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INTRODUCTION

The idea that geometric methods can play an important role in the
resolution of topological questions, dormant since the turn of the century,
has been revived recently by the work of Thurston (see [ {4 ] for a summary).
Such methods are based on the notion of a "geometric" manifold. This is a

manifold equipped with a Riemannian metric for which the pseudo-group of
local isometries is transitive. The universal cover of a geometric manifold is

also geometric and, in fact, has a transitive group of isometries since

any local isometry of a simply connected Riemannian manifold is the restriction
of a global isometry. To determine which manifolds admit a geometric structure
it %s, therefore, first necessary to determine which simply connected manifolds
admit such structures. Since several metrics on a given manifold may have

the same group of isometries - or at least the same connected component of

the identity - we are led to the following problem: Determine all simply
connected manifolds admitting a transitive Lie group action such the

stabilizer subgroup at each point is compact. Such a structure is called

a geometry in keeping with Kleins Erlanger Programme. The problem can be
reduced somewhat by noting that any group action with compact stabilizer

is contained in a largest such action so we need only classify maximal

geometries.

The most important subclass of geometries consists of the ones covering
compact manifolds or, more generally,manifolds of %inite volume with respect
to the volume form coming from some locally homogeneous Riemannian metric.
In dimension 1 this problem is trivial and the classical Uﬁiformization

Theorem gives the 2-dimensional geometries as the Euclidean plane, the



(i)

Hyperbolic plane or the round 2-sphere. In dimension 3 the maximal
geometries covering manifolds of finite volume have been determined

by Thurston (see Scott [ \3 1 for a good survey of results in the
field of geometric 3-manifolds). It turns out that there are only 8
maximal 3-dimensional geometries covering manifolds of finite volume
and they all cover compact manifolds. These geometries are either the
3-dimensional spaces of constant curvature, have trivial stabilizer or

fibre over one of the two dimensional geometries.

In this thesis we extend the idea of fibering a geomtry over a lower
dimensional one to determine all the maximal 4-dimensional geometries. We
find that there is a countable infinity of inequivalent such geomtries two
of whichlﬁave quotients of finite volume but no compact quotients. The
classification. is done on a case by case analysis of the possible stabilizer
subgroups which can be regarded as subgroups of S0(4). In Chapter 1 we
give a formal definition and collect together various results that will be
needed for the remainder of this work. In particular the possibilities for
the stabilizer are determined. In the last section of Chapter 1 we fix
- some notation and assumptions. In Chapter 2 we show how the existence of
invariant distributions on a geometry gives rise to equivariant fiberings
over a lower dimenionsal homogeneous space. The geometries with stabilizer
not trivial or isomorphic to S0(2) are shown, in Chapter 3, to be
Riemannian globally symmetric spaces. In Chapters 4 and 5 the case where
the stabilizer is isomorphic to SO0(2) 1is analysed. Finally the maximal
geometries with trivial stabilizer are determined in Chapter 6 where it is
shown that thére is a countable infinity of inequivalent such geometries.

A summary of the maximal 4-dimensional goemetries determined in Chapters

3-6 is then provided.



CHAPTER 1 : PRELIMINARIES,

1.0 Introduction

In this chapter we will define the objects to be studied and collect
together a few preliminary results concerning them. Since the purpose is
to classify four dimensional geometries we will need to know the compact
connected subgroups of SO0(4) . These will be determined in Section 2.
Finally, in Section 3, a certain amount of notation will be fixed for the

rest of this thesis,.

1.1 Geometries

The objects that will be of interest to us are defined as follows:
Definition

A geometry is a triple (M,G,a) with M a connected, simply connected,
smooth manifold M, G a Lie group and o:GxM - M a smooth transitive

effective action of G on M such that the stabilizer subgroup Gx is

compact for each x e M .

Two geometries (M],G,u]) and (MZ,G,aZ) will be considered equivalent
if there is a diffeomorphism ¢:M] + M, such that a2(9,¢(x)) = ¢(a](g,x))
for all x e M, g e G. Where the action of G on M 1is understood we

will generally write o(g,x) as gex or g(x) and the geometry as (M,G) .

The coset space G/Gx for x ¢ M has a natural smooth (even analytic)
manifold structure. The mapping q;:G/Gx + M defined by ¢(gGX) = g(x) 1is

a smooth bijection, By the Rank Theorem ¢ is, in fact, a diffeomorphism



and it is easy to see that it provides an equivalence between the left
action of G on G/GX and the action of G on M . Hence the geometry
(M,G,a) can be identified with the coset space G/Gx equipped with the
natural left action of G . Moreover in the definition of equivalence
above we may suppose the diffeomorphism is analytic since an equivalence

corresponds to Teft multiplication by an element of G .

By the previous paragraph the set Gi-x is open in M for any
connected component Gi of G and any two such are disjoint or coincide.

Since M 1is connected this implies that the identity component G, of G

0
is transitive on M . Because of this we will henceforth assume that G

is connected,

Remark

M simply connected implies that it is orientable so if G 1is connected

it acts by orientation preserving diffeomorphisms.

Proposition 1.1,1

The stabilizer GX of any point x ¢ M 1is connected.

Proof

Let (GX)0 denote the connected component of e in Gx . Then we

have a fibre bundle:
n,
G,/(6G,)g > G/(G)g ~ G/G, =M.

Since GX is compact Gx/(Gx)O is finite so this is a covering map and

4



hence a diffeomorphism by the assumption n](M) = 0 . Therefore
Gx - (GX)O ' O

It is possible that the action of G on M may extend to the action
of some larger group G' containing G as a proper subgroup. For example
if we equip M with a Riemannian metric A it may happen that the largest
connected group of isometries IsomO(M,A) is strictly larger than G .
The most obvious example of this comes from taking IRZ acting on itself
by translations. The Euclidean metric on ]R2 is invariant under trans-

lations but also includes rotations in its group of isometries. However

we can simplify matters with

Proposition 1,1.2

Any geometry (M,G,a) 1is contained in a maximal geometry (M,G',a')
where G' 1is the connected component of e in Isom(M,A) for some

Riemannian metric A on M,

Proof
If (M,G,0) 1is a geometry we can find a metric A on M such that
G acts as a group of isometries of (M,A) . If Gx is the stabilizer of
x € M then the derivative dgX acts as an isometry on the inner product
space (TX M,AX) for each g ¢ GX . Hence we obtain a representation
dx:Gx + SO(m) where m = dim(M) . This representation is faithful (see
[ & ] Chap. I Sec. 11) so dim(GX) < dim(SO(m)) = m(m-1)/2 ., Since
dim(M) = dim(G) - dim(Gx) we have dim(G) < m(mtl)/2 ., If (M,Gi,ai) is
i+]

and a. restricted to G1xM

a sequence of geometries with G' c G i+]

3



is equal to a; , we must, therefore, have dim(G1) = dim(G1+]) for

i
i large enough. Since each G' is assumed connected it follows that
G' = G]+] for all i Tlarge enough,
Clearly if (M,G,o) 1is a maximal geometry and X 1is any metric for

which G acts as a group of isometries then we must have G = IsomO(M,A) .
a

It is an interesting question whether a given geometry is contained
in a unique maximal geometry, We will make a few remarks on this subject
at the end of this section. From now on all geometries will be assumed to
be maximal and G will be the connected component of e in the group of

isometries of (M,A) for some Riemannian metric A on M.

To the G dinvariant metric A on M we can associate the G-invariant
smooth Riemannian volume form w with its associated measure u and any
two such measures differ by a constant. If T < G 1is a discrete subgroup
such that the quotient r©\M 1is a manifold then yu descends to give a
measure . on '\M . It is the purpose of this paper to classify four
dimensional geometries.such that uF(F\M) is finite for some such T < G
i.e. geometries which cover manifolds of finite volume. We will, therefore,

henceforth assume that all geometries considered possess such a quotient.

In the sequel we will need the following two propositions, the first
of which is an easy generalization to homogeneous spaces of standard results

on lattices in Lie groups.

Proposition 1.1,3

If there is a discrete subgroup T c G such that T\G/G, has finite



volume then G 1is unimodular.

Proof

Let p denote the left invariant smooth measure on M = G/Gx
associated to a left invariant Riemannian metric. If v denotes a Haar
measure on G and w:G » G/GX = M the quotient map then the measure '
defined by u'(E) = v(n_1(E)) is obviously left invariant. Since left
invariant measures on homogeneous spaces are unique up to a scalar multiple

we can assume, without loss of generality, that u = u' .

" For T c G a discrete subgroup let p:G/GX > I‘\G/GX and q:G > I'\G
denote the quotient maps. Assume that “r(P\G/Gx) < o , We can choose a

collection .{V1.}1.€I of subsets Vi c G/GX such that r\G/GX = U p(Vi)

iel

and £ v(V,) <= . Setting W. = w-](V.) we have T'\G = U q(W;) ,

i i i i . i

iel iel
and 1 v(W;) <= . Let S denote the measure on T\G induced by v .

iel
Then, if E c T\G , we have v(E) = inf( & v(F )) where the infimum

ae

is taken over all covers of E . i.e. collections of sets {Fa}aeA

with F <G and Ec UQq(F) . We have V(r\G) ¢ I v(W;) <= . Let

acA ¢ iel

A denote the modular function of G . If g e G then the collection

{wi-g} is a cover of T\G so Vv(Ir\G) < : v(wi°g) = A(g) = v(wi) = ca(g)
iel - iel

for some ¢ eR . If A 1is non-trivial we can finda g ¢ G such that
A(g) <1 . Then a(g") >0 as n -« . This implies that U(T\G) = 0
contradicting the discreteness of r . Hence A is trivial and G is

unimodular,
s ' 0



Proposition 1.1.4

Let G be a unimodular Lie group, N a closed normal subgroup and
m:G > G/N the quotient homomorphism. Then N is unimodular and, if
-1
We N, we have vN(W) = AG/N(w(g))'vN(gWg ) where v and A denote

Haar measure and the modular function.

Proof

We first show how Haar measure on G may be constructed from Haar
measures on N and G/N . Let vy and va/N denote the Haar measures

on N and G/N. If EcG 1is a Borel subset we set
F(m(x) = vy(xEaN)  for x €6 .

If y =xn for some n e N then

1

Fe(n(¥)) = wy(n" X TE a )

vN(n'1(x“E a M)

vN(x']E n N) since N is left invariant.

Hence fE is a well defined map on G/N . In fact fE is a Borel map

(see [ 4 7 Section 63) so we can define

va(E) = J fdv
G /N B G/N

If geG then f(r(x)) = felr(9) 'w(x))  so

© ug(oE) =jG/NfE(w(g> n(x))dvg



J f(n(x))dvG/N since Va/N is left invariant.
G/N
Therefore Vg is left invariant. It is easy to see that Vg is finite

on compact sets and so is a Haar measure for G .

Since N 1is closed we can find a subset U < G/N such that
vG/N(U) # 0, and there is a section ¢:U > G . To show that N is
unimodular Tet W c N be a subset and set A = ¢(U):W . By the above
construction we have vg(A) = vG/N(U)vN(W) . If ne N then An = ¢(U)-Un
o) 'vG(An) = vG/N(U)-vN(wn) . But G is unimodular and so v (An) = vG(A) .
Hence, since vG/N(U) # 0, we must have vN(w) = vN(wn) and N is uni-

modular.

To prove the second part let W,U,A be as above. If g e G then
-1 -1 - -1 - -
Ag™ = (8(U)-g7')-(aNgT) and vg(AgT!) = vg y(n(8(U) )] vy(ag) .
-1
But «(¢(U)) = U and vG(Ag ) = vG(A) . So we have vG/N(U)-vN(N) =

1

= vG/N(Un(g)']).vN(QWg- ) . But vG/N(Un(g)-]) = AG/N(n(g)) and

ve/n(U) # 0 and therefore vy(H) = AG/N(n(g))'vN(gWg_])

Remarks on unique maximality

Consider the simplest case of a simply connected Lie group G acting
on itself by left translations. Let IsomO(G,A) -denote the connected
group of isometries for some left invariant metric A on G . If there
is a normal subgroup G' ¢ Isomo(G,A) isomorphic to G tﬁen

IsomO(G,A) Y G'wH where H 1is the stabilizer of e . This holds for

all left invariant metrics on G 1in the following cases:



(1) G nilpotent : Wilson [ \% ]
(2) G compact : Ozeki (see [ 9 1 Chapter 3).
(3) G semisimple : Gordon [ 3 1].

In this case the unique maximal geometry containing G is clearly
(G,GxH) where H 1is a maximal compact group of automorphisms of G

(any two such are equivalent since maximal compact subgroups are conjugate).

1.2 Subgroups of S0(4)

As the first step in classifying four dimensional geometries we need
to determine what groups can occur as the stabilizers Gx . From Prop-
ositions 1.1.7 and 1.1.2 Gx must be isomorphic to a compact, connected
subgroup of S0(4) . This section will be devoted to classifying, up to
conjugacy in SO(4) , all connected compact subgroups of SO0(4) . If
we let w:SU(2)xSU(2) - SO(4) denote the universal covering map the task

is simplified by:

Lemma 1.2.1

Let H be a compact connected subgroup of S0(4) and denote by
the connected component of e 1in w-1(H) . Then H is compact, connected

and w(H) =H .

Proof

Obvious. . 0

We will first determine, up to conjugacy, all compact connected sub-

groups of SU(2)xSU(2) .



Lemma 1.2.2

If K dis a subgroup of SU(2)xSU(2) isomorohic to SU(2)/r with
I a discrete central subgroup then r = {e} and K 1is conjugate to one

of the following subgroups:

{(x,e) | x e SU(2)}

—
-—
~——
-
—
1}

(2) I, = {(e,x) | x € SU(2)} ;

(3) Dy = {{x:x) | x e SU(2)}

(4) D, = L(x,0(x)) | X e SU2)} 3
where ¢ 1is the unique outer automorphism of SU(2) . (See footnote.)*
Proof

Let 1i:K » SU(2)xSU(2) denote the inclusion and n1,w2:SU(2)xSU(2)+SU(2)

the projection onto the first and second factors. Setting Py = ﬂ]oi

Py = nzoi it is easy to see that P; is trivial or an isomorphism for
j=1,2 . Since K £ {e} at least one of the pj is non-trivial. So
r = {e} and K ¥ SU(2) . If we represent SU(2) by matrices:

a b 2 9
SU(2) = { -5 3] € GL(2,C)| |a]” + |b]® = 1}

' ¥
then the unique outer automorphism ¢:SU(2) - SU(2) 1is given by

37073

. . . ¥ . .
is either trivial, the identity or ¢ for Jj = 1,2 . Thus taking the

- _ ¥
¢(a,b) = (a,b) . Hence there are 9159, € SU(2) such that Ad(g

conjugate of K by (g],gz) we can assume that pj is trivial, the

identity or ¢ *. The result follows immediately.
| 0

* The outer automorphism group of SU(2) is trivial so 02 is redundant.
Whenever this redundancy occurs in this section an '*' will be placed.
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Let T, and T, denote the maximal tori (g S0(2)) of the

1 2

subgroups I] and 12 .

Proposition 1.2.3

Any compact connected subgroup of SU(2)xSU(2) 1is conjugate to one

of the following:
(1) Su(2) x Su(2)

(2) I] x T2 or T] x I

*
(3)  1;,1,,D;5D,

(4) A torus contained in T] x T2

Proof
If H is a compact, connected subgroup of SU(2)xSU(2) then
H2 K<T"/T where K is compact semisimple, " s a torus and T is

a discrete central subgroup.

If the torus factor is trivial then K = SU(2)xSU(2) or K = sSU(2) .
Hence H = SU(2)xSU(2) or, by Lemma 1.2.2, H 1is conjugate to I],Iz,

®
D],D2 .

If K= {e} then H 1is a torus and, up to conjugacy, we can assume

that it is contained in the maximal torus T, x Té of SU(2)xSU(2) .

If both K and T' are non-trivial then K ¥ SU(2) . Let
p:KxTn + H be the projection map. By Lemma 1.2.2 we can assume, up to

*

conjugacy, that p(K) is one of I],IZ,D],D2 . Now p(K) has a non-

trivial connected centralizer and the centralizers of D] and Dz"Q are

%%erwb:eg.g
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discrete. So p(K) 1is conjugate to I] or 12 . Since p(Tn) is
connected we must then have n =1 and p(T) ¢ 12 or I] . Since all
maximal tori in SU(2) are conjugate we have H conjugate to I] X T2

OY‘T-IXIZ. 0

If the quaternions H are provided with the usual Euclidean metric
such that {1,i,j,k} 1is an orthonormal basis, SU(2) 1is isomorphic to
the subgroup of unit quaternions and the universal covering map
m:SU(2)xSU(2) - SO(4) 1dis given by (y],yz) - T(y},yz) e SO(4) where

=1 4
T(y],yz)(X) = y1xy, for x eR

Proposition 1.2.4

With respect to the basis {1,i,j,k} of H any compact connected
subgroup of SO0(4) 1is represented, up to conjugacy, by one of the following

groups of matrices:
(1) Sso(4) .
(2) The subgroup isomorphic to S0(3) which fixes 1.

(3) The subgroup isomorphic to SU(2) of the form:

A -B\e¢GL(4,R) | A= (a]-a2> , B =(a3 a4)
{ - -
3 A 22 3 23,

(4) The subgroup isomorphic to SU(2) of the form:

4
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(5) The subgroup isomorphic to S(U(2)xU(1)) < SU(3) :

t
{ (AC BC )e GL(4, R) | A,B as in (3) above,

BC Act >
C:(x] Xo , x]+x2=1}
X2 X

(6)  The subgroup isomorphic to S(U(2)xU(1)) < SU(3) :

AC BC \eGL(4,R) | A,B as in (4) above,

£t 2
st atc C=(x] xz), x]+x§=1}

20X
(7) The maximal torus of the form:
A 0 e GL(4, R) | A,B e S0(2)}

(8) A subgroup isomorphic to SO(2) of the form:

Ao O GL(4, R) | A, = Coskg  Sinks
{ -Sinks " Coske
0 A

mé

n,m e Z coprime}

Proof

If H dis a compact connected subgroup of SO0(4) then by Lemma 1.2.1

H = n(ﬁ) where is a compact connected subgroup of SU(2)xSU(2) .
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conjugacy in SU(2)xSU(2) dimplies conjugacy in SO(4) we can assume

that H 1is one of the groups listed in Proposition 1.2.3.

(i) H =SU(2) x su(2) .
Then H = S0(4) .

(1‘1‘)Fi=I] .
Then T(y,e) 1is the map x - yx . If we choose y = a]+1'a2+ja3+ka4 elH ,

) a% = 1 then:

T(y,e)(1) a]+1’a2+ja3+ka4

T(y,e)(i) -a2+ia]+ja4-ka3
< T(y.e)(J) = -ag-ia +ja +ka,
T(y,e)(k) = -a4+ia3-ja2+ka1

and H 1is the group (3).

(iii) H = I, .
A similar calculation to (ii) above show that H s the group (4) . Here

T(e,y) dis the map x - xy']

(iv) H = I]XT2 or T,xI,

Combining (ii) and (iii) above and using the fact that = 1is a

homomorphism we obtain the groups (5) and (6). In both cases we have

N

Ker(m) n H = {(1,1),(-1,-1)} and SU(2)xS0(2)/Ker(w) = S(U(2)xU(1))

(v) Then T(y,y)(x) = yxy_] so T(y,y) fixes + 1 for each y e SU(2)

and we have the group (2).
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(vi) A =D,*

In terms of the basis {1,i,j,k} of H the outer automorphism
$:SU(2) » SU(2) 1s given by ¢(a]+ia2+ja3+ka4) - a]-ia2+ja3-ka4
Hence T(y,4(y))(x) 1is given by:
T(y,o(y))(x) = (a]+1a2+ja3+ka4)(x)(a]+ia2-ja3+ka4)
It is easy to see that T(y,¢(y)) fixes *+ j for each y e SU(2) and

Ker(w) n H = {(1,1),(-1,-1)} so, again H 1is conjugate to the standard
representation of SO(3) 1in SO0(4) .

(vii) H is a torus

Then H s a torus. The subgroup (7) is a maximal torus in SO(4)
so H must be conjugate to a subgroup of (7). Hence H 1is conjugate to

the group (7) or a subgroup of the form (8). 0
In the next Chapter we will need the following:

Corollary 1.2.5

Any nontrivial compact subgroup of SO(4) not isomorphic to SO(3)

or SO0(2) contains the mapping of JR4 which sends x to -x .

Proof
If H c S0(4) contains this mapping then so does any subgroup conjugate
to H in SO(4) . The Corollary now follows by inspecting the possibilities

given by Proposition 1.2.4.

% See note ps. 3
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1.3 Notation and Assumptions

1.3.1 For a manifold M we have:

(i) M 1is assumed finite dimensional, smooth, paracompact with

countably many components.

(i1) The tangent bundle of M will be denoted T with the
tangent space at x ¢ M denoted TxM . If Dec T 4s a smooth
distribution on M then the corresponding subspace of TxM will

be denoted DX .

(iii) Diff(M) will denote the group of smooth diffeomorphisms of M

with Diff+(M) denoting the orientation preserving ones.

Y
(iv) The universal cover of M is written M.

1.3.2 For a Lie group G we use the following notation:
(i)  The identity element of G will be denoted e, id, or I .

(ii) The subscript 0 will denote the connected component of the
identity in a Lie group. e.g. AutO(G) denotes the connected

component of e in the automorphism group of G .

(iii) The Lie algebra of a Lie group will be written in lower case
script letters. e.g. the Lie algebra of G is g , of
SL(2, R) 1is s£(2, R) etc.
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(iv) The centre of G 1is denoted Z(G) .

(v) Ad (resp.ad) will denote the adjoint representation of a

Lie group (resp. Lie algebra).

(vi) Aut(G), Der(g) will denote the automorphism group of G and
the derivation algebra of g respectively. If ¢:H = Aut(G)
(resp. ¢:h - Der(g)) 1is a homomorphism then G x H (resp.

g uah) will denote the semi-direct product of G by H
(resp. g by h) with action ¢ . If thereisno possibility
of misunderstanding then G kaH will be written G x H .

(vii) K >3 G —E>>H will denote a short exact sequence of groups

~ d.e. & injective, B surjective, Im(a) = Ker(g) .

1.3.3 The triple (M,G,o) will denote a Lie group G acting smoothly

on a manifold M via the map a:GxM -~ M . If there is no possibility

of confusion (M,G,a) will be written (M,G) and a(g,x) as g-x or

For x e M the stabilizer of x will be denoted Gx . If G

acts transitively on M with compact stabilizer and M is simply

connected then (M,G,0) 1is called a geometry. For a geometry we will

make the following assumptions:

(i) G 1is connected.

(ii) (M,G,a) 1is maximal.

(iii) M 1is equipped with some G-invariant Riemannian metric usually
denoted by <-,->

(iv) M has the real analytic structure induced from the equivalence

between (M,G,a) and (G/GX,G) .
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(v) There is a discrete subgroup T < G such that M/T is a

manifold of finite volume with respect to the measure inherited

from a G-invariant volume form on M .

1.3.4 If f:A-+B 1is a mappingand C c A a subset then f|C will

denote the restriction of f to C .

1.3.5 The n dimensional sphere, Euclidean space and Hyperbolic space

will be denoted S , E" and H" respectively.

1.3.6 As usual N,Z, Q, IR, €, H will denote the natural numbers, integers,
rationals, real numbers, complex numbers and quaternions. The orthogonal,

unitary and special linear groups will have their usual notation SO(n) ,

Su(n) , SL(n, R) .

1.3.7 We assume some familiarity with the ideas associated with the theory

of foliations. (See [ 3 1 Chapter 1.)
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CHAPTER 2 : FIBERING GEOMETRIES.

2.0 Introduction

We will show that for a geometry (M,G) the existence of G-invariant
distributions on M will enable us, in some cases, to fibre a geometry
over a simply connected manifold of lower dimension. The fibering of M
is G-invariant so the action of G descends to give an action of G on
the quotient. However the ﬁction of G on the quotient space does not,
in general, have a compact stabilizer and is therefore not always a geometry.
In Section 1 we prove some general statements about G-invariant distributions
and their integrability. In Section 2 these results are applied in two
situatioéé that will concern us in Chapters 3,4,5. We will assume that

M is provided with the analytic structure given by the equivalence between

(M,G) and (G/GX,G) together with a G-invariant Riemannian metric.

2.1 G-invariant Distributions

If D 14s a distribution on M then for x € M we denote by Dx the
corresponding subspace of TXM . We first have the following, standard,

proposition.

Proposition 2.1.1

Let F be a G-invariant foliation on M = G/GX . Then there is a
connected Lie subgroup L of G containing Gx such that the leaves of

F are the translates of L/Gx by elements of G .
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Proof

First note that if L 1is a connected Lie subgroup of G con-
taining Gx then the translates of L/GX by elements of G obviously
form an (analytic) foliation of G/GX . For a G-invariant foliation F
we denote by TF the corresponding sub-bundle of ™ . If p:G~+ G/Gx

VTF) is a 1eft

denotes the quotient map then it is easy to see that dp
invariant distribution on G . If we identify the Lie algebra g of G
with the space of left invariant vector fields then dp'](TF) is a sub-
space of g containing 9y - The integrability of TF obviously implies
the integrability of dp-](TF) . Hence dp-](TF) is a subalgebra of g .

If L 1s the corresponding connected subgroup then L contains GX and

p(L) = L/G, is a leaf of F . The result follows.
O

It would seem that from the existence of a G-invariant foliation one
can construct a fibre bundle L/GX > G/GX + G/L . For this to hold it is

necessary that L be a closed subgroup of G .

Proposition 2.1.2

Let F be a G-invariant foljation and let L be the corresponding
subgroup of G given by Proposition 2.1.1. Then L is closed if for each
X e M TFx contains the space of vectors left fixed by the action of GX
on TXM . In this case the projection z:M + M/F has the G-equivariant
fibre-bundle structure L/GX > G/GX +~ G/L with G/L simply connected.

If 7:G - Diff(M/F) denotes the G action on M/F then z(G) is
orientation preserving and Ker(z) n Gx = {gerldgxl(TFx)l = id}

Here (TFX)l is the orthogonal complement of TFx in TxM .
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Proof
To show that L 1is closed it is sufficient to show that the leaves
of F are closed. By the transitivity of G on M we need only show

that one leaf of F 1is closed. Let FX denote the leaf of F through
0

:TX M >~ M the Riemannian exponential map at
0 70

If B(xo,s) is the ball of radius e around 0 in TF; we set

the point Xg € M and exp,

Xg
N, (e) = exp_ (B(xnse)) . Choose e, sufficiently small that
X0 X0 0 0

(1) NX (so) is an embedded disc transverse to F
0 .

(i1) Any point x, € N_ (e,) is joined to x, by a unique
1 Xo 0 0

' Qeodesic lying in N (eo) .

%o
Assume that there is a point X1 # Xg in Fxo n Nxo(eo) . If ge Gxo
then g(F_ ) =F and g(N_ (en)) =N, (en) . Thus g(N, (eq) n F ) =
X0 Xq X0 0 Xq 0 X0 0 Xg

=N, (gg) n Fo o - Since G,  1is connected the subset {g(x])lg e G }
0 0 0 0

is a connected subset of FXO n Nxo(eo) . But FXO n Nxo(eo) is countable

since Nx (e) 1is transverse to F . It follows that g(x]) = X for

each g ¢ Gx If +¥:00,1] > NX (so) < M is the unique shortest geodesic
0

0

connecting Xg and x; then each g € Gx must fix y pointwise. Thus
0

dgxo(y'(O)) = y'(0) and so, by hypothesis, v'(0) e TFXO . This is a con-

tradiction and we must therefore have F_, n N_ (e,) = {x4} . This implies
Xy Xg 0 0
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that L 1s locally closed in G 1i.e. there is a neighbourhood U of
L in G such that L =Un [ . But a locally closed subgroup of a Lie

group is closed. Hence L 1is closed.

Since L is closed the quotient z:M -+ M/F 1is given by the fibre
bundle projection ;:G/GX + G/L with fibre L/Gx . Clearly ¢z is G-
equivariant for the actions of G on G/GX and G/L . From the exact

homotopy sequence of a fibre bundle we have

> Ty (M) - T (M/F) > ﬂO(F) .

where F denotes a typical leaf of F . Now n](M) = 0 by hypothesis,
and vO(F) =0 since F 1is connected. It follows that n](M/F) =0 and
M/F s orientable. Since <¢(G) 1is connected it must preserve any choice

of orientation on M/F

To demonstrate the final statement let g e Ker(z) n GX and let
0

NX (eo) be the transverse neighbourhood defined above. If Fx is the
0

leaf of F through x e M then g(FX) = Fx and so g(Fx n N (eo)) =

X
0
. i
(so) . It follows that gleo(eO) = id . Hence dgx|(TFx0)
such that dg, |[(TF, ) =1id . Then
X0 %o

=F nN
X Xq

Now assume that there is a g € Gx
: 0

clearly g[NX (eg) = id and so z(g) 1is the identity in a neighbourhood
0
of ¢(xy) . But the action of z(G) on M/F is analytic. Thus

z(g) = id and g e Ker(Z) n G
*0

= id .
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We pause to point out a trap for the unwary. It is tempting at
this stage to try and project the metric on (TF)L down to a metric on
M/F . The idea is that the group E(G) would act by isometries for
this metric and that (M/F,z(G)) would be a geometry. That this is not
necessarily the case will be demonstrated by counterexample in Theorem
4.2.2. In the proposition below we give some simple conditions for

(M/F,z(G)) to have a compact stabilizer.

We denote by epr:TXM +~ M the Riemannian exponential map and by
B(x;e) c (TFx)l the ball of radius e around O . We choose €9 > 0
such that epr:B(x,so) > NX c M 1is an embedding transverse to F for
each xeM ., If X1:Xg € FX there is a holonomy map G(XO’X]) :

0
U <N =>U ¢ NX . Using this notation we have:

Proposition 2.1.3

With the notation of Proposition 2.1.2 the following statements are

equivalent for F with closed leaves.
(a) The action of Z(G) on M/F has compact stabilizer.

(b) There is a G-invariant metric on M and a metric on M/F
. 1 -
such that for each x ¢ M dgx.(TFx) > T;(x)M/F is an

isometry.

(c) For some G-invariant metric on M we have

do(x,y):(TFx)J‘ - (TFy)l an isometryifc(x) =z(y) .
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Proof

We first remark that for all x e M the map dcxi(TFx)-L > Tz_;(x)M/F

is an isomorphism.
(a) <=> (b)

If the stabilizer in Z(G) of y e M/F is compact then there is
a z(G) dnvariant metric A on M/F . If <,> denotes the original
G-invariant metric on M we define a new metric <,>' on M by the

conditions

(i) <u,v>; U, V> if u,v e TFX .

. , . L
(i) <Us V> 0 if ue TFx » Ve (TFX)

-

(i11) <u,v>!

x = () (5, (U)5d5 ) IF uv e (TF ).

To show that <,>' is G-invariant we need only show that dgx:(TFX) >
(TFg(X)) is an isometry for <,>' . But this follows immediately from

-1 . .
the fact that g|N = (;[Ng(x)) o(2(g)[z(N,) o (;le) . Conversely if
we have metrics satisfying (b) then the formula E(g)|c(Nx) =

1

= (;lNg(x)) 0 (gle)o(clNX)' shows that ¢z(G) acts by isometries

on (M/F,x) .
(b) <=> (c) -

We have, for X,y e Fx ,(;|Ny) = (;le) o o(y,x) .
1 L '
d TF =d . .
( Zy ( y) ) cy(y X) If (b) holds then

dcy is an isometry. Conversely if y ¢ M/F and ;(xo) =y we can

-L—
Hence (dgxl(TFx) )

define.an inner product on T&M/F by:
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-1

_ -1
xx0<y)<u,v>-<(dcxolTF;0> (W) (d2, 1TF )7 (),

0

For another point Xq € ;-](y) we have [N, = [N, o o(X{,X,) . SO
X Xg 1°70
if (c) holds we have A (y) =2 (y) . Hence we obtain a well defined
0 1
metric A satisfying (b). U

Corollary 2.1.4

If Ker (z) 1ds transitive on F, foreach x eM then £(G) acts

on M/F with compact stabilizer.

Proof -
If x,y e F, and g(x) =y with g e Ker(Z) then gle = g(X,y) .
Since dgx:TF; > TF; is an isometry the result follows from 2.1.3(c).

a

2.2 Applications

We present two simple applications of the propositions in 2.1.

Theorem 2.2.1

Let P denote the distribution defined by P, = {VeTXMldgx(v) =y
for all g € Gx} . Then P 1is G-invariant, parallelizable and integrable
with G-invariant foliation F . The projection z:M +~ M/F gives M

the structure of a principal fibre bundle over M/F . In addition

(@) M/F 1ds simply connected.
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(b) There is an orientation preserving action of G on M/F

such that z:M + M/F 1is G equivariant.

(¢) If 2:6 - Diff (M/F) denotes the action of G on M/F

then Ker(Z) n G, = {e} foreach xeM.

id .

(d) If geG then gIFX

Proof

Let V denote the vector space of G-invariant vector fields on M .
Clearly V 1is a finite dimensional Lie algebra. If X e V and g ¢ Gx
then dgx(X(x)) = X(x) so we have a mapping pX:V > PX for each x e M .,

Clearly Py is injective. If X(xo) € PX we can define a G-invariant
0

vector field X by X(x) = dg X(xo) if g(xo) = X . Hence oy is
surjective. It now follows immediately that P is G-invariant, parallel-
izable and integrable. From Propositions 2.1.1 and 2.1.2 there is a closed
connected subgroup L < G such that the quotient ¢:M - M/F 1is given by

the fibre bundle L/Gx -> G/Gx + G/L . We wish to show that L 1is the

0 0
connected component of e of the normalizer of GX which we denote
0
NO(G ) . Clearly G acts trivially on L/G so glel = [2] for
g e GX » & eL where [2] denotes the coset -QGX of & in G
0
This means that g¢ = 2g' for some g' ¢ G i.e. 2'192 € G
*0 %0
Hence L = No(G, ) . It is also clear that G acts trivially on
0 Xq X
NO(G )/G . If n(g_ ) denotes the subalgebra of g corresponding
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to NO(G ) and p:G 7 G/GX is the projection then it follows that
X
0 0

dgxo = id on dpe(n(gxo)) for ge Gx0 . Hence dpe(n(gxo)) g PXO

and n(gX ) is contain®d in the subalgebra of g corresponding to L .

It follows that N (G, ) €L . Thus L =N (G, ) and the fibre of
0 XO 0 XO

z:M - M/F is the group NO(GXO)/Gxo .

Both (a) and (b) are immediate from Proposition 2.1.2 and (d) follows
since Gx acts by isometries on FX in the metric induced from M
Finally (c) follows from Proposition 2.1.2 after observing that if g e Gy

is such that dg PL = id then dg, = id and then g must be the identity.
X X X
' a

We now consider the case when GX is isomorphic to a torus.

Theorem 2.2.2

If G is isomorphic to a torus and P, = {VeTxM | dgx(v) =V ¥ geG}
is trivial for each x ¢ M then any irreducible G-invariant distribution
Q is integrable. If F 1is the corresponding G-invariant foliation then
the projection z:M + M/F gives M the structure of a fibre bundle over

M/F . In addition
(a) M/F s simply connected.

(b)  There is an orientation preserving action of G on M/F with

respect to which ¢:M + M/F is G equivariant.
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(c) In the metric induced from a G-invariant metric on M

the Teaves of F are isometric to E2,H2 or 52 .

Proof
If Q 1ds a non-trivial G-invariant irreducible distribution on M

then dim(Q) =2 . If we form the exterior power AZQ there is an induced

action of G on A2Q . Since GX acts on Qx with determinant 1 the

action of GX on (AZQ)X is trivial. Hence, by Schurs Lemma, there are

no non-trivial GX equivariant homomorphisms from (AZQ)X to QX

Let q:TM - Q be the orthogonal projection. If X] and X2 are two

vector fields spanning Q over an open set U< M then (aX]+bX2)A(cX]+dX2)

= (ad—bc)X]AX2

Therefore there is a well defined G equivariant bundie homomorphism

and q[aX]+bX2,cX]+dX2] = (ad-bc)q([X],XZJ) on U

pZAZQ - Ql given by X]AX2 - q[X1,X2] which is Tinear over the ring of
C” functions on M . Hence p must be trivial. It follows that [X],XZJ
is a vector field in Q if X],X2 are vector fields in Q . Thus Q is

integrable. The fibre bundle structure is given by Proposition 2.1.2.

The statements (a) and (b) follow from Proposition 2.1.2. To show (c)

let K =1{gc@ | g(FX) =F} . K  acts transitively by isometries on

FX in the induced metric. Hence the universal cover Fx of FX with the
metric lifted from Fy is isometric to E2,H2 or 52 . If

p:KX > Isom(Fx) is the obvious homomorphism then pIGx is non-trivial

by the hypothesis Px = {0} . The only Euclidean or Hyperbolic manifolds

with a transitive group of isometries possessing a non-trivial connected

4
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s 2 2 v, . 2 2 .
stabilizer are E~ or H™ . Hence FX isometric to E° or H~ implies

that FX is isometric to E2 or H2 . Assume that Fx is covered by
52 . Since GX is connected for each x e M it preserves orientation
on QX and so the lTeaves of F are orientable. Therefore Fx must be

isometric to 52 .
a

Remarks

(1) If the foliation F has leaves isometric to $2 it follows bhat
Kx ={g e G | g(FX) = FX} is compact for each x e M . The action

of Z(G) on M/F has compact stabilizer.

(2) If Ebe.leaves of F are isometric to H2 then Kx = {geGlg(Fx) = FX}
is isomorphic to a quotient of SL(%,IR) and is therefore simple and
non-compact. E(Kx) is the stabilizer of ¢(x) . There is a homo-

" morphism p:E(KX) + GL(2(n-1), IR) determined by the derivative. Then
Ker(po(ElKX)) is either Kx or a discrete central subgroup of KX

(K, 1is connected). If Ker(po(E(Kx)))% Kx then E(Kx) contains a

X
non-compact closed subgroup and (M/F,m(G)) 1is not a geometry. If
Ker(po(E|Kx)) = KX then it is easy to see that (M,G) 1is equivalent

to (HZ,PSL(2, R)) x (M/F, G/Ker(z)) .
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CHAPTER 3 : SYMMETRIC SPACES.

3.0 Introduction

In this chapter we will consider the four dimensional geometries
whose stabilizer subgroup is non-trivial and not isomorphic to S0(2) .
From Proposition 1.2.4 the remaining possibilities for Gx are SO0(4),swe)
SO(3) , S(U(2)xU(1)) and S0(2)xS0(2) . It will be shown that the
maximal geometries are the simply connected four dimensional Riemannian
globally symmetric spaces. If M 1ds such a space then the existence of
a discrete group T of isometries of M with T\M a compact manifold

is shown in Borel [ & 1.

3.1 G, ¥ S0(4),S(U(2)xU(1)),50(2)xS0(2)

For these cases the classification is particularly simple.

Theorem 3.1.1

If (M,G) 1is a maximal four dimensional geometry with Gx E S0(4),
S(U(2)xU(1)) or S0(2)xS0(2) then for some G dnvariant metric M is
isometric to one of the following spaces:

(a) Spaces of constant curvature : H4,E4,S4~.

SU(3)/S(U(2)xU(1)) .
SU(2,1)/S(U(2)xu(1)) .

(b) Complex Projective space EPZ

Complex Hyperbolic space ([H2

(c) Products of two dimensional geometries:

E2x52 , E2xH2 , SZXSZ , SZXHZ , HZXHZ .
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If G = S0(4) then, since GX is transitive on two-planes in
TxM » any G-invariant metric on M must have constant curvature.

M is simply connected and therefore must be isometric to H4,E4 or S4 .

If GX is isomorphic to S(U(2)xU(1)) then by Corollary 1.2.5 M is
a Riemannian symmetric space with respect to any G-invariant metric.
The only irreducible Riemannign symmetric spaces with this stabilizer

are (see Helgason [ & 1 pg.354):
2

Complex Projective Space (P SU(3)/S(U(2)xU(1))

Complex Hyperbolic Space (IH2 SU(2,1)/S(U(2)xu(1)) ,

and’these spaces are both simply connected. As they are written here
G does not act faithfully on M since in both cases the centre Z(G)
of G 1is contained in G, . However Z(G) = {wl € GL(3,(I)|w3 =1}
and it is easy to see that S(U(2)xU(1)YZ(G) = S(U(2)xU(1))

If Gx is isomorphic to SO0(2)xS0(2) then again, by Corollary 1.2.5,

M dis a Riemannian symmetric space for any G-invariant metric. If M

is reducible we must have M dsometric to one of E2><S2 , E2xH2 ,
52x52 R Ssz2 R H2><H2 . There are two further possibilities:

M = S0(4)/S0(2) x SO(2)

M= 500(2,2)/50(2) x S0(2)

where 500(2,2) is the connected component of the identity in the

subgroup of GL(4,IR) preserving the quadratic form g(x) = x$+xg—x§-x§ .
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If M =S0(4)/S0(2) x SO(2) then Z(50(4)) < SO(2) x SO(2) and
S0(4) does not act effectively on M . It is easy to see that
S0(4)/Z(S0(4)) = SO(3)xS0(3) . Hence M 1is isometric to
S0(3)x50(3)/50(2)x50(2) = S%xs” . Finally $04(2,2) is isomorphic
to SL(2, R) x SL(2, R)/C where C is the subgroup C = {(I,I),(-I,-I)}.
Thus the same argument shows that M is isometric to

PSL(2, R)xPSL(2, IR)/S0(2)xS0(2) = HxH® .

- n
3.2° 6, ¥50(3)

In this case we know from Proposition 1.2.4 that the subspace of
vectors in ‘TXM left fixed by the action of GX is one dimensional for
each x eM . If P denotes this distribution it is integrable with
G-invariant foliation F . By Theorem 2.2.1 the quotient space M/F is a
simply connected smooth manifold and we have a principal fibre bundie
F->M 5 M/F where F denotes a typical leaf of F . Since dim(P) =1
F 1is diffeomorphic to R or S1 . There 1is also a homomorphism
£:6 ~ Diff (M/F) such that Z(G) acts smoothly and transitively on M/F .

In the situation we are considering of dim(M) = 4 and Gx 2 S0(3) we have

the additional information.

Proposition 3.2.1

The pair (M/F,E(G)) is a geometry equivalent to one of the spaces
E3,H3,S3 equipped with its maximal connected group of isometries. Ker(Z)

is connected, central in G and transitive on each leaf of F

4
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Proof
We first note that by Theorem 2.2.1(c) the subgroup of E(G) fixing

a point of M/F contains a group isomorphic to SO(3) . We know that

dim(M/F)= 3 and M/F is simply connected. Therefore if (M/F,Z(G)) is
a geometry it is a maximal geometry and M/F has constant curvature for
any Zz(G) dnvariant metric. Hence M/F with such a metric is isometric

to E3,H3,S3 and Z£(G) 1is isomorphic to IsomO(E3), S0(4), 500(3,1) .

To show that (M/F,Z(G)) 1is a geometry it suffices, by Corollary
2.1.4, to show that Ker(Z) 1s transitive on each leaf of F . By Theorem
2.2.4 P 1is parallelizable and we have a G-invariant vector field X on
M such that X(x) #0, ||X(x)|[X =1 and X(x) e P, foreach x eM.
X is clearly globally integrable with a corresponding flow {¢t}teR that
commutes with the action of G on M . Now for each t e¢lR ¢t sends
each leaf of F onto itself and the group {¢t}te]R acts transitively on
any leaf of F . Thus if we can show that ¢t is an isometry for each
t e R then the maximality assumption on  (M,G) will imply that
¢t ¢ Ker(z) for each t elR . Hence Ker(Z) will be transitive on each
leaf of F and central on G . It remains, therefore, to show that ¢t
is an isometry for each t e R . Let Q denote the orthogonal complement
to P. Foreach teR ¢t commutes with the action of G on M so the

distribution Qt defined by Qt = d¢t(Q ) is G-invariant. It now
¢t(x) XX

follows, since the GX invariant complement to Px is unique, that we

must have Qi = QX for each x e M, t e R . Hence Q is invariant under
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. t
the action of {¢7}, p . If v, e Qx]’ Vy € sz and ||V]|IX] = ||V2||x2

then there is a g € G such that g(x]) = X and dg (v]) = Vo s and

we have:

<d¢§2(v2>,d¢’; (v)> ¢

) <d¢t0dgx (V])’d¢t0dgx (V'I)> t
9 (x,) 1

*(x,)

<dgod¢t(V]),dg°d¢t(V])> t
¢
(xz)

<d¢t(v]),d¢t(v])> t
¢(X])

It follows that there is a homomorphism o: IR +]R: such that
<d¢§(v),d¢§(v)> = a(t)2<v,v>x for all xeM, v e QX . Hence d¢t
preserves angles and expands volumes by (a(t))3 . If T <G 1is a discrete
group and T\M 1is a manifold then the flow ¢t descends to give a flow

~ $t on T\M . Then $t still expands volume by (a(t))3 . This contra-

dicts the existence of a quotient of finite volume unless «a(t) =1 for

)
all t eR . Hence ¢t is an isometry for each t eR . Ker(z) is
connected since, for each x e M, Fx is connected, Kero(i) is transitive

on F_ and Ker(g) n Gx = {e}

X 0

We can now show that in the current situation the complementary

distribution to P 1is also integrable.
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Lemma 3.2.2

Let D be a smooth n-dimensional distribution on M and let
{X],Xz} s {Y]’YZ} be two pairs of vector fields in D such that for
some Xy € M X](XO)’XZ(XO) are independent and the linear spans of

{X1(XO)’X2(X0)} and {Y](XO)’YZ(XO)} coincide. Then [X],ij(xo) € DXO

PF Y,Y,0(x,) DXO

Proo

Choose vector fields X3""’Xn such that XT""’Xn span D 1in

a neighbourhood of Xg - Then we can write Y] and Y2 as:

-

ne™=s
—
i ™3

b.(x)Xj(x)

Y](x) = ai(x)Xi(x) R Y2(x) = 53

i J

with ak(xo) = bk(xo) 0 for 3<k=<n and a](xo)bz(xo)-az(xo)b](xo) #0 .

Then we have

n

1_E]fi(x)xi(x) + 1_z’j(aib\].-an\].bl.)(x)[Xi,X‘].](x)

[Y],Yzl(x)

for some smooth functions f],..,fn . If x = Xq we obtain

n
[Y],YZJ(XO) = 1.)i]fi(xo)xi(xo) + (a]bZ-aZb])(XO)FX]’XZJ(XO)

The result now follows since (a]bz-azb])(xo) #0 .
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If QX denotes the orthogonal complement to Px in TXM then
the QX form a smooth, G-invariant distribution on M ., 1In the

current situation with Gx T SO0(3) we have

Proposition 3.2.3

The distribution Q ds integrable.

Proof

- We will first show that if there is a pair of vector fields X],X2
in Q with X1(XO)’X2(X0) independent and [X],ij(xo) € QXO for some
Xg € M then Q 1is integrable. Secondly we will construct such a pair

of vector fields.

Let X],X2 be vector fields in Q with [X1’X2](X0) € QXO and
X](xo),Xz(xo) independent. Let Y],Y2 be any two vector fields in (

and set
Q=1{xeM | [Y],YZJ(X) € Qx}

Then Q@ dis closed and we wish to show that @ =M . Let A denote the

set {xeM | Y1(x),¥,(x) independent} and set B =M-A . Now G is

transitive on M and Gx is transitive on two-planes in QX . Therefore

if X e A we can choose g e G such that g(x) = Xq and the span of

{dgx(Y](x)),dgx(Yz(x))} is the same as the span of {X1(XO)’X2(XO)}

By Lemma 3.2.2 this implies that dg ([Y,,Y,1(x)) = [dg(Y,),dg(Y,)I(x,) € Q. .
. x\- 1272 1 2 0 X0

4
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Since Q 1is G-invariant, [Y],Yzj(x) € QX . Thus Ac @ . Now let
x e Int(B) . If Y](x) # 0 then Y](y) #0 for all y 1in some neigh-
bourhood N of x contained in B and we can write Yz(y) = u(y)Y](y)
for some function «:N-+R . Hence [Y],YZJ = Y](a)Y] on N and
[Y],Yzj(y) € Qy for all yeN. So xe @ . Similarly if Yz(x) #0
we have x € 2 . Now assume that Y1(x) = Yz(x) =0 ., If either Y1
or Y2 is identically 0 in a neighbourhood of x then [Y],YZJ =0
in a neighbourhood of x and so xeQ . If Y] is not identically
zero in any neighbourhood of x there is a sequence of points {xn} c B
converging to x and such that Y1(Xn) #0 for each ne¢IN . Now

X, € Q as already demonstrated. Thus x is a Tlimit of points in @

and hence x € @ since © is closed. We now have A c Q@ and

Int(B)e 2 so M=AuInt(B) ¢ &

To complete the proof we must find two vector fields X]’XZ in Q

such that Xl(XO)’XZ(XO) are independent and [X],le(xo) € QXO for

some Xy € M . Choose Xg € M and let Y],YZ,Y3 be a Tocal basis for
Q 1din a neighbourhood of Xg € M. Let X] = Y3 and X2 = aY]+bY2 for

some a,b eIR. If ¢:TX M- PX denotes the orthogonal projection then

0 0
the mapping X2(x0) > ¢([X],X2](x0)) is a Tinear functional on the span

of Y,(x4),Y,(xq) in Q . It must have a non-trivial kernel so there
1'7072°2'\"°0 Xg

exist a,B €¢IR not both zero such that

CYgsa¥q#BY,1(x)) « on
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We can now determine the four dimensional geometries with stabilizer

isomorphic to SO(3) .

Theorem 3.2.4

If (M,G) dis a maximal four dimensional geometry with Gx isomorphic

to S0(3) then (M,G) is equivalent to (ExS3,IRXSO(4)) or

(ExH>, RxS04(3,1))

Proof

By Proposition 3.2.3 the distribution Q is integrable and we denote
by L the corresponding G-invariant foliation. F will, as usual, denote
the foliation induced by P . We denote by Fx’ LX the leaves of F and

L through x ¢ M . Combining Propositions 3.2.1 and 2.1.3 we see that

there is a z(G) invariant metric A on M/F such that d;x:QX T M/F

z(x)
is an isometry. We first wish to show that for any x € M the restriction
of z:M->M/F to LX is an isometry onto M/F with respect to the induced
metric on Lx . Since z:M - M/F 1is a bundle projection by Theorem 2.2.1
and LX is transverse to F the map g:Lx > g(Lx) is a covering map onto
its image. Also, by the definition of the metric on M/F , ;:Lx - ;(Lx)

is a local isometry. Since M/F is simply connected it only remains to

show that c(LX) = M/F . Choose Xg € M and denote by A the subset of

M A={y eM[F nL,  #0}. Then A=M iff (L ) =MF . Using
y XO XO .

holonomy map of F it is easy to see that A is open. Now assume that

we have a sequence .{yn} c A such that Yo > Yo - Without loss of generality
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we can assume that {yn} = LyO . Then for each n e N there exists a
point X, € Fyn n LXo . By Proposition 3.2.1 Ker(z) 1is transitive on
Eyn so there is a g ¢ Ker(z) such that 9(y,) =x, . Then

Q(Lyo) = Q(Lyn) = an = LXO so g(y,) « LXO But g(yg) Fy0 SO

Ey n LX #0 . Hence A is closed. It follows that A =M since M
0 0

is connected.

By Proposition 3.2.1 the pair (M/F,Z(G)) is a geometry equivalent

to E3, H3, 53 so we have an exact sequence Ker(Z) » G C—>->Isom8(M/F,>\)

where IsomS(M/F,A) is isomorphic to SO(4), S0(3,1), or ISOmB(E3) and
Ker(z) 1is connected, central in G and isomorphic to R or S] , Let

K denote the subgroup K, = {geG|g(L, ) =L} . ThenG <c K
X Xg Xg X

and KX acts transitively on LX in the induced metric. By the
0 0
previous paragraph c[LX 1s an isometry onto (M/F,A) so we must have
0
;(Kx ) = z(G) . If g e Ker(g) n KX then g(xo) € FX n Lx . But
0 0 0 0
from the previous paragraph we know that FX n Lx = {xo} . Therefore
0 0

g € Ker(z) n G, . Since Ker(z) n G, = {e} by Theorem 2.2.1(c) we
0 0 -

must have g = e Hence E[KX is an isomorphism. The exact sequence

0

Ker(z) > G »Z(G) now splits and, Ker(i) being connected and central

by Proposition 3.2.1, we have G = Ker(Z) x K, Hence M % Ker(i)xKx /6,

0 0

0
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Since M 1is assumed simply connected we must have Ker(i) SR . The
result follows from Proposition 3.2.1 since (ExEB,IRxlsomg(E3)) is not

maximal.

3.3 Maximality

The geometries of 3.1 and 3.2 are simply connected Riemannian
globally symmetric spaces of the form (E" x G'/K',IsomB(En) x G')

where

(i) .G' 1is semi-simple and connected.

(ii) There is an involutory automorphism o of G' such

that o(g) =g iff g e K'

For any metric on M = E" x G'/K' left invariant under the action of
IsomS(En) x G' it is known that IsomO(M) = Isomg(En) x G' (see [ &6 ]
Chap. II, 4.1). Hence these geometries are maximal. The existence of
compact manifold quotients of a Riemannian globally symmetric space by
discrete subgroups of isometries is shown in Borel [ & 1. Therefore the

geometries of 3.1 and 3.2 are maximal. -
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CHAPTER 4 : STABILIZER ISOMORPHIC TO SO(2):I.

4.0 Introduction

In this chapter we will determine the maximal four dimensional

geometries satisfying the conditions

Al : Gx is isomorphic to S0(2) .

A2 : For each x e M there is a vector v e TxM Teft

fixed by the action of GX .

In the notation of Chapter 2 condition A2 means that the distribution
P of 2.2.1 is non-trivial. The case when GX;'SO(Z) and P s

trivial will be dealt with in the next chapter.

For the purposes of this chapter we denote pt by Q . Since QX
has even dimension dim(P) = dim(Q) = 2 . From Theorem 2.2.1 we know
that P is integrable with G invariant foliation F . There is also
a transitive action of G on the quotient space M/F such that the
quotient map z:M - M/F becomes a G equivariant principal bundle. In
Section 1 we show that there is a metric X on M/F for which E(G)
acts conformally. With respect to this metric (M/F,x) is conformally
equivalent to E2 R H2 or 52 . These three possibilities are considered

in sections 2-4. The geometries are, except for the one described in

Theorem 4.2.2, products of Tower dimensional geometries.
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For the rest of this chapter the notations P,Q,z:M - M/F ,
z:G Diff+(M/F) will have the meanings ascribed in Theorem 2.2.1

and assumptions Al and A2 are in force.

4.1 Extensions of Theorem 2.2.1

We first show the existence of a metric on M/F with respect to

which z(G) acts conformally.

Theorem 4.1.1

There is a Riemannian metric A on M/F with respect to which the

group E(G). acts conformally and transitively. The pair (M/F,x) is

conformally equivalent to E2 s H2 s 32 .

Proof

We first note that dEX:QX > T )M/F is an isomorphism for each

z(x
XxeM. Let X be ametric on M/F for which this map is conformal at

each x e M . Then the fact that Zz:M - M/F is G-equivariant immediately
implies that Z(G) 1is a group of conformal diffeomorphisms with respect

to this metric. It remains to construct such a metric. If gz(x) = z(y)
X -1 ) _
we have a well defined map h(x,y) = d;y odz;x : QX-+ Qy . Now Gx Gy .

dim(Q) = 2 and ¢ is G equivariant. Hence h(x,y) is Gx equivariant.
It follows that h(x,y) 1is conformal since Gx preserves the metric on

Q

X and Qy . Let {Ni}iel be a collection of discs in M transverse
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to F and such that ClNi is a diffeomorphism onto its image Vi
and the collection {Vi}ieI is a locally finite covering of M/F

On each Vi we can define a metric Ai such that ch:QX > T M/F

z(x)

is an isometry for x € Ni . If {¢i} is a partition of unity

iel

subordinate to {Vi} then we define a metric 2 on M/F by

iel
A(p)(u,v) = ¢ ¢1(p)xi(p)(u,v) . Since h(x,y) 1is conformal it follows
that if p ¢ M/F the metrics Ai(p) are conformally equivalent. Hence

dz;x:Qx > Tg(x)M/F is conformal with respect to A

From Theorem 2.1.3(a) we know that M/F is simply connected.
Since dim(M/F) = 2 we can use the theorem giving the existence of
jsothermal coordinates and the uniformization theorem to conclude that
(M/F,x) 1is conformally equivalent to E2, H2 or 52 . We therefore

choose the metric on M/F to be one of these three possibilities.

In the case being considered dim(G) = dim(M) + dim(Gx) =5
Since dim(M/F) =2, z(6) is transitive on M/F and £|G, fis an
isomorphism, by Theorem 2.2.1(c), we have dim(z(G)) = 3 . Hence

dim(Ker(z)) < 2 .

Proposition 4.1.2

Suppose dim(Ker(Z)) = 2 . Then Ker(z) is connected, abelian,

central in G and the pair (M/F,z(G)) is a geometry.
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Proof
Assume that dim(Ker(z)) = 2 . We have dim(FX) = 2 for each
leaf Fx of F and so it follows from 2.2.1(c) that Ker(z) is
simply transitive on FX . Since FX is connected it follows that
Ker(E) is connected. Since dim(M/F) =2 (M/F,z(G)) is a geometry
by Corollary 2.1.4. Now Ker(z) is closed and normal in G and hence
unimodular by Proposition 1.1.4. Therefore Ker(Z) gIR2 . To show that
Ker(z) ds central we will use a technique similar to that used to prove
the analogous statement in Proposition 3.2.1. We recall that P s
parallelizable by G invariant vector fields (Theorem 2.2.1). Let X]
and X2 'Bé-two such vector fields. The Lie bracket of two G-invariant
vector fields is G invariant. Hence, P being integrable, we have

[X,:X,] = aX;+bX, for some a,b eIR . Thus {X],Xz} span a finite

1°72 1772
dimensional subalgebra k of vector fields on M . Both X] and X2

are completely integrable and so by Palais [ 10 1 there is a connected

Lie group K acting on M with the following property (K integrates k):

If k, 1is a one parameter subgroup of K and Y

t

is the vector field defined by Y(p) = gf (k¢ (P)) 0

-

then Y ek

The action of K on M sends any Teaf of F to itself and commutes with
the action of G . In particular the actions of K and Ker(Z) restricted

to any leaf FX of F commute. Since Ker(Z) is abelian and simply
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transitive on FX this implies that if k € K there is a g e Ker(E)
such that k]Fx = g|FX . To see this represent the action of Ker(z)

on FX as a group acting on itself by left translations. Then K must
act by right translations which coincide with Teft translations since
Ker(z) is abelian. It follows that K acts by isometries on F,  in
the induced metric and therefore acts on P by isometries. If k e K

the distribution Qk defined by Qt = dk(Q ) is G idnvariant.

. k'](x)
Since the Gx—invariant complement to PX is unique we must have Qk = Q

for each k € K. Therefore Q 1is invariant under K . Now K commutes
with G so it is easy to show that if k e K there is an a(k) eIR:

such that <dkx(v),dkx(v)>k(x) = a(k)<v,v>x for each x e M, v e Qx
The action of K descends to give an action on any manifold of the form
'\M, T a discrete subgroup of G . The existence of such a quotient
with finite volume implies that a(k) =1 for each k € K and so K
acts by isometries. The action of G on M is assumed maximal so Kgc G .
Therefore K = KerO(E) = Ker(z) . Since K commutes with G we conclude

that Ker(z) 1is central.
d

For the next three sections we assume that M/F is equipped with a

metric A satisfying 4.1.1 and such that (M/F,1) is isometric to

E2, W2 or S%.



4,2 M/F has Euclidean metric

We are assuming in this section that (M,G) 1is a four dimensional
geometry with M/F diffeomorphic to R2 and that Z(G) acts conformally
on ]R2 with respect to the Euclidean metric. If we denote by C+(E2)
the group of orientation preserving conformal automorphisms of E2 then

z(G) is a connected subgroup of C+(E2) transitive on E2 and containing

a compact subgroup isomorphic to SO0(2) .

Proposition 4.2.1

2

The group z(G) 1is isomorphic to either C+(E2) or Isom+(E )

Proof

Since z(G) 1is transitive on M/F and has non-trivial stabilizer

at each point of M/F by 2.2.1(c) we have dim(E(G)) >3, If

dim(z(G)) = 4 then Z(G) = C+(E2) since both these groups are connected.

If dim(z(G)) = 3 then, since dim(G) =5 , dim(Ker(£)) =2 . Therefore

by 2.1.4 (M/F,z(G)) dis a geometry. It is easy to see that in this case
(M/F,z(G)) 1is equivalent to (E2,Isom+(E2)) and so Z(G) s isomorphic
to Isom+(E2)

O

We first show the existence of a geometry satisfying the first

possibility given by Proposition 4.2.1.
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Theorem 4.2.2

Let G be the group defined by .R3xa(IRXS0(2)) where o(t,9)

is given in matrix form by

etCose etSine 0
a(t,8) = -e%sine etcose 0
0 0 o7t

and Tet K denote the subgroup of G defined by K = {(0,0,0,0,8) |
0 € [0,2nr)} . Then (G/K,G) 1is a maximal four dimensional geometry

satisfying the condition that (M/F,z(G)) 1is equivalent to (EZ,C+(E2)) .

The proof will be in three parts. First we will show that there is
a discrete subgroup T = G such that T\G/K 1is a compact manifold. Then
(6/K,G) will be shown to be maximal. Finally we show that (M/F,2(G)) is

equivalent to (EZ,C+(E2)) .

Let G] be the group .R3x6 IR where the action of IR on IR3 is
1
given by
eAtCost eAtSint 0
B (t) = [-e*sint e*eost 0

e-ZAt
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This group has a compact group of automorphisms isomorphic to S0(2)

given by
82(6)-(x],x2,x3,t) = (x] Cose+x2 Sine,—x]Sine+x2Cose,x3,t)

It is easy to see that there is an isomorphism ¢:G » G]us S0(2) which
2

sends K onto the subgroup K, = {e} x SO(2) . It follows that the

geometries (G/K,G) and (G]KBZSO(Z)/K] R G]xszso(z)) are equivalent,

It will be shown in 6.4.9 that for some A there is a discrete subgroup
r ¢ 6 , such that r\G, is compact. So ¢-](r)\G/K is a compact

manifold. Therefore (G/K,G) 1is a geometry.

Assume that (G/K,g) 1is not maximal. Then we can find a left
invariant metric A on M = G/K such that (M,A) dis isometric to one
of the symmetric spaces of Chapter 3. Let (M,IsomO(M,A)) be the
corresponding maximal geometry. There is an embedding ¢:G - IsomO(M)
where ¢(G) 1is a closed subgroup of IsomOM . Since G/K 1is diffeo-

4 2.2 2.2 2.2 3

morphic to R™ (M,A) cannot be isometric to E"xS™, S°xK®, $°xS°, ExS~,

S4 or @PZ The remaining possibilities are szHZ, H2xH2, ExH3,H4,E4,
EHZ all of which have non-positive curvature. Let 62 be the group
IR3><B IR where R acts by
3
et 0 0
_ t
33(t) = 0 e 0
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Clearly G X GZxSO(Z) . A G invariant metric on G/K corresponds
to a left invariant metric on 62 which is also invariant under the
action of S0(2) . The existence of such a metric of non-positive

curvature was shown above. Now 62 is unimodular and 95 2 [gz,gzlxM IR

3
where

1 0 0
M3 =10 1 0
0 0o -2

As noted in Theorem 1.6 of [ ¥ ] one can use the results of sections

5.2, 4.4,76,2 of [ \ 1 to show that IR must be orthogonal to

[92,92 12 R3 and that M3 is skew-adjoint with respect to an inner
product on ZR3 . If A 1is a positive definite matrix then the adjoint

* -
of M3 with respect to the inner product <Au,v> is given by M3 = AMgA 1

*
where Mg denotes the transpose. But Mg = M3 o) M3 = —M3 implies

that M3 and -M3 have the same eigenvalues. This is clearly not the

case. Hence (G/K,G) 1is maximal.

Representing G/K as IR4 the action of g = (ul,uz,u3,u4,e) on
G/K is given by

-

u

u
- - 4 ino) . u.-e }(x.Sine-
g (x],xz,x3,x4) = (u]+e (x]Cose+x251ne),u2 e (x]S1ne x2Cose) ,

-2u

4
Us +e X35 Uy + x4)
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The leaf of F through (x],xz,x3,x4) is given by

F = {(Xq5X,5tss) | t,s eR}
(x],xz,x3,x4) 1°72

and therefore the action of G on M/F is

u u
g-(x1,x2) = (u]+e 4(x1Cose+x251'ne),u2-e 4(x]Sine—XZCose))

2

Clearly, then, E(G) is the conformal group of E“ and

Ker(z) = {(0,0,u,0,0)(u €IR} which has dimension 1 .

In fact the geometry of Theorem 4.2.2 is the only four dimensional

one satisfying the condition that z(G) = C+(E2) .

Theorem 4.2.3

If (M,G) 1is a four dimensional geometry with the pair (M/F,E(G))

equivalent to (E2,C+(E2)) then (M,G) 1is equivalent to the geometry

described in Theorem 4.2.2.

Proof

The following facts about C+(E2) will be needed:

F1: The universal cover C'(E2) of CY(EZ) s OxC with
Zz
the multiplication (z],zz)-(w],wz) = (z]+e 2w1’22+W2)
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4

n
Topologically C+(E2) is IR" with the multiplication

X
3 .
(x],xz,x3,x4)°(y],yz,y3,y4) = (x; +e (y1C0sx,4-y,Sinx,)
X
Xo + @ 3(yZCosx4+y]S1'nx4) s

x3 + y3,x4+y4)

F2: With respect to the multiplication on ]R4 given by F1 a
basis for the Lie algebra c(Ez) is given by the left invariant
~ vector fields:
X X
o 3 3

X (Cosx4a/ax]+Sinx4a/ax2) » Xo = e (—Sinx4a/ax]+Cosx4a/ax2)

1

X3 = a/8x3, X4 = a/ax4

and so the Lie algebra c(EZ) is given by:

X1 = =X

1=0, X 1°%3 1

C(E%) = 1X) XXX, | [XoX, ;X = 0, [X

[X23X3] = —X29 [X-I ’X4] = -X2,[X2’X4] = X]}

F3: Let g = (x],xz,x3,x4) then the adjoint map Ad:G + Aut(g) is given by:

X X

ex3Cosx4 -ex3S1'nx4 =X ) X5

Ad(g) =( e 3Sinx4 e 3Cosx4 "Xy =Xy
0 0 1 0
0 0 0 1

n
The modular homomorphism A of C+(E2) is given by
. c*(£9)



- 51 -

Ay = |det(Ad(g))| so we have:
CT(E™)
2X

= e 3

(X,sza )
C (EZ) 1°72°73°74

(i) We have an extension Ker(z)» G »>C+(E2) with dim(Ker(z)) =1 .

Let Kero(i) denote the connected component of e in Ker(z) and let

$:C* (€

By Proposition 1.1.3 G must be unimodular since we are assuming the

E7) - AutO(KerO(E)) denote the homomorphism induced by conjugation.

existence of a quotient of finite volume. Since KerO(Z) is closed in

G it follows from Proposition 1.1.4 that ¢ is non-trivial. This, in

-

turn, implies that KerO( £) cannot be isomorphic to S0(2) so we have
KerO(E) IR, Auto(KerO( z)) = RI and |det d¢(g)| = #(g) for each

A'l 5 (9) so, from
C (E7)

t for te KerO(E) . If

g « C'(E%) . By Proposition 1.1.4 |det do(g)| =

-2x3
F3 above, ¢(x],x2,x3,x4)-t = e

¢*:c(E2) + R is the induced homomorphism of Lie algebras then, for the
basis '{X] 2:X3:X,} of F2 above we have ¢,(X|) = o4(X,) = 4x(Xy) =0,
¢*(X3)-Y = -2Y where Y 1is a basis for R as a Lie algebra.

(ii) Fix a point xy e M. Then, since TF' is irreducible and

G-invariant there is an irreducible ad(gx ) invariant two dimensional
0

subspace 1 ¢ g such that dq(z) = TF* (here g 1s regarded as Tleft

invariant vector fields on G and q:G » G/GX is the quotient map).
0

Let Zyig ~ Q(EZ) denote the homomorphism induced from Z and h ¢ Q(EZ)
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1

the ideal corresponding to translations. Then x n z. (h) is

ad(g, ) 1invariant since i;](h) is an ideal of g . Now
0
dim(Z,(R)) = 3 and dim(x) =2 so x n 2. (k) # {0} . Hence
nc E;](h) . Now since % 1is irreducible and [gx Ker(z,)1 < Ker(z,)
0
we also have Z,|r dinjective.

Y Y.} where

1°¥20 Y30 ¥y Y5
5 . By (ii) we can assume that

(ii1) The Lie algebra of G 1is spanned by {Y

IA

[Y2,Y5] = Y3 . [Y3,Y5] = -Y2 . [YZ,Y3] = aY] since {X],XZ,X3} spans
the subalgebra of C(EZ) corresponding to Isom+(E2) . From (i) we

have [Y],Y2] = [Y1,Y3] = [Y],YSJ =0, [Y4,Y]] = -2Y] . Hence

g = {Y1,Y2,Y3,Y4,Y5 | [Y4,Y]] = -2Y],[Y2,Y3] = aY],[YZ,YSJ = Y3 R
[Y3,Y5] = -Y2, [Y],Yz] = [Y],Y3] = [Y],Y5] =0, [Y4,Y2] = Y2+bY]
[Y4,Y3] = Y3 + CY], [Y4,Y5] = dY]} >

is a presentation of g for some a,b,c,d eIR . Now we have:

[Yz,[Y3,Y4]] + [Y4,[Y2,Y3]] + [Y3,[Y4,Y2]] = -4aY]
[Y4,[Y3,Y5]] + [Y5,[Y4,Y3]] + [Y3,[Y5,Y4]] = -bY.|
[Y4,[Y2,Y5]] + [Y5,[Y Y2]] + [Yz,[Y Y, 11 = cY

4° 5°°4 1



Therefore, since g 1is a Lie algebra, we must have a =b =¢c =0

Now {Y],YZ,Y3} spans an abelian ideal with a complementary abelian

subalgebra spanned by {Y4,1/2dY]-+Y5} . Hence g 22R3 ximz where

2

IR™ acts by the commuting matrices
0 o0 0 1
T-l = 0 0 ° Tz = -] 0
0 0 -2 0 0

N
An easy calculation shows that the universal cover G of G 1is given

by R3 % R2 where

eSCost esSint 0
a(s,t) = | -e>Sint eCost 0
0 0 e2s

The centre of & is Z(&) = {(0,0,0,0,2kn) ¢R> | k ez} . Thus if

G 1is to act effectively on M we must have G = E/Z(E) and the maximal
compact subgroup of G 1is isomorphic to S0(2) . Clearly G 1is isomorphic
to the group of Theorem 4.2.2 so (M,G) is equivalent to the geometry

defined in 4.2.2.
g

Moving on to the case E(G) 2 Isom+(E2) we again have a unique
maximal geometry satisfying this condition. We denote by N the nilpotent

group of matrices:
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1 x vy
N = {{0 1 z)|x,y,2eR }
0 O

and by K the group of automorphisms of N {somorphic to S0(2)

given by:
X 'y 1 xCos6+zSins y-szin29+1/4Sin29(22-x2)
K(e) - {0 1 z{ = (0O 1 -xSine+zCoss
0 1 0 0 1
Lemma 4.2.4

The group K x {id} is a maximal compact group of automorphisms of

NxR.

Proof
Since N xIR 1is simply connected we need only show that the maximal
compact group of automorphisms of the Lie algebra n xR 1is isomorphic

to SO(2) . Now n xR 1is given by:

nxIR={X X |[x X;1=0 for 1<4 <3, [X,X1=0

1 X2 3’ 1°72

[X),X5] = 0, [X,,X51 = X;}

With respect to this basis Aut(n xR) 1s given by:

b] c] d1

Aut(n xR) = {{0 b, ¢, 0 || bycs-bsc, = a}
‘ 0 b3 C3 0
0 b4 Cy d2
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It is easy to see that Aut(n xIR) = R-S where

1 b] b2 3
R={0 1 0 0\ bi’cj R for 1<1i,j <3}
0 1

S =1 0 Xp Yy 01] x,‘yz-xzy1 #01}
0 Xo Yo 0
0 0 0 1

R s simply connected, closed, normal and solvable and S 2 GL(2,1IR) .
It follows that a maximal compact subgroup of S is maximal compact in
Aut(n x R) . The maximal compact subgroup of S is isomorphic to S0(2)

and so we conclude that K 1is maximal compact.

Theorem 4.2.5

Let G be the group (N xIR) anO(Z) where a(S0(2)) 1is the group
of automorphisms of N x R described in 4.2.4. If we denote by K the

subgroup of G defined by K = {(e,0,A)|A € SO(2)} then (G/K,@) is a

2 2)) '

maximal geometry such that (M/F,z(G)) is equivalent to (E ,Isom+(E

Proof ’
If T denotes the subgroup of N xIR consisting of the direct

product of Z <IR and the integral matrices in N then r\N xIR is

4
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compact. Hence T\G/K is a compact manifold. Therefore (G/K,Q)

is a geometry.

A G-invariant metric on G/K corresponds to a left invariant
metric on N xIR also invariant under the adjoint action of K . Let
A be such a metric for which IsomO(N x R,A) 1is maximal. By [ \Z ]
N xR 1is normal in IsomO(N x R,A) so, denoting the stabilizer of e
by K' , we have a homomorphism ¢:K' -+ Aut(N) . Since K' 1is connected

and dke # id for any k e K' the map ¢ 1is injective and ¢(K') is

a compact subgroup of Aut(N) containing Ad(K) . Since Ad(K) is
maximal by 4.2.4 we must have Ad(K) = ¢(K') and so K =K' . It follows

that (G/¥K,g) is maximal.

Let g = (n,t,6) be an element of G with

T u v
n =0 1 w| , teR, o €l0,2n)
0 0 1

If G/K 1is regarded as IR4 with coordinates (x],xz,x3,x4), then:

g-(x],xz,x3,x4) = (u+x1Cose+x3Sine,x2+v-u(x]Sine-x3Cose)

+ 1/4(x§-x$)51nze-x1x3sm %0 w-x;Sin +x,C0s0 ,
t + x4) .

The ]eﬁf of F through (x],xz,x3,x4) is:
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F = {(Xy>tsX5,8) | t,s e R}
(X],XZ,X3,X4) ] 3

and therefore the action of G on M/F is:

g+ (XysX,) = (usv) + A (X75%,) 5 A_ = [ Cose Sine
e 6172 | -Sine  Cose

So z(G) = Isomg(Ez) . We also have Ker(Z) = {(0,t,0,s,0)|t,s €IR} ,

which is the centre of N xR, confirming Proposition 4.1.2.

Theorem 4.2.6

If (M;G) is a four dimensional geometry with (M/F,z(G)) equivalent

to (E2,Isomg(E2)) then (M,G) 1is equivalent to the geometry described

in Theorem 4.2.5.

Proof
We have an exact sequence Ker(2)>+ G E>->IsomS(E2) . By Proposition

4.1.2 we know that Ker(z) 1is abelian and central in G . At the Lie

z 2

algebra level, therefore, we have the exact sequence IR2>+ g

>>L80m(E
2
)

)

where iAom+(E2) acts trivially on IR2 . The Lie algebra of Isom+(E

is given by: -

y,,y,1 =Y

som(E%) = 1Y7,¥,,¥5]0Y7,Y,0 = 0 4 [V],V50 = =Y,,0¥,,,0 = ¥,

1°°3

Hence g 1is given by
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g = {X1’X2’Y1’Y2’Y3 | [Xi’Yj] =0 for 1<si<2,1<j<3,

[Y],YZJ = a]X]+a2X2,[Y],Y3] = -Y2+b]X]+b2X2 s

[YZ,Y3] = Y]+C]X]+CZX2,[X],X2] = 0}

for some choice of constants a],az,b],bz,c],c2 . Choosing a new basis
Y] = Y]+c1X]+c2X2, Y2 = Yz-b]X]-bZXZ,Y3 = Y3 we see

X Xi5 X X

17 " T e
that g can be written

g = {X]:X5,Yq5Y5,Y5 | [Xi’Yj] =0 for 1si<2,1

IA
o
IN
w

-

CX X2] =0, [Y],Y2] = a,X,+a xz,[y],y3] = _y2 ,

1’ 171 72

[YZ’Y3] Y]}

These are now two cases depending whether or not [YI’YZJ is trivial.

Case (1) : a; =2, = 0

2 2

¥ 2
R™x IsomO(E ) . The group

ne

In this case g T R%x iAom(E3) SO E
G 1is given by E/D where D 1is a discrete central subgroup. Now

Z(Isomg(Ez)) ¥Z so D is a free abelian subgroup of IR2 x2ZZ ., If
rank(D) = 2 then G contains a maximal torus T with d%m(T) > 2.

Up to conjugacy in G we can assume that Gx < T and we have the fibre

bundle, T/G, - G/GX + G/T . This gives an exact sequence
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. ->1r2(G/T) > (T/Gx) > "](G/Gx) . Now, by assumption, "1(G/Gx) =0
and also G/T 1s contractible since G 1is solvable. Hence

1 (rank(D) # 0 since

n](T/GX) =0 , a contradiction. Thus rank(D)
N

N Y
G contains no compact subgroups). We write G =R x G' where

"

N

G' =R x IsomS(Ez) . Without loss of generality we can assume that
n A

D _c_’(\%'l . If G' 1is written as R x (@ xa]R) where aft)-z = e1tz

then D = {(ka,0,27km) ¢ IR x € xR | k €Z} for some a eR , 0 #meZ .
n

Then D 1is contained in A = {(at,0,2mmt)|t e R} so G'/D = (RxC) x A/D .

Since A/D preserves the Euclidean metric on R x € it follows that

(M,G) = (R xIR x €, R x(IR x C)xA/D) is not maximal.

—

Case (2):a];é0 or az;éo

Choosing a new basis for g 1if necessary we can assume that

[Y],YZJ = X] and g =R x h where h is the Lie algebra

h = {Y’X'I’XZ’X3 | [X],XZJ Y, [Y’X‘i] =0 for 1<4i<3,

[X],X3] = -XZ s [X2,X3] = X]}

The set {Y,X],Xz} spans an ideal isomorphic to n and so h =n xR .

Thus 'é;'IRx(Nx R) where, if N 1is given by the upper triangular matrices:

X Yy
N={0 1 z]/]| x,y,zeR}
0 1
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then IR acts by the compact group K of Lemma 4.2.4. Topologically

n,
G s ]RXiR3 x R =]R5 and it is easy to see that the centre is

Z(¥) = {(t],0,t,,0,2kn) eR°|t;,t, eR, k <Z} . We have G2 6/D

where D 1is a discrete central subgroup. The argument used in Case (1)
again shows that rank(D) =1 . Hence D = {(kn],O,knz,O,Zwkn3)(k e}
for some NysNosng eZ . D 1is contained in the one parameter subgroup

A = {(tn;,0,tn,,0,2m,t) | t eR} . If ny =0 then A/D g Z(G)

2
Since A/D is isomorphic to S0(2) and is the maximal compact subgroup
of G this contradicts the fact that Gx acts faithfully on TxM for
each x e M . Therefore n; #0 and An (R x N x {0}) is trivial.
Hence E 2 ( R x N) x A where A acts by conjugation and

G= (R xN) x A/D where A/D acts trivially on IR x {e} and by

rotations in the x-z plane of N . The result follows immediately.

O

4,3 M/F has spherical metric

We are now assuming that (M,G) 1is a four dimensional geometry with

2 and that g(G) acts conformally with respect

2

M/F diffeomorphic to S

to the standard metric on S

52 can be identified with the group PSL(2,L) acting by fractional linear

The group of conformal automorphisms of

transformations on the extended complex plane. Hence z(G) can be regarded
as a transitive subgroup of PSL(2,C) whose stabilizer subgroup at each

point contains a compact subgroup isomorphic to S0(2) .

4
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Proposition 4.3.1

The subgroup z(G) has dimension 3.

Proof

Since Zz(G) is transitive on 32 with non-trivial stabilizer
we have dim(z(G)) =2 3 . Also dim(E(G)) < dim(G) = 5 . Assume that

dim(z(G)) = 4 or 5. We set s? - Cu{=} and denote by A_ the stabilizer

A

of « in ¢(G) . Then A_ is contained in the complex Affine group:

a b
Aff(C) = {(0 c) e GL(2,0) | ac = 1}

whose Lie algebra is:
Xy
ag(e) = {( eM(2,0) | X,y e T} .
0 -x
The adjoint action of Aff(C) on af4(C) 1is given by

(x y (x azy - 2abx)
Ad(a,b) - 0 -x - 0 -X

Choosing a = 1//y if x =0 and b =ay/2x if x # 0 we see that the

orbits of the adjoint action are represented by the matrices:

(x o> (o '1>
T,(x) = for x ¢ € or T, =
1 0 -y 2 \o o
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If we denote by a_ the Lie subalgebra corresponding to A_ we have,
by assumption, dim(a_) =2 or 3 . Hence a_ contains two elements of
ag$(C) dindependent over R . Since A_ contains a compact subgroup
isomorphic to SO0(2) we can assume, after conjugating by an element of

Aff(C) , that T](i) ea_ . There are now two possibilities.

Case 1 : yT2 ea_  for y#0

Conjugating by an element of Aff(C) if necessary we can assume that
that y =1 . Now [T](i),TZJ = 21’T2 so for all a,8 € R we have

(a+iB)T, € a_ . Therefore a  contains the algebra:
2 w w

at 4
k, = | la e R, ze(}
0 -

-

Since z(G) 1ds transitive on € u {=} there is a 9y € z(G) , such

that go(m) =0 . Such an gy must be of the form:
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1

Then 90K196 c z(G) and it is easy to see that

B e-ie 0
gOK]gO = { y eie leeIR s, wel }.

Hence E*(g) contains BT3 for B8 € L where T3 = (? 8)

Now E*(g) already contains aT2 for @ € so, since [aT2,8T3] -
= T,(aB) we see that I,(g) contains all of s£(2,0) . This is a

contradiction since dim(Z(G)) <5 .

Case 2 : T](x) + yT2 ea_ for x #0

If a_ contains an element V = T1(x) + yT2 for x # 0 then
[T](i)N] = 2iy T, so we are again in Case (1) unless y =0 1in which

case, since T](i) and V are independent, a_ contains the subalgebra

X 0
h2= { [xe(]:}
0 -x

and A_ contains the subgroup:

z 0
K, = { lzeC, z#0}
0 1/z

Since £(G) {is assumed transitive on € uf}there is 9 € z(G) such that

go(m) =1 . This 95 is of the form

. =(ao by )
‘ 0 Ch b0+1/aO
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1

and so 90K296 c z(G) and it is easy to see that:

A(z-1/z) + 2z A(1/z-z)
| z e}
(A+1)(z-1/2) A(1/z-z) + 1/z

- . -1 ..
where A = aobO . The Lie algebra of 90K290 is:

2x+1 -2)
Ad(go)-f?.2 ={a | a el }
2(x+1)  -(2x+1)

0 -
Since Z,(g) contains T](x) ¥x e T we have ) € Z,(g) .

If » =0 then Z(G) contains the subgroup:

1 O)I }
Ky, = 1 z2el
3 z 1

but K3 fixes 0 ¢ € as does K2 so the dimension of the stabilizer

is = 3 and we are back in Case (1). If A = -1 then £Z(G) contains

the subgroup:

K4={(; :) | z € ¢} )

but K, fixes o as does K2 so the dimension of the stabilizer is

4
> 3 and we are back in Case (1). Now X # 0,1 and setting

1
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we have

0 -2
[X],Xz] = € a,
2(+1) 0

Therefore (8 8) and (g

Case (1), this implies that Z.(g) < 4£(2,C) .

8) € 2,(g) for all a,8 € € and, as in
O

We now go on to classify the geometries with (M/F,E(G))_g (SZ,PSL(Z,E)) .

Theorem 4.3.2

If (M,G) ds a four dimensional geometry with (M/F,z(G)) equivalent
to (SZ,L) where L < PSL(2,C) acts transitively on 52 then (M,G) is
equivalent to either

(a) (E%xs?, RPxs0(3))

(b) (ExS3, RxH) where H is a subgroup of SO(4) preserving the Hopf

fibration of 53.

Neither of the geometries is maximal.

Proof

By Proposition 4.3.1 dim(Z£(G)) = 3 so that dim(Ker(z)) = 2

Hence by Proposition 4.1.2 (M/F,z(G)) is a geometry which is easily seen

to be equivalent to (52,50(3)) . Again by 4.1.2 we know that Ker(z) is

abelian and central in G . Therefore at the Lie algebra Tevel we have an
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extension ]R2 >»g > 50(3) with 40(3) acting trivially on ]R2 .

Since 40(3) is simple g must be isomorphic to ]R2 x 40(3) and hence
the universal cover E is isomorphic to R2 x SU(2) . Thus G =]R2><SU(2)/D
where D 1is a discrete central subgroup. Now Z('(\%') gle XZZ and the

ZZ factor is contained in a maximal torus A c SU(2) . If T s a
maximal torus in G then T ¢ (RZXA)/D . Without loss of generality

we can assume that- GX c T and we have the fibre bundle T/GX > G/Gx -+ G/T .,

2

If dim(T) = 3 then G/T 2 s° and we have the exact sequence

Y

1o (T/G,) + m5(G/G,) + my(G/T) + my (T/G.) » m (6/G)

ne

This is impossible since nZ(T/GX) = w](G/GX) =0 and 'rr2(G/T) Y/
n](T/GX) TZXZ . Hence dim(T) < 2 and we can assume that

G =R x ((Rx SU(2))/D) .

(i) D s trivial

Then G = R2 x SU(2) . But any subgroup of SU(2) isomorphic to

SO0(2) contains the centre of SU(2) so G does not act effectively on
G/Gx .

(11) D= {(n,0) €Z xZ, | n ¢ 2}

Then G =R x S0(2) x SU(2) . It is easy to see that any compact sub-
groups of G isomorphic to SO0(2) must intersect the centre of G non-

trivially so G does not act effectively on G/Gx .

(ii1) D =7,

2

Then 6 =R® x SO(3) and (M,G) = (E°xSZ

» RxS0(3)) which gives (a)

of the theorem.
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(iv) D=Z XZZ

Then G =R x S0(2) x SO(3) . If G, is contained in the S0(3)
factor then “1(G/Gx) # {0} which contradicts the assumption on M

It is now easy to see that GX n Z(G) # {e} , so, again, G does not

get effectively on G/GX .

(v) D = {(n,(-1)") ¢ Z <Z, | n ez}

If we regard SO(2) as the group of all complex numbers of modulus 1
and SU(2) as the group of unit quaternions then there is a two-fold

covering map p:SO(2) x SU(2) - (R x SU(2))/D given by p(62ﬂ1t,q) =

= [2t,q] . Denoting the connected component of e in p-](Gx) by K

we have p(K) = GX and K is of the form
K ='{(e2win6’e2ﬂim6) | 6 ¢ R}

for some n,m coprime and m 20 . Here we are writing a quaternion as
z]+jz2 for 2152, € C.

If m=0 then Gx is central in G so G does not act effectively
on /G . Ifweset 8=1/2m then (eT1M® oZTIMO) _ (o TN/M gy = ppis
is not in Ker(p) if m#1 or if m=1 and n is even. In these cases
p(e“in/m,—1) is a non-trivial element of GX n Z(G) so G does not act
effectively.

We now assume that m =1 and n 1is odd then Ker(p) Kso K = p-](GX)
and the induced map p:S0(2) x SU(2)/K - D\RXSU(Z)/Gx is a diffeomorphism.

Setting H = S0(2)xSU(2) we have the exact sequence:

mo(H) = m,(H/K) $ m, (K) B (H) » m (H/K) =+ 74 (K)
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Now ,(H) = mo(K) =0 , m (H/G,) z T (M) =0, and 7 (K) = T (H) 2Z .
We know that B8 1dis injective and sends a generator of w](K) ontd n times
a generator of n](H) . Hence o 1is trivial, nZ(H/K) = {0} and
m (H/K) 2Z/rZ . Since ™ (H/K) 2w (M) = {0} we must have n==x1 .

Using the automorphism of SO0(2) x SU(2) given by (eZ"it,q) > (e-ZWit,q)
we can assume that n =1 . We have S0(2) x SU(2)/K T SU(2) wvia the map
[e2"1t,q] -+ qe-ZHit and the action of S0(2) x SU(2) on SU(2) 1s given

by (e2“1t,q) W =—qwe-2ﬂ1t . It is clear that this action preserves the

Hopf fibration whose fibre through w e SU(2) ds given by the set

{we2"1s | s e R} . The action is not maximal since it is a restriction
of the action of SU(2) x SU(2) on SU(2) given by (qj,qz)-w = q]wqél
Hence we have (a) of the theorem.

Since - (i)-(v) exhaust all the possible subgroups of Z x 22 the

proof is completed.
d

4.4 M/F has Hyperbolic metric

In this, final, section of the Chapter we will consider the case
when (M/F,Z(G)) is equivalent to (H2,L) where L acts by conformal
transformations on the hyperbolic plane. In fact any conformal trans-

formation of H2 is an isometry so é(G) can be regarded as PSL(2,R)actingon
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the upper half plane by fractional linear transformations. As in

Section 4.2 we give first an existence result and then show uniqueness.
We let SL(;, R) denote the universal cover of PSL(Z2,IR) and let K
denote the maximal compact subgroup of the group of inner automorphisms

"]
of SL(2,R) . Then K= S0(2) and we have

Theorem 4.4.1

n
Let G denote the group R x (SL(2, R) x K) and K' the subgroup
{0} x {e} x K. Then (G,G/K') 1is a maximal geometry with (M/F,Z(G))

equivalent to (HZ,PSL(2, R)) .

Proof
Any semi-simple Lie group has a discrete subgroup with compact

quotient (a result of Borel, see Ragunathan [ \\ ] Chapter XIV). Hence

we can find a discrete group T ¢ SL(}.', R) such that ZxT\ IRXSL(%I,IR)

is compact. Hence Z x Ir'\G/K' 1is a compact manifold and (G,G/K') s a

geometry.

Next we show that (G/K',G) is maximal. If (M,G]) is a maximal

geometry extending (G/K',G) then Gl must be isomorphic to one of the

groups considered in Chapter 3. Hence (M,G]) must be a symmetric space

n
equipped with its maximal group of isometries. Now R x SL(2, R) = G/K'

is diffeomorphic to R® so (M,G') must be either ET,HY Exv>, E°xHC,
H2><H2, or ([H2 acted on by its group of isometries. This implies that
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there is a G-invariant metric of non-positive curvature on G/K'

This is the same as saying that there is a left invariant metric on

R x SL(%,IR) of non-positive curvature also invariant under the maximal
compact subgroup of the adjoint group. This contradicts the fact, proved
in L \ 1 Corollary 2.6, that a Lie group posessing a left invariant metric

of non-positive curvature must necessarily be solvable. Thus (G/K',G)
is maximal.

To show that (M/F,z(G)) 1ds equivalent to (HZ,PSL(Z,IR)) it is
clearly sufficient to show that G/Ker(z) is isomorphic to PSL(2, R) .
This means, in turn, that if we denote the Lie algebra of Ker(g) by 2
we must show that g/2 z s2(2,1R) . By Theorem 2.1.3 the foliation F
is given by the translates of NO(K')/K' where NO(K') is the normalizer

of K'in G . The Lie algebra of G is:

g = {Y1’Y2’X1’X2’X3 | [Y1’X1] =0 for 1 <123, [Y],Yz] =0

[X],le = 2X3 s [X],X3] = 2X2, [XZ,X3] = 2Xy s

[YZ’X]] -2X3 Cy X2] =0, [YZ’X3] = 2X]}

29

The subalgebra corresponding to NO(K') is n(Yz) the normalizer of

Y, in g . It is easy to see that n(Y,) is spanned by, {Y,:X5,Y,}

2
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Now Ker(i) is the largest normal subgroup of NO(K'yK'.Therefore

£ s spanned by {Y],Xz} . If p:g > g/n denotes the quotient

map we set V, = p(-X]), V, = p(-3(Xn*Y )), Vg = p(X3) . We have
[V],V2] =25, [V],V3] =2V, [VZ,V3] = 2V] and so g/ = s£(2,1IR) .
But dim(M/F) = dim(G)-dim(NO(K')) =2 so z(G) is a covering space of
PSL(2, R) . If z(G) ¥ PSL(2, R) then any compact subgroup of Z(G)
would contain the centre of E(G) and z(G) would not act effectively

on M/F . Therefore Z(G) = PSL(2, R) as required.
O

The geometry described in 4.4.1 is the only one satisfying the hypo-

thesis of this section.

Theorem 4.4.2

If (M,G) 1is a four dimensional geometry with (M/F,E(G)) equivalent
to (H2,L) with L = PSL(2,IR) then (M,G) 1is equivalent to the geometry

described in Theorem 4.4.1.

Proof

Since the group R x(SL(Z, R) x K) has {0} x {e} x K as a maximal
compact subgroup it is sufficient to show that G =IR x (SL(%,IR) wx K)
We know that Z(G) H PSL(2, R) since by Theorem 2.2.1(c) it is a tran-
sitive subgroup of isometries of H2 of dimension 2 3 . Hence
dim(Ker(Z)) =2 . By 4.1.2 Ker(z) is abelian and central in G . So,
s a2, R)

at the Lie algebra level, there is an extension R? > g
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where 4£(2, R) acts trivially on ]R2 . Since s£(2,R) 1s simple

2 2 N
x SL(2,IR) . Therefore

this implies that g = R® x s2(2, R) and ¢ ¥R
G = E/D with D a discrete central subgroup. Since Z(SL(%,IR)) 2z
we can assume that D 1s a free abelian subgroup of ZxZxZZ . Now
SL(Z, R) can be written J-R where J covers SO0(2) < SL(2,RR)

N
Z(SL(2, R)) = J , and R 1is isomorphic to the group:

a b
AFFT(R) = ¢ (O y ) eGL(2,R) |a>01 .
a

n n
Hence G/D ¥ D\G = (R%xJ)/D)-R. Therefore if T <G is a maximal torus

G/T is contractible. Without loss of generality we assume that Gx cT.

From the fibration T/GX - G/GX -+~ G/T we have the exact sequence

coor 1p(6/T) > my (T/6,) » 7 (6/6) . Since m(G/G,) = m,(6/T) = 0 it

follows that G (T/GX) =0, and T = GX . Therefore rank(D) =1 and,
Y

without Toss of generality, we can assume that G = Rx(( RxSL(2, IR))/D) .

There are two possibilities.

Case (1) : DcJ

Then G ¥R x psL{M (2, R) where psL{M (2, R) denotes the n-fold
cover of PSL(2, R) . Clearly G extends to an action of

Isom+(E2) x PSL(n)(Z, R) on M and so (M,G) 1is not maximal,
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Case (2) : D £

D 1is contined in a one parameter subgroup A of R x J . The
condition D £ J dimplies that the projection p:SL(%J, R) xR+R is
injective when restricted to A . It follows that
(RxSL(Z, R))/D ¥ SL(Z, R) w4(A/D) where Ad(A/D) is non-trivial
since otherwise D <R x{e} and GX would be normal in G . Since
Ad(A/D) is maximal compact in Aut(SL(%l, R)) it follows that G is

isomorphic to the group defined in Theorem 4.4.1.
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CHAPTER 5 : STABILIZER ISOMORPHIC TO SG(2):1I.

5.0 Introduction

In this Chapter we will determine the four dimensional geometries

satisfying the conditions

B1: Gx isomorphic to SO0(2) .

B2: For each x € M the action of Gx on TxM

Teaves no vector fixed.

From Theorem 2.2.2 we know that there are two smooth, G-invariant,
mutually orthogonal, integrable distributions P(]),P(z) on M with
dim(PM)y = din(P(@)y = 2 . The action of 6, restricted to P{1) s
non-trivial for each x e M . If F(1),F(2) are the corresponding
G-invariant foliations then M/F(i) is a smooth simply connected manifold
and ;(i) t M- M/F(i) is fibre bundle for i = 1,2 . There is a smooth
action of G on M/F(i) equivariant with respect to the projection

c(i) : M- M/F(i) . Lastly we know that with respect to the metric

induced from M the leaves of F(1) are isometric to E2,H2 or 52

In Section 5.1 we show that the leaves of F(l) cannot be isometric
to 52 for i =1,2. This leaves two possibilities: either one of the
foliations F(]),F(Z) has leaves isometric to H2 or both of them have

leaves isometric to E2 . The first possibility is taken up in 5.2 where
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it is shown that there are two geometries satisfying the required
condition. Both these geometries have quotients of finite volume but

no compact quotients. In Section 5.3 we show that the second possibility
implies that the geometry is not maximal and can be extended to the

Euclidean geometry (E4,Isom+(E4)) .

For the rest of this Chapter (M,G) will be a four dimensional
geometry satisfying (1) and (2) above and P, F, ¢z etc., will

have the meanings assigned in Theorem 2.2.2.

5.1 Extensions of Theorem 2.2.2

We first determine Ker(Z) n G, .

Proposition 5.1.1

If F 1is one of the two G-invariant foliations on M then, in the

notation of Theorem 2.2.2, Ker(Z) n G, s finite.

Proof

From Proposition 2.1.2 we know that Ker(Z) n GX is given by
Ker(Z) n G, = {g e G | dgxlTF; = id} . Now with respect to some ortho-
normal basis 1in TF; the action of GX is given by the homomorphism

p : R/2nZ » GL(2, R) where, for some non-zero n eZ

Cos ne Sin ne
p(6) = s 8 € [0,2n)

Sin ne Cos neo
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If p(6) =1 then 6 =2kn/n for 0 <k <n . Hence

Ker(z) n G, = {8 € [0,21) | o(8) = I} s finite.
0

From Theorem 2.2.2(c) we know that for a G-invariant metric on
M the Teaves of F(]) and F(z) are isometric to E2,H2 or 52

In the current situation we can eliminate the case 32

Proposition 5.1.2

With respect to the metric induced from a G-invariant metric on M
the Teaves of F(]) and F(2) are isometric to E2 or H2 .
Proof
We must eliminate the possibility that the leaves are isometric to
2

S Assume that the leaves of F(]) are isometric to S2 . If xeM

denote by Fx the leaf of F(]) through x and by Kx the subgroup
Ke=1g € G| g(F) =F1 . Then it follows from Proposition 5.1.1 that

Kx covers S0(3) and is therefore compact. Now 8(1)(Kx) is the subgroup
of E(])(G) fixing z(x) . Thus there is a Z(])(G) invariant metric

on WF(1) . so, since dimu/F(1)) = 2 by Theorem 2.2.2 and ()] ¢

is non-trivial by Proposition 5.1.1, we have dim(g(])(G)) =3 and
dim(Ker(E)) =2 . This implies that Ker(i(])) is a proper normal sub-
group of KX contradicting the fact that Kx is simple. 'We conclude that

the leaves of F(1),F(2) are isometric to E2 or H2
a
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5.2 Invariant Foliation with Hyperbolic Leaves

2)

We consider the case when one of the foliations F(]),F( has

hyperbolic leaves. The existence of such a geometry is given by:

Theorem 5.2.1

Let «:SL(2, R) ~ GL(2, R) be a non-trivial homomorphism and let
G denote the group IR2 X, SL(2,IR) . If K< G is the subgroup
{0} x S0(2) then (G/K,G) is a maximal geometry. Furthermore if

q:G +~ G/K denotes the quotient map then:

(a) . The action of K on Tq(e)G/K leaves no vector fixed.

(b) For any G-invariant metric on G/K one of the foliations
F(]),F(Z) has leaves isometric to H2 and the other has

leaves isometric to E2 .

Proof

We first show that there is a discrete subgroup T < G such that

I'\G/K is a manifold of finite volume. Up to conjugacy in GL(2, R)

there

are only two homomorphisms a],aZ:SL(Z,IR) +SL(2, R) . These are given

by -

Hence G 1is isomorphic to R2 o SL(2, R) for i =1or 2.
.i

4
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Now ai(SL(Z,ZZ)) = SL(2,Z) for 1 =1,2 so the group
C=(ZxZ) *, (SL(2, Z)) 1is a discrete subgroup of G . Since
i
SL(2, R)/SL(2,Z) has finite volume it follows that C\G/H has finite

volume. However C\G/H may not be a manifold. To avoid this problem

note that there is a subgroup T of finite index in SL(2,ZZ) which

contains no elements of finite order. If we set C' = (Z xZZ)xa r then
i

C'\G/H 1is a manifold of finite volume. Since G/K 1is diffeomorphic to

4

R" the pair (G/K,G) 1is simply connected and so a geometry.

We now wish to show that (G/K,G) is maximal. Suppose not. Then
we can find a G-invariant metric A on M = G/K such that IsomO(M,x) G .
Then (M,Isomo(M,)\)) is equivalent to one of the symmetric space geometries

of Chapter 3. Furthermore, since G/K 1is diffeomorphic to IR4 , this

symnetric space must be E4,H4,ExH3,E2xH2,H2xH2 or (tH2 . It follows

that the solvable group ]sza Aff( R) SIRZKa SL(2, R) has a left invariant

i i
metric of non-positive curvature where

a b
€ GL(2,IR) | a>0 }.

-

AFF(R) =1 (
0 1/a

The Lie algebras «(1) of Rix Aff(R)
i

are given by

(1) - - - =
R = XX Y5Y, | DXgXpT = 0, TYq,Y,0 = 2y DY X0 = Xy,

[Y‘I 3X2] = ‘Xz, [Yz,x]] =0 ’ [Y2,X2] =

|
>

—
—
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2
£(2) - g X ¥sY, | DXXT =0, TV, ,Y,0 = 2Y,, [Y;,X.] = X

1272 1°M 1°
EY],XZJ = -X2,[Y2,X1] =0, [Yz,xzj = —X]}
In both cases the derived algebra C[x{1) 2(1)1 i spanned by XXy,

With respect to this basis ad(Y]) is given by the matrix:

1 0 0
T = 0 - 0
0 0 2

and n(i) = [n(i),n(i)] KT.R for i =1,2 . But from Proposition 5.6 of

L | 1 it follows that if g = [g,g]MaIR is the Lie algebra of a Lie group
with a left invariant metric of non-positive curvature then the eigenvalues
of a(t) have all positive or all negative real parts. Clearly T does
not satisfy this condition. We can therefore conclude that (G/K,G) is

maximal.

If we denote by L] and Lo the subgroups L] =IR2xa S0(2) ,

;
L2 = {0} x SL(2, R) then L],L2 are closed and contain K . The translates
of L]/K and L2/K by elements of G form two complementary foliations

1 for

such that g(L]/K) and g(LZ/K) are sent into themselves by gKg~
every g e G . Since K acts non-trivially on L]/K and L2/K we must
have F(i) = {g(Li/K)lg e G} for i =1,2. It is now obvious that (a) and

(b) are satisfied.
g
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The geometries defined in Theorem 5.2.1 are the only ones satisfying

the conditions of this section.

Theorem 5.2.2

Let (M,G) be a four dimensional geometry satisfying Bl and B2
and such that for some G invariant metric on M the leaves of F(])
are isometric to H2 . Then (M,G) 1ds equivalent to one of the geometries

described in Theorem 5.2.1.

Proof
Since . {0} x SO(2) is a maximal compact subgroup of ]szaSL(Z, R)
it is sufficient to prove that G 1is isomorphic to R?anL(Z,]R) for
some representation o:SL(2, R) -~ SL(2, R) . Llet =« x, @ be the Levi
decomposition of g with 1 solvable and a semi-simple. By Proposition
1.1.3 G 1is unimodular. It now follows from Proposition 1.1.4 that « gle .
Now Tet k denote the Lie algebra corresponding to the subgroup
Ky = {geG | g(F ) = F,} where F, s the Teaf of F(1) through x e M .
From Proposition 5.1.1 we see that k = s2(2, R) . It follows immediately
that a = 5£(2, R) and the universal cover E of G 1is isomorphic to
IRzkm SL(2, R) for some homomorphism Q:SL(%, R) - SL(2,IR) . If
q:SL?E,]R) +~ SL(2, R) denotes the standard covering then either o is
trivial or Ker(&) = Ker(q) < Z(SL(;,IR)) . If o is trivial then (M,G)

must be the geometry described in Theorem 4.4.1 and hence does not satisfy
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B2. Thus o 1is non-trivial and it follows from the condition

Ker(&) = Ker(q) that there is an automorphism ¢:SL(2, R) - SL(2, R)

such that o = ¢oq . It is easy to see that Z(E) = {0} x Ker(a)

Since Z(SL(Z, R)) ¥Z there is an isomorphism c: Z + Z(SL(2, R))
n

such that Ker(a) = c(2Z) . It follows that if D < Z(G) is such that

v @ v (n)
G =G/D then D = {0} xc(2nZ) for some n #0 . Then G —IRx& SLY'/(2,1R)
n

where SL(n)(Z,IR) is an n-fold cover of SL(2, R) with covering map a,
and ‘gn = ¢oq . Now Z(G) = Ker(&n) which is contained in the maximal,
connected, compact subgroup q;](SO(Z)) of SL(n)(Z,IR) . Therefore G
does not act faithfully on M wunless n=1 . Thus G IR x¢ SL(2, IR)

as was to be shown.
O

The geometries constructed up until now have all had compact manifold

quotients. To show that this is not always the case we have:

Proposition 5.2.3

If (G/K,G) 1is one of the geometries described in Theorem 5.2.1 and
I <G is a discrete subgroup with T\G/K a manifold then T\G/K 1is non-

compact.

Proof

We have 6 =R’ SL(2,R) and K = {0} x SO(2) . Assume that there
is a discrete subgroup T < G such that T\G/K is compact. Since K is

a compact subgroup this implies that G/r is compact. If q:G » SL(2,IR)



- 82 -

denotes the quotient map then by Corollary 8.28 of [ tt 1 it follows

that IRZ/Ker(qlr) is compact. Hence Ker(q|r) = {n]v]+n2v2ln],n2}eil} for
some independent vectors VisVy eIRZ . Since GL+(2, R) IR x SL(2, R)
we can extend o to an automorphism o of GL+(2,DQ) . Choose

B e GL+(2, R) such that a(B)(Z xZ) = Ker(q|r) . The mapping ¢:G + G
defined by setting ¢(v,T) = (&(B)(v),&(B)T&(B)-]) is an automorphism of
G and maps Ker (q[T) onto Ker (q|é#(T)) . Hence, without Toss of
generality, we can assume that Ker(q|r) =Z xZ ;:‘IR2 . We must now have
q(r) c SL(2, Z) . Since G/T 1is compact there is a compact set C < G
such that for each g € G there is a y eI such that gy e C . If

T e SL(2,R) there is a g e G such that q(g) =T so if gy e C we
have T-.q(y) € q(C) . Hence SL(2, R)/q(r) is compact contradicting the
fact that SL(2, IR)/SL(2,Z) 1is non compact. Therefore there are no

compact quotients. 0

Remark

Let Gi =]R2xa SL(2, R) where aps0, are the two inequivalent auto-

morphisms described1in the proof of Theorem 5.2.1. Then, since (a2)2 =id ,
the mapping ¢:G] - 62 defined by (v,A) » (v,aZ(A)) is an isomorphism
sending {0} x SO(2) onto {0} x SO(2) . Thus ¢ induces an equivalence
between (G,/{0} x s0(2),6;) and (GZ/{O} x S0(2),G,) . However, this

equivalence is orientation reversing.
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5.3 Both Invariant Foliations have Flat Leaves

We wish to show that a four dimensional geometry satisfying B1 and

B2 is not maximal if the leaves of F(1) and F(z) are isometric to E2 .
Let Isom:(EZ) denote the unique n-fold cover of Isom+(E2) . Then
Isom:(Ez) = Ox_ s! where o (2)-w = 2w for z,we(,|z| =1.
n
Lemma 5.3.1
Let ¢:Isom:(E2) + GL(2, R) be a homomorphism which is non-trivial
on {0} x S] . Then € x {1} ¢ Ker(¢) and, up to conjugacy in GL(2, R) ,
¢(w,e1e) = Ake for k eZ, k # 0 , where Ake is the matrix:
Cos ko Sin ke
A =
K \sinke  Cos ke

Proof

Let det:GL(2, R) - R, denote the determinant map. Since {0} x S1

is compact and connected we must have (dete¢)|({0} x S]) trivial. The

only normal subgroup of Isom:(Ez) containing {0} x S] 2) .

Therefore the image of ¢ 1is contained in SL(2, R) . Now ¢ cannot

. +
is Isomn(E

be injective, since SL(2, R) has no two dimensional abelian subgroups.
Hence Ker(¢) n (C x {1}) must have dimension greater than 0 . But it

is easy to see that any normal subgroup of Isom;(EZ) containing a one
dimensional subgroup of € x {1} must contain all of € x {1} . Therefore
€ x {1} < Ker(¢) . By hypothesis ¢({0} x S]) is non-trivial and hence

conjugate to SO(2) . The second statement follows immediately.
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Lemma 5.3.2

If (M,G) is a four dimensional geometry satisfying Bl and B2
and such that for any G invariant metric on M the Tleaves of F(])
and F(Z) are isometric to E2 then (M/F(i),i(i)(e)) is a geometry
equivalent to (EZ,Isom+(E2)) .

Proof

~ We consider only F(1) as the proof for F(2) is the same. Let
Fi]) s Fiz) denote the leaves of F(]) and F(z) through x e M . If

Y1s¥, € Fil) then we denote by c(y],yz) the holonomy map
0
o o in F(2)
o(y],yz).Ny] > Ny2 where Nyi is a neighbourhood of y; in Fyi for
i=1,2 . To demonstrate the fact that (M/F(]),Z(])(G)) is a geometry

it suffices, by Proposition 2.1.3, to show that dc(y1,y2):P§2) -+ P§2)
1 2

is an isometry for any pair of points (y],yz) of M with

C(])(y ) = c(])(y ) . Choose x, e M and let x, ¢ F(]) . As usual
1 2 0 1 X0

we set Kﬁi) ={geGg(F ) =F). If y,= C(])(XO) then 2(1)(K£;))

is the stabilizer of Yo in E(])(G) . From Proposition 5.1.1

Ki;) is jisomorphic to Isom:(EZ) for some n# 0 : The subgroup

Li;) EKig) corresponding to € x {1} in Isom:(Ez) is transitive on

Fi;) . Let p:E(])(Kig)) ~+ GL(2, R) denote the representation coming
from the derivative. Then by Lemma 5.3.1 we have Li;) < Ker(poi(])). Let

Ll
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g e L1 be such that 9(Xg) = xq . By the definition of ¢
X
0
- 1 - 1 .
(é])lNX ) 1 @(])(9)]€( )(NXO))=(c( )INXO)= (U(X]’XO)OQ)‘NXO on the appropriate

domains of definition. Now Got(1)(a) s trivial so el (q) s trivial,

Y0
. 2
Hence d(cog) is the idéntity on Pi ) . It follows that do, (x],xz)
0 1
is an isometry since dg :P(z) - P(Z) is an isometry. The points x 2 X4
X0 *g X] 0

being an arbitrary pair on the same leaf of F(]) we conclude that F(1)

has isometric infinitesmal holonomy as required.

To show that (M/F(]),i(])(G)) is equivalent to (EZ,Isom+(E2)) we
choose a E(])(G) invariant metric A on M/F(]) such that
diil) : P§2) - Té}i)M/F(]) is an isometry for some G 1invariant metric
on M (Proposition 2.1.3). Then if U c Fﬁz) is such that ;(]) U is

a diffeomorphism then (g & ;(])(U) M/F(]) is an isometry. But

C
the leaves of F(Z) are jsometric to E2 and hence (M/F(]),A) is flat.

The conclusion follows since E(]) Gx is non-trivial by Proposition 5.1.1.

g

We show that there are no maximal geometries fulfilling the

requirements of this section. -

Theorem 5.3.3

If (M,G) 1is a four dimensional geometry satisfying the conditions

Bl and B2 and both foliations F(1), F(Z) have Teaves isometric to

4
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E2 for any left invariant metric on M then there is a subgroup
G Isom+(E4) jsomorphic to G such that (M,G) 1is equivalent to
('6') .

Proof
We first show that if Fﬁ]) and Fiz) denote the leaves of F(l)

and F(Z) through x € M then Fi

assume that there is a point Xq # X9 in Fil) n Fiz) . Since F(])
0 0
and F(z) are transverse the set Fi]) n Fiz) is countable. If
0 0
1) g(2) (1) £(2) :
geh then g(F( n F\*/) = F nF . Therefore, since G
o *0 X0 %0 X0 %0
is connected, we have g(x;) = x; for each g e G . Since F(])
1 1 Xq X0

is isometric to E2 in the induced metric there is a unique geodesic vy

1) n Fiz) = {x} . Let Xq € M and

. (1) . .. . . 1y .
in FX joining x, and Xy - Now if g e G, then g|Fx is
0 0 0
an isometry and therefore fixes y pointwise. Hence dgX (v'(0) = v'(0)

for each g € G, . contradicting B2. Therefore Fil) n F(2) = {x

0o %o o’

0

By Lemma 5.3.2 there is an exact sequence Ker(z)>+ G LI Isom+(E2

Thus dim(Ker(z))

) .

2 . Furthermore Kero(i) , the connected component

of e in Ker(z) , 1is a closed subgroup of G and so, by Proposition
1.1.4, KerO(E) YR LIt s easy to see that Ker(Z) = Kero(i)-(Ker(E)wa)
for any x e M ., It now follows by Proposition 5.1.1 that the quotient

map q:G/KerO(E) > G/Ker(z) % Isom+(E2) is a finite covering. We deduce

4
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that for some n e€Z there is an exact sequence

~

R® = Kero(i) > G 2> Isom:(Ez) . Let g« K)((Z) and assume that
0
(1) gy = (2) 2 (1) (1) g(2)) _
Zn (g) =e . Then g e Ke © 0 KePO(C) and so g(Fx n F)°0) =
0 0 0
=r pl2) gy (1) o (2D . {x,} as shown above. Therefore
X X X X 0
0 0 0 0
g eG, n Kero(i) and g has finite order. Since Ker,(z) YR e
0
deduce that g =e . Er(]])[Kf(z) is thus injective. Both K)Ez) and
0 0

Isom:(Ez) are connected and of dimension 3 and it follows that

(M), (@)

n - Isom;(EZ) is an isomorphism. The sequence
0.

]R2 >+ G —>> Isom:(Ez) therefore splits and a short calculation using

Lemma 5.3.1 shows that G 1is isomorphic to ]R4b<aSO(2) where S0(2)
acts by

a(8) = with n,me Z , ¢ ¢ [0,2n)

0 A, 9

Hence G ¢ Isom+(E4) and the result follows.



- 88 -

CHAPTER 6 : SOLVABLE GROUPS.

6.0 Introduction

In this chapter we consider the last class of geometries; those

satisfying
C : The stabilizer of each point is trivial.

It is easy to see that such a geometry is equivalent to a connected,

simply connected Lie group acting on itself by left translations. Such

a geometry will be denoted (G,G) . In Section 6.1 we show that if (G,G)
is maxima]lthen it is solvable. In the case dim(G) = 4 we show further
that G © Hx R where H is one of the two nilpotent groups of dimension

3 and R acts on H by volume preserving automorphisms. The groups of
this type with H QIRB are determined in 6.2 and those with H non-abelian
are determined in 6.3. 1In 6.4 we investigate which of those groups con-
structed in 6.2 and 6.3 have a quotient of finite volume (such a quotient

is necessarily compact - see [ \y ] Chapter III). Finally in 6.5 we

determine all the maximal geometries with trivial stabilizer.

Throughout this chapter N will denote the non-abelian ni]-potent'

group of dimension 3 presented as:

1 Yy X
N={{0 1 =z} €GL(3,R) 3.
0 0 1
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A basis for the Lie algebra n of N is given by

o 0 1 0 1 0
X] =10 0 0}, X2 = {0 O R X3 = 1
0 0 O 0 0 0

So n 1is presented as:

n = {X'] aX2:X3|[X] ,X2] = [X'l ,X3:] =0 s [X23X3] =

|
>

—
[

6.1 Preliminaries

We first state the obvious equivalence between geometries with

trivial stabilizer and Lie groups.

Proposition 6.1.1

If (M,G) 1is a geometry with GX = {e} then (M,G) is equivalent

to G acting on itself by left translations.

Proof

(M,G) 1is equivalent to standard left action of G on G/GX . The

result follows since G/G =G .
X a

From now on we identify a geometry (M,G) having trivial stabilizer

with the group G and abuse notation by speaking of the geometry (G) .
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Lemma 6.1.2

If (G) 1is a maximal geometry then Aut(G) contains no non-trivial

connected compact subgroup.

Proof
Let K c Aut(G) be a connected, compact subgroup. The semi-direct
product G x K acts transitively on G by (g,k)-x = Lg(k(x)) where
Lg denotes left translation by g ¢ G . This action clearly extends
the left action of G on itself and the stabilizer of e -is K which
is compact. By the assumption that G 1is a geometry there is a discrete
subgroup T < G such that r\G has finite volume. It follows that
r\G » K/K 1is a manifold of finite volume. Hence (G,G x K) 1is a geometry.

Since (G) is maximal we conclude that K = {e} .

Proposition 6.1.3

If (G) 1is a maximal geometry then G 1is a connected, simply
connected, unimodular solvable Lie group and Aut(G) 1is solvable and

simply connected.

Proof -
By the definition of a geometry G 1s connected and simply connected
and by Proposition 1.1.3 G is unimodular. Since G 1is simply connected

we can assume that G = (R uaS]) x 52 where:
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(1) R,S1,S2 are connected and simply connected.

(ii) R 1is isomorphic to the solvable radical of G and

S],S2 are semi-simple.

(iii) Ker(a) has finite index in Z(S]) since a semi-simple
matrix group has finite centre (see [ S 1 Chapter 18,

Prop. 4.1).

If S, # {e} then there is a non-trivial connected maximal compactly

embedded subgroup K2 S, i.e. Ade (K,) 1is a compact subgroup of
2 82 2

Aut(SZ) . Since K, commutes with (R an]) x {e} it is clear that
AdG(Kz) is a compact subgroup of Aut(G) which contradicts Lemma 6.1.2.
Therefore 52 = {e} . If S] # {e} then, again, we have a non-trivial
connected maximal compactly embedded subgroup K] < S1 . It is easy to
see that Ker(AdG(Kp) = Ker(a) n Ky . But the fact that Ker(a) has
finite index in Z(S]) implies that Ker(a) n K] has finite index in

Z(S4) n K. It follows that Z(S;) nKyKer(a) n Ky - Kj/Ker(a) Ky »

Ki/Z(Sq) n K = Ade (K;) is a finite covering. Hence, since Ad. (K,)
1 1 1 Si41 ST
is compact, AdG(K]) is a compact subgroup of Aut(G) contradicting

Lemma 6.1.2. Therefore S1 = {e} and G TR which is solvable.

Since the mapping ¢:Aut(G) - Aut(g) 1is injective we can regard
Aut(G) as a subgroup of GL(n, R) for some n . It follows that if
S < Aut(G) is a maximal, non-trivial connected semi-simple analytic

1
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subgroup then S has finite centre ([ 5 1 Chapter 18 Proposition 4.1).
Then any maximal compactly embedded subgroup of S s compact in S
and hence a compact subgroup of Aut(G) . This contradicts 6.1.2 so
we must have S = {e} . Hence Aut(G) is solvable. Finally Aut(G)
must be simply connected since a non-simply connected solvable group
contains a non-trivial maximal torus again contradicting 6.1.2. q

We now prove a number of propositions describing the structure of a

maximal four dimensional geometry with trivial stabilizer.

Proposition 6.1.4

If (G) 1is a maximal four dimensional geometry then G ¥ H xR

where H 1is either R or N and o(R) consists of volume preserving

automorphisms.

Proof

By Proposition 1.1.3 G 1s unimodular. If G 1is of the form
described it follows from Proposition 1.1.4, since N,'R3 and R are

unimodular, that R acts by volume preserving automorphisms on H

If G 1is nilpotent then the Lie algebra g of G has a nilpotent

ideal h with dim(h) = 3 . Then h is isomorphic to ]R3 or n and

g YRR or nxR . Since G is simply connected this implies that

3

G =R xR or GSNxR .
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If G 1is not nilpotent it is solvable by Proposition 6.1.3. Let
h denote the nilradical of g . Since G 1is simply connected the
connected subgroup H corresponding to h 1is closed, simply connected

and normal in G . The result will follow if we can show that h is
3

isomorphic to R™ or n . Now [g ,g] € h so we have an extension
H > G >>R" for 1<n<3 and it follows from Proposition 1.1.4
that AdG H 1is a group of volume preserving transformations. To demonstrate

the proposition we need to show that h 1is not isomorphic to R or IR2

3 and HXR . The action of IR3.on R s

If h =R then g/h =R
trivial since R has no non-trivial connected group of volume preserving
transformations. Hence h 1s central in g and so g 1is nilpotent, a
contradiction. If & ;'RZ then g/h g]R2 and we have a homomorphism

ol IR2 + SL(2, R) . Since 4£(2, R)has no two dimensional abelian subalgebras
the induced homomorphism of Lie algebras a,: ]R2 + 5£(2, R) has a non-
trivial kernel. Let Y be a non-zero vector in Ker(ay) and choose X

in g which projects to Y under the quotient map g + g/h '=“IR2 . It

is easy to see that h and X together span an abelian ideal in g .

This contradicts the assumption that h is the nilradical of g .
d

Let h be any Lie algebra. Then, since the Lie algebra of Aut(h)
is isomorphic to the derivation algebra Der(h) , Aut(h) acts on Der(h)
via the adjoint action of Aut(h) on its Lie algebra. Th'is action
preserves the ideal of inner derivations Inn(h) . We denote the action

4
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of ¢ e Aut(h) on Der(h)/Inn(h) by Ad(¢)-[D]1 where D e Der(h) .

Proposition 6.1.5

Let h be an arbitrary Lie algebra, {Y} a basis for R as Lie

algebra and oy 50y R - Der(h) homomorphisms defined by ai(Y) = Di

for i =1,2. If there is ¢ e Aut(h) such that Ad(¢)[D]] = kD, 1]
R and & Xy R are isomorphic

for k e R then K x
. @ 2

1

Proof

Let 9; denote h ua.'R for 1 =1,2 . By hypothesis
- i

Ad(¢)(D]) = k(D2 + T) for some T e Inn(h) . Define a homomorphism

g: R - Der(h) by B(Y) = D2 + T and set g=~h KB]R . Then the mapping
¢:gy » g defined by e(h,t) = (¢(h),kt) 1is easily seen to be an iso-
morphism. To show that g = gp 1t is sufficient to show that there is

a vector V e g such that V ¢ h and [Z,V] = D,(Z) for all Zeh

Now there is an X e h such that [Z,X] = T(Z) for each Z ¢ h

Also [Z,Y] = (D2 + T)(Z). in Hence the vector V = Y-X has the

e

i

required properties. Thus 91 =49

g, as was to be shown.
- g

Corollary 6.1.6

The Lie algebras of the groups in Proposition 6.1.4 are given by

semi-direct products h xDIR where *h =]R3 or n and D 1s a trace 0

3
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outer derivation. Two such algebras h % R and & %5 R are isomorphic

1 2

1 kD2+T for some ¢ ¢ Aut(h) , k e R, T ¢ Inn(h)

iff ¢D]¢'
Proof

Combine Propositions 6.1.4 and 6.1.5.

In the next two sections we determine, up to isomorphism, all simply
connected Lie groups satisfying 6.1.6.

3

6.2 Extensions G =R” xR

The Lie algebra of trace 0 outer derivations of ]R3 is s£(3, R) .
The orbits of the adjoint action of GL(3, R) or 4£(3, R) correspond
to Jordan canonical forms of matrices in s£(3, R) . Up to a scalar

factor they are:

0 0 0 0 1 0 0o 1 o0
D=0 0 0}, Dy=]0 0 0},D,= [0 0

0 0 O 0 0 0 0

1T 1 0 x 1 0 1 0 0
D= [0 1 0}, D) =(-1 A 0], D(A)=[0 A O

0 0 -2 0 0 -2a 0 0 -(1+)

The corresponding Lie algebras and groups are numbered

g],...,96(1),G1,...,G6(A) .
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6.2.3 G

g5 = {X],XZ,X3,Y | [Xi’xj] =0 for 1 <1,j <3, L[Y,X

[V, %50 = Xq 5 [V,X,] = X))
1t t2)2

Exp(tDy) = [0 1 ¢
0 0 1

and G3 is IR4 with multiplication:

2

(X,¥5Z5t) (U,VoW,S) = (X+u+tv+ %-w,y+v+tw,z+w,t+s) .

6.2.4 Gy

94 = {X],XZ,X3,Y | [Xi’xj] =0 for 1s<1i,j<3, L[Y,X

[Y,X2] = X.l + X2, [Y,X3] = -2X3}

1

1

]=O,

1=X

1
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et t

Exp(t D4) =10 e 0

So G, is IR4 with multiplication

4

2t

(Xs¥szst) e (U,v,w,s) = (x+etu+tetv, y+etv, zte “, t+s) .

6.2.5 G.(2)

95(A) = DXXpXgsY | [X;X, 3 = 0 for 14,5 53, [V,%;1 = A X,

) [Y,X2] = X]+AX2,[Y,X3] = -2X3}
e)‘t Cost eAtCost 0
Exp(t Dz (1)) = [-e*tsint M sint o

0 0 e-ZAt

So G5(A) is IR4 with multiplication

(X,¥s2,t) (U,v,w,s) = (x+ue tCost + ve tSint s

t 2at

y-uertsint + vet Cost, z+e “"‘w, t+s)

It is easy to check that gs(x) T gs(u) iff A = +tu so we can assume
n,

that » 20 . If 2 =0 then G (0) 1is isomorphic to Isom+(E2) x IR

and hence is not maximal as Aut(Gs(O)) has a compact group of inner

automorphisms.
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6.2.6 G(1)
g6 (1) = 0XXpaXge¥ | XX =0 for 154,553, 0¥, = X
LY. X3 = AXp, LY,X51 = -(142)X;)
et 0
Exp(tDg(3)) = et

e-(1+x)t

4

So Gs(x) is IR with muitiplication

(X,¥,2z,t)  (u,v,w,s) = (x+etu,y+ektv,z+e—(]+k)tw,t+s)

7

The isomorphism classes of the G6(A) are as follows:

(a) Gg(A) 2 Gg(0) iff A =0, -1.
(b) If w#0 then G.(3) ¥ Gg(n) iff
1+
D= Vs () s g s - Y

'] b

There is a better way to express the isomorphism classes of the G6(A) .

2 A

If A € IR are such that A] >

1222223 2

define M(A],AZ,A3) to be:

M(Aq520513)

> A3 and x] + Az + A

3

=0 we
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It is clear that any diagonalizable matrix in SL(3, R) 1is conjugate

to a unique one of these matrices. Hence 96(” 21R3°<M(>\) IR for some

= 3 v 3 . _
A= (A],A2,>\3) . Furthermore R« (}\)]R =R “M(u)IR iff u =ai

M
for «a #0 in R .

6.3 Extensions G = N xR

We recall the presentations of N and jts Lie algebra n :

1 y X
N={ [0 1 z eGL(3,]R)}
0 1

no= {X.X5.X5 | [X{:X5] = [X{5X3) = 0, [X55X51 = X}

where X],XZ,X3 are the matrices:
0 0 1 0 0 0 0
X] ={0 0 O0), X2 ={0 0 O}, X3 ={0 1
0 0 O 0 0 O 0O 0 O

With respect to this basis Aut(n) is given by

a b] X ]
Aut(n) = 0 b, c,{ e GL(3,R) | a = bycs-bsc,}
0 b3 Cy

The corresponding automorphisms of N ae given by:
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2 2
y X 1 b2y+c22 ax+b]y+c]z+%(b2b3y +2b3c2yz+c2c3z )
0 1 z§ 10 1 b3y+c3z
0 O 0 0 1

The algebra sout(n) of trace 0 outer automorphisms of n 1is the

subalgebra of Der(n) given by:
_ .0 0
sout(n) = {{5 ] € Der(n) | M e s2(2,IR) } .
The adjoint action of Aut(n) on sout(n) is:
a v 0 O 0 0
Ad * = _-l
- \0 A 0 M 0 A MA

where v eIR2 , AeGL(2,R), M e 5£(2, R), a = det(A) . Hence, up to

scaling, the orbits of the adjoint action are represented by the

Derivations:
0O 0 O 0 0 O 0o 0 O
D7 =0 0 O s D8 =10 1 . D9 ={0 0 1], D]0 =
0 0 0 0 -1 0 -1 0

G; .- By
6.3.1 ¢,

A4

G7 N xIR which has already been dealt with.
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6.3.2 Gg
= {X]:X,Xg,Y | [X15X,0 = [XqsX3] = 0, [X,,X350 = X,
[¥.Xy1 =0, IV, X0 = X,, [Y,X,] = X3}
The T1-parameter subgroup of Aut(N) corresponding to D8 is:
1 y x ety X
a8(t) 0 z] =10 1 e-tz
0 0 0 0 1

So G8 is R4 with multiplication

P

(Xs¥sZ5t)  (Uyv,W,s) = (x+u+ye'tw,y+etv,z+e-tw,t+s)

6.3.3 G9
= {X]5X,X5,Y ] [X X0 = [X5X3] = 0 5 [X5,X31 = X;
[Y,X]] =0, [Y,X2] = -X3, [Y,X3] = X2 } .
The 1-parameter subgroup of Aut(N) corresponding to ‘D9 is:
. .2 . 2 2
1T y x 1 y Cost + z Sint  x-yz Sin"t+}Sin2t(z " -y")
ag(t)' 01 z)=1{0 1 -y Sint + z Cos t
0 0 1 0 0 1 '
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Hence G9 is IR4 with multiplication:

(X,¥s2Z5t)° (Usv,oW,ss) = (x+u-y(xSint + wCost) + wvwSin 2t

+ %SinZt(wz-vz),y+vCost + wSint ,

z-vSint + wCost,t +s) .

6.3.4 G]O

g-lo = {X]9X23X33Y I [X-‘ 3X2] = [X] $X3] = O 9 [X23X3] = X'l 3

[Y,X 1 = [Y,XZJ =0, [Y,X3] = X5}

1

Now {X],XZ,Y} spans an abelian ideal in 90 and so 910 is

isomorphic to one of the Lie algebras g1,...,gs(x),96(x) of Section 6.2,

6.4 Quotients of finite volume

We wish to determine which of the solvable groups G],...,Gg con-
structed in 6.2 and 6.3 possess a discrete subgroup T such that the
quotient Gi/r has finite volume. We will use the following known results
on discrete subgroups of solvable groups. For proofs see [ \\ ] Chapters

IT and III.

Proposition 6.4.1 (Mostow)

Llet G be a solvable group and T < G a discrete subgroup such
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that G/r has finite volume. Then G/T is compact.

Proposition 6.4.2 (Mostow)

Let G be a simply connected, solvable Lie group and H < G 1its
maximal, connected normal nilpotent subgroup (necessarily closed). Then a closed

r <G has G/r compact iff the following conditions both hold:
(a) H/HnT 1is compact.

(b) If p:G -~ G/Hgan is the quotient map then p(r) 1is a closed

subgroup of R" with ]Rn/p(r) compact.

Proof

The sufficiency of the conditions is obvious since if (a) and (b)
hold then G/r 1is a fibre bundle over a compact base with a compact
fibre. The necessity of (a) is demonstrated in Theorem 3.3 of [ \\ ]

and the necessity of (b) then follows from Theorem 1.13 of [ \t 1 .

Remark

For G nilpotent 6.4.2 is trivial. However it is known that a
connected, simply connected nilpotent Lie group G has a subgroup r
with G/T compact iff g = 28 R where x is a nilpotent Lie algebra

Q
defined over @ (see [ \l J Theorem 2.12).

For our purposes we need the following corollary.

3
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Corollary 6.4.3

If G =R" X, R is unimodular and not nilpotent then there is a discrete
subgroup T < G with G/T compact iff there is a non-zero A ¢ R such

that a«(X) has a characteristic polynomial with integral coefficients.

Proof

We recall that a(t) € SL(n, R) since G 1dis unimodular. If A #0
exists with the stated property then there is a basis ViseeaVy for R"
with respect to which «(A) is represented by a matrix in SL(n, Z)

The set T = {(r]v] tooot PV, SA) | ri»s € Z} is a discrete subgroup

and 6.4.2 implies that G/r is compact.

Conversely assume that T < G 1is discrete with G/r compact. Let
p:G ~IR be the obvious quotient map. Then from 6.4.2 we see that for

n

some basis Vise-ssV, of R" we have T nR" x {0} = {z rsvs |r1. e Z}
i=1

and p(r) = {k;\olk eZ} for Ay #0 in R . let yer be such that
p(y) = Ag Then, since R" is abelian, we have YXY_] = a(lo)'x for
each x e R" x {0} . Hence a()\o) preserves T nR" x {0} and is
therefore conjugate to an integral matrix in SL(n, Z) . It follows that
the characteristic polynomial of a(Ao) has integral coefficients.

g

We will now consider each of the groups G] - G9 individually to

determine whether or not they have a compact quotient.
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6.4.4 G]
Since G] gqu it clearly has a compact quotient.
6.4.5 G2

It is easy to see that G2 TNxR and so clearly has a compact
quotient. For example take the direct product of the integral matrices

in N and Z R .

6.4.6 G3

In this case a(t) s given by the matrix:

-

1t ti
aof(t) ={ O 1 t
0 0 1
So for all t ¢R the characteristic polynomial of «a(t) is (x-])3
and the minimum polynomial for a(t) is x3-3x2+3x-1 . Therefore for

any ty #0 we can find e ¢ RS

such that e,,e, = a(t0)~e] ,
ey = a(to)-e2 are independent and a(to)-e3 = 3e3-3e2+e] . Then
(e1,0),(e2,0),(e3,0) and (O,to) generate a subgroup of G3 with

compact quotient.

6.4.7 G4

Here «o(t) has the form:

s e te 0
oty =0 et o
0 e-zt
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and the characteristic polynomial of a(t) is:

2t, 2 2

p(t,x) = x3-(2et+e_ )x° + (e tr2e ) x-1

Since G4 is not nilpotent then, by 6.4.3, if G4 has a co-compact
t -2t

subgroup we need to find to eR , tO # 0 such that 2e 0 + e 0 >

2tO -to tO

e + 2e eZ . Setting Ag = @ this means that there are

nmeZ , n>0, m>0 such that:

2 2 B
2AO+1/AO=n, A0+2/A0—m.

In other words }‘0 is a root of the polynomials:
fy =23 -mf 1, g0y =23 -m2.
If f s irreducible then it is the minimum polynomial for Ao and

hence must divide g which is clearly impossible. Hence f is reducible.

Similarly g 1is reducible.

Factorings of f

The only possible rational roots of f are + 1, +1/2 .
(i) If f(1) =0 then n=3 and (1) = (A-1)5(2n+1) .

(ii) If f(-1) =0 then n = -1 contradicting n > 0.

I}
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(i11) If f(3) =0 then n =75 and f(A) = (2x-1)(32-2x41) .

(iv) If f(-%1) = 0 then we are back to (i).

Factorings of g

The only possible rational roots are + 1 , + 2 .
(i) If g(1) =0 then m=3 and g(a) = (A-1)2(a+2) .
(ii) If g(-1) =0 then m = -1 contradicting m > 0 .
(1i1) If g(2) =0 then m=5 and g(a) = (A-2)(22+22-1) .

(iv) g(-2) =0 as in (i).

Then the only way that f and g can share a common roots is when
n=m=3 and Ag = 1 1d.e. tO = 0 . Hence G4 does not have a co-

compact subgroup.

6.4.8 Gg(1)

If A =0,-1 then, .as noted in 6.2.6, G6(0) is isomorphic to

S xR where S 1is the group

X 0 y -
S ={ 0 1/x =z e GL(2, R) }
0 0 1

If we define T =S to be the discrete group:



- 108 -

(3+/5/2) ! 0 n,(/541) + 2n,
-n
r=¢ o (3+/5/2) | ny(/5-1) - 2ng || nyangong €Z )
0 0 1

then G6(0)/P xZ is compact. If A =1, -3, -2 then the characteristic

polynomial of «a(t) 1is the same as for G4 . The same argument as in

6.4.7 then shows that G6(A) has no co-compact subgroups if A =1

2

-3, -2 .

We now assume that A #-2,-1,-3,0, 1. Let 'H(k],kz) denote

the group ]R3 xa]R where R acts by
| kyt
e 0 0
k2t
a(t) =1 O e 0 s k] > k2 > —(k]+k2)
-(kqtk,)t
0 0 e I °

Then, as noted in 6.2.6, Gg(1) = H(k;ok,) for some ki,k, e R . The

characteristic polynomial of a(t) is

kit kot = (kgrky)t

2 (x-e 2

) so, by 6.4.3, H(k],k2) has a co-compact
k.t k.t -(kytk, )t

subgroup iff e 10 , € 20 , € 172770 are the roots of a polynomial

with integral coefficients for some tO #0 1in R . Conversely let

f(x) = x3-px2+qx-1 be a polynomial with integral coefficients and with

three real roots yu; > > 0 . Then the characteristic polynomial
1 2

H1H2
for «(1) in H(log iy log “2) is f and so H(log My log “2) has a
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co-compact subgroup. Now given two polynomials f(x) = x3-px2+qx-1 s
f'(x) = x3-p‘x2+q'x—1 with roots Hy Z oy 2 (u]uz)-] >0

up 2wy 2 (uiué)_] >0 then H(Tog py, Tog u,) 2 H(log uys 109 u5)

iff 1log u]/log By = log pi/1og pé . It is therefore a priori possible
that the H(k],kz) obtained in this way fall into a finite number of
isomorphism classes. We will show that this is not the case. In fact
we will show that there is a countably infinite sequence of pairs

{(Agn)’x(n))} such that, setting H = H(A{r),xér)) ', we have
2  neNN r

Hr T H iff r=s and Hr has a co-compact subgroup. The investigation
will be in two parts. First we determine the region @ glR2 formed
by pairs (p,q) such that x3-px2+qx-1 has three non-zero positive
real roots. We show that Q@ nZ xZ is infinite. Then we will show that
there is a foliation F of Q@ whose leaves correspond to the isomorphism

classes of the H(k],kz) . Infinitely many leaves of F contain points

of QnZ xZ

(i) Description of @

Let D denote the discriminant leaves of polynomials of the form

x3-px2+qx—1 . Let @ denote the subset

3

Q= {(p,q) eIR2 | x3-px2+qx-1 has three distinct,

positive, real roots}.
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Then @ 1is a connected component of ]RZ-D . If F s the polynomial

FOGY) = X2Y2-4034v3) & 18X7-27  then

D = {(pq) «R%|F(p,q) = 0}

n,
To describe D we make the transformation F = FoT where T 1is the

affine map T(X,Y) = (X+Y+3,X-Y+3) . Then

v 4

FX,Y) = Y 4 1axd

2v2 (x%418x454) + X + ax

N,
If F(X,Y) =0 then

X2+18X+54

X4+4X3

Y2 = A(X) £ /A(X))Z - B(X) where A(X)

B(X)

Since (A(X))%-B(X) = 32(X+9/2)° we must have X = -9/2 if F(X,Y) =0 .

v n
There are two components of the set D = {(p,q) € R® | F(p,q) = 0}

Branch 1 : Y = % /ﬁ(X) + V(A(X))

2

We must have v(A(X))“-B(X)

v

-A(X) . If A(X) 20 this is always
true for X 2 -9/2 and if A(X) < 0 it implies tﬂat B(X) s 0 . Now
X € [-4,0] and so, since the larger root of A(X) is -9+3¥3 > -4 and
the smaller is -9-3V/3 < -9/2 this branch is defined on]y'for X214,
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Branch 2 : Y =i%KkX)—/(A(X))2-B(X)

If X >0 then A(X),B(x),(A(X))2

-B(X) 2 0 so this branch is
defined for X e [0,=) . The branch is undefined if B(X) <0 , .which
occurs for X e (-4,0) , or if A(X) < 0, which occurs if X e [-9/2,-4] .

Hence this branch is defined only for X =0 .

The Tocus F(X,Y) = 0 Tooks Tlike Fig. 1 below.

-~ E>ﬂam.\« 5
/ lsmnc:.‘r\ a
(0, LV3) ///

(-4 (0,0)

/ ,
(0,-645) ’///

Fig. 1

ny
It is easy to see that the shaded region @ s sentonto @ by T.
In fact it suffices to find one point (x,y) e & such that T(x,y) € 2 .
Now T(1,0) = (4,4) and the polynomial x3-4x2+4x-1 has roots 1,3(3x/3)

which are all real and positive. Now we have

T'](Z xZ) = {(X,y) e]R2 | x and y are both integral
or both half integral} .
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—— e

Therefore, since i/ﬁ}X) - V{A(X))Z-B(X) > *2 3as X +> o , the set

N -
anT ](Z xZ) 1is infinite and so Q@ nZ xZ is infinite. The discriminant
Tocus looks 1ike Fig. 2. ~
L '\?«a%;"r'\\r-c Ceal ool
®,%) e
) *wo complex ond
NG R
-\-wo “esa.{-?ve —_ X))
ond o 'g\e. ( - ¥
vead m:t‘xm % 3/4;)
Fig. 2
Remark

The region between the two branches corresponds to polynomials with

one real root and two complex roots.

(0,0),(1,1),(2,2),(0,n),(n,0)

e.g.

(1)

lence relation on Q as follows:

It cl

for n

early contains integral points

> -1 .

Let @ be the region described in (i). We define an equiva-

If (pO,qO),(p],q]) e 2 and the roots of

3 2

X7 = ppxT qox-1 are A3

>)\2

>)\.|>0

x3 - p]x2 + q]x-1 are yug > u, > up > 0
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log k3 i log M3

then (pn»q4) v (pq.q,) iff
0°0 "™ log k] log 1

We will show that the equivalence classes foliate © 1in such a way that

infinitely many leaves contain points of Q@ nZ xZ . As noted above

this implies that there are infinitely many non-isomorphic groups of the
form GG(A) containing a discrete co-compact subgroup.

Let Aizn +R for 1 <1 <3 denote the functions defined by taking

the roots of x3-px2+qx-1 in increasing order for (p,q) e @ . 1i.e.

A53(p>a) > A5(p»q) > 2;(p>q) > 0

A?-pk? QA - 120 on @ for 1<is<3.,

Applying the implicit function theorem to the function f(p,q,x) = x3-px2+qx-1
we see that the Ai are smooth. Differentiating with respect to p we
obtain

oA,

2 i_ L2 .
(3Ai - 2pxi + q) 5 ° A for i =1,2,3

Now 3A$(p,q) - ZpAi(p,q) + q s non-zero for (p,q) ¢ & since (p,q) £ D .
So, setting h(p,q,t) = 3t2 - 2pt + q we have

W = E-(:) for 1 = ],2,3 .

Similarly, differentiating with respect to q , we obtain
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W = mi) for i = ],2,3 .

Tog 25(p,q)

Define @:@ ~R by ¢&(p,q) = The sets @(p,q) = const

tog A, (p,q)
are the equivalence classes for the relation above. Differentiating

we obtain

30 _ 1 A log A i A] log Aq
o (ega® | mOy) ROy

- . " log Ag Tog A,

2 (log a)? | h(a)  h(xy)

Now AAohs = 1 so Ay > 1, Ay < 1 and therefore 1og(x]) <0 and

log(AB) >0 . For (p,q) € @ the graph of x3-px2+qx-1 looks Tike:

TN
(/4;&\ Aﬁ\\\\&hfﬂj//?o¢‘)

/:z:i/

So h(p,q,A](p,q)) >0 and h(p,q,x3(p,q)) >0 . It now follows that
3e/3p < 0 and 23%/3q > 0 . Hence ¢ 1is a submersion. The sets

¢ = const. form a foliation F whose leaves are never horizontal or
vertical. We can write the leaf through (po,qo) as (p(q),q) where
p(qo) = P and %g-= - 9%/3q 3¢/ap > 0 . The foliation looks Tike
Fig. %:



If Yy is the curve (Xx,-x+k) for k €Z it is clear that the family

{Yk}k eN has the following properties:

" P1: Each leaf of the foliation intersects Yk exactly once

if k>6.
P2: The length of (Yk nQ) goes to » as k + =

P3: Z xZ < U Y
kelN

Pa: If A =y n (ZxZnga) then |A[ <= and

IAnl—)-oo as n - «

Define a sequence {(pr’qr)}:ﬂ as follows:

(a) Let n, be the smallest integer such that [An | #0 . If the
0

points of An0 are (v] ,w]) - (vko,wko) set (p].,qi) = (Vi ,wi)

for i = 1,..,k0 . -

(b) Assume that (p],q]) - (pr,qr) have been defined and denote by L1.
the leaf of F through (p].,qi) . By P1 and P4 we can choose
a smallest n; such that IAn - (Ly ..o L) [ 21 . If the points

of’ Anj- (L] Lr) are (]v],w]) - (vkj,wkj) we set

(pr+1"qr+1‘) = (V_i ,W_i) fOY' i = ],.ou,kj
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From P3 above (Z xZ n Q) ¢ U L. so any group G6(A) with a co-
r=1

compact discrete subgroup is represented by one of the leaves Lr . If

the roots of x3-prx2+qrx-] are A%r),lér)’xgr) then the groups

G6(1og xgr)/log A%r)) are all non-isomorphic and have a co-compact

discrete subgroup.

6.4.9 Gz(2)

In this case we have

eltCost eAtSint 0
a(t) = -eAtSint eXtCost 0
0 0 e-ZAt

By the remark following the discussion of the discriminant in 6.4.8 we

know that there are n,m € Z such that x3-nx2+mx - 1 has one positive

real root, say e-zS , and two complex roots eS*19 | If we set

t, =6 and A0=s/e then for the group GS(AO) a(to) has a character-

0
istic polynomial with integral coefficients. Hence GS(AO) has a lattice.

6.4.10 G7

Since G, = N x R this group has been dealt with in 6.4.5.

7
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6.4.11 : Gg

We will show that G8 has a discrete co-compact subgroup. Recall

that G8 = N k R where:
a
X 1 e’x Z
a(t)s [0 1 y = 0 1 e_ty
0 1 0 0 1

It is clearly enough to show that for some non-zero to e R there is a

lattice T c N preserved by a(to) . It is easy to see that if we set

1 3(a/5ta2b)  1y(Sck(bo-a®)/5+ab (/5-5)
v(a,bsc) =| 0 1 15((a+2b)5-52)
0 0 1
t
then T = {y(n,m,p)|n,m,p eZ} is a lattice in N . If e ~ = (3+/5)/2
then it is easy to see that a(to)-y(n,m,p) = y(2n+m,n+m,p+2n2+2nm+m2) .

3+/5))

Hence Trx{0} and (e, log ( 5 generate a lattice in Gg .

6.4.12 : 69

G9 = N kaIR where a(2kw) = id for keZ . If T N 1is co-compact
then T x {2&Z} 1is a discrete co-compact subgroup of G9 since (e,2kmw)

is contained in the centre of G9 .

6.5 Maximal Geometries

In this, last section we draw together the results of 6.1-6.4 and

determine the maximal four dimensional geometries with Gx = {e}
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Theorem 6.5.1

The group G3 defined in 6.2.3 acting on itself by left translations

is a maximal geometry.

Proof

We have already shown in 6.4.6 that 63 has a co-compact discrete

subgroup. It remains to show that G3 is maximal. The Lie algebra 93

is given by R3 X, R where

0 t 0
a(t) =(0 0 t
g 0 0 0

Hence G3 is nilpotent since a(t) dis a nilpotent endomorphism for
each t eR . It now follows from Theorem 2 of [ \@ ] that any maximal
geometry extending (G3) is of the form (G3,G3 x K) where K is a
connected compact group of automorphisms of G3 . But if 93 is given

the presentation

93h3sh, 0 for 1< i,j‘s 3, [X4,X]] =0

[X,,X,]

4 X [X4,X3] = X2}

2 1°

then, with respect to the basis {X],..,X4} we have
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b 9 9

Auty(gs) ={ [ 0 a/d,  b/d, dy \ e GL(3,R) | d,> 0% .
0 0 a]/dﬁ d3
0 o0 0 dy

This group is solvable and simply connected and so has no non-trivial
connected compact subgroups. Hence AutO(G3) has no non-trivial connected

compact subgroups. We conclude that (G3) is a maximal geometry.
g

Theorem 6.5.2

The group GG(A) acting on itself by Teft translations is a maximal
log M1

geometry iff A = where sk, > 0 are roots of a polynomial of

log Ho
degree 3 with integral coefficients. There are countably many non-isomorphic

such geometries.

Proof

The existence of a discrete co-compact subgroup in G6(A) iff
has the stated form was established in 6.4.8. The fact that there are
infinitely many distinct such geometries was also shown in 6.4.8. It
remains to show that if (GG(A)) is a geometry then it is maximal. If
(GG(A)) is a geometry but is not maximal then there is an injective
homomorphism ¢:G6(A) - L where L denotes the transformation group

associated to one of the maximal geometries described in Chapters 3,4,5.



- 121 -

If Le denotes the stabilizer of e for the action of L on G6(>‘)
then either Le z S0(2) or the geometry (L/Le,L) is equivalent to
one of the symmetric space geometries of Chapter 3. We will show that

either assumption leads to a contradiction.

Case (1) : L, 2 50(2)

By the results of Chapters 4 and 5 L is isomorphic to one of the

following groups

L] - R’ x (R x S0(2)) (see Theorem 4.2.3)
L2 =R x (N x S0(2)) (see Theorem 4.2.6)
n
L3 =R x (SL(2, R)xS0(2)) (see Theorem 4.4.2)
L4 =]R2 % SL(2, R) (see Theorem 5.2.2).
At the Lie algebra level we have an injection 4’*:96()‘) > 1’_1. . Now
gG(A) =]R3 xM]R where:
1 0 0 -
M =10 A 0
0 0 ~(1+x)

Therefore £1. must have a three dimensional abelian subalgebra # and

a vector V ¢ normalizing 4 such that

4
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0
! 0 -(142)
(i)
We have

K] = {X],XZ,X3,X4,X5 [ [Xi’xj] =0 for 1 <i,j <3, [X4,X]] = X] s

[X4,X2] = X2,[X4,X3] = -2X3,[X5,X]] = -XZ,[XS,XZJ = X] s

[Xg,X,1 = 0}

5°73

It is easy to see that the only three dimensional abelian subalgebra is the

5
ideal %« spanned by {X],XZ,X3} . If V= ii]aixi then
b] b2 0
adz](V)In = -b2 b] 0 )
0 0 -Zb]

Hence we must have b] =171, b2 =0 andso A =1 . This contradicts the

fact proved in 6.4.8 that G6(1) has no discrete ;o-compact subgroup.

(i) L,

L2 is isomorphic to the group of isometries of a nilpotent group

R x N equipped with a left invariant metric. It follows from [ \2 ]
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n

Theorem 2(4) that G6(A) IR x N . This contradicts the fact that

G6(A) is not nilpotent for any X .

(ii1) L3

We have

£3 = {Xl,Xz,X3,X4,X5 | [X],XiJ =0 for 1 =1 <5, [X2,X3] = 2X4 s
[X3,X4] = ZX],[XZ,X4] = 2X3,[X5,X2} = -2X4 s
PX5,X3] =0, [XS,X4] = 2X2}

The only three dimensional abelian subalgebra of £3 is spanned by

{X],X3,X5} which is easily seen to be its own normalizer.

(iv) L,

Since £4 =]R2 ® s2(2, R) with o non-trivial £4 has no three

dimensional abelian subalgebras.

Case (2) : (L/Le,L) symmetric.

Since G6(A) is diffeomorphic to ]R4 the symmetric space (L/Le,L)

must be one of H4,E4,ExH3,E2xH2,H2><H2 or ([H2 . It follows that

G6(A) has a left invariant metric of non-positive curvature. We recall
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3

that gg () 2 R” &, R where
A
1T 0 0
MA = 0 A 0
0 0 =-(1+x)

(i) A #0,-1

Since gs(x) is unimodular and [ge(k),g6(k)] = IR3 x {0} it
follows from [ 8 1 Theorems 1.5, 1.6 that M)l acts as a skew adjoint

transformation with respect to some inner product p on IR3 x {0}

3

If < , > 'denotes the standard inner product on R™ then there is a

positive definite symmetric matrix A such that p(x,y) = <Ax,y>

* -
The adjoint of MA with respect to p is givenby M =A 1MtA

*
Since M = -M and Mt =M it follows that M and -M have the same
eigenvalues. Hence {1,x,-(1+x)} = {-1,-A,(1+x)} . But this implies

that A

0 or -1 contradicting our assumption

0 or A =-1

(i) A

0 . Then

Since G6(0) T G6¢4) we consider A

g6(0) = {X]’XZ,Y],YZ I [X],ij = [Y]’YZJ =0 .

[YZ’X]] = [Yz’Xz] = 0 Py [Y-I,X.l] = X], [Y] ’X2] = _Xz}
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Letting #« and 4 denote the subalgebras spanned by {X1’X2} and
{Yl’YZ} respectively we have x = [96(0), 6(0)] . The roots of 4

in & are 51,52 where
E1(ag¥qtayYy) = ay 5 gy(ag¥yragty) = -a; .

But there is no vector V in 4 with g](V) s %§V) > 0 contradicting

Proposition 5.6 of [11.

We conclude that (G6(A)) is a maximal geometry if it is a

geometry.

Theorem 6.5.3

The group G8 defined in 6.3.2 acting on itself by left trans-

lations is a maximal geometry.

Proof

The existence of a discrete co-compact subgroup was established in
6.4.11. It remains to show that (G8) is maximal. As in the proof of
6.5.2 there is an injective homomorphism ¢:G8 + L where L 1is the
transformation group associated to one of the maximal geometries described

in Chapters 3, 4, 5. If L_ denotes the stabifizer of e for the action

ne o

of L on G8 we have Le

space geometries of Chapter 3. We will show that either assumption leads

S0(2) or (L/Le,L) is one of the symmetric

to a contradiction.
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v

Case (1) : Le S0(2)

Then L is isomorphic to one of the following

L, =R’ x_(R x S0(2)) (see Theorem 4.2.3)

L2 =R x (N x S0(2)) (see Theorem 4.2.6)

Ly =R x (SL(2,R) % SO(2)) (see Theorem 4.4.2)

2

L, =R x, SL(2,R) (see Theorem 5.2.2)

4

Let n:L1 + S0(2) denote the obvious projection and let £
denote the kernel of the associated map of Lie algebras Txbx0g + R
Since 9g is not isomorphic to ]R3 ua'R it follows that L 1is a
3 dimensional ideal in gg - Now dg ThuxkR and k 2 [gg»gg]1 = n x {0} .
Hence k =n x {0} and ¢,(n x {0})51R3 x R . But R x R has no

subalgebra isomorphic to n

(i1) L2

Since L2 is the group of isometries of the nilpotent group R x N
equipped with a left invariant metric it follows from [12] Theorem 2(4)

that G, =R x N . This contradicts the fact that &

3 8 is not nilpotent.

(iid) L3

This possibility is eliminated in the same way as L]

(iv) L4

The group L4 cannot contain G8 since by Proposition 5.2.3 the
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geometry associated to L4 has no compact quotients.
Case (2) : (L/Le,L) symmetric

As in the case (2) of 6.5.2 this implies that G, has a left

8
invariant metric of non-positive curvature. Since dg is unimodular

it follows from Theorems 1.5, 1.6 of [8] that gg T axs where x

is an abelian ideal of 9g and 4 1is a complementary abelian subalgebra.

Since x is contained in the nilradical of gg and 9g T n xR we must

h x {0} for some abelian ideal hcn . Now

(]

have x

{X],XZ,X3,Y | [X,X2] = [X],X3] =0, EXZ,X3] = X

g8= -Ia

0, [Y,Xz] = X2 s [Y,X3] = —X3}

[Y,X4]

It is easy to see that x 1is spanned by X] and aX2 + bX3 for some
a,b ¢e R . Clearly for any choice of a,b the algebra gB/n is not

abelian.

Theorem 6.5.4

If (G) 1is a maximal four dimensional geometry then G is

isomorphic to G3 . G6(A) for some A eR , or G8

Proof.

By Corollary 6.1.6 G must be isomorphic to one of the groups

4

G, - G, constructed in sections 6.2 and 6.3. Now G] ZRY and G

1 9 2°

G, =R x N are not maximal by 6.1.2 since they have compact groups of

7
automorphisms (see Lemma 4.2.4). The groups G5(A) and Gg are of the
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form H kaIR where the image of o 1in Aut(H) 1is compact. Therefore

by Proposition 6.1.3 GS(A) and G, are not maximal geometries. Finally

9
G4 is not a geometry since it was shown in 6.4.7 that it has no co-compact

subgroup. The only possibilities are G 26 GG, or G= G6(A) for

3°? 8

the A defined in Theorem 6.5.2.
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SUMMARY OF MAXIMAL GEOMETRIES.

We Tist the maximal 4-dimensional geometries determined in

Chapters 3, 4, 5, 6.

1. Riemannian Globally Symmetric Spaces (Chapter 3)

(i) The simply connected spaces of constant curvature E4, H4, S4

with their maximal connected group of isometries.

(ii) The Hermitian Symmetric spaces:

Compliex Projective space GP2 SU(3)/S(U(2)xu(1)) .

SU(2,1)/S(U(2)xU(1)) .
2

Complex Hyperbolic space CH?

(ii1) The reducible spaces ExS3, EXH3, E2x

2><H2 with their connected groups of isometries.

2 2.2 2
s X

S7, E"xH™, S™xS

s2xH?, H

2. Geometries with stabilizer SO0(2) (Chapters 4,5)

(i)  (Theorem 4.2.2) Let G be the group RS xa(IRxSO(Z)) where

etcose ebsine 0
= te. t
a(t,0) = {-e"Sine  eCose O .
0 0 e 2t

If K is the subgroup {0} x SO(2) then (G/K,G) is a maximal geometry.
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(ii) (Theorem 4.2.5) Let G be the group IRx(N x,50(2)) where

1 X y
N={(0 1 z | e GL(3, R)}
0 1

1 xCos8+zSine y-szin26+iSin26(22-x2)
1 x vy
a(@)« {0 1 z|= O 1 -xSine + zCoso
0 1
0 0 1

If K 1is the subgroup {0} x {I} x SO(2) then (G/K,G) is a maximal

geometry.

(ii1) (Theorem 4.4.1) Let G be the group (IRxSL(E,IR)) NGSO(Z)

where a(S0(2)) is a maximal compact group of automorphisms
N
of SL(2,R) . If K={0}x {e} x SO(2) then (G/K.G) is

a maximal geometry.

(iv) (Theorem 5.2.1) Let G = R?

x SL(2, IR) where
a:SL(2, R) =+ SL(2, R) is a non-trivial automorphism. If

K= {0} x SO(2) < {0} x SL(2, R) then (G/K,G) ds a maximal
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geometry with quotients of finite volume but no compact

quotients (Proposition 5.2.3).

3. . Solvable Groups

The following simply connected solvable groups acting on themselves

by Teft translations are maximal geometries:

(i) (Theorem 6.5.1) G =]R3 x, R where o is the homomorphism:

1 t t%)2
a(t) =0 1 t | .
o 0 1
3

(ii) (Theorem 6.5.2) G =R x, IR where o 1is the homomorphism:

et 0 0
a(t) ={0 &t o
0 0 e-(1+A)t

and X = log u]/log My with Hys Mo the roots of a polynomial of degree 3
with integral coefficients. There is a countable infinity of non-isomorphic
such groups.

(111) G = N& R where (Thaoram &£-5-3)

1 X z 1 etx z
a(t)- 0 1 y = 0 1 ey
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