.

1\

Case (1) : L = SO(2)

By the results of Chapters 4 and 5 L is isomorphic to one of the

following groups

l	 Ka(JR x SO(2))
	

(see Theorem 4.2.3)

L 2	JR x (N	 SO(2)) (see Theorem 4.2.6)

L3 =IR x (SL(2, JR)KSO(2)) (see Theorem 4.4.2)

L4 =JR2	SL(2, IR)	 (see Theorem 5.2.2).

At the Lie algebra level we have an injection 4:g 6 (x) ^	 . Now

g6 (	 =1R3 
M1 

where:

	

fi	 o	 0

	

M = (o
	

A	 0

	

\0
	

0 -(l+x)

Therefore £. must have a three dimensional abelian subalgebra JL and

a vector V 4 k normalizing it such that
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/1
	

0
	

0

ade(V)liL =	
0
	

x
	

0
1
	

0
	

-(1^x)

(i) L1

We have

= {X 1 ,X 2 ,X 3 ,X4 ,X 5	[X.,X.] = 0 for 1 ^ i,j ^ 3, [X,X] = X1
13

[X4 ,X2 ] = X2 ,[X4 ,X3 1 = -2X 3 ,[X5 ,X 1 ] =	 25)<2J =

[X5 ,X 3 1 = 0}

It is easy to see that the only three dimensional abelian subalgebra is the
5

ideal k spanned by {X 1 ,X2 ,X 3 } . If V = Z a.X. then
i=l 

1 1

7
	

b2	 0

ad(V)i. 
=

	
b 1	0

I
0	 -2b1

Hence we must have b 1 = 1 , b2 = 0 and so A = 1 . This contradicts the

fact proved in 6.4.8 that G 6 (1) has no discrete co-compact subgroup.

(ii) L2

L2 is isomorphic to the group of isometries of a nilpotent group

N equipped with a left invariant metric. It follows from [ t ]
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Theorem 2(4) that G 6 (X) ' IR x N . This contradicts the fact that

G6 (x) is not nilpotent for any x

(iii) L3

We have

£3 = {X 1 ,X 2 ,X3 ,X4 ,X5 I [X,X.] = 0 for 1 ^ i ^ 5, [X 2 ,X 31 = 2X4

[X 3 ,X4] = 2X 1 ,[X 2 ,X41 = 2X 3 ,1X 5 ,X 2] = -2X4

[X 5 ,X 3] = 0 , [X 5 ,X 4] = 2X2}

The only three dimensional abelian subalgebra of £ 3 is spanned by

{X 1 ,X 3 ,X5 } which is easily seen to be its own normalizer.

(iv) L4

Since £4	
2 

k 4.(2, IR) with a non-trivial £4 has no three

dimensional abelian subalgebras.

Case (2) : (L/LeL) syninetric.

Since G6 (X) is diffeomorphic to JR4 the symmetric space (L/LeL)

must be one of	 H4 ,E4 ,ExH 3 ,E2xN2 ,H2xH2 or	 H2 . It follows that

G6 (x) has a left invariant metric of non-positive curvature. We recall
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that	 ' 1R	 IR where

	

(1	 0	 0

	

M=fO	 A	 0

	

0	 0 -(1^x)

(i)	 A	 0,-i

Since g 6 (A) is unimodular and [g6(X),g6(X)] = 1R3 x {0} it

follows from [ S I Theorems 1.5, 1.6 that Mx acts as a skew adjoint

transformation with respect to some inner product p on 1R 3 x {0}

If < , > denotes the standard inner product on JR3 then there is a

positive definite synvietric matrix A such that p(x,y) = <Ax,y>

The adjoint of M with respect to p is given by M* = AMtA

Since M = -M and M = M it follows that M and -M have the same

eigenvalues. Hence {1,x,-(i^x)} = {-1,-x,(l+x)} . But this implies

that A = 0 or -1 contradicting our assumption

(ii) A=0 or A=-1

Since G6 (Q) ' G6 (-1) we consider A = 0 . Then

96( 0 ) = {X1,X2,Y1,Y2 I [X 1 ,X2 ] = [Y 1 ,Y2 ] = 0

[Y,X 1 ] = [Y 2 ,X 2 ] = 0 , [Y 1 ,X 1 1 = X 1 , [Y 1 ,X 2 ] = -X2}
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Letting it and	 denote the subalgebras spanned by {X 1 ,X 2 } and

fY1 ,Y 2 } respectively we have it 
=	 6(0)1 . The roots of .s

in it are	
1'2 

where

1 (a 1 Y 1 +a2 Y2 ) = a 1 ,	 2 (a 1 Y 1 +a 2 Y2 ) = -a1

But there is no vector V in .6 with	 1 (V) , (V) > 0 contradicting

Proposition 5.6 of [1].

We conclude that (G6 (x)) is a maximal geometry if it is a

geometry.

0

Theorem 6.5.3

The group G8 defined in 6.3.2 acting on itself by left trans-

lations is a maximal geometry.

Proof

The existence of a discrete co-compact subgroup was established in

6.4.11. It remains to show that (G 8 ) is maximal. As in the proof of

6.5.2 there is an injective homomorphism q:G 8 - L where L is the

transformation group associated to one of the maximal geometries described

in Chapters 3, 4, 5. If Le denotes the stabilizer of e for the action

of L on G8 we have Le	 S0(2) or (L/LeL) is one of the symmetric

space geometries of Chapter 3. We will show that either assumption leads

to a contradiction.
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Case (1) : Le ' SO(2)

Then L is isomorphic to one of the following

L1 
=	

x SO(2)) (see Theorem 4.2.3)

L 2 =IR x (N	 50(2))	 (see Theorem 4.2.6)

L3 =JR x (SL(',:1R)	 S0(2))	 (see Theorem 4.4.2)

L4 
=	

SL(2,IR)	 (see Theorem 5.2.2)

(i) L1

Let rr:L 1 ^ S0(2) denote the obvious projection and let fz

denote the kernel of the associated map of Lie algebras Tr:g 8 -3-IR

Since	 is not isomorphic to	 it follows that ía is a

3 dimensional ideal in g 8 . Now	 = vi. t IR and ía	 = Vi x O}

Hence ía = v x {0} and	 x 0}) E.	 r< IR . But 1R3	iR has no

subalgebra isomorphic to n

(ii) L2

Since L2 is the group of isometries of the nilpotent group IR x N

equipped with a left invariant metric it follows from [12] Theorem 2(4)

that G8 1R x N . This contradicts the fact that 	 is not nilpotent.

(iii) L3

This possibility is eliminated in the same way as L1

(iv) 1.4

The group L4 cannot contain	 since by Proposition 5.2.3 the
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geometry associated to L4 has no compact quotients.

Case (2) : (L/L,L) symmetric

As in the case (2) of 6.5.2 this implies that G 8 has a left

invariant metric of non-positive curvature. Since 	
8	

5 unimodular

it follows from Theorems 1.5, 1.6 of [81 that g 8 '' it <	 where it

is an abelian ideal of	 and	 is a complementary abelian subalgebra.

Since it is contained in the nilradical of	 and	 vt i<1R we must

have it = h. x {O} for some abelian ideal Pt	 n . Now

= {X 1 ,X2,X3,Y I [X,X] = [X 1 ,X 3 1 = 0 , [X 2 ,X 3 ] =

[Y,X 1 ] = U , [Y,X 2 1 =	 , ['{,X] = -X3}

It is easy to see that it is spanned by X 1 and aX2 + bX 3 for some

a,b E IR . Clearly for any choice of a,b the algebra g 81it is not

abelian.

0

Theorem 6.5.4

If (G) is a maximal four dimensional geometry then G is

isomorphic to G 3 , G6 (x) for. some x € ]R , or G8

Proof.

By Corollary 6.1.6	 G must be isomorphic to one of the groups

G 1 - G9 constructed in sections 6.2 and 6.3. Now G 1	and G2

x N are not maximal by 6.1.2 since they have compact groups of

automorphisins (see Lemma 4.2.4). The groups G 5 (A) and	 are of the
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form H	 IR where the image of cz	 n Aut(H) is compact. Therefore

by Proposition 6.1.3 G 5 (x) and G9 are not maximal geometries. Finally

G4 is not a geometry since it was shown in 6.4.7 that it has no co-compact

subgroup. The only possibilities are G ' G 3 , G	 G 8 or G	 G6 (A) for

the x defined in Theorem 6.5.2.

LI
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SUMMARY OF MAXIMAL GEOMETRIES.

We list the maximal 4-dimensional geometries determined in

Chapters 3, 4, 5, 6.

1.	 Riemannian Globally Symmetric Spaces (Chapter 3)

444
(i) The simply connected spaces of constant curvature E , H , S

with their maximal connected group of isometries.

(ii) The Hermitian Symmetric spaces:

Complex Projective space	 P 2 = SU(3)/S(U(2)xU(l))

Complex Hyperbolic space tH2 = SU(2,l)/S(U(2)xU(l))

(iii) The reducible spaces Ex5 3 , ExH 3 , E2x S2 , E2xH2,

S 2xH2 , H2xH2 with their connected groups of isometries.

2.	 Geometries with stabilizer SO(2) (Chapters 4,5)

(i)	 (Theorem 4.2.2) Let G be the group 1R3	(IRxSO(2)) where

/ etCose	 etSino	 0

ct(t,O) = (_etino	 etCoso	 0

'\0
	

0
	 e2t

If K is the subgroup {O} x SO(2) then (G/K,G) is a maximal geometry.
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(ii) (Theorem 4.2.5) Let G be the group JRx(N	 SO(2)) where

	

fi	 x

	

N = { ( o 	1
	

z	 € GL(3, IR)}

0
	

1/

/1fi x y\ I
( ü 1	 z j =f 0

0 1/
\0

-

xCose-i-zSino	 y_xzSin2e+Sin2o(z2_x2)

1	 -xSine + zCoso

0	 1

If K is the subgroup {O} x {J} x S0(2) then (G/K,G) is a maximal

geometry.

(iii) (Theorem 4.4.1) Let G be the group ( ]RxSL(',IR)) 	 S0(2)

where cz(S0(2)) is a maximal compact group of automorphisms
f'J

of SL(2, IR) . If K = {0} x {e} x S0(2) then (G/K,G) is

a maximal geometry.

(iv) (Theorem 5.2.1) Let G =ig2	SL(2,IR) where

c:SL(2, IR) + SL(2, IR) is a non-trivial automorphism. If

K = {0} x S0(2)	 {0} x SL(2, IR) then (G/K,G) is a maximal



t

1

0

t2/2\

tie

1/

(i

a(t) = (0

'0
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geometry with quotients of finite volume but no compact

quotients (Proposition 5.2.3)

3.	 Solvable Groups

The following simply connected solvable groups acting on themselves

by left translations are maximal geometries:

(i) (Theorem 6.5.1) G =ir 3	 JR where ct is the homomorphism:

(ii) (Theorem 6.5.2) G = ]R 3	IR where a is the homomorphism:

/et
	

0
	

0

a(t) = (0
	 eXt
	

0

0
	 e1)t

and A = log p 1 /log p	 with	 the roots of a polynomial of degree 3

with integral coefficients. There is a countable infinity of non-isomorphic

such groups.

(iii) G = N 
a	

where (Tkarzn-	 5)
x	 z	 1	 ex	 z

cx(t) .	(0	 i	 y )
	 =	

(0	 1	
ety)

\o 0 1/	 0	 1/



- 13a -

REFERENCES

1. Azencott, R. and Wilson, E.N. : Homogeneous Manifolds with Negative

Curvature - Transactions of the American Mathematical Society

215 (1976) pg. 323-362.

2. Borel, A. : Compact Clifford-Klein Forms of Syniiietric Spaces -

Topology 2 (1963) pg. 111-122.

3. Gordon, C.	 Riemannian Isometry Groups Containing Transitive

Reductive Subgroups - Mathematische Annalen 248 (1980)

pg. 185-192.

4. Halmos, P.R. : Measure Theory - Van Nostrand, 1950.

5. Hochschild, G.	 The Structure of Lie Groups, Holden-Day, 1965.

6. Helgason, S.	 Differential Geometry and Symmetric Spaces - Academic

Press, 1962.

7. Lawson, H. Blaire Jr. : The Quantitative Theory of Foliations -

CBMS Regional Conference Series 27, American Mathematical

Society 1977.

8. Milnor, J. : Curvatures of Left Invariant Metrics on Lie Groups -

Advances in Mathematics 21 (1976).

9. D'Atri, J.E. and Ziller, W. : Naturally Reductive Met"ics and

Einstein Metrics on Compact Lie Groups. Memoirs of the American

Mathematical Society 215 (1979).



- 133-

10. Palais, R. : Topological Transformation Groups - Memoirs of the

American Mathematical Society, 22 (1957).

11. Ragunathari, M.S. : Discrete Subgroups of Lie Groups - Springer

Verlag, 1972.

12. Wilson, E.N. : Isometry Group.s on Homogeneous Nilmanifolds -

Geometriae Dedicata 12 (1982) pg. 337-346.

13. Scott, P. : The Geometries of 3-manifolds - Bulletin of the London

Mathematical Society 15 (1983) pg. 401-487.

14. Thurston, W.P. : Hyperbolic Geometry and 3-manifolds - in Low

Dimensional Topology, London Mathematical Society Lecture

Notes 48 (ed. Brown and Thickstun, Cambridge University Press

1982) pg. 9-25.


	D095230_1_0001.tif
	D095230_1_0003.tif
	D095230_1_0005.tif
	D095230_1_0007.tif
	D095230_1_0009.tif
	D095230_1_0011.tif
	D095230_1_0013.tif
	D095230_1_0015.tif
	D095230_1_0017.tif
	D095230_1_0019.tif
	D095230_1_0021.tif
	D095230_1_0023.tif
	D095230_1_0025.tif
	D095230_1_0027.tif
	D095230_1_0029.tif
	D095230_1_0031.tif
	D095230_1_0033.tif
	D095230_1_0035.tif
	D095230_1_0037.tif
	D095230_1_0039.tif
	D095230_1_0041.tif
	D095230_1_0043.tif
	D095230_1_0045.tif
	D095230_1_0047.tif
	D095230_1_0049.tif
	D095230_1_0051.tif
	D095230_1_0053.tif
	D095230_1_0055.tif
	D095230_1_0057.tif
	D095230_1_0059.tif
	D095230_1_0061.tif
	D095230_1_0063.tif
	D095230_1_0065.tif
	D095230_1_0067.tif
	D095230_1_0069.tif
	D095230_1_0071.tif
	D095230_1_0073.tif
	D095230_1_0075.tif
	D095230_1_0077.tif
	D095230_1_0079.tif
	D095230_1_0081.tif
	D095230_1_0083.tif
	D095230_1_0085.tif
	D095230_1_0087.tif
	D095230_1_0089.tif
	D095230_1_0091.tif
	D095230_1_0093.tif
	D095230_1_0095.tif
	D095230_1_0097.tif
	D095230_1_0099.tif
	D095230_1_0101.tif
	D095230_1_0103.tif
	D095230_1_0105.tif
	D095230_1_0107.tif
	D095230_1_0109.tif
	D095230_1_0111.tif
	D095230_1_0113.tif
	D095230_1_0115.tif
	D095230_1_0117.tif
	D095230_1_0119.tif
	D095230_1_0121.tif
	D095230_1_0123.tif
	D095230_1_0125.tif
	D095230_1_0127.tif
	D095230_1_0129.tif
	D095230_1_0131.tif
	D095230_1_0133.tif
	D095230_1_0135.tif
	D095230_1_0137.tif
	D095230_1_0139.tif
	D095230_1_0141.tif
	D095230_1_0143.tif
	D095230_1_0145.tif
	D095230_1_0147.tif
	D095230_1_0149.tif
	D095230_1_0151.tif
	D095230_1_0153.tif
	D095230_1_0155.tif
	D095230_1_0157.tif
	D095230_1_0159.tif
	D095230_1_0161.tif
	D095230_1_0163.tif
	D095230_1_0165.tif
	D095230_1_0167.tif
	D095230_1_0169.tif
	D095230_1_0171.tif
	D095230_1_0173.tif
	D095230_1_0175.tif
	D095230_1_0177.tif
	D095230_1_0179.tif
	D095230_1_0181.tif
	D095230_1_0183.tif
	D095230_1_0185.tif
	D095230_1_0187.tif
	D095230_1_0189.tif
	D095230_1_0191.tif
	D095230_1_0193.tif
	D095230_1_0195.tif
	D095230_1_0197.tif
	D095230_1_0199.tif
	D095230_1_0201.tif
	D095230_1_0203.tif
	D095230_1_0205.tif
	D095230_1_0207.tif
	D095230_1_0209.tif
	D095230_1_0211.tif
	D095230_1_0213.tif
	D095230_1_0215.tif
	D095230_1_0217.tif
	D095230_1_0219.tif
	D095230_1_0221.tif
	D095230_1_0223.tif
	D095230_1_0225.tif
	D095230_1_0227.tif
	D095230_1_0229.tif
	D095230_1_0231.tif
	D095230_1_0233.tif
	D095230_1_0235.tif
	D095230_1_0237.tif
	D095230_1_0239.tif
	D095230_1_0241.tif
	D095230_1_0243.tif
	D095230_1_0245.tif
	D095230_1_0247.tif
	D095230_1_0249.tif
	D095230_1_0251.tif
	D095230_1_0253.tif
	D095230_1_0255.tif
	D095230_1_0257.tif
	D095230_1_0259.tif
	D095230_1_0261.tif
	D095230_1_0263.tif
	D095230_1_0265.tif
	D095230_1_0267.tif
	D095230_1_0269.tif
	D095230_1_0271.tif
	D095230_1_0273.tif
	D095230_1_0275.tif

