

warwick.ac.uk/lib-publications

A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/97978

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.

Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/97978
mailto:wrap@warwick.ac.uk

On Reducing the Data Sparsity in Collaborative

Filtering Recommender Systems

by

Xin Guan

Thesis

Submitted to the University of Warwick

for the degree of

Doctor of Philosophy

Department of Computer Science

April 2017

Contents

Abstract iv

Acknowledgments vi

Declarations vii

List of Tables 1

List of Figures 2

Chapter 1 Introduction 1

1.1 Recommender Systems Techniques 1

1.2 Active Learning in Recommender Systems 4

1.3 Cross-domain Recommender Systems 6

1.4 Datasets . 7

1.5 Evaluation . 10

1.6 Chanllenges . 12

1.6.1 Cold Start . 12

1.6.2 Sparsity . 12

1.7 Research Questions . 13

1.8 Outline . 14

Chapter 2 Literature Review 16

i

2.1 Collaborative Filtering Algorithms for Recommender Systems 16

2.1.1 Memory-Based Collaborative Filtering 17

2.1.2 Model-Based Collaborative Filtering 21

2.1.3 Memory-Based VS Model-Based 27

2.2 Active Learning in Collaborative Filtering Recommender Systems . . 28

2.3 Cross-domain Collaborative Filtering for Recommender Systerms . . 32

2.3.1 Aggregating Knowledge . 33

2.3.2 Transferring Knowledge . 36

2.4 Summary . 40

Chapter 3 Matrix Factorization with Ratings Completion 42

3.1 Problem Statement and Motivation 42

3.2 Matrix Factorization for Collaborative Filtering 44

3.2.1 Regularized SVD . 44

3.2.2 SVD++ . 45

3.3 The Proposed Enhanced SVD (ESVD) Model 46

3.3.1 Classic Active Learning Algorithms 46

3.3.2 The Proposed Item-oriented Approach 48

3.3.3 The Proposed User-oriented Approach 49

3.3.4 Evaluation . 56

3.3.5 The Proposed ESVD++ . 60

3.4 The Proposed Multilayer ESVD (MESVD) 60

3.4.1 Experimental Results . 62

3.5 The Proposed Extensions of ESVD 65

3.5.1 The Proposed Item-wise ESVD (IESVD) 65

3.5.2 The Proposed User-wise ESVD 67

3.5.3 Experimental Results . 69

3.6 Summary . 74

ii

Chapter 4 A Generalized Framework of System-Driven Active Learn-

ing in Collaborative Filtering Recommender Systems 76

4.1 Problem Statement and Motivation 76

4.2 Traditional Active Learning in Collaborative Filtering 78

4.3 The System-Driven Active Learning in Collaborative Filtering 80

4.3.1 The Proposed Generalized Framework 81

4.3.2 Active Learning Strategies . 84

4.4 Evaluations of the Proposed Framework 87

4.4.1 Datasets and Experimental Setup 87

4.4.2 Performance Analyses . 89

4.4.3 Comparison with Traditional Active Learning 95

4.5 Summary . 98

Chapter 5 Active Learning in Cross-Domain Collaborative Filtering

for Sparsity Reduction 100

5.1 Problem Statement and Motivation 100

5.2 Related Work . 102

5.3 Rating-Matrix Generative Model (RMGM) 104

5.4 Active Learning for Multi-Domain Recommendations 106

5.5 Evaluations of the Proposed Framework 108

5.5.1 Datasets and Experimental Setup 108

5.5.2 Evaluation Strategies . 109

5.5.3 Performance Analyses . 110

5.6 Summary . 116

Chapter 6 Conclusion 117

6.1 Thesis Summary . 117

6.2 Contribution . 117

6.3 Future Work . 119

iii

Abstract

A recommender system is one of the most common software tools and tech-
niques for generating personalized recommendations. Collaborative filtering, as an
effective recommender system approach, predicts a user’s preferences (ratings) on
an item based on the previous preferences of other users. However, collaborative
filtering suffers from the data sparsity problem, that is, the users’ preference data
on items are usually too few to understand the users true preferences, which makes
the recommendation task difficult.

This thesis focuses on approaches to reducing the data sparsity in collab-
orative filtering recommender systems. Active learning algorithms are effective in
reducing the sparsity problem for recommender systems by requesting users to give
ratings to some items when they come in. However, this process focuses on new users
and is often based on the assumption that a user can provide ratings for any queried
items, which is unrealistic and costly. Take movie recommendation for example, to
rate a movie that is generated by an active learning strategy, a user has to watch it.
On the other hand, the user maybe be frustrated when asked to rate a movie that
he/she has not watched. This could lower the customer’s confidence and expecta-
tion of the recommender system. Instead, an ESVD algorithm is proposed which
combines classic matrix factorization algorithms with ratings completion inspired by
active learning, allowing the system to ’add’ ratings automatically through learning.
This general framework can be incorporated with different SVD-based algorithms
such as SVD++ by proposing the ESVD++ method. The proposed EVSD model is
further explored by presenting the MESVD approach, which learns the model itera-
tively, to get more precise prediction results. Two variants of ESVD model: IESVD
and UESVD are also proposed to handle the imbalanced datasets that contains
more users than items or more items than users, respectively. These algorithms can
be seen as pure collaborative filtering algorithms since they do not require human
efforts to give ratings. Experimental results show the reduction of the prediction
error when compared with collaborative filtering algorithms (matrix factorization).

Secondly, traditional active learning methods only evaluate each user or items
independently and only consider the benefits of the elicitations to new users or items,
but pay less attention to the effects of the system. in this thesis, the traditional
methods are extended by proposing a novel generalized system-driven active learning

iv

framework. Specifically, it focuses on the elicitations of the past users instead of the
new users and considers a more general scenario where users repeatedly come back
to the system instead of during the sign-up process. In the proposed framework the
ratings are elicited by combining the user-focused active learning with item-focused
active learning, for the purpose of improving the performance of the whole system.
A variety of active learning strategies are evaluated on the proposed framework.
Experimental results demonstrate its effectiveness on reducing the sparsity, and
then enables improvements on the system performance.

Thirdly, traditional recommender systems suggest items belonging to a sin-
gle domain, therefore existing research on active learning only applies and evaluates
elicitation strategies on a single-domain scenario. Cross-domain recommendation
utilizes the knowledge derived from the auxiliary domain(s) with sufficient ratings
to alleviate the data sparsity in the target domain. A special case of cross-domain
recommendation is multi-domain recommendation that utilizes the shared knowl-
edge across multiple domains to alleviate the data sparsity in all domains. A multi-
domain active learning framework is proposed by combining active learning with the
cross-domain collaborative filtering algorithm (RMGM) in the multi-domain scenar-
ios, in which the sparsity problem can be further alleviated by sharing knowledge
among multiple sources, along with the data acquired from users. The proposed
algorithms are evaluated on real-world recommender system datasets and experi-
mental results confirmed their effectiveness.

v

Acknowledgments

First and foremost, I would like to take this opportunity to express my deepest

gratitude and respect to my supervisor Prof. Chang-Tsun Li, who constantly gave

me support during my Phd time at the University of Warwick. His great person-

ality, unlimited patience and tolerance have educated me a lot more than scientific

research.

My parents, Dr. Huaimin Guan, Mrs. Cuihua Wang and my brother, Dr.

Yu Guan also deserve my cordial gratitude. Their love, support and encouragement

have always been the source of my strength and the reason I have progressed this

far.

I wish to express my sincere thankfulness to my annual progress panel mem-

bers Dr. Victor Sanchez, Dr. Abhir Bhalerao and Dr. Nathan Griffiths for their

guidance and valuable suggestions on my PhD progress.

I would also like to thank the colleagues at the department, Dr. Alaa Kha-

didos, Dr. Ruizhe Li, Dr. Xin Lu, Dr. Xingjie Wei, Dr. Yi Yao, Dr. Xufeng Lin,

Mr. Ning Jia, Mr. Roberto Leyva, Mr. Qiang Zhang, Mr. Bo Wang, Mr. Shan Lin,

Mr. Ching-Chun Chang, Mr. Yi Hao and Mr. Yijun Quan for their kindness and

support.

Last but not least, many thanks to my friends, Dr. Tinghua Duan, Dr. Jiang

Wang, Mr. Xiaopeng Cai, Mr. Cheng Li, Mr. Jianxiong Tie, Mr. Lidou Hao, Mr.

Guang Chen, Mr. Boyang Peng and Mr. Chengyu Yu, for sharing in my happiest

moments, and for genuinely feeling the same.

vi

Declarations

I hereby declare that the work presented in this thesis entitled On Reducing the Data

Sparsity in Collaborative Filtering Recommender Systems is an original work and

has not been submitted to any college, university or any other academic institution

for the purpose of obtaining an academic degree.

vii

List of Tables

1.1 An example of a rating matrix . 2

1.2 An example of cross-domain recommender system 6

1.3 Comparison of different datasets of recommender systems 9

1.4 An example of the cold start problem 12

1.5 Sparsity of different datasets of recommender systems 13

3.1 RMSE of ESVD on Movielens 100K (The Density-Oriented Approach) 58

3.2 RMSE of ESVD on Netflix (The Density-Oriented Approach) 58

3.3 RMSE of MESVD on Movielens 100K 64

3.4 RMSE of MESVD on Netflix . 65

3.5 Experimental datasets . 69

3.6 Comparison of the proposed methods on MI (6040× 263) 70

3.7 Comparison of the proposed methods on MU (401× 3952) 70

3.8 Comparison of the proposed methods on NI (6800× 500) 70

3.9 Comparison of the proposed methods on NU (955× 3561) 71

1

List of Figures

1.1 An example of active learning . 4

1.2 Active learning procedure . 5

3.1 The number of ratings each item has received (popularity) in Movie-

lens 100K . 48

3.2 Procedures of Item-oriented Approach 49

3.3 The number of ratings each user has rated (activity) in Movielens 100K 51

3.4 Procedures of User-oriented Approach 53

3.5 Procedures of ESVD . 55

3.6 Movielens: RMSE comparisons of proposed methods based on SVD 57

3.7 Netflix : RMSE comparisons of proposed methods based on SVD . . 57

3.8 Procedures of Multilayer ESVD . 61

3.9 Procedures of Item-wise ESVD . 66

3.10 Procedures of User-wise ESVD . 68

3.11 RMSE of the proposed methods on MI (6040× 263) 72

3.12 RMSE of the proposed methods on MU (401× 3952) 72

3.13 RMSE of the proposed methods on NI (6800× 500) 73

3.14 RMSE of the proposed methods on NU (955× 3561) 73

3.15 The proposed ESVD and its variants 74

2

4.1 System RMSE evolution based on the learning process on Movielens

100K . 90

4.2 System RMSE evolution based on the learning process on Netflix . . 90

4.3 Elicited ratings evolution on Movielens 100K 92

4.4 Elicited ratings evolution on Netflix 92

4.5 System RMSE evolution versus the number of elicited ratings on

Movielens 100K . 94

4.6 System RMSE evolution versus the number of elicited ratings on Netflix 94

4.7 System RMSE comparison on Movielens 100K 96

4.8 System RMSE comparison on Netflix 97

5.1 System RMSE evolution on Netflix+Movielens+Book-Crossing with

elicitations from Movielens . 111

5.2 System RMSE evolution on Netflix+Movielens+Book-Crossing with

elicitations from Netflix . 111

5.3 System RMSE evolution on Netflix+Movielens+Book-Crossing with

elicitations from Book-Crossing . 112

5.4 System RMSE evolution on Netflix+Movielens+Book-Crossing with

elicitations from all three datasets 112

5.5 System RMSE evolution on Netflix+Movielens+Book-Crossing ver-

sus the number of elicited ratings from Movielens 114

5.6 System RMSE evolution on Netflix+Movielens+Book-Crossing ver-

sus the number of elicited ratings from Netflix 114

5.7 System RMSE evolution on Netflix+Movielens+Book-Crossing ver-

sus the number of elicited ratings from Book-Crossing 115

5.8 System RMSE evolution on Netflix+Movielens+Book-Crossing ver-

sus the number of elicited ratings from all three datasets 115

3

Chapter 1

Introduction

1.1 Recommender Systems Techniques

Recommender systems have become increasingly common recently and are used by

many internet providers. Examples include movie recommendation by Netflix [1],

web page ranking by Google [2], related product recommendation by Amazon [3],

social recommendation by Facebook [4], etc. They provide users with personalized

suggestions by predicting the rating or preference that the users would give to an

item, and typically apply techniques and methodologies from other neighboring

areas such as Human Computer Interaction or Information Retrieval. In addition,

Data Mining plays a vital role in recommender systems since the core algorithms

in most of these systems can be understood as a particular case of a Data Mining

technique [5].

As one of the most common software tools and techniques, recommender

systems are used for generating recommendations to users, usually in one of the

following ways:

- Collaborative filtering [6] [7] [8] predicts other items the current users might

like based on the past knowledge about preferences (usually expressed in rat-

ings) of users for some items. The basic assumption of collaborative filtering

1

Table 1.1: An example of a rating matrix

User \ Movie The Godfather Star Wars Jurassic Park Lion King

Joseph null null 3 null

Ian 1 5 4 1

Kyle 5 2 3 null

Leonard 4 null 5 3

Jay null 4 null 2

is that people who agreed in the past will also agree in the future [9]. Pure

collaborative filtering approaches take a user-item rating matrix (Table 1.1)

as the only input, for predicting how users in the system like a certain items

or generating a list of top-N recommendations for users to choose.

- Content-based algorithms [10] produce recommendations based on items de-

scriptions which can be automatically extracted or manually created, or (and)

user profiles that represent the users’ interests on items. This type of approach-

es must rely on the information about items and user preferences, such as genre

of a movie, author of a book. However, a large collective of rating history is not

required compared with collaborative filtering. Content-based filtering is of-

ten used by incorporating with other techniques such as collaborative filtering

when additional information is supplied, such as music recommendation [11].

- Knowledge-based algorithms [12] generate recommendations by exploiting ex-

plicit user requirements and detailed domain knowledge about item features,

reasoning about what items meet the users needs. There are two types of

knowledge-based algorithms: Case-based algorithms [13] determine recom-

mendations based on the similarity metrics, trying to find out those descrip-

tions best match the users query, such as the service of personal shopper [14];

constraint-based algorithms [15] make decision on recommendations by ex-

ploiting predefined recommender knowledge bases that contain explicit con-

straints about how to relate a user’s requirements with item properties, which

is commonly used in financial services [16] and e-tourism [17]. In contrast to

2

content-based recommender systems, knowledge-based systems rely mainly on

externally provided information about the available items.

- Hybrid approaches [18] generate recommendations by combining several algo-

rithms or recommendation components, which are based on the above three

base approaches: collaborative filtering and content-based and knowledge-

based algorithms. The three main recommendation approaches exploit dif-

ferent sources of information: collaborative filtering algorithms are based on

user preferences (i.e. ratings); content-based approaches rely on item features

and textual descriptions; knowledge-based exploit external knowledge as the

logical rules that map the users requirements onto item features. When multi-

ple sources of information are supplied, building hybrid systems that combine

the strengths of different algorithms leads to the improvement of the overall

accuracy.

This thesis focuses on collaborative filtering recommender systems because

the collaborative filtering algorithm is considered the most important technique,

and is widely used in industry, especially in online retail sites to customize the

needs for customer, in order to promote additional items and increase sales [1].

In particular, the user-item rating matrix (matrices) is considered to be the only

source of information in this thesis. The task is to predict the users’ preferences

on a specific item, which can be defined as: given a rating matrix R ∈ Rm×n that

consists of m users and n items where each rating rij represents the preference of

user i to item j, fill the missing values in R so that the recommender system can

recommend the items with the highest predicted ratings in the row Ri,: to the user

i.

3

(a) Active learning for new user (new
user problem)

(b) Active learning for all the users

Figure 1.1: An example of active learning

1.2 Active Learning in Recommender Systems

Most collaborative filtering algorithms suffer from the new user problem. That is,

when a new user comes in, there is not enough knowledge about this user. As a

result, the system will fail to generate proper recommendations given the circum-

stance. Active learning [19] for recommender systems has been initially proposed

for tackling the new user problem. In real-life scenarios, most recommender sys-

tems would only ask the user to rate a limited number of items (elicitations) during

the sign-up process [20], for better predicting the preferences of the target user (as

shown in Figure 1.1(a)).

Apart from the sign-up process, users can give elicitations whenever he or

she is motivated, based on the assumption that users would come back to the system

regularly [21]. Under this setting, ratings could be elicited (elicitations) from both

new users (without training data) and existing users (with training data) in the

system by querying them to rate a number of items (as shown in Figure 1.1(b))).

4

Figure 1.2: Active learning procedure

In both scenarios, the knowledge of the user (or the system) are extended by

requesting users for more data (a.k.a. ratings), and then affects the recommendation

accuracy for the target users (as shown in Figure 1.2). However, the usefulness of

each rating may vary significantly, special techniques (a.k.a. active learning strate-

gies) can be used to intelligently obtain data that better reflects user’s preferences

and enables to produce better recommendations.

In the review work of [22], a variety of active learning strategies have been

analyzed and classified with respect to two distinct dimensions: personalization and

hybridization.

- Personalization: personalized strategies query different user for different items

based on the characteristics each user has, while non-personalized strategies

request all the users to rate the same items.

- Hybridization: single-heuristic strategies are based on one heuristic by utilizing

the unique selection rule for both items and users, while combined-heuristic

strategies implement multiple selection rules for items and users by aggregating

and combining a number of single-heuristic strategies, in order to achieve a

range of objectives.

It should be noted that, with more and more ratings being elicited by active

learning, not only the cold start problem is addressed, the sparsity problem is also

alleviated. As a result, the rating elicitations improve the prediction accuracy of

5

Table 1.2: An example of cross-domain recommender system

Domains Joseph Ian Kyle Leonard Jay Xin

Book
Harry Potter 3 5 4
The Hobbit 1 3 5

Movie
The Godfather 2 3 5 2

Star Wars 5 1 2 5

Music
Let It Be 2 4 2
Hey Jude 1 3 3

Domains no overlap overlap between domains

the queried users, along with the performance of the whole system.

1.3 Cross-domain Recommender Systems

Traditional recommender systems suggest items belonging to a single domain. Ex-

amples include movies in Netflix, books in Book-Crossing, songs in Last.fm, etc.

Nowadays, users provide feedback for items of different types (e.g. books, DVDs,

etc.) and express their opinions on different social media and different providers

(e.g. Amazon, Netflix, etc.). Instead of treating each domain independently, knowl-

edge could be transfered from the source domain to the target domain for better

prediction accuracy based on the assumption that information overlap between users

and/or items across different domains (Table 1.2), which is referred as cross-domain

recommendations.

A domain is a particular field of thought, activity or interest. In the literature

[23] researchers have considered distinct notions of domain at four levels:

- Attribute level: same types of items with different values of certain attribute

(e.g. comedy and thriller in movie genres).

- Type level: similar types of items, sharing some attributes (e.g. movie and

TV shows in Amazon).

- Item level: different types of items (e.g. books in Book-Crossing and movies

in Movielens)

6

- System level: same type of items on different systems (e.g. movies in Netflix

and Movielens)

The goal of cross-domain recommendation is to utilize the knowledge derived

from the auxiliary domain(s) with sufficient ratings to alleviate the data sparsity

in the target domain. A special case of cross-domain recommendation is multi-

domain recommendation that utilize the shared knowledge across multiple domains

to alleviate the data sparsity in all domains, when all domains suffer from the data

sparsity problem [24].

In this work, the multi-domain recommendation, which utilizes the shared

knowledge across multiple domains, is considered at the item level (books in Book-

Crossing and movies in Movielens&Netflix).

1.4 Datasets

In collaborative filtering algorithms, recommendations are generated by exploiting

ratings as the source of information. Ratings are collected by asking user’s opinion

about items on a rating scale, usually in a variety of forms [8]:

- Numerical ratings: such as the 1-5 stars provided in the movie or book rec-

ommender systems.

- Binary ratings: that model choices the user to an item, in which the user is

simply asked to decide if a specific item is good or bad.

- Ordinal ratings: expressed as the levels of perferences such as [strongly agree,

agree, neutral, disagree, strongly disagree], in which the user is asked to select

the term that indicates his or her opinions to an item.

- Unary ratings: usually expressed in explicit way, such as purchase, assess,

save, delete, etc.

7

Datasets are formed as a collection of ratings, then are used as benchmarks

to evaluate new recommendation algorithms and to compare with other existing

algorithms. Datasets are important for training and testing recommender systems,

therefore some commonly used datasets are introduced including MovieLens, Netflix,

EachMovie, Book-Crossing, Jester and Yahoo! Music.

- MovieLens Dataset [25]: a classic recommender system that recommends films

to users through collaborative filtering algorithms. There are three datasets

of different sizes that are collected by Grouplens Research. The 100K and

1M datasets contain demographic information about the users (age, gender,

occupation, zip), while in 10M dataset only user ID is given. The 100K dataset

collects 100,000 ratings from 943 users on 1,682 movies. The 1M dataset

contains 1,000,209 entered by 6,040 users for 3,900 different movies. The

10M dataset consists of 10,000,054 ratings with 95,580 tags to 10,682 movies

provided by 71,567 users. For all three datasets, each user has rated at least

20 movies, and each rating is an integer ranging from 1 to 5 which represents

the interests the user has to this movie.

- Netflix Dataset [1]: the world’s largest online DVD rental service company,

that released their dataset collected between October 1998 and December 2005.

It consists of over 100 million 5-star ratings of 480,189 users and 17,770 movies.

- EachMovie Dataset [26]: a movie recommender system that contains 2.8 mil-

lion numeric ratings entered by 72,916 users for 1,628 films and video. Each

rating ranges from 1 to 6, representing the preferences of the user to the movie.

- Book-Crossing Dataset [27]: a book rating dataset containing 1.1 million ex-

plicit (expressed on a scale from 1 to 10) and implicit (expressed by 0) rat-

ings from 278,858 users on 271,379 books. In particular, demographic data

(location, age) is provided for the users if available, and some content-based

information (title, author, year of publication, publisher) is given for the items.

8

Table 1.3: Comparison of different datasets of recommender systems

Dataset Domain
Size

Scale
Users Items Ratings

Movielens 100K Movie 943 1,682 100,000 1 to 5

Movielens 1M Movie 6,040 3,900 1,000,209 1 to 5

Movielens 10M Movie 71,567 10,682 10,000,054 1 to 5

EachMovie Movie 72,916 1,628 2,811,983 1 to 6

Book-Crossing Book 278,858 271,379 1, 149, 780 1 to 10

Jester v1 Joke 73, 421 100 4, 000, 000 -10.00 to 10.00

Jester v2 Joke 59, 132 150 1, 700, 000 -10.00 to 10.00

Yahoo! Music Music 1,000,990 624,961 262,810,175 1 to 5

- Jester Dataset [28]: a web-based joke recommender system, developed at U-

niversity of California, Berkeley. The first Jester dataset contains over 4.1

million continuous ratings (-10.00 to +10.00) of 100 jokes from 73,421 user-

s: collected between April 1999 - May 2003, and the second dataset collects

over 1.7 million continuous ratings (-10.00 to +10.00) of 150 jokes from 59,132

users: collected between November 2006 - May 2009.

- Yahoo! Music Dataset [29]: a personalized internet music recommender sys-

tem. The dataset consists 262,810,175 ratings of 624,961 music songs by

1,000,990 users collected during 1999-2010. The ratings include one-minute

resolution timestamps, allowing refined temporal analysis. Each item and

each user have at least 20 ratings in the whole dataset.

Overall, the datasets in real-world recommender systems often consist of

large number of ratings that represents users’ preferences on items in the form of

different ratings scales. This thesis mainly utilizes Movielens and Netflix datasets for

training and test the proposed collaborative filtering algorithms and active learning

algorithms in Chapter 3 and Chapter 4. For exploring cross-domain collaborative

filtering techniques in Chapter 5, the Movielens, Netflix and Book-Crossing datasets

are employed as the input matrices for multi-domain recommendations.

9

1.5 Evaluation

The quality of a recommender system can be decided based on the results of eval-

uation. Metric selection depends on the type of collaborative filtering applications.

A majority of the work has focused on the evaluation of a recommender systems

accuracy, which is also the main task of collaborative filtering recommender sys-

tems. To compare the accuracy of different collaborative filtering algorithms, the

metrics must be predefined. An accuracy metric empirically measures the difference

between a recommender system’s predicted ratings and the user’s true ratings for

a specific item, or between the predicted ranking of items for a user and the user’s

true ranking of perference: the less, the better. Accordingly, recommendation accu-

racy metrics are typically classified into three classes: predictive accuracy metrics,

classification accuracy metrics and rank accuracy metrics.

- Predictive accuracy metrics are used for measuring how close a recommender

system’s predictions are to the users true ratings for each movie. Commonly

used metrics include Mean Absolute Error (MAE) [30] and its variations.

- Classification accuracy metrics measure the frequency with which a recom-

mender system recommends relevant or irrelevant items for a given user, ex-

amples include Precision [31], Recall [31], Mean Average Precision (MAP) [6]

and Receiver Operating Characteristic (ROC) [6], which of metrics are often

used for the top-N recommendation, i.e. the recommender system produce a

number of recommendations once a time for the user.

- Rank accuracy metrics extend classification accuracy metrics by taking items

relative position in recommendation lists into account. It measures the ability

of a collaborative filtering algorithm to produce a ranked recommendation lists

for a user that matches the user’s ordering of the same items, usually by half-

life utility [30] or Normalized Discounted Commulative Gain (NDCG) [32].

10

Sometimes even if a recommender system is able to correctly rank users’

preferences on items, the system could fail to predict the ratings. On the other

hand, the predicted ratings can be used for creating an ordering across the items,

for measuring the ability of a recommender system to rank items with respect to

user preference. Therefore this thesis is mainly focusing on the collaborative filtering

recommendations in terms of prediction task, the commonly used predictive accu-

racy metrics are introduced. For other collaborative filtering evaluation metrics, see

the work of Herlocker et al. in [6] as well as the work of Shani et al. in [33].

Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) are two

most commonly used predictive accuracy metrics. Given a recommender system, in

where rij is the rating that the ith user gives to the jth item, r̃ij is the predicted

ratings accordingly, and T is the total number of test samples. MAE [30] is defined

as:

MAE =

∑
(i,j∈TestSet)

|rij − r̃ij|

T
(1.1)

MAE measures the average absolute deviation between a predicted rating and the

users true rating. RMSE [1] is defined as:

RMSE =

√√√√ ∑
(i,j∈TestSet)

(rij − r̃ij)
2

T
(1.2)

RMSE amplifies the contributions of the absolute errors between the pre-

dictions and the true values, therefore the result has more emphasis on large errors

when compared with MAE.

This thesis mainly adopts RMSE as the evaluation metric for measuring

collaborative filtering algorithms.

11

Table 1.4: An example of the cold start problem

User \ Movie The Godfather Star Wars Jurassic Park Fast & Furious 8 Lion King

Joseph null null 3 null null

Xin null null null null null

Ian 1 5 4 null 1

Kyle 5 2 3 null null

Leonard 4 null 5 null 3

Jay null 4 null null 2

1.6 Chanllenges

1.6.1 Cold Start

Most collaborative filtering algorithms suffer from the cold start problem, which

occurs when a new user or item has just entered the system. Since there is no

information for the target user or item, the collaborative filtering will fail to generate

recommendations. Cold start problem is also known as new user problem (e.g. user

Xin in Table 1.4) or new item problem (e.g. movie Fast & Furious 8 in Table

1.4). Most of the research utilizes the hybrid recommendation approach [34], which

combines content-based and collaborative filtering, to tackle the cold start problem.

However, building model based on hybrid approach is usually complicated, while the

improvements is limited. One of the effective solutions is to apply active learning

techniques that query the users to rate some specific items during the sign-up process

[20].

1.6.2 Sparsity

The sparsity of a rating matrix is defined as [35]:

Sparsity = 1− #ratings

#users×#items
(1.3)

where # denotes the total number.

The sparsity problem is the major bottleneck for collaborative filtering algo-

rithms. In most recommender systems, the number of ratings obtained from each

12

Table 1.5: Sparsity of different datasets of recommender systems

Dataset Sparsity

Movielens 100K 93.70%

Movielens 1M 95.75%

Movielens 10M 98.69%

EachMovie 97.63%

Book-Crossing 99.998%

Jester v1 45.52%

Jester v2 80.83%

Yahoo! Music 99.96%

user is usually very small compared to the number of available items in the dataset

since users are typically reluctant to rate a large amount of items. Therefore the

user-item rating matrix used for collaborative filtering will be extremely sparse (as

shown in Table 1.5). While most research in the field of recommender systems focus

on improving prediction algorithms, even the best algorithm will fail without suffi-

cient data. Take movie recommendation as an example, the movies that have been

rated with only few ratings would be recommended rarely, even with high ratings.

Also, users with special tastes for movies usually suffer from poor recommendations

since similar users are rare in the system.

In this thesis, the cold start problem is not the priority to be concerned

since it only arises when a new user or item is added into the systems. Instead,

the techniques that tackle the sparsity problem are focused because it happens

universally in collaborative filtering recommender systems.

1.7 Research Questions

This thesis addresses the sparsity problem of collaborative filtering algo-

rithms in three aspects, which leads to three research objectives, respectively.

- Recommender systems often apply active learning to handle the cold start and

sparsity problem, which sometimes is unrealistic and costly. In the field of col-

13

laborative filtering recommender systems, I propose to extend the traditional

collaborative filtering algorithm (i.e. matrix factorization) with ratings com-

pletion. In the proposed method, systems automatically ’add’ ratings based

on a variety of rules in the framework of matrix factorization algorithm. With

the extra generated ratings, the sparsity problem is alleviated and the perfor-

mance of the recommender system is improved.

- Active learning algorithms enrich the dataset by querying users to label items,

often focusing on single user or users, without considering the benefits of the

whole system. In the field of active learning collaborative filtering, I propose a

general system-driven framework for applying active learning in recommender

systems. In the proposed framework, the system queries specific users to rate

specific items based on combined rating elicitation strategies. Results suggest

its effectiveness in handling the sparsity problem.

- Cross-domain collaborative filtering techniques alleviate the sparsity problem

by exploiting knowledge from auxiliary (source) domains. A novel multi-

domain active learning framework is proposed by incorporating active learning

techniques with cross-domain collaborative filtering algorithms in the multi-

domain scenarios. Therefore in each single-domain the sparsity problem can

be alleviated by querying users for ratings, aggregating them will further han-

dle the sparsity problem, resulting in further improvements of the prediction

accuracy.

1.8 Outline

The rest of this thesis is organized as follow:

Chapter 2 reviews the traditional collaborative filtering algorithms, such

as memory-based and model-based collaborative filtering algorithms. Then active

learning techniques in collaborative filtering recommender systems are discussed and

14

summarized based on the characteristics of the elicitation strategies. The state-of-

the-art cross-domain collaborative filtering algorithms are presented as well.

Chapter 3 first briefly introduces the collaborative filtering task. Then the

matrix factorization method [36] is presented as one of the most commonly used

collaborative filtering algorithms in recent years. Based on this framework, the

proposed Enhance SVD method and its variations are introduced by exploiting

ratings completion, along with the corresponding experimental analysis. A summary

of the proposed algorithms is provided at last.

Chapter 4 introduces the active learning techniques used in collaborative

filtering recommender systems and their limitations. The proposed active learning

framework is shown by adding constraints to the users. Performance analysis and

comparison with traditional active learning are demonstrated at last.

Chapter 5 first introduces the cross-domain techniques, especially the R-

MGM model that used in multi-domain scenario. Then active learning for multi-

domain recommendations is introduced by incorporating active learning techniques

with RMGM model. Comprehensive evaluations demonstrate the advantages of the

proposed framework.

Chapter 6 summarizes the achievements of this thesis and presents some

future work.

15

Chapter 2

Literature Review

2.1 Collaborative Filtering Algorithms for Recommender

Systems

Collaborative filtering is a method that makes recommendations by using ratings

given to items by users as the only source of information. It was first proposed by

Goldberg el at. [9]. They built a collaborative filtering system that allowed users

to annotate messages for filtering emails. This work was proved to be effective

by involving human activity in the filtering process in contrast to content based

filtering. Later collaborative filtering algorithms have been used widely because of

its applicability in many domains. Examples include:

- Hill et al. [37] compared the user’s ratings of videos with others to find people

with similar interests and gave recommendations based on the ratings that

similar people have rated in the video recommendation.

- Shardanand et al. [38] used collaborative filtering for providing suggestions to

the user based on similarities between the interest profile of that user and those

of other users. Based on this technique they designed a system called Ringo

which makes personalized recommendations for music albums and artists.

16

- Grouplens group [39] designed a collaborative filtering system for Usernet news

to allow user to rate articles. They demonstrated that collaborative filtering

could be implemented for predicting ratings to each user.

In recent years collaborative filtering has become the most prominent approach to

generating recommendations. Various algorithms have been proposed and evalu-

ated on real-world and artificial test data. Empirical studies such as [34] and [30]

categorized the collaborative filtering algorithms into two classes: memory-based al-

gorithms and model-based algorithms, as detailed in the following two subsections.

2.1.1 Memory-Based Collaborative Filtering

Memory-based algorithms [30] [40] predict ratings for the user based on the entire

collection of previously rated items by the users. Therefore prediction is computed as

an aggregation of the ratings regarding other users that are usually chosen based on

the similarity for the same items. Early research on the algorithms of recommender

systems were focused on the neighbourhood models [38] [39] [41]. Neighbourhood

models give predictions based on the similarity relationships among either users or

items. Generally, they select a number of similar users or items based on a certain

similarity measure. Then the prediction is computed based on the ratings of their

neighbours. Memory-based algorithms can be classified as user-based or item-based

depending on whether the process of searching for neighbours focuses on users or

items.

2.1.1.1 User-Based Algorithms

Because some users are likely to prefer the same items with the same taste, user-

based methods only consider those users similar to the target user instead of using

information from all users. User-based algorithm were first proposed by Resnick

et al. in [41], and they used Pearson correlation coefficient as the similarity mea-

sure for selecting the neighbours of the target user. In their work, Max Number

17

of Neighbours strategy was proposed for neighbour selection, i.e. a number of the

most similar users are selected as the neighbours of the target user. A large number

of the neighbours tend to introduce too much noise because the users with small

correlations are also chosen as neighbours, while a small number of neighbours is

also likely to result in poor prediction accuracy because highly correlated users are

excluded from the neighbours. The prediction was calculated by the aggregation of

each neighbour which is weighted by his/her similarity with the active user. Subse-

quently, another neighbourhood selection strategy was proposed by Shardanandi et

al. [38]. They named it Correlation Threshold strategy, which only selects the users

by thresholding the similarities. It limits the neighbour to contain good correlations.

However, only a small number of the neighbours will be chosen for some target users

who have less high correlated neighbours.

Most research on user-based collaborative filtering algorithms are focused on

various approaches to computing the similarity measure between users. Shardanand

et al. [42] proposed to use Mean Squared Difference as the similarity measure be-

tween users based on the mean difference of the items that both users have rated.

Later the same authors [38] took into consideration that the ratings consisting of

both positive numbers and negative numbers, and proposed the Constrained Pear-

son that uses the median of ratings instead of the mean rating in the Pearson

correlation coefficient as the similarity measure. Another very common measure is

cosine similarity which measures the cosine between the vectors of two users [30].

Cosine similarity is normally used in information retrieval and text mining, and

has been shown to produce better results in item-based recommender systems com-

pared with user-based recommender systems. Herlock et al. [43] further improved

the accuracy of user-based algorithms by adding fine-grained neighbor weighting

factors. They [44] also proposed the Z-score Normalization which adds a normal-

ization function before weighting the user’s ratings according to similarity because

of the differences in rating distributions among users.

18

Recent research takes side information into account in more complicated

scenarios to explore the further potential of the user-based algorithms. Melville et al.

[7] applied prediction by content-based algorithms (based on the content of the items

and user profiles) to convert a sparse user rating matrix into a full rating matrix,

and employed user-based collaborative filtering for recommendation. Results showed

that the accuracy of recommendation is improved by extending collaborative filtering

with content information of items. To alleviate the sparsity problem of rating matrix

where finding similar users is often failed, Massa et al. in [45] and [46] proposed to

propagate trust over the trust social network and inferred the trust weight instead

of the similarity weight, respectively. In [47], the geo-tags were used for improving

the user-based collaborative filtering. Specifically, the similarity between two users

were calculated by their geo-tag distributions based on Gaussian kernel convolution.

The geo-tags of the most similar users were chosen, then combined to re-rank the

popular locations in the target city for personalized location prediction. [48] used

both social network and the user-contributed tags as the side information to generate

the similarities between users for ratings prediction.

2.1.1.2 Item-based Algorithms

In contrast to user-based methods, item-based algorithms use similar items instead

of users as neighbors for the aggregation. Most similarity measures used in user-

based methods work for item-based algorithms. Cosine similarity [30] or adjusted

cosine similarity [49] are commonly used and have been proved to be effective in

item-based scenarios.

In previous works, weights were often calculated by arbitrary similarity func-

tions, mainly through trial and error. Bell and Koren [50] pointed out that the tra-

ditional neighborhood-based methods do not account for interactions among neigh-

bors. Take a movie recommendation for example, a series of movies (such as Harry

Potter series) are highly correlated of each other. An algorithm that ignores the

19

similarity of these movies when determining their interpolation weights, may end

up essentially multiple counting the information provided by the group. They [50]

proposed to apply optimization to find the weights by minimizing the squared error

between an item’s rating and ratings of its neighbours. It was considered to be not

only a more principled approach, but by deriving weights simultaneously, interaction

effects was overcame. Subsequently, Koren [51] further proposed a more accurate

neighbourhood model by considering what the user rated as explicit information,

but also what he or she did not rate as implicit information. Because both latent

factor model and neighbourhood model have their own merits and drawbacks, by

combining them together, they obtained an integrated model by allowing them to

enrich each other [51].

Side information was also studied when collaborating with the item-based al-

gorithms. TrustWalker [52] has been proposed by integrating a random walk model

into item-based collaborative filtering with trust information. In the work of [18],

the authors used semantic ratings obtained from the knowledge-based part (knowl-

edge of how these items meet a user’s needs) of the system to improve collaborative

filtering for the purpose of recommending restaurants. Tso et al. [53] proposed to

compute the similarities between items using the combination of attribute informa-

tion and rating based similarities. In [54], Firan et al. introduced an algorithm that

uses tags to recommend users’ interested songs and studied the difference between

collaborative filtering recommendations based on tag profiles and recommendation-

s based on song/track profiles (content-based). Later Tso et al. [55] proposed a

similarity fusion algorithm that calculates the user-user (or item-item) similarity

based on both tags and ratings within memory-based collaborative filtering. Tag-

ommenders [56] were proposed as a group of tag-based recommendation algorithms

that predict users’ preferences for items based on their inferred preferences for tags.

Liang et al. [57] extracted the semantic meaning of each tag by exploring the multi-

ple relationships among users, items and tags, and a weighting scheme was applied

20

based on the semantic meaning of each tag in the traditional memory-based frame-

work. In addition to tags, geo-tags have also been exploited. Users’ frequented

shops were employed as input to the item-based collaborative filtering algorithm for

shop recommendation [58]; Horozov et al. [59] made use of location information as

a key criterion for restaurant recommendation. Studies showed that incorporating

side information would enhance the recommendation quality of the memory-based

collaborative filtering algorithms.

2.1.1.3 User-Based vs Item-Based

Both user-based and item-based methods need to identify the nearest neighbours to

the target sample based on a certain similarity measure either by user’s or item’s

perspective. The choice of user-based or item-based algorithms depends on the

characteristics of the domain. For most recommender systems, there typically are

many more users than items, and new users come in much more frequently than

new items, so it is easier to compute all pairs of item-item similarities. Another

consideration is that item-based algorithms can be helpful in offering an explanation

as to why an item was recommended, since similar users have purchased an item is

less persuasive than arguing that a given item is recommended because it is similar

to other items purchased in the past. However, in some domains such as the context

of news, the item dimension changes much faster than the user based, therefore the

system should favour the user-based approach.

2.1.2 Model-Based Collaborative Filtering

Another category of collaborative filtering is model-based methods. Model-based

algorithms predict ratings based on the models which are learnt from the collection

of ratings. Recent studies showed that a lot of model-based algorithms are related

to machine learning. Examples include:

- Both Billsus et al. [60] and Sarwar et al. [61] employed Singular Value Decom-

21

position (SVD) to predict ratings for recommender systems.

- In [62] and [63], clustering was applied for generating recommendations.

- Billsus et al. [60] predicted items for users based on Neural Networks.

- In the work of [30], Breese et al. concluded the empirical collaborative fil-

tering algorithms, and employed Bayes Networks to model the conditional

probability between items for recommendation.

- In addition, Aggarwal et al. [64] proposed a new graph-based approach to

collaborative filtering.

- Principal Component Analysis (PCA) was also applied to facilitate dimension-

ality reduction and rapid computation for rating predictions [28].

- In [65], probabilistic factor analysis model for collaborative filtering was pre-

sented.

Apart from the traditional machine learning methods, Latent Semantic Anal-

ysis (LSA) [66] has been widely used in natural language processing for analyzing

relationships between documents, which is also deeply exploited in collaborative fil-

tering scenarios. Hofmann et al. [67] introduced a statistical method to collaborative

filtering which employ latent class models that based on observed preference behav-

iors for predicting user preferences. Subsequently, the same authors also proposed a

statistical algorithm called Probabilistic Latent Semantic Analysis (PLSA) [68] for

the analysis of two-mode and co-occurrence data (user-item pairs). This technique

was later employed and proved to be effective in collaborative filtering scenarios

by [69]. Popescul et al. [70] extended PLSA to incorporate three-way co-occurrence

data among users, items, and item content. They showed that combining collab-

orative filtering and content-based filtering in this manner generate better quality

recommendations. In the work of [71], Wang et al. presented a generalized latent

22

semantic analysis called M-LSA, which conducts LSA by incorporating all pairwise

co-occurrences among multiple types of objects. M-LSA identifies the most salient

concepts among the co-occurrence data and represents all the objects in a unified

semantic space, showed its effectiveness in utilizing all the information on a multiple-

type graph. Later, Wetzker et al. [72] further extended PLSA by integrating item-tag

relations with the rating matrix for item recommendation. Likewise, Rattenbury et

al. [73] exploited place semantics from tags associated with geo-tagged images on

social media like Flickr (an image hosting and video hosting website) based on the

frame work of PLSA. In [74], Yin et al. concluded various geographical topic and

proposed an algorithm called latent geographical topic analysis by integrating loca-

tion, text or both for discovering the topics representing a region. Hong et al. [75]

presented a new algorithm to discover geographical topics from geo-tagged Twitter

messages for location recommendation.

Recently, latent foctor model such as Matrix Factorization (MF) techniques

have widely spread due to the promising performances they achieves and the good

scalability which can be extended to incorporate additional information into rec-

ommender systems. Simon Funk [76] proposed regularized SVD for collaborative

filtering on Netflix data. It decomposes the original rating matrix into the products

of the side feature matrices, therefore each user’s rating is composed of the sum of

preferences about the various latent factors of that movie. Since its publication,

several improvements of SVD algorithms have been proposed in this same context.

Peterek [77] improved regularized SVD by adding user and item biases, and also

post-processed results from SVD with KNN and kernel ridge regression. Koren [51]

proposed the SVD++ where the implicit feedback (modeled as the items a user has

rated) is taken into account. He also merged matrix factorization model with an

improved neighborhood model which proved to be effective [51]. Apart from matrix

factorization, Restricted Boltzmann Machines (RBM) was used for collaborative fil-

tering recommender systems by Salakhutdinov et al. [78]. And it was extended by

23

incorporating item content features into the model by Gunawardana et al. [79]. Ko-

ren also has successfully combined the matrix factorization algorithms with RBM

in [80]. The early research on time-dependent collaborative filtering was done by

Ding et al. [81]. Later Koren [82] integrated the time information into the matrix

factorization model for better prediction performance. Subsequently Liu et al. [83]

further proposed an incremental version of this work for online recommendation

over time.

Another category of research based on matrix factorization is focused on joint

factorization with side information instead of factorizing solely U-I matrix. Singh et

al. [84] presented Collective Matrix Factorization (CMF) which simultaneously fac-

torizes multiple related matrices including the U-I matrix and matrices containing

the side information. In early research Salakhutdinov et al. [85] proposed the Prob-

abilistic Matrix Factorization (PMF) model which scales linearly with the number

of observations, Ma et al. [86] jointly factorized U-I matrix and social trust network

based on the same framework. Later Ma et al. [87] implemented joint factorization

on U-I matrix, social trust network and social distrust network (by adding penalties

to users who are similar to their distrustees). In [88] the same authors proposed

a novel probabilistic factor analysis framework, which takes into account of both

the users’ tastes and their trusted friends’ favors together. Later they [89] extended

their previous work from only exploiting social trust relationship to exploiting both

explicit and implicit social relationships. Social networks and social tags were also

exploited by them [90] though a factor analysis approach based on probabilistic ma-

trix factorization. In [91], Ma et al. presented a matrix factorization framework with

social regularization which adds social constraints on social-based recommender sys-

tems. Apart from social network with matrix factorization listed above, other types

of information have also been exploited for improving performance of recommender

systems. Zhen et al. [92] proposed joint factorization of the U-I matrix and the tag

based user-user similarity matrix by taking tags information into consideration. Shi

24

et al. [93] jointly factorized the U-I matrix and the mood-specific movie similari-

ty matrix for generating mood-specific movie recommendations. They also jointly

factorized the user-landmark matrix and the category-landmark matrix by utilizing

geo-tags from photo sharing sites for personalized landmark recommendation [94].

In the work of [95], Zheng et al. proposed an algorithm which jointly factorizes the

user’s activity correlation matrix, the location correlation matrix, and the location-

activity matrix for both location recommendation and activity recommendation. In

summary, CMF -based models discover the latent representations of different entities

by decomposing the relations of each paired entities, which generate more precise

recommendations than single factorization models.

Regression-based latent factor models, which was proposed by Agarwal et

al. [96], has also been widely used for collaborative filtering. It integrates attributes

of both users and items with U-I preference data into a generalized linear model for

preference prediction. Later social trust relationship of users were also integrated

into the same framework of regression-based latent factor models by Jamali et al.

[97]. fLDA proposed by Agarwal et al. [98] applied Latent Dirichlet allocation (LDA)

[99] to regularize the matrix factorization model where side information can be

represented in the form of a bag of words (i.e., with statistics of the occurrences

of individual words). Agarwal et al. also proposed Localized Matrix Factorization

(LMF) [100] which makes use of different types of side information by employing

local latent factors for each entity. The authors showed that LMF overcomes the

drawback of CMF [84] that uses only global latent factors for each entity, which

often results in severe bias due to unbalanced information sources.

Another category of algorithms make use of Tensor Factorization (TF) [101]

for recommender systems, which has been widely used in the field of signal pro-

cessing, computer vision, graph analysis, etc. In Tensor Factorization, the data are

taken in the form of [user, item, interaction context, rating] instead of [user, item,

rating] for the common U-I matrix. Tucker model and CANDECOMP/PARAFAC

25

(CP) model are two most commonly used Tensor Factorization models [101]. Tucker

model decomposes a tensor into a core tensor multiplied by a factor matrix with each

mode, while CP model decomposes a tensor as a sum of rank-one tensors [101]. Tag

information has been integrated into the Tucker model with U-I matrix for the pur-

pose of item recommendation by Xu et al. [102], tag recommendation by Symeonidis

et al. [103] and both by the same authors [104]. Rendle et al. [105] also proposed

an algorithm for tag recommendation based on Tucker model with a pairwise rank-

ing criterion that optimize the latent factor of users, items and tags. Subsequently

the Pairwise Interaction Tensor Factorization (PITF) model was proposed by mod-

eling the pairwise interactions between users, items and tags in the Tucker model

framework for tag recommendation. Xiong et al. [106] proposed Probabilistic Tensor

Factorization (PTF) model which combines PMF [85] with CP model for integrating

time information into U-I matrix for the purpose of item recommendation. Similar

to this work, Moghaddam et al. [107] proposed Extended Tensor Factorization (ET-

F) model that combine PMF [85] with the Tucker model for view recommendation.

Overall, tensor factorization methods discover the latent representations of different

entities by decomposing the relations of all entities simultaneously, which suits to

the case of incorporating interaction-associated information that are directly related

to the event of a user interacting with an item [108].

Apart from Tensor Factorization, Factorization Machines (FM) proposed by

Rendle [109] has also drawn a lot of attention. It models all interactions between

variables with factorized parameters, therefore combines the advantages of Support

Vector Machines (SVM) and factorization models. In [110], the same author mod-

eled contextual information and provided context-aware rating predictions based

on the same framework of FM. In addition, Rendle [111] showed that FM can re-

cover many other models just by feature engineering, such as the Nearest Neighbor

Models [50], the SVD++ model [51] the PITF model [112], regression-based latent

factor models [96] etc. Later Nguyen et al. [113] developed a probabilistic algo-

26

rithm based on FM for context-aware recommendation using Gaussian processes.

Loni et al. [114] employed FM for Cross-Domain Collaborative Filtering (CDCF)

by allowing interaction information from an auxiliary domain to inform recommen-

dation in a target domain. In contrast to TF [101], FM allows the modeling of

higher-order interactions in a way different from TF and thus provides another

promising framework for incorporating multiple interaction-associated information

to learn recommender system models.

So the commonly used model-based collaborative filtering algorithms are

summarized based on how the recommendation model is learned. In next section

the advantages and disadvantages of memory-based and model-based algorithms are

discussed.

2.1.3 Memory-Based VS Model-Based

Memory-based and model-based algorithms are compared based on three aspects:

1. Explanation: memory-based algorithms such as neighbourhood methods con-

centrate on the relationship between items or users. So they are good at

detecting localized relationships, which can be used as the explainations of

the recommendations for users in the systems. While model-based algorithms

such as latent factor models try to explain each user’s rating by the latent fac-

tors of items. Although they give an intuitive rationale for recommendations,

the explainations are less compelling.

2. Scalability: memorey-based algorithms have better scalability for handling

the cold start problem that the database keeps growing as new users or items

continue to be added, but the scalability is limited for large datasets. Most

model-based algorithms have to re-train the parameters to the model, and

they have trade-off between prediction performance and scalability.

3. Prediction: though memory-based algorithms have good prediction accuracy

27

for dense datasets, the performance decrease when data are sparse. And it

cannot recommend for new users and items. In most recommender systems

where ratings matrices are extremely sparse, model-based approaches such as

matrix factorization algorithms better address the sparsity and achieve more

promising performance.

2.2 Active Learning in Collaborative Filtering Recom-

mender Systems

The quality of the prediction algorithms affect the accuracy and efficiency of col-

laborative filtering recommender systems given a certain amount of data, hence the

collaborative filtering algotihms are summarized in Section 2.1. Apart from the

prediction algorithms, the accuracy of collaborative filtering recommender systems

also rely on the knowledge that users provided to items (e.g. ratings). Generally,

the more informative ratings are obtained, the better performance recommender

systems can achieve. However, most recommender systems suffer from the sparsity

problem, i.e. the rating matrices are extremely sparse since users are often reluctant

to rate a large amount of items. Another challenge of recommender systems is the

new-user problem: when a user comes in, it is difficult to give proper suggestions

since the system has little knowledge about the target user. Therefore, active learn-

ing is widely used for tackling the problem of obtaining high quality data that better

represents the preferences of users.

Early research on active learning in collaborative filtering recommender sys-

tems focused on reducing the uncertainty of user’s opinions. Merialdo et al. [115]

first proposed to use Entropy and Variance as the elicitation strategies based on the

framework of neighbourhood algorithm. In their work, the items with the largest

entropy or variance were selected for the new users to rate, for the purpose of reduc-

ing the uncertainty of user’s preferences. Then the ratings of the target users are

28

calculated based on the neighbourhood method with rating elicitations in the train-

ing set. And the performance was evaluated by the improvement of Mean Absolute

Error (MAE) against the number of training ratings over Random selection strategy.

It showed that through this smart selection the recommender system could achieve

better performance for a certain amount of ratings required from the user, or reduce

the amount of elicitations to reach to the given performance when compared with

random selection. Later Boutilier et al. [116] proposed acquiring ratings based on

the expected value of information to find the most informative items. Rashid et

al. [117] further explored the Entropy strategy by proposing the Entropy0 strategy,

where the missing values are considered be 0 as a single category. Uncertain-Based

strategies such as Variance, Entropy or Entropy0 select items with controversial or

diverse ratings. However these strategies only reduce the uncertainty of the selected

item, Rubens et al. [118] proposed an Influence-Based strategy which selects items

with the highest influence that reduce the uncertainty over all items (based on the

sum of prediction difference between the target item and all the items). Likewise,

later in the work of [119], Impact-Based strategy was proposed which selects items

that have the highest impact on the prediction of other ratings (based on the number

of influenced predictions through four-node path in graph-based representation).

Another group of strategies focused on selecting items that are more likely

to be familiar to the target user. Such as Popularity proposed by Rashid et al.

[20], where items with the largest number of ratings are preferred. And Item-

Item Personalized [20] which presents movies using any strategies until the user has

given at least one rating, then selects items that the user is likely to have seen by

computing similarity between items. Golbandi et al. [120] introduced the Coverage

strategy. It selects items with the largest coverage, which is defined as the total

number of users who co-rated both the selected item and any other items. In the

work of [121], Elahi et al. proposed the Binary Prediction strategy that transforms

the rating matrix into the [0, 1] binary matrix where known ratings are set to be 1

29

and unknown ratings are set to be 0. And the items with the highest prediction score

are elicited, which are supposed to have the highest probability to be rated by the

user. Later in [122], the same authors extended the Binary Prediction strategy to

the Personality-Based Binary Prediction strategy by incorporating side information

such as gender, age group and the scores for the Big Five personality traits.

Active learning strategies that improve the prediction accuracy of the rec-

ommendations are also discussed. Golbandi et al. [120] proposed the GreedyExtend

strategy, and the items that minimize the RMSE of the predictions on the train-

ing set are selected. The Highest and Lowest Predicted strategies: items with the

highest or lowest predicted ratings are chosen. The motivation behind is that the

items with the highest or lowest ratings are supposed to be the most liked or disliked

movies for this user, which may also influence the user to rate them [123]. In [117],

Information Gain through Clustered Neighbours (IGCN) was proposed based on de-

cision trees where each node is labelled by a particular item. Users are clustered

into groups with similar profiles and items with the largest information gain are

elicited in different stages: the first one is non-personalized step, where item with

the largest information gain computed by considering all users are elicited by the

new user until he or she has rated to a threshold number of items; and the second

one is personalized step, where only the best neighbours of the target users are used

to compute the information gain as the new criteria for rating elicitation. That is

to say, the items that provided the highest information gain for correctly classifying

the users in the right cluster are selected. Golbandi et al. [124] extended this work

by proposing an adaptive strategy based on decision trees. Specifically, each node is

labelled by a particular item and users are divided into three groups based on their

possible evaluations on the target item: Lovers, Haters and Unknowns. Then items

that minimize the squared error of splitting subsets are selected as rating elicitation-

s. Later Zhou et al. [125] combined the decision-tree based interview model and the

matrix factorization model into a single framework for cold start recommendation

30

which has been proved to be effective. Liu et al. [126] presented the Representative-

Based strategy that selects a subset of items that represents the whole catalogue

based on a certain error criteria.

Some strategies hybridize single strategies in order to achieve a range of ob-

jectives. In [20], Rashid et al. proposed the Popularity*Entropy strategy, which

considers both popularity and entropy; and the Log(Popularity)*Entropy strategy,

which takes the log of the ratings that linearized popularity, making it a better

match for entropy. The same authors further extended their work by proposing

the Harmonic mean of Entropy and Logarithm of rating Frequency (HELF) strat-

egy [117], which finds items that are familiar by others and with high variability.

Likewise, Golbandi et al. [120] introduced the Squrt(Popularity)*Variance strategy

that finds items with diverse and a large number of ratings. The Voting strategy,

which considers the overall effect of previous methods, was also proposed by the

same authors [120].

Another group of approaches elicited ratings for items based on the prediction

model. [127] used Bayesian analysis for active learning in Bayesian Networks. Based

on this work, Jin et al. [128] proposed to model active learning for collaborative

filtering as Bayesian process by taking into account of the posterior distribution in

the framework of aspect model. Previous work are based on the assumption that a

user can provide rating for any quired items, Harpale et al. [129] further extended

Jin et al.’s work [128] by incorporating an estimate of the probability that a user

is able to provide rating based on the same framework of aspect model. Matrix

Factorization has drawn a lot of attentions recently. Based on this framework,

Karimi et al. [130] introduced the MinNorm strategy, which obtains latent vector of

each item by Matrix Factorization approach and selects items whose corresponding

vectors have the minimum Euclidean norm. Therefore, the rating elicitations try to

avoid large change of the latent factors, which can keep the prediction model stable.

The MinRating strategy that selects items with lowest predictive score was also

31

presented. Then Karimi et al. [130] further proposed the Non-Myopic strategy that

combines the MinRating and MinNorm strategies based on the same framework.

In previous works, ratings were only elicited during the sign-up process.

Carenini et al. [21] pointed it out that users can give elicitations whenever she

or he is motivated, therefore they presented the Conversational and Collaborative

Interaction model where ratings could be elicited from both new users and existing

users. The author also proposed the item-focused approach that elicits ratings to

improve the rating prediction for a specific item. Elahi et al. [131] suggested that

the rating elicitations to users not only improve the prediction of the target user but

also help the system to give suggestions for other users. In this work the authors

evaluated the active learning strategies in the system wide perspective to test how

different elicitation strategies affect the performance of the whole system.

It is shown that different strategies can improve different aspects of the rec-

ommendation quality, such as rating prediction accuracy measured by Mean Abso-

lute Error (MAE)/Root Mean Square Error (RMSE), ranking quality measured by

Normalized Discounted Cumulative Gain (NDCG)/Mean Average Precision (MAP),

number of ratings acquired. In addition to the evaluation measures, the choice of

the best strategies also depend on the stages of the rating elicitation process and

the dataset.

2.3 Cross-domain Collaborative Filtering for Recom-

mender Systerms

The sparsity problem in recommender systems is a major bottleneck for most collab-

orative filtering methods. Apart from the active learning algorithms which enrich the

dataset by querying users to label items (Section 2.2), many research [132] [133] [134]

try to alleviate the sparsity problem by cross-domain recommender systems. Cross-

domain recommender system has recured a hot research attention in recent years.

32

Unlike single-domain which treats each domain independently, cross-domain aims to

improve recommendation on a target domain by exploiting knowledge from auxiliary

(source) domains that contain abundant user preference data.

There are two primary types of cross-domain approaches, based on how

knowledge from the auxiliary domain is exploited: either by aggregating knowl-

edge from both the auxiliary and target domains or transferring knowledge from

the auxiliary domain to the target domain.

2.3.1 Aggregating Knowledge

This section reviews the cross domain collaborative filtering approaches which ag-

gregates knowledge from both the auxiliary and target domains, in order to generate

recommendations for the target domain. It can obtained by merging user preferences

(Section 2.3.1.1), by mediating user modeling data (Section 2.3.1.2) or by combining

recommendations (Section 2.3.1.3).

2.3.1.1 Aggregating Knowledge: Merging User Preferences

Merging user preferences from different domain is the most direct way to tackle the

cross-domain recommendation problem.

In [135], Winoto et al. pointed out that human preferences may span across

multiple domains, therefore the users’ consumption behaviors on related items from

different domains can be utilized to improve recommendations. They explored the

interests of the users in cross-domain scenarios through various statistical analysis

and computational analysis based on the traditional collaborative filtering approach.

Their extensive analysis shows that the recommendation accuracy is most influenced

by the closeness between the crossed domains.

Nakatsuji et al. [136] presented an algorithm that builds Domain-Specific-

User Graphs (DSUGs) whose nodes (associated with users) are linked by weighted

edges that reflect user similarity. DSUGs are connected via the users who rated

33

items in multiple domains or via the users who share social connections, to create

a Cross-Domain-User Graph (CDUG). By employing random walk on the CDUG,

the items that are favoured by the users associated with the extracted nodes are

obtained. Through this method the authors try to identify items that the user is

interested in but lie in other domains that the user has not accessed before.

In the work of [114], Loni et al. proposed an approach to encode domain-

specific knowledge in terms of real-valued feature vectors and allow interaction in-

formation from an auxiliary domain to inform recommendation in a target domain.

Therefore, Factorization Machines [109] was utilized for incorporating additional

knowledge from auxiliary domains to improve prediction accuracy in a target do-

main in the cross-domain collaborative filtering scenario.

Cross-domain collaborative filtering by merging user preferences is the sim-

plest method, and it works well for new-user problem and facilitates explanation for

the recommendations. However, it requires user-overlap between the auxiliary and

target domains.

2.3.1.2 Aggregating Knowledge: Mediating User Modeling Data

Mediating user modeling data is another main method for generating recommenda-

tions in cross-domain collaborative filtering.

An early approach for cross-domain recommendation through mediation was

proposed by Berkovsky et al.. In [137], the authors presented several mediation

approaches by aggregating vectors of users’ ratings in different collaborative filtering

domains: exchange of ratings, exchange of user neighborhoods, exchange of user

similarities, and exchange of recommendations. Experimental results showed that

the mediation of user modeling data can improve the prediction accuracy.

Later Shapira et al. [138] proposed an approach that uses multi-domain data

from social networks (Facebook) to produce the set of candidate nearest neighbours.

Several weighting schemes was discussed along with several metrics and recommen-

34

dation tasks.

In the work of [139], Pan et al. specified uncertain ratings as a range or rating

distribution that are estimated by various non-preference data. They proposed an

approach called Transfer by Integrative Factorization (TIF) that integrate uncertain

ratings in the auxiliary domain as additional constraints of the matrix factorization

in the target domain. Corresponding experimental results demonstrates its advan-

tages in efficiency and effectiveness of collaborative filtering by incorporating the

uncertain ratings from the auxiliary domain.

In summary, mediating user modeling data can achieve good accuracy and

maybe suit to the new-user problem. However, either user-overlap or item-overlap

between the auxiliary and target domains is needed.

2.3.1.3 Aggregating Knowledge: Combining Recommendations

The idea of combining recommendations was referred to the work of [140], Berkovsky

et al. proposed to utilize user modeling data from multiple sources for handling the

sparsity problem. Specifically, this paper exploited a content-dependent partitioning

method where ratings are partitioned into multiple domains based on the genre of the

movie. They showed that the accuracy of the generated predictions is improved by

aggregating recommendations of each single domain for the target domain. Givon et

al. [141] further explore the recommendations combination by proposing a weighted

aggregation method in the book recommendation scenario.

Overall, combining recommendations of different system is easy to imple-

mented, and it also increases the diversity of the training data. But it is difficult to

tune weights assigned to recommendations coming from different domains, and the

overlap of users is required.

35

2.3.2 Transferring Knowledge

This section reviews the cross domain collaborative filtering approaches that transfer

knowledge between domains. It can be done by linking different domains (Section

2.3.2.1), by sharing latent factors (Section 2.3.2.2) or by transferring rating patterns

(Section 2.3.2.3).

2.3.2.1 Transferring Knowledge: Linking Domains

The link between different domains is common, such as comedy movies and hu-

morous books. Therefore many works try to solve the cross-domain recommender

system by linking domains.

Zhang et al. [24] considered a multiple domain scenario which learns differ-

ent collaborative filtering tasks simultaneously (a.k.a. multi-domain collaborative

filtering). To solve multi-domain problems, they proposed a probilistic framework

which learns each single-domain based on the framework of PMF [85] and allows

the knowledge to be transferred adaptively across different domains by learning the

correlation between domains.

Cao et al. [142] refer to the recommendation problem as a link prediction

task which is defined as a problem that predicts the existence of a link between

two entities [143]. Similar to Zhang et al.’s work [24], a more complicated sce-

nario where multiple link prediction tasks from different domains is considered as

the Collective Link Rrediction (CLP) problem. To solve the CLP problem, they

proposed a Bayesian framework that learns the correlation between domains adap-

tively and transfers the shared knowledge among similar tasks, which result in the

improvements of the performance for all recommendation tasks.

Shi et al. [144] presented an algorithm called Tag-induced Cross-Domain

Collaborative Filtering (TagCDCF), which learns each single-domain with tag-based

similarities between user pairs and item pairs as constraints based on framework of

matrix factorization method [36], and exploits user-contributed tags in multi-domain

36

scenarios to learn the links between domains.

In [145], Mirbakhsh et al. proposed an approach that transfers the knowl-

edge in two levels: the traditional user-item level and the new cluster level. Then

a cross-domain coarse matrix is defined by capturing the common preferences be-

tween clusters of users and cluster of items in same or different domains. Therefore

the missing ratings in the cluster-level can be replaced by the observed ratings in

the coarse matrix, for the purpose of reducing the sparsity of rating matrices. At

last the clustering-based matrix factorization is implemented by aggregating the

recommendations from these two levels, which shows promising improvements for

all users, especially for cold start users.

In total, transferring knowledge by linking domains does not require user or

item overlap between domains, and it can be incorporated with other techniques.

But it is difficult to generalize and often designed for particular cross-domain sce-

narios.

2.3.2.2 Transferring Knowledge: Sharing Latent Features

Latent factor models are widely used in many collaborative filtering recommender

systems [36]. In these models the rating in the matrix can be represented as the

product of corresponding user latent features and item latent features, which can be

further explored since the latent features are similar in some cross domain scenarios.

In [146], Pan et al. proposed a method called Coordinate System Transfer

(CST) which addresses the sparsity problem in the target domain by an adaptive

approach. In particular, they performed Singular Value Decomposition (SVD) in

the auxiliary domain that decomposes each rating matrix into the products of user

latent feature factors and item latent feature factors, which are considered to be

shared in the target domain. Then the transferred factors were integrated into the

factorization of the rating matrix in the target domain for rebuilding the SVD model

and generating recommendations.

37

In contrast to the work of [146] which learns each domain adaptively, the

same authors also proposed the Transfer by Collective Factorization (TCF) algo-

rithm [139] that learns all the domains collectively for handling the binary da-

ta (like/dislike). Specifically, they performed orthogonal nonnegative matrix tri-

factorization [147] which jointly factorizes each rating matrix in all the domains

into user latent feature matrix, item latent feature matrix, and two data-dependent

core matrices. Then they constructed a shared latent space with user latent feature

matrices and item latent feature matrices and modeled the data-dependent effect of

like/dislike by learning the core matrices.

Hu et al. [148] introduced a generalized Cross Domain Triadic Factorization

(CDTF) model based on the TF [101]. It takes domain factors into consideration

and analyzes the full triadic relation user-item-domain to reveal the user preference

on items from different domains.

In the work of [149], Enrich et al. analyzed the influence of social tags in

the cross-domain scenario based on the matrix factorization model [36]. Specifically,

matrix factorization decompose the rating matrix in the auxiliary domain into the

products of the user feature vectors and item feature vectors, in where tag factors

related to an item (if avalible) are added. Then the updated item feature vectors are

combined with user feature vectors (auxiliary domain) to compute rating estimations

for the target domain, based on the assumption that the effect of tags on the factor

model of items is cross-domains.

Fermamdes et al. [150] further explored the influence of social tags in the

cross-domain recommender systems by separating user and item latent tag factors

independently, for solving the scenario when a user has not assigned any tag to an

item, or for items that have not been tagged yet.

Iwata et al. [151] proposed a method based on matrix factorization, assuming

that latent vectors in different domains are generated from a common Gaussian

distribution with a full covariance matrix. Therefore the shared latent factors can

38

be obtained by inferring the mean and covariance of the common Gaussian from

rating matrices in different domains, which enable us to give predictions in different

domains.

In summary, transferring knowledge by sharing latent features works well

to reduce sparsity and increase accuracy for both auxiliary and target domains.

However, it is normally computationally expensive and requires overlap of users

and/or items between different domains.

2.3.2.3 Transferring Knowledge: Transferring Rating Patterns

Instead of sharing the latent features for knowledge transfer, a lot of researches focus

on transferring rating patterns, based on the assumption that latent correlations may

exist between preferences of group of users for group of items.

Li et al. [152] proposed an adaptive method called codebook transfer (CBT)

that allows knowledge transferring from the auxiliary domain to the target domain,

based on the assumption that both auxiliary and target data share the cluster-level

rating patterns (codebook). The codebook is constructed by the orthogonal non-

negative matrix tri-factorization [147] on the auxiliary domain, which is equivalent

to the two-way K-means clustering algorithm. Then the missing ratings in the target

domain can be filled by using the codebook. In this way the sparsity problem of the

target domain is reduced.

Moreno et al. [153] further extended the work of [152] by proposing the

Transfer Learning for Multiple Domains (TALMUD) approach. It extracts knowl-

edge from multiple source domains instead of one auxiliary domain and linearly

integrates the rating patterns of all source domains into one model, which proved

to be more effective when multiple domains data is available.

In [154], Gao et al. introduced a Cluster-level Latent Factor (CLF) model to

enhance the cross-domain recommendation. It integrates the common rating pattern

(from the user and item clusters) [152] shared across domains with the domain-

39

specific rating patterns (involve the discriminative information such as topics of

item clusters) in each domain, therefore generates more promising results than CBT

method.

Transferring Rating Patterns for multi-domain recommendations was also

introduced. Li et al. proposed a collective approach called rating-matrix generative

model (RMGM) [155] that uses a probabilistic framework for effective cross-domain

collaborative filtering. Unlike CBT that builds the codebook on a dense auxiliary

domain data, RMGM aggregates all the rating matrices in different domains to ex-

tract the shared rating patterns. Then a probability distribution is introduced to

allow users and items belong to multiple clusters, with distinct membership degrees.

In this way the ratings of each domain are recovered by the expected ratings condi-

tioned to the shared user-item clusters. RMGM can alleviate the sparsity problems

by sharing useful knowledge across multiple related domains, which can be seen as

the multi-task learning version of CBT.

Later, the same authors [156] further explored their work by incorporating

the time factors in their proposed cross domain collaborative filtering framework

[155].

Ren et al. [157] extended the work of [154] by proposing the Probabilistic

Cluster-level Latent Factor (PCLF) model. It can be seen as the probabilistic version

of CLF model that learns each domain simultaneously, in order to tackle the multi-

task learning for all the domains.

Overall, transferring knowledge by transferring rating patterns does not need

user or item overlap between domains, but it is computationally expensive.

2.4 Summary

In summary, this chapter reviews the common collaborative filtering algorithms,

along with the active learning and cross-domain techniques used in the collaborative

40

filtering recommender systems.

Specifically, the traditional collaborative filtering algorithms are first pre-

sented, such as memory-based and model-based collaborative filtering algorithms.

In Chapter 3, a new model-based collaborative filtering algorithm is proposed based

on the matrix factorization models, which improves the prediction accuracy of the

target recommender system. Then active learning techniques in collaborative filter-

ing recommender systems are discussed based on the characteristics of the elicitation

strategies. In Chapter 4, a general framework is proposed for applying active learn-

ing in recommender systems, for improving the performance of the whole system

instead of a single user. At last, the cross-domain collaborative filtering algorithms

are summarized based on how knowledge from the auxiliary domain is exploited.

In Chapter 5, the existing state-of-the-art RMGM model is incoporated with active

learning algorithm, which incurs furth improvements of the prediction accuracy of

the recommender system.

41

Chapter 3

Matrix Factorization with

Ratings Completion

3.1 Problem Statement and Motivation

A collaborative filtering recommender system usually consists of a set of users, a

set of items and the preferences of users for various items, which are frequently

represented as the form of [User, Item, Rating] triples. By aggregating these triples,

a U-I rating matrix R ∈ Rm×n that consists of m users and n items can be obtained,

in which each rating rij represents the preference of user i to item j. As the knowledge

of preferences is very limited, the rating matrices in most recommender systems are

extremely sparse. The task of collaborative filtering recommender systems is to

recommend each user a list of unrated items that are ranked in a descending order

based on predicted preferences (ratings). As the key point of collaborative filtering is

the ratings prediction task, most algorithms transform recommending problem into

the missing value estimation problem in the U-I rating matrix with high sparsity.

The evaluation of the algorithms is often measured by computing the prediction

accuracy of a set of unknown ratings in the rating matrix based on the predefined

metrics such as MAE and RMSE.

42

As introduced in Section 2.1, collaborative filtering algorithms can be roughly

divided into two categories: memory-based and model-based approaches. Memory-

based algorithms focus on relationships between users (user-based) or items (item-

based), while model-based CF approaches are based on prediction models that have

been trained using the rating matrix. Matrix factorization methods, as one of the

most successful realizations of model-based algorithms, are widely used by con-

structing feature matrices for users and for items, respectively. It has also shown

that matrix factorization can achieve better accuracy than classic nearest neighbor

methods when dealing with product recommendation [36].

In real-life scenarios, when a new user comes in, most recommender systems

would only ask the user to rate a limited number of items (which is a small proportion

comparing with the whole set). Therefore the rating matrices are often extremely

sparse, which means there is not enough knowledge to form accurate recommenda-

tions for the user. To get precise recommendations for this user, active learning in

collaborative filtering is often used to acquire more high-quality data [34] [158] [19].

However, traditional active learning methods [128] [129] [131] only evaluate each us-

er independently and only consider the benefits of the elicitation to the ’new’ user,

but pay less attention to the effects of the system. In addition, in previous work-

s [34] [128] [129], selected users were enforced to rate each elicitation through active

learning process, which is hard to be true in practice. In this chapter, a matrix

completion strategy is proposed which improves the accuracy of the whole system

by automatically ’adding’ more ratings for existing users. Furthermore, ratings were

added one by one per request [129] or user’s by user’s per request [131]. The result is

that the model is trained at each request, which is significantly time-consuming. In

this Chapter, a series of methods is designed to obtain ratings simultaneously with

matrix factorization algorithms. Through this special preprocessing step not only

the computational cost is reduced, but also the performance of matrix factorization

methods is greatly improved.

43

3.2 Matrix Factorization for Collaborative Filtering

Collaborative filtering is a very challenging work that has drawn a lot of attentions

recently, as in most recommender systems rating matrices are extremely sparse. For

example, the density of the famous Netflix [1] and Movielens [25] datasets is 1.18%

and 6.3%, respectively, which means that only a few elements are rated. Another

challenge is that the dataset used in real-world recommender systems is typically of

high dimensionality. Due to high sparseness and computational complexity, directly

applying traditional dimensionality reduction methods, like SVD algorithms, to

rating matrices is not appropriate [31].

3.2.1 Regularized SVD

In [76], Funk proposed an effective method called Regularized SVD (RSVD) algo-

rithm for collaborative filtering which decomposes the rating matrix into two lower

rank matrices. Suppose R ∈ Rm×n is the rating matrix of m users and n items, R̃

is the prediction of the rating matrix. The Regularized SVD algorithm finds two

matrices U ∈ Rk×m and V ∈ Rk×n as the feature matrix of users and items:

R̃ = UTV (3.1)

It assumes that each user’s rating is composed of the sum of preferences about

various latent factors of that item. So each rating rij (corresponding prediction

is represented as r̃ij) the ith user gives to the jth item in the matrix R can be

represented as:

r̃ij = Ui
TVj (3.2)

where Ui, Vj are the feature vectors of the ith user and the jth item, respectively.

Once the best approximations of U and V are obtained, the best predictions are

obtained accordingly. The optimization of U and V can be performed by minimizing

44

the sum of squared errors between the existing scores and prediction values [76]:

E =
1

2

∑
i,j∈κ

(rij − r̃ij)
2 +

ku
2

m∑
i=1

Ui
2 +

kv
2

n∑
j=1

Vj
2 (3.3)

where κ is a set of elements in the rating matrix R that have been assigned values,

ku and kv are regularization coefficients to prevent over-fitting.

To solve the optimization problem in Equation (3.3), Stochastic Gradient

Descent (SGD) is widely used and has been shown to be effective for matrix fac-

torization [51] [77] [159]. SGD loops through all ratings in the training set κ and

for each rating it modifies the parameters U and V in the direction of the negative

gradient:

Ui ← Ui − α
∂Eij

∂Ui
(3.4)

Vj ← Vj − α
∂Eij

∂Vj
(3.5)

where α is the learning rate.

Unlike traditional SVD, Regularized SVD is a tool for finding those two

smaller matrices, which minimize the resulting approximation error in the least

square sense. By solving this optimization problem, the end result is the same as

SVD which just gets the diagonal matrix arbitrarily rolled into the two side matrices,

but could be easily extracted if needed.

3.2.2 SVD++

Since matrix factorization for recommender systems based on Regularized SVD was

first proposed, several variants have been exploited with extra information on the

rating matrix to improve the prediction accuracy. For example, Paterek [77] pro-

posed an improved Regularized SVD algorithm by adding a user bias and an item

bias in the prediction function. Koren [51] extended the RSVD model by consid-

45

ering more implicit information about rated items and proposed a SVD++ model

with the prediction function:

r̃ij = u + βi + γj + Vj
T (Ui + |I(i)|(−1/2)

∑
k∈I(i)

yk), (3.6)

where u is the global mean, βi is the bias of the ith user and γj is the bias of

the jth item. Ui is learnt from the given explicit ratings, I(i) is the set of item-

s user i has provided implicit feedback for (whether each item is rated or not).

|I(i)|(−1/2)
∑

k∈I(i)
yk represents the influence of implicit feedback. The implicit infor-

mation enables SVD++ to produce better performance than the Regularized SVD

model.

3.3 The Proposed Enhanced SVD (ESVD) Model

It is important to note that the characteristics of prediction algorithms may influence

the prediction accuracy. Matrix factorization methods like Regularized SVD and

SVD++ learn the model by fitting a limited number of existing ratings, hence the

model trained with good quality as well as large quantity ratings could achieve

better performance than the one with less sufficient ratings. However, in most

recommendation systems, the rating matrices are extremely sparse because a user

typically only rates a small proportion of items while most ratings are unknown,

which motivates us to add more high quality data for matrix factorization.

3.3.1 Classic Active Learning Algorithms

Classic active learning methods focus on different individual rating elicitation s-

trategies for a single user when a new user comes in. These strategies include:

1. Randomization: Items are selected randomly, which can be regarded as a

baseline method (e.g., [20] [123] [131]).

46

2. Popularity-based : Items with the largest number of ratings are preferred. It is

based on the assumption that the more popular the items are, the more likely

that they are known by this user (e.g., [20] [21]).

3. Entropy-based : Items with the largest entropy are selected [20].

4. Highest and lowest predicted : Items with the highest or lowest predicted rat-

ings are chosen. The items with the highest or lowest ratings are supposed to

be the most liked or disliked movies for this user, which also may influence

the user to rate them [123].

5. Hybrid : This includes Log(popularity) ∗ entropy [20], Voting, which consider

the overall effect of previous methods [120] [131].

These strategies try to identify the most informative set of training examples,

aiming to achieve better performance for users with a certain amount of ratings

required from them. However, tradition active learning has several limitations:

1. First, previous works (e.g., [20] [123]) [131] focused on the accuracy of the

recommendations for ’a single user’, regardless of the fact that the increase of

elicitations affect the performance of the whole system.

2. Furthermore, the model was trained by iterating all the users, which incurs

high computational cost. With classic active learning strategies, the items

selected for different users to elicit are always different. For example, the

items with the highest predicted ratings for a user may not be the same as

another user’s since not all the users have exactly the same tastes. Hence

strategy has to be applied repeatedly for each user, in order to elicit ratings

which are corresponding to different items.

3. In addition, current active learning methods are based on the assumption that

a user can provide ratings for any queried items, which is unrealistic and costly.

47

Take movie recommendation for example, to rate a movie that is generated by

the active learning strategy, a user has to watch it. On the other hand, the user

maybe be frustrated when asked a movie that he/she has not watched. This

could lower the customer’s confidence and expectation of the recommender

system.

3.3.2 The Proposed Item-oriented Approach

0 200 400 600 800 1000 1200 1400 1600 1800

Movie ID

0

50

100

150

200

250

300

350

400

450

500

P
op

ul
ar

ity

Figure 3.1: The number of ratings each item has received (popularity) in Movielens 100K

From Figure 3.1 it can be observed that the movie popularity may vary significantly.

Take the Movielens 100K dataset for example, the maximal and minimum level of

popularity is 495 and 0, respectively, which means that the most popular movie is

rated by 495 users. Popularity is based on the number of ratings regarding to each

item only which is irrelevant to users, therefore the popularity of each movie remains

48

the same for all the users. In Algorithm 3.1, by selecting N most popular movie for all

the users a new sub-matrix could be obtained (as shown in Figure 3.2), based on the

idea that users tend to rate world-famous movies than the less known movies. Then

the missing values in this sub-matrix would be the desirable movies in some sense

for the users who missed before. Unlike traditional active learning that queries only

new users for a certain number of ratings in each iteration, the proposed strategy

predicts these specific ratings for all the users at the same time in one iteration

based on matrix factorization algorithms on this sub-matrix. After adding these

ratings to the original rating matrix, a more accurate matrix factorization model

could be trained.

Figure 3.2: Procedures of Item-oriented Approach

In summary, this item-oriented (based on item popularity) approach pre-

estimate ratings of only popular movies for all the users simultaneously (in contrast

to active learning that elicit ratings for each user iteratively), in order to improve

the performance of the whole system. Therefore, it reduces the training time of the

matrix factorization model from as high as the number of users (for active learning)

to only 2 (the proposed method), which saves a lot of computational cost.

3.3.3 The Proposed User-oriented Approach

In contrast to traditional active learning for collaborative filtering which selects a

number of items to rate so as to improve the rating prediction for the user, Carenini

et al. [21] proposed an alternative active learning method that elicits ratings by

49

Algorithm 3.1 The Proposed Item-oriented Approach

Input: Rating matrix R ∈ Rm×n, where Qj∈[1,n] ∈ Rm×1 is the column vector, κ is
a set of elements in the rating matrix that have been assigned values; the number
of items selected in the sub-matrix based on popularity N;

Output: RMSE of the test set;
Step 1: Sort items based on popularity in the descending order j(1), j(2), ..., j(m);
Step 2: Create a sub-matrix M1 by selecting the top N items (columns) of R
based on the popularity. Therefore M1 = [Qj(1),Qj(2),,Qj(N)](N < m);
Step 3: Apply basic matrix factorization (Regularized SVD) on matrix M1 to
obtain feature matrices U and V according to Equation (3.1);
Step 4: Predict every missing value in sub-matrix M1 to acquire a non-null
matrix M′1 according to Equation (3.2). Then a series of ratings L1 is obtained,
such that L1 = {
rik(1),j(1), rik(2),j(1), ..., rik(n),j(1),
rik(1),j(2), rik(2),j(2), ..., rik(n’),j(2),
......,
rik(1),j(N), rik(2),j(N), ..., rik(n”),j(N)}
where rik,j /∈ κ;
Step 5: Fill ratings in the original matrix R with every predicted value by Step
4 to acquire a new rating matrix R′. That means the extra ratings are added into
the training set κ = {κ,L1};
Step 6: Apply basic matrix factorization (Regularized SVD) on matrix R′ to
obtain feature matrices U’ and V’ according to Equation (3.1)l. Then predict
the target ratings (test set) according to Equation (3.2) and calculate RMSE
according to Euqation (1.2);

50

0 100 200 300 400 500 600 700 800 900 1000

User ID

0

100

200

300

400

500

600

700

800

A
ct

iv
ity

Figure 3.3: The number of ratings each user has rated (activity) in Movielens 100K

choosing some special users to rate a specific item in order to improve the rating

prediction for the item. Likewise, a user-oriented approach is also proposed to

further explore the potential of the proposed method.

Generally, the number of movies each user has rated varies significantly as

shown in Figure 3.3 (e.g., in the Movielens 100K dataset the maximal and minimum

number for different user’s are 727 and 10, respectively). Though active users who

are enthusiastic about movies may watch far more than the ones who are not into

movies, there still exist some movies the users have watched but not yet rated.

Therefore it is easier to accept that active users have high possibility to give ratings

to their unrated movies, but little chance for the users who had no interest in

providing ratings before (with a small number of ratings in the data set). Therefore

the user-oriented approach is proposed (Algorithm 3.2) by selecting this kind of

51

Algorithm 3.2 The Proposed User-oriented Approach

Input: Rating matrix R ∈ Rm×n, where Pi∈[1,m] ∈ R1×n is the row vector, κ is a
set of elements in the rating matrix that have been signed values; the number of
users selected in the sub-matrix based on activity N′;

Output: RMSE of the test set;
Step 1: Sort users based on activity in descending order i(1), i(2), ..., i(n);
Step 2: Create a sub-matrix M2 by selecting the top N users (rows) of R based
on the activity. Therefore M2 = [Pi(1),Pi(2),,Pi(N′)](N

′ < n);
Step 3: Apply basic matrix factorization (Regularized SVD) on matrix M2 to
obtain feature matrices U and V according to Equation (3.1);
Step 4: Predict every missing value in sub-matrix M2 to acquire a non-null
matrix M′2 according to Equation (3.2). Then a series of ratings L2 is obtained,
such that L2 = {
ri(1),jk(1), ri(1),jk(2), ..., ri(1),jk(n),
ri(2),jk(1), ri(2),jk(2), ..., ri(2),jk(n’)
ri(N′),jk(1)

, ri(N′),jk(2)
, ..., ri(N′),jk(n”)

}
where ri,jk /∈ κ;
Step 5: Fill ratings in the original matrix R with every predicted value by Step
4 to acquire a new rating matrix R′. That means the extra ratings are added into
the training set κ = {κ,L2};
Step 6: Apply basic matrix factorization (Regularized SVD) on matrix R′ to
obtain feature matrices U’ and V’ according to Equation (3.1); Then predict
the target ratings (test set) according to Equation (3.2) and calculate RMSE
according to Euqation (1.2);

52

Figure 3.4: Procedures of User-oriented Approach

special users based on the number of movies they have rated. After these movie

enthusiasts are chosen (as shown in Figure 3.4), ratings of the movies they never

rate (as the missing values in the new sub-matrix) would be predicted by matrix

factorization algorithms. Then these new ratings are added to the original matrix

for generating better recommendations.

In brief, this user-oriented (based on user activity) approach tries to improve

the performance of the whole system by pre-estimating ratings simultaneously of all

movies for only active users. Therefore it also has the benefits that item-oriented

approach has. However, both algorithms may still incur significant computational

cost and distortion of the original model because of the extensive selection of added

ratings, especially when the number of popular movies or active users selected in

the sub-matrix is large.

3.3.3.1 The Proposed ESVD (Density-Oriented Approach)

So far an item-oriented approach and a user-oriented approach are presented,

both based on the idea that pre-estimating a group of reliable and meaningful ratings

simultaneously for the matrix factorization model to learn. The reason why these

new ratings are reliable is because they are predicted from the denser sub-matrix,

which consists of the largest number of ratings from either the item-view or the user-

view by matrix factorization algorithms. The recommender system with sufficient

ratings could easily generate accurate recommendations. Typically the denser the

53

Algorithm 3.3 The Proposed ESVD (Density-Oriented Approach)

Input: Rating matrix R ∈ Rm×n, where Pi∈[1,m] ∈ R1×n is the row vector and
Qj∈[1,n] ∈ Rm×1 is the column vector, κ is a set of elements in the rating matrix
that have been assigned values; The number of items selected in the sub-matrix
based on popularity N and the number of users selected in the sub-matrix based
on activity N′;

Output: RMSE of the test set;
Step 1: Sort both items and users in the descending order based on popularity
and activity respectively. j(1), j(2), ..., j(m); i(1), i(2), ..., i(n);
Step 2: Create a sub-matrix M1 by selecting the top N items (columns) of R
based on the popularity. Therefore M1 = [Qj(1),Qj(2),,Qj(N)](N < m);
And also create a sub-matrix M2 by selecting the top N′ users (rows) of R based
on the activity. Therefore M2 = [Pi(1),Pi(2),,Pi(N′)](N

′ < n);
Step 3: Create a sub-matrix M3 by selecting the intersection of top N items
(columns) and top N′ users (rows) based on the popularity and activity. Therefore
M3 = M1

⋂
M2;

Step 4: Apply basic matrix factorization (Regularized SVD) on matrix M3 to ob-
tain feature matrices U and V according to Equation (1). Then predict every miss-
ing value in sub-matrix M3 to acquire a non-null matrix M’3 according to Equation
(2). Then a series of ratings L is obtained, such that L = {rik(1),jt(1) , ..., rik(n),jt(n′)}
where rik,jt ∈ (M3

⋂
¬κ);

Step 5: Fill ratings in the original matrix R with every predicted value by Step
4 to acquire a new rating matrix R′. That means the extra ratings are added into
the training set κ = {κ,L};
Step 6: Apply basic matrix factorization (Regularized SVD) on matrix R′ to
obtain feature matrices U’ and V’ according to Equation (3.1). Then predict
the target ratings (test set) according to Equation (3.2) and calculate RMSE
according to Euqation (1.2);

54

matrix is, the better the matrix factorization model is obtained. Take the Movielens

100K dataset as an example, the density of the original matrix is 6.3%. Howev-

er, if only 5% of the most popular movies are chosen, a sub-matrix obtained of

density 29.47% which consists of more ratings that have been already rated by the

users. While selecting the 5% of the most active users, the density of the new sub-

matrix obtained is 23.33%. Based on this observation a density-oriented approach

is proposed which combines previous item-oriented and user-oriented methods in

Algorithm 3.3.

Figure 3.5: Procedures of ESVD

ESVD is based on the assumption that the recommender system was first

built with a set of the most popular movies that are rated by a set of the most

active users. Because both the popularity of items and the activity of users depend

on the numbers of ratings each user rates or each movie is rated, by choosing the

most N popular items (columns) and the most N′ active users (rows) the densest

sub-matrix is obtained (as shown in Figure 3.5). For example with Movielens 100K

dataset, if choose 5% of the most popular movies and most active users, the density

of the newly-formed sub-matrix would be 77.28% (Step 3 in Algorithm 3.3). The

missing values in this sub-matrix can be explained as ratings of the most famous

movies but have not been rated by a group of the most active users. Therefore the

recommendations generated by this recommender system should be of high accuracy.

Afterwards some rare movies most people probably have not seen and users with

very few ratings are added into the dataset (the orginal matrix), which could lower

55

the prediction accuracy of the whole system. To achieve better performance, the

ratings (pre-estimations) generated from the former recommender system could be

used (by applying matrix factorization on the sub-matrix) as the known knowledge

for further learning and inference. Finally a more accurate matrix factorization

model can be learnt by fitting the existing ratings and extra high quality ratings.

3.3.4 Evaluation

3.3.4.1 Datasets and Experimental Setup

Experiments of the proposed item-oriented, user-oriented and density-oriented ap-

proach (ESVD) are conducted on the classic recommender system datasets: the

Movielens 100K and the subset of the Netflix (the first 106,150 ratings are extract-

ed from the full Netflix dataset as the subset of Netflix, which are made by 1,910

users on 1,780 movies). Some experiments with the larger version are also performed

and obtained similar results. However, it requires much longer time to perform the

experiments since the models are trained and tested each time for different choice

of N and N′. Therefore, the smaller datasets Movielens 100K and subset of original

Netflix are focused to be able to run more experiments, in order to explore how these

two parameters affects the results of the proposed matrix factorization methods.

Normally each dataset is partitioned into a training set and a test set. The

model is trained on the training set and the quality of results is usually measured

by the Root Mean Square Error (RMSE) of the test set. RMSE is used as the

default metric, which is widely used in the Netfilx Competition [1] and proved to be

effective for measuring recommender systems.

The number of the latent factors (rank) k are set to be 10 for training each

matrix factorization model. Although increasing it does raise the performance, the

computational cost is proportional to latent factors. For matrix factorization of the

sub-matrix, the coefficient of the regularization term ku and kv are 0.01 and 0.05

for the Movielens 100K and Netflix datasets, respectively. And the learning rate

56

0 5% 10% 15% 20% 25% 30%

the percentage of items and users selected in the block matrix

0.96

0.97

0.98

0.99

1

R
M

S
E

Item-oriented
User-oriented
Density-oriented

Figure 3.6: Movielens: RMSE comparisons of proposed methods based on SVD

0 5% 10% 15% 20% 25% 30%

the percentage of items and users selected in the block matrix

0.925

0.93

0.935

0.94

R
M

S
E

Item-oriented
User-oriented
Density-oriented

Figure 3.7: Netflix : RMSE comparisons of proposed methods based on SVD

α is 0.1 with a decrease by a factor of 0.9 each iteration for both datasets. For

matrix factorization of the rating matrix R′ (with pre-estimations), the coefficient

of regularization term ku
′ and kv

′ are 0.1 for both datasets, and the learning rate

α is 0.01 and 0.05 with decrease by a factor of 0.9 each iteration for the Movielens

100K and Netflix datasets, respectively.

57

Table 3.1: RMSE of ESVD on Movielens 100K (The Density-Oriented Approach)

Items&Users Block Density Extra Ratings RMSE

0% null null 0.9709

5% 77.28% 897 0.9677

10% 65.20% 5496 0.9632

15% 53.90% 16381 0.9630

20% 45.66% 34508 0.9570

Table 3.2: RMSE of ESVD on Netflix (The Density-Oriented Approach)

Items&Users Block Density Extra Ratings RMSE

0% null null 0.9306

5% 59.06% 3498 0.9265

10% 43.59% 19179 0.9265

15% 33.10% 51268 0.9291

20% 25.51% 101298 0.9319

3.3.4.2 Experimental Results

Figure 3.6 and Figure 3.7 show the results of the proposed methods based on how

many items and users selected (simply setting N = N′ in this case) in the sub-

matrix on the Movielens 100K and Netflix datasets, respectively. All the methods

start at 0 point where no extra filling is added into the learning process, which

is the same as RSVD. It can be seen that the results of item-oriented approach

and user-oriented sometimes are not promising. Because in the item-oriented (or

user-oriented) approach only pre-estimations are added based on the most popular

movies (or users), which may lead to a lot of bias and distort the latent factor

model. For example, most people prefer happy endings, and the consequence is

that comedies are more popular than tragedies. As a result, a lot of comedy movies

would be elicited for each user to give ratings which leads to more weights on the

factor corresponding to comedies in the latent factor model (RSVD in this case). It

is apparent from the Figure 3.6 and Figure 3.7 that the proposed ESVD consistently

outperforms other methods including the baseline method: RSVD.

In Table 3.1 and Table 3.2, the experimental results of the proposed density-

58

oriented (ESVD) method are illustrated which incorporates both item-oriented and

user-oriented approach on the Movielens 100K and Netflix datasets. Different

RMSE are compared based on how many items and users (N = N′ from 0% to

20%) selected. Note that the basic matrix factorization is a special case of the pro-

posed method when setting N = 0%, which is used as the baseline for comparision.

After selecting a certain percentage of items and users, a sub-matrix is formed. It

can be observed that the more items and users are chosen, the much sparser the

sub-matrix is. The missing values in the sub-matrix are chosen to be pre-estimated

ratings. Although sparser matrix may lead to a less accurate matrix factorization

model and the quality of pre-estimations may not as good as the ones from the

denser matrix, the number is increased. Therefore more ratings can be obtained

and put into the process of learning the target matrix factorization model. At last

predictions are computed on the test set and corresponding results are obtained.

Because the sub-matrix is the intersection of the largest N items and N′ users, its

density is much greater than the one from item-oriented or user-oriented approach.

Even with fewer ratings to be added compared with item-oriented and user-oriented,

the results are better.

In the experiments, it can be observed that for the Movielens 100K dataset

the performance fluctuates as the number of projects increases (Figure 3.6). While

for the Netflix dataset (Figure 3.7), the performance drops at first then it dete-

riorates (the lower RMSE the better performance) as N goes up. This is mainly

because the Netflix dataset is much sparser than the Movielens 100K dataset. While

adopting the ESVD algorithm, as N increases, more poor quality data is added into

the learning process and leads to the distortion of the model (Figure 3.7). The op-

timal point (N) that balances the quality (density of sub-matrix) and the quantity

(number of added ratings) depends on the distribution of ratings. For the Movielens

100K dataset, the proposed ESVD can reach 0.9570 (when N = 20%) which reduces

the RMSE by 0.0139 compared with the Regularized SVD 0.9709. For the Netflix

59

dataset, it could lower the RMSE by 0.0047 (from 0.9306 to 0.9259 when N = 3%).

3.3.5 The Proposed ESVD++

Broadly speaking, the proposed ESVD approach can be seen as a preprocessing step

and it can be incorporated with other variants of SVD models, such as SVD++

[51] to form a new approach called ESVD++. ESVD++ is conducted by just

changing the prediction algorithm from SVD to SVD++. Compared with the SVD

model, SVD++ improves the prediction accuracy by adding biases and the implicit

information I(i), and the prediction function is shown in Equation (3.6). Specifically,

I(i) contains all the items for which the ith user has provided a rating, even if the

value is unknown. Therefore, for prediction of added ratings as shown in Step 4 of

Algorithm 3.3, I(i) is set to be the number of existing ratings and the missing values

in the sub-matrix that are also shown in the test set. For prediction of the test set

as shown in Step 6 of Algorithm 3.3, I(i) is the same as the one in original matrix

without considering extra ratings.

As the strategy is the same as ESVD, the ratings that need to be elicited

are also the same. Here the process of searching for the optimal value for N is

skipped and the results are listed directly. The ESVD++ outperforms the state-

of-art SVD++ model and greatly reduces the RMSE by 0.0214 (from the baseline

SVD++ 0.9601 to 0.9387 when N = 10%) and 0.004 (from the baseline SVD++

0.9222 to 0.9182 when N = 8%) for the Movielens 100K and Netflix datasets,

respectively.

3.4 The Proposed Multilayer ESVD (MESVD)

In the ESVD procedure, all the extra ratings are predicted in a single matrix fac-

torization model simultaneously, which could lead to a lot of bias and distort the

original model when the number of pre-estimations is large. To alleviate this prob-

60

Figure 3.8: Procedures of Multilayer ESVD

lem a method called Multilayer ESVD (MESVD) is proposed in Algorithm 3.4 which

obtains the fillings incrementally through multiple matrix factorization on different

sub-matrices.

The example of the Two-layer ESVD is shown in Figure 3.8. First a set

of sub-matrices are created in each layer by selecting the intersections of different

numbers of columns and rows (as stared) based on the number of ratings each item

or each user has, respectively. Therefore each smaller sub-matrix (with red frame)

in the upper layer can be seen as a part of the bigger sub-matrix in the lower layer.

The missing values (yellow ratings) in the smaller sub-matrix can be predicted by

the matrix factorization method and then they would be regarded as the known

ratings in the bigger sub-matrix. Similar to deep learning, the outputs generated

by each upper layer are utilized as the inputs of each lower layer, for enhancing the

prediction accuracy of their outputs (pre-estimations) which could be reused as the

inputs of next lower layer. For example in Figure 3.8 ratings in black and yellow are

known in the layer-2, therefore the sub-matrix in the next layer is much denser than

the one without pre-estimations (ratings in yellow) from upper layer. In this way

fillings are predicted iteratively layer by layer. At last all the pre-estimated ratings

are added into the original matrix to evaluate the performance of the whole system.

61

Basically, the MESVD approach is based on the assumption that the rec-

ommender system was built by a very dense matrix with sufficient ratings at first.

Therefore the recommendations (represented as missing values in the sub-matrix)

were reliable and can be regarded as the known knowledge. After that it is bet-

ter to keep inviting the most active users to rate the most popular movies for the

recommender system than the one in the minority. In this way, each time a set of

movies and users are added in the system, iteratively generating knowledge for fur-

ther learning and inference (from the upper layer to lower layer). As a result, better

performance can be obtained by learning the current systems with extra knowledge

generated in each of the sub-system’s layer.

3.4.1 Experimental Results

Experiments of the MESVD method on the Movielens 100K and Netflix datasets

are also conducted. The corresponding results are shown in Table 3.3 and Table 3.4.

For the Movielens 100K dataset experiments of ESVD are conducted when N=20%

(optimal point), Two-layers ESVD where the first layer is 10% and the 2nd layer

is 20%, Four-layers ESVD with layers from 5% to 20% with 5% interval (setting

N =N ’). Specifically, in the first experiment ratings are elicited from the sub-matrix

of density 45.66%; In Two-layers ESVD, the first 5496 ratings are elicited from

the sub-matrix of density 65.20% while the rest are elicited from the sub-matrix

of density 54.32%; In Four-layers ESVD ratings are elicited layer by layer for four

times, each time ratings are elicited from the much denser matrix. It can be seen

that as the result the numbers of fillings in total are the same, as the added sub-

matrices in the ending layers are the same. The performance gets better from single

layer to Four-layers, for the reason that the quality of extra ratings gets better.

For the Netflix dataset four experiments are performed: ESVD when N=10%,

Two-layers ESVD where the first layer is 5% and the 2nd layer is 10%, Four-layers

ESVD with layers from 2.5% to 10% with 2.5% interval, and Six-layers ESVD with

62

Algorithm 3.4 The Proposed Multilayer ESVD (MESVD)

Input: Rating matrix R ∈ Rm×n, where Pi∈[1,m] ∈ R1×n is the row vector and
Qj∈[1,n] ∈ Rm×1 is the column vector, κ is a set of elements in the rating matrix
that have been assigned values; The total number of layers x ∈ [1,min(m,n)]. The
numbers of items selected in the sub-matrix based on popularity N1 < N2 < ... <
Nx ∈ [1,m] and the numbers of users selected in the sub-matrix based on activity
N′1 < N′2 < ... < N′x ∈ [1,n];

Output: RMSE of the test set;
Step 1: Sort both items and users in descending order based on popularity and
activity respectively. j(1), j(2), ..., j(m); i(1), i(2), ..., i(n);
Step 2: Create a series of sub-matrices M1(1),M1(2), ...,M1(x) by selecting differ-
ent numbers of top N1,N2, ...,Nx items (columns) of R based on the popularity.
Therefore each sub-matrix M1(d) = [Qj(1),Qj(2),,Qj(Nd)

](d ∈ [1, x]);
Step 3: Create a series of sub-matrices M2(1),M2(2), ...,M2(x) by selecting different
numbers of top N′1,N

′
2, ...,N

′
x of users (rows) of R based on the activity. Therefore

each sub-matrix M2(d) = [Pi(1),Pi(2),,Pi(N′
d)

](d ∈ [1, x]);
Step 4: Create a series of sub-matrices M3(1),M3(2), ...,M3(x) by selecting the
intersection of top N items (columns) and top N′ users (rows) of R based on the
popularity and activity. Therefore each sub-matrix M3(d) = M1(d)

⋂
M2(d)(d ∈

[1, x]);
For(s = 0; s < x; s++)
{
Step 5: Apply basic matrix factorization (Regularized SVD) on matrix M3(1+s)

to obtain feature matrices U and V according to Equation (3.1); Then predict
every missing value in sub-matrix M3(1+s) to acquire a non-null matrix M′3(1+s)

according to Equation (3.2). Then a series of ratings L3(1+s) is obtained, such
that L3(1+s) = {rik(1),jt(1) , ..., rik(n),jt(n′)}where rik,jt ∈ (M3(1+s)

⋂
¬κ);

Step 6: Fill ratings in the original matrix R with every predicted value by Step
5 to acquire a new rating matrix R′. That means the extra ratings are added into
the set of existing ratings. κ = {κ,L3(1+s)};
}
Step 7: Apply basic matrix factorization (Regularized SVD) on matrix R′ to
obtain feature matrices U’ and V’ according to Equation (3.1); Then predict
the target ratings (test set) according to Equation (3.2) and calculate RMSE
according to Euqation (1.2);

63

Table 3.3: RMSE of MESVD on Movielens 100K

Item&User Block Density Extra Ratings RMSE

RSVD N=0 0 0 0.9709

ESVD N=20% 45.66% 34508 0.9570

Two-layers ESVD
N=[10%, 65.20% 5496

20%] 54.32% 29012 0.9564

Four-layers ESVD

N =[5%, 77.28% 897
10%, 70.88% 4599
15%, 69.37% 10885
20%] 71.46% 18127 0.9561

layers from 5% to 10% with 1% interval. It can be observed that Two-layers ESVD

yields better performance than ESVD, because each batch of fillings are predicted

from the denser matrices with better accuracy. For the same reason, better results

can be obtained based on Four-layers ESVD than Two-layers ESVD. When com-

pared Six-layers ESVD with Two-layers ESVD, the first batch of fillings are the

same, however, the rest are of better quality because they are learnt layer by layer

in the denser matrices. When compared Six-layers ESVD with Four-layers ESVD,

although all the fillings are learnt by more iterative times, the first batch of extra

ratings are of poorer quality. As a result, the result of Six-layers ESVD is not as

good as Four-layers ESVD. In summary, although the optimal point of N is not

selected, better performance is obtained than ESVD (0.9259 when N = 3%).

Experimental results show that the quality of MESVD depends on the num-

ber of layers and the choice of each layer, which still remain further study. In ESVD

algorithm, decent result cannot be obtained if the number of items and users select-

ed in the sub-matrix N is inappropriate. Through MESVD method, this problem

can be alleviated with comparable or better results. With optimal point of N, better

performance can still be obtained by learning the added ratings iteratively through

MESVD method. The improvements of MESVD approach is limited, as the ratings

added in the original matrix are the same when compared with ESVD approach.

However, if the training time is not the priority concern, MESVD (the iteration of

64

Table 3.4: RMSE of MESVD on Netflix

Item&User Block Density Extra Ratings RMSE

RSVD N=0 0 0 0.9306

ESVD N=10% 43.59% 19179 0.9265

Two-layers ESVD
N=[5%, 59.06% 3498

10%] 53.88% 15681 0.9262

Four-layers ESVD

N=[2.5%, 67.04% 712
5%, 67.39% 2786

7.5%, 68.33% 6068
10%] 71.72% 9613 0.9248

Six-layers ESVD

N =[5%, 59.06% 3498
6%, 83.76% 1998
7%, 84.35% 2621
8%, 86.11% 3017
9%, 86.74% 3650

10%] 87.07% 4395 0.9255

training matrix factorization model depends on the number of layers) is preferable.

3.5 The Proposed Extensions of ESVD

So far ESVD has been presented which applies SVD with ratings completion strate-

gy that best approximates a given matrix with missing values. Experimental results

show that the extra fillings do improve the performance of the system. The reason

is that the model is learnt by extra high quality ratings that are predicted from the

dense sub-matrix based on item popularity and user activity. Based on this theory

two extensions are proposed in order to acquire better fillings for different kinds of

datasets.

3.5.1 The Proposed Item-wise ESVD (IESVD)

When dealing with the rating matrix of which the number of users is far greater

than the number of items, each item has been rated by a large number of users

(popularity) but each user only rate few items (activity) in average. Therefore,

popular items have more impacts than active users on the density of newly-formed

65

Algorithm 3.5 The Proposed Item-wise ESVD (IESVD)

Input: Rating matrix R ∈ Rm×n, where Qj∈[1,n] ∈ Rm×1 is the column vector, κ is
a set of elements in the rating matrix that have been assigned values; The number
of items selected in the sub-matrix based on popularity N and the number of users
selected in the sub-matrix based on activity N′;

Output: RMSE of the test set;
Step 1: Sort items in the descending order based on popularity j(1), j(2), ..., j(m);
Step 2: Create a sub-matrix M1 by selecting the top N items (columns) of R
based on the popularity. Therefore M1 = [Qj(1),Qj(2),,Qj(N)](N < m) where

Pi∈[1,m] ∈ R1×N is the row vector of M1;
Step 3: Sort users based on activity of the sub-matrix M1 in descending order
i(1), i(2), ..., i(n);
Step 4: Create a sub-matrix M2 by selecting the top N′ users (rows) of M1 based
on the activity. Therefore M2 = [Pi(1),Pi(2),,Pi(N′)](N

′ < n);
Step 5: Apply basic matrix factorization (Regularized SVD) on matrix M2 to
obtain feature matrices U and V according to Equation (3.1); Then predic-
t every missing value in sub-matrix M2 to acquire a non-null matrix M′2 ac-
cording to Equation (3.2). Then a series of ratings L is obtained, such that
L = {rik(1),jt(1) , ..., rik(n),jt(n′)} where rik,jt ∈ (M2

⋂
¬κ);

Step 6: Fill ratings in the original matrix R with every predicted value by Step
5 to acquire a new rating matrix R′. That means the extra ratings are added into
the set of existing ratings. κ = {κ,L};
Step 7: Apply basic matrix factorization (Regularized SVD) on matrix R′ to
obtain feature matrices U’ and V’ according to Equation (3.1). Then predict
the target ratings (test set) according to Equation (3.2) and calculate RMSE
according to Equation (1.2);

sub-matrix. As a result, obtaining sub-matrix based on item popularity and user

activity simultaneously is not appropriate under such circumstance.

Figure 3.9: Procedures of Item-wise ESVD

66

The Item-wise ESVD (IESVD) (Algorithm 3.5) is proposed by first selecting

a number of the most popular items to form a sub-matrix as the ESVD does (step

1 of Figure 3.9). Then only the active users that have seen these specific movies

(stared in step 2) are chosen. This means users are selected based on the number

of ratings in the sub-matrix only instead of the whole rating matrix. In this way a

denser sub-matrix can be obtained than the one from the ESVD method. Likewise,

the missing values in the sub-matrix can be pre-estimated by matrix factorization

method. Finally, the predicted ratings are filled in the original matrix. Therefore

the new matrix factorization model is learnt and tested based on the newly-formed

rating matrix.

3.5.2 The Proposed User-wise ESVD

Likewise, in the datasets that consists of much more items than users, the quantity

of ratings each user rate (activity) is much greater than the quantity of ratings each

items is rated (popularity) in average. Therefore the User-wise ESVD (UESVD)

(Algorithm 3.3) is proposed as shown in Figure 3.10. Initially, a number of the most

active users are selected to form a sub-matrix based on the number of ratings each

user has rated. Then the most popular items that the active users have seen are

chosen to form the sub-matrix, i.e. the items with most ratings in the sub-matrix

only. As the result a denser sub-matrix is obtained than the one from ESVD. The

rest procedures are the same as the ESVD algorithm.

Therefore both IESVD and UESVD train the matrix factorization model

twice by automatically adding pre-estimations in the data set. However, the IESVD

and UESVD approaches are not applicable to multilayer learning because in the

IESVD and UESVD algorithms, the sub-matrices are selected based on less number

of items and users are not necessarily included in the larger sub-matrices, which

consist of more items and users.

67

Algorithm 3.6 The Proposed User-wise ESVD (UESVD)

Input: Rating matrix R ∈ Rm×n, where Pi∈[1,m] ∈ R1×n is the row vector, κ is a
set of elements in the rating matrix that have been signed values; The number of
items selected in the sub-matrix based on popularity N and the number of users
selected in the sub-matrix based on activity N′;

Output: RMSE of the test set;
Step 1: Sort users based on the number of ratings they rates (activity) in de-
scending order i(1), i(2), ..., i(n);
Step 2: Create a sub-matrix M1 by selecting the top N′ users (rows) of R based
on the popularity. Therefore M1 = [Pi(1),Pi(2),,Pi(N′)](N

′ < n) where Qj∈[1,n] ∈
Rm×1 is the column vector of M1;
Step 3: Sort items based on popularity of the sub-matrix M1 in descending order
i(1), i(2), ..., i(n);
Step 4: Create a sub-matrix M2 by selecting the top N items (columns) of M1

based on the popularity. Therefore M2 = [Qj(1),Qj(2),,Qj(N)](N < m);
Step 5: Apply basic matrix factorization (Regularized SVD) on matrix M2 to
obtain feature matrices U and V according to Equation (3.1); Then predic-
t every missing value in sub-matrix M2 to acquire a non-null matrix M′2 ac-
cording to Equation (3.2). Then a series of ratings L is obtained, such that
L = {rik(1),jt(1) , ..., rik(n),jt(n′)} where rik,jt ∈ (M2

⋂
¬κ);

Step 6: Fill ratings in the original matrix R with every predicted value by Step
5 to acquire a new rating matrix R′. That means the extra ratings are added into
the set of existing ratings. κ = {κ,L};
Step 7: Apply basic matrix factorization (Regularized SVD) on matrix R′ to
obtain feature matrices U’ and V’ according to Equation (3.1). Then predict
the target ratings (test set) according to Equation (3.2) and calculate RMSE
according to Equation (1.2);

Figure 3.10: Procedures of User-wise ESVD

68

Table 3.5: Experimental datasets

Dataset Size Number of ratings Density

MI 6040× 263 59005 3.72%

MU 401× 3952 70923 4.46%

NI 6800× 500 105444 3.10%

NU 955× 3561 110818 3.26%

3.5.3 Experimental Results

To emphasize the benefits of the proposed IESVD and UESVD approaches, the

following two subsets are extracted from Movielens 1M to make the size similar to

the Movielens 100K dataset in the experiments:

1. MI (6040 × 263): This dataset contains ratings of 263 movies which are ran-

domly selected from 3,952 movies provided by 6,040 users.

2. MU (401 × 3952): This dataset contains ratings of 3,952 movies provided by

401 users which are randomly selected from 6,040 users.

Likewise, the following two subsets are also extracted from the original Netflix

dataset to make the size equal to the Netflix subset for comparative purpose.

1. NI (6800×500): This dataset contains ratings of randomly selected 500 movies

provided by 6,800 users.

2. NU (955 × 3561): This dataset contains ratings of randomly selected 3,561

movies provided by 955 users.

Experiments of the proposed IESVD, UESVD approaches are conducted on the

Movielens 1M subsets MI, MU and Netflix subsets NI, NU where the details are

shown in Table 3.5.

Table 3.6 to Table 3.9 show some experimental details of proposed methods

on the datasets including the number of selected items and users (N=N ’=10% for

the Movielens 1M subsets MI, MU and N = N′ = 5% for the Netflix subsets NI,

69

Table 3.6: Comparison of the proposed methods on MI (6040× 263)

N =10% Block Density Extra Ratings RMSE (Best)

RSVD null null 1.0432

ESVD 53.80% 7255 1.0286

IESVD 56.58% 6818 1.0235

UESVD 54.64% 7123 1.0246

Table 3.7: Comparison of the proposed methods on MU (401× 3952)

N =10% Block Density Extra Ratings RMSE (Best)

RSVD null null 0.9898

ESVD 57.52% 6712 0.9791

IESVD 58.52% 6554 0.9749

UESVD 58.80% 6509 0.9802

NU), the density of sub-matrix, the number of added ratings and the results of

different algorithms on corresponding datasets.

Specifically, different sub-matrices are first created by following different s-

trategies. It can be observed that for the datasets of which the number of users is

far greater than the number of items (for datasets MI and NI), IESVD could obtain

denser sub-matrices. While for datasets which contain more items than users (for

datasets MU and NU), the density of sub-matrices based on UESVD are greater.

However, the number of extra ratings predicted from denser sub-matrix is less than

the one that are predicted from sparser sub-matrix. Therefore, it is inappropriate

to compare the results of different algorithms based on the certain number of items

and users N. As the result, the best performance (with least RMSE) of proposed

algorithms are directly listed based on best choices of N (setting N = N′).

Table 3.8: Comparison of the proposed methods on NI (6800× 500)

N =5% Block Density Extra Ratings RMSE (Best)

RSVD null null 0.9620

ESVD 59.31% 3459 0.9567

IESVD 66.36% 2859 0.9552

UESVD 61.08% 3308 0.9560

70

Table 3.9: Comparison of the proposed methods on NU (955× 3561)

N =5% Block Density Extra Ratings RMSE (Best)

RSVD null null 0.9439

ESVD 62.54% 2038 0.9400

IESVD 68.18% 1717 0.9392

UESVD 68.79% 1684 0.9376

Figure 3.11 to Figure 3.14 show the resulting performance (RMSE) of the

proposed methods based on how many items and users (setting N = N′) are selected

in the sub-matrix on MI, MU, NI, NU datasets, respectively. As it can be seen

from figures that all the algorithms start from zero point where no extra ratings are

added into the original matrix, which can be seen as the special case of RSVD for

comparison. As the number of items and users selected in the sub-matrix N goes

up, the performance fluctuates. When N is getting large, excessive ratings distort

the model and deteriorate the performance. Therefore the best choices of N that

lead to the least RMSE are compared. It can be observed that when dealing with

the datasets MI and NI where the number of user is far greater than the number

of items, IESVD yields denser sub-matrix than the UESVD method. When the

datasets contain more items than users (MU, NU), UESVD performs better than

IESVD.

71

0% 5% 10% 15% 20% 25% 30%

the percentage of items and users selected in the block matrix

1.02

1.03

1.04

1.05

1.06

1.07

1.08

R
M

S
E

IESVD
UESVD
ESVD

Figure 3.11: RMSE of the proposed methods on MI (6040× 263)

0% 5% 10% 15% 20% 25% 30%

the percentage of items and users selected in the block matrix

0.975

0.98

0.985

0.99

R
M

S
E

IESVD
UESVD
ESVD

Figure 3.12: RMSE of the proposed methods on MU (401× 3952)

72

0% 5% 10% 15% 20% 25% 30%

the percentage of items and users selected in the block matrix

0.955

0.96

0.965

R
M

S
E

IESVD
UESVD
ESVD

Figure 3.13: RMSE of the proposed methods on NI (6800× 500)

0% 5% 10% 15% 20% 25% 30%

the percentage of items and users selected in the block matrix

0.94

0.945

0.95

R
M

S
E

IESVD
UESVD
ESVD

Figure 3.14: RMSE of the proposed methods on NU (955× 3561)

73

3.6 Summary

The lack of information is an acute challenge in most recommender systems. In

this chapter, a series of methods are proposed which apply the traditional matrix

factorization method with ratings completion that best approximates a given matrix

with missing values.

Figure 3.15: The proposed ESVD and its variants

Specifically, the general EVSD model is firstly proposed by combining the

proposed item-oriented approach and user-oriented approach that inspired by active

learning. The corresponding experimental results show its benefits in prediction

accuracy. Then this general framework can be incorporated with different SVD-

based algorithms such as SVD++ by proposing the ESVD++ method. The proposed

EVSD model is further explored by presenting the MESVD approach, which learns

the model iteratively. This MESVD approach achieves better performance than

ESVD but in sacrifice of training time. In addition, two variants of ESVD model are

proposed: IESVD and UESVD. Although the IESVD and UESVD approaches can

74

not be learnt through multilayer learning strategy like MESVD, their performance

are better than ESVD for handling the imbalanced datasets that contains more

users than items or more items than users, respectively.

Instead of viewing active learning from the individual user’s point of view,

the proposed methods deal with the problem from the system’s perspective. Also,

they tackle the problem of active learning of which the query process is costly

and unrealistic. Although the proposed methods cannot deal with the cold start

problem where the database keeps growing as new users or items continue to be

added, it does reduce the computational cost greatly since all the ratings are added

simultaneously (ESVD, IESVD and UESVD) or iteratively by a predefined number

of times (MESVD).

75

Chapter 4

A Generalized Framework of

System-Driven Active Learning

in Collaborative Filtering

Recommender Systems

4.1 Problem Statement and Motivation

Collaborative filtering recommender systems predict other items that users might

like based on the knowledge of preferences (usually expressed in ratings) of users

for some items. The performance of collaborative filtering recommender systems,

given a certain amount of ratings, depends on prediction algorithms. There are t-

wo primary prediction algorithms to deal with collaborative filtering: neighborhood

approaches (memory-based algorithms) and latent factor models (model-based algo-

rithms). Neighborhood methods [50] concentrate on the relationship between items

or users, so they are good at detecting localized relationships. By transforming both

items and users to the same latent space, latent factor models try to explain ratings

76

by items and users, aiming at making them directly comparable. Generally, matrix

factorization, as one of the most successful realizations of latent factor models, can

produce better accuracy than classic nearest neighbor methods when dealing with

product recommendations because of the incorporation of additional information

such as implicit feedback and temporal effects [36].

Apart from prediction algorithms, the performance of collaborative filtering

recommender systems also rely on the knowledge (e.g. ratings) that users provided

regarding items. Especially during sign-up process, the systems usually find diffi-

culties in making recommendations for users who were recently introduced into the

systems. To overcome this issue (cold start problem [160]), some systems would

first ask users to rate a given set of items for better recommendations. However,

obtaining information from users is costly since users are often unwilling to rate a

large amount of items. Therefore active learning for collaborative filtering is pro-

posed to acquire high quality data that help most in representing the interests of the

users. To achieve this purpose, the system requests the user to rate specific items

based on certain strategies or criteria. The ultimate goal is to get the maximized

error reduction with the least queries for the target user. In summary, traditional

active learning for collaborative filtering is a set of techniques that select a number

of items to rate, so as to improve the rating prediction for the user. On the other

hand, Carenini et al. [21] proposed an item-focused method that elicits ratings by

choosing some special users to rate a specific item in order to improve the rating

prediction for this item.

However, traditional active learning methods [21] [128] [129] [131] only evalu-

ate each user or item independently and only consider the benefits of the elicitations

to new users or items, but pay less attention to the effects of the system. In addition,

ratings were added one by one per request [129] or user’s by user’s per request [131],

which incurs high computational cost. In this chapter, a novel generalized frame-

work is proposed for applying active learning in recommender systems. Specifically,

77

the elicitations of the past users are focused instead of the new users, and a more

general scenario, where users repeatedly come back to the system instead of only

during the sign-up process, is considered. Furthermore, in the proposed framework,

the ratings are elicited simultaneously based on the criteria with regard to both

items and users, for the purpose of improving the performance of the whole sys-

tem. In addition, a variety of active learning strategies are tested on the proposed

framework based on the matrix factorization method and finally has shown that

this framework can be expanded to the conventional active learning with specific

settings.

4.2 Traditional Active Learning in Collaborative Filter-

ing

Most recommender systems suffer from the cold start problem: when a new user

comes in, the recommender system has little knowledge about the user. Therefore

it is difficult to provide proper suggestions given the circumstance. To tackle this

issue, active learning was proposed by asking users to rate a set of preselected items

during the enrollment stage [161].

In the early work of [115], Merialdo et al. first proposed to use Entropy and

Variance as active learning strategies for rating elicitation, and showed that through

this smart selection the recommender system achieves better performance for a

certain amount of ratings required from the user, or reduce the amount of elicitations

to achieve the given performance when compared with random selection based on the

neighbourhood algorithms [49]. Rashild et al. [20] extended this work by introducing

and comparing six strategies: the Entropy strategy selects items with the largest

entropy; the Random strategy, which selects items to present randomly with uniform

probability over all the items; the Popularity strategy where items with the largest

number of ratings are preferred; the Popularity*Entropy strategy, which considers

78

both popularity and entropy; the Log(Popularity*Entropy) strategy, which takes the

log of the ratings that linearized popularity, making it a better match for entropy;

and the Item-Item Personalized strategy, which presents movies using any strategies

until the user has given at least one rating, then selects items that the user is likely

to have seen by computing similarity between items. All the strategies were also

tested based on the neighbourhood models [49] and the Log(Popularity*Entropy)

strategy was found to be the best for reducing the Mean Absolute Error (MAE)

of predictions regarding the new users. Later in [117], the same authors further

explored their work of [20] by proposing three strategies. The Entropy0 strategy

is an extension of the Entropy strategy, where the missing values are considered to

be 0 as a single category. The Harmonic mean of Entropy and Logarithm of rating

Frequency (HELF) strategy is for finding items that are familiar with others and

with high variability. The Information Gain through Clustered Neighbours (IGCN)

strategy was proposed based on decision trees where each node is labelled by a

particular item. Users are clustered into groups with similar profiles and items

with the largest information gain by considering all users or neighbors in the same

cluster are elicited in different stages. They focused on the elicitation strategies

for the completely new users, and the performance was evaluated only on these

new users by neighbourhood algorithms [49]. In contrast, this work concentrates on

the rating elicitation for users who pre-entered into the systems, and evaluate the

performance of the whole system by the matrix factorization method.

Carenini et al. [21] pointed it out that users can give elicitations whenever she

or he is motivated, therefore they presented the Conversational and Collaborative

Interaction model where ratings could be elicited from both new users and existing

users. The authors also proposed the item-focused approach that elicits ratings to

improve the rating prediction for a specific item. However, they only utilized the

popularity-based and entropy-based strategies for items or users seperately and the

performance was evaluated on specific users or items who has elicitations, respec-

79

tively. In contrast, this work tests a variety of strategies simultaneously for both

items and users in the system-wide perspective.

Later in [120], Golbandi et al. introduced the Coverage strategy. It select-

s items with the largest coverage, which is defined as the total number of users

who co-rated both the selected item and any other items. In addition, GreedyEx-

tend strategy was proposed, where the items that minimize the RMSE of the pre-

dictions on the training set are selected. Furthermore, they also presented the

Squrt(Popularity)*Variance strategy that finds items with diverse and a large num-

ber of ratings. And finally the Voting strategy, which considers the overall effect

of previous methods, was also proposed by the same authors [120]. In their works,

ratings were only elicited one by one for each user or user by user. Again they

only tested the improvements of prediction accuracy for particular users who have

elicited ratings. In my experiments, ratings are elicited simultaneously, and the

performance is evaluated based on the whole systems.

4.3 The System-Driven Active Learning in Collabora-

tive Filtering

Most early works on active learning in collaborative filtering implemented different

elicitation strategies based on the classic machine learning methods such as neigh-

bourhood methods [115] [117] or Bayesian learning based aspect models [128] [129].

Recently matrix factorization methods [36] have been widely used and achieved

promising prediction accuracy in recommender systems. Matrix factorization meth-

ods have also been explored in active learning scenarios such as [130] and [162].

However, these works still concentrated on the elicitation strategies for new users

only.

80

4.3.1 The Proposed Generalized Framework

In more recent work of [131], Elahi et al. proposed that the rating elicitations of

users not only improve the prediction of the target user but also help the system

to give suggestions for other users. They evaluated active learning strategies in the

system-wide perspective to test how different elicitation strategies for users affect

the performance of the whole system. In their work they simply utilized the matrix

factorization method as the prediction algorithm to show that elicited rating has

effects across the system based on their experimental results, but fails to build

connections between them.

Actually the elicitation of the system-wide effects is not applicable to all

the scenarios. For example, in classic item-based neighbourhood method [49], an

elicited rating of an item can only affect the prediction of its neighbours. As rating

matrices are often extremely sparse, most items have no correlation to the elicited

items, therefore the elicitation cannot influence the recommendations of the users

who have not rated elicited items.

The rationale of system-wide effectiveness is that matrix factorization meth-

ods decompose the rating matrix in the products of two side matrices which consist

of feature vectors corresponding to items and users. Therefore each user’s rating is

composed of the sum of preferences about the various latent factors of that item.

Since the parameters (latent factors) of the model are learnt by fitting a limited

number of existing ratings (details can be found in Section 3.2.1), each elicitation of

ratings would inevitably affect the parameters learning in the matrix factorization

models, and further influence the predictions of all the users in the system.

In previous works, active learning strategies were only implemented as crite-

ria for selecting specific items for each user. In other words, the elicitation has no

limitations for users. In fact, each user may act differently when asked to provide

ratings. There are two metrics that are usually taken into consideration in active

learning scenarios. The first one is the number of elicited ratings, which depends

81

on whether the user will give ratings to the queried items or not. For example

in movie recommendation scenarios, though the active users who are enthusiastic

about movies may watch far more than the ones who are not into movies, there still

exist some movies the users have watched but not yet rated. Therefore, it is easier

to accept that active users have high possibility to give ratings to the movies when

asked to, but little chance for the users who had no interest in providing ratings

(with a small number of ratings in the data set). The second consideration is the

quality of the elicitations. For example, the elicitations of the users who used to

give nearly even ratings or extremely random ratings for items have little or even

negative effects on helping rating predictions. Therefore, querying the critical users

who take it seriously for rating elicitation would be preferred.

Algorithm 4.1 The Proposed System-Driven Active Learning Framework

Input: A set of elements κ in the rating matrix that have been assigned values;
a set of ratings φ that are known by the users; a test set τ which consists of a
number of ratings that are supposed to be predicted by the system; Predefined
itertation time K;

Output: Evaluation (often measured by RMSE, MAE, etc.) of the test set τ ;
In each iteration:
Step 1: Select a set of ratings χ1 ∈ τ based on a predefined item selection
criterion (active learning strategy);
Step 2: Select a set of ratings χ2 ∈ τ based on a predefined user selection criterion
(active learning strategy);
Step 3: Only the ratings that are both selected from Step 1 and Step 2 are
considered as elicitations, in this case χ3 = χ1 ∩ χ2;
Step 4: Add the selected rating (or ratings) from Step 3 into the training set,
therefore κ = {κ, χ3};
Step 6: Remove the selected ratings χ3 from the learning set φ;
Step 7: Train the prediction model (matrix factorization in this case) based on
the updated training set κ;
Step 8: Evaluate the predictions in test set τ based on the trained prediction
model.
Step 9: Repeat Step 1 to Step 8 for K times;

A system-driven active learning is proposed in Algorithm 4.1 which incor-

porates a conventional user-focused active learning with the items-focused active

learning, trying to improve the performance of the whole system based on the ma-

82

trix factorization method. Traditional active learning elicit ratings based on differ-

ent item selection strategies for each user. In contrast, the ratings in the proposed

framework are not only elicited based on the traditional item selection strategy, but

also need to fulfill the user selection strategy. Therefore, in each iteration only the

intersections of the elicited ratings that are both selected based on the item selec-

tion criterion and user selection criterion are elicited from the learning set to the

training set (Step 1 to Step 6). In this case, the system will only query the qualified

users for rating elicitations on specific items. Since the ratings of users are used as

a source of information for picking candidates, the elicitation process is only for the

users who have entered the system. It is based on the assumption that past users

would repeatedly come back to the system for receiving recommendations, and give

elicitations when the system queries. Also, elicitations must take into consideration

that users are willing or not to answer such queries. For example, if an user has not

watched queried movies, he or she is not able to provide the rating for this movie.

Therefore, only the ratings known by the user (in the learning set) are elicited. In

each iteration new ratings are added from the learning set in the training set based

on the different elicitation strategies (which will be introduced in next section). In-

stead of evaluating only the new users in the traditional active learning, the benefits

to the system are considered by evaluating all the users in the systems (test set).

Most users are interested to see the response (e.g. changes) of recommen-

dations immediately in the process of eliciting, which would stimulate them to give

more ratings in turn. For this reason, many traditional active learning algorithms

are implemented by sequential learning where all the ratings are elicited incremen-

tally based on a certain elicitation strategy. Therefore, the model is re-trained and

the elicitation strategy is updated whenever the rating is added. As a result, the

system would generate more appropriate recommendations for user. However, se-

quential learning is not practical since retraining the model for each rating is very

time consuming. Therefore, batch learning is often used by readjusting the model

83

after users have elicited several items.

In this work, traditional user-focused active learning is incorporated with

item-focused active learning. Therefore, ratings are selected as the intersections

of two rating sets with the user selection criteria and the item selection criteria,

respectively. As a result, a batch of ratings, in most cases, will be elicited simulta-

neously. The second consideration is that, the benefits of elicitations is evaluated to

all the user (system-wide), while a single elicitation only produces trivial effect on

the performance of the whole system. Therefore, the experiments are implemented

by batch learning.

4.3.2 Active Learning Strategies

An active learning strategy in collaborative filtering is the procedure for selecting

which items to present to the user for rating elicitation. Several traditional active

learning strategies [131] [117] [20] [120] [19] have been proposed and evaluated in

the collaborative filtering recommender systems. In this work, a novel approach

is proposed which incorporates the user selection criteria into the tradition active

learning which only focuses on the way to selecting items. Based on this framework,

strategies which are applicable to both items and users that will contribute to the

improvement of the system performance need to be identified. These strategies can

be divided into two categories: single-heuristic or combined-heuristic, depending on

whether the strategy takes into account a single criterion or combines a number of

criteria.

4.3.2.1 Single-Heuristic strategies

Single-heuristic strategies are based on one heuristic by utilizing the unique selection

rule for both items and users.

- Random [20]: selects items or users to present randomly with uniform proba-

bility over all the items or users, which can be regarded as the baseline strategy

84

for comparison.

- Frequency [20]: items or users with the largest number of ratings are preferred.

The more ratings an item has been rated, the more popular this item is.

Therefore, it is more likely that a user is able to give ratings to popular items.

As for users, it is also easy to accept that active users who used to be interested

in rating items are more likely to give more ratings when the system queries.

However, frequency-based methods elicit ratings regarding the popular items

and the active users will lead to corresponding items and users more popular

and active in the system, respectively.

- Variance [20]: selects items or users with the largest variance for eliciting.

The variance of an item is calculated as:

Variance(i) =
1

|Ui|
∑
u∈Ui

p(rui − r̄i)
2

(4.1)

where r̄i is the mean ratings of item i, and Ui is the set of users who rated this

item. p is the probability mass function.

Variance is maximized when ratings deviate the most from mean ratings. This

strategy is based on the assumption that the system is supposed to be uncer-

tain about the items with diverse ratings which represent the preferences of

users. Therefore the items with the largest variance are preferred for reducing

the certainty of the system. The users with the largest variance are supposed

to give their opinions discriminatively, who are also preferred.

- Entropy [20]: selects items or users with the largest entropy which are consid-

ered to be informative. Entropy is computed by using the relative frequency

of each of the five possible ratings (1-5).

Entropy(i) = −
5∑

k=1

p(ri = k)log(p(ri = k)) (4.2)

85

where p(ri = k) is the probability that a user rate the item i as k.

It measures the dispersion of the ratings a user has rated or the item has

been rated, and is maximized when all the ratings are equally likely. However

the Entropy strategy has the tendency to choose unpopular items or inactive

users since items or users with only few ratings may result in large entropy,

especially in extremely sparse rating matrices.

- Entropy0 [117]: tackles the problem of the Entropy strategy that tends to

select unpopular items or inactive users by assigning all the missing ratings to

0. Therefore, the unpopular items or the inactive users with few ratings will

result in small entropy, which are not taken into consideration by this strategy.

Entropy0(i) = −
5∑

k=0

p(ri = k)log(p(ri = k)) (4.3)

4.3.2.2 Combined-Heuristic strategies

Combined-heuristic strategies implement multiple selection rules for items and users

by aggregating and combining a number of single-heuristic strategies, in order to

achieve a range of objectives.

- Log(Frequency)*Entropy : considers both frequency and entropy, trying to col-

lect a large number of ratings with rich informativeness for items or users.

This strategy takes the log of the ratings that linearizes frequency, making it

a better match for entropy.

- Sqrt(Frequency)*Variance: amplifies variance by multiplying it with the square

root of the item or user frequency, trying to find items or users with diverse

and a large number of ratings.

- Coverage [120]: selects the items or the users with the largest coverage.

86

Suppose R ∈ Rm×n is the rating matrix of m users and n items. The coverage

of an item i is calculated as:

Coverage(i) =

n∑
j=1

Iij (4.4)

where Iij is the number of users who have rated both item i and item j.

This strategy captures the items highly co-rated by users or the users that have

the most co-rated items based on the assumption that eliciting their ratings

may improve the prediction accuracy for the other items or users.

- HELF [117]: stands for Harmonic mean of Entropy and Logarithm of rating

Frequency, which is defined as:

HELF(i) =
2× LF (i)×H(i)

LF (i) +H(i)
(4.5)

where LF(i) is the normalized logarithm of the rating frequency and H(i) is

the normalized entropy of the item or user i.

This strategy takes both entropy and frequency into consideration by using the

harmonic mean (harmonic mean is high when both factors are high), trying

to select informative items or users that also have a large number of ratings.

4.4 Evaluations of the Proposed Framework

4.4.1 Datasets and Experimental Setup

Experiments are conducted on the classic recommender system datasets: Movielens

100K and the subset of the Netflix. Some experiments with the larger version are

also performed and obtained similar results. However, it requires much longer time

to perform the experiments since the model is trained and tested in each iteration as

more ratings are being elicited. Therefore, the smaller datasets Movielens 100K and

87

the subset of the original Netflix are focused to be able to run more experiments, in

order to explore how rating elicitations affect the performance of the whole system.

For both datasets all the known ratings are partitioned randomly into three

sets:

- Training set: contains 20% of the ratings, which are considered as known

by the system. The ratings in this dataset are used for training the matrix

factorization model in each iteration in the active learning process.

- Learning set: contains 60% of the ratings, which are regarded as known by

the users but not known by the system. Therefore the ratings in this dataset

are elicited incrementally to the training set if the system queries.

- Test set: contains 20% of the ratings that are used to evaluate the elicitation

strategies.

In the experiments the number of queried items and users are set to be from

0% to 100% with 1% increase (simply setting items equal users in percentage) in

each iteration based on different strategies. Therefore the number of iterations is

101 from the stage of training the model with no elicitation to the stage with all

the elicitations. Then all the ratings in the learning set are elicited incrementally

to the training set, which is utilized for building the matrix factorization model.

The number of latent factors (rank) k are set to be 10 for training the matrix

factorization model [36]. Although increasing it does raise the performance, the

computational cost is proportional to the latent factors. At last, the performance of

system is evaluated by comparing the difference between the predictions from the

model (matrix factorization) and the ground truth in test set, usually measured by

their RMSE.

These settings are based on the assumption that the recommender system

was first built by a small dataset (20%). Afterwards it keeps obtaining ratings by

querying different users about different items based on corresponding strategies. By

88

iteratively acquiring knowledge from elicitations (from 20% to 80%), the system can

generate more precise recommendations.

4.4.2 Performance Analyses

In this section the results of the experiments are presented based on three aspects:

system RMSE evolution, elicited ratings evolution and the quality of elicited ratings.

4.4.2.1 RMSE - Iteration

In the proposed active learning framework, ratings are elicited by querying a set of

users for ratings about certain items iteratively through batch learning. We first

present how the system RMSE is changing with the training dataset keeps acquiring

more and more elicited ratings in each iteration according to the different strategies

based on the proposed framework.

The model is trained by starting from iteration 0 where no rating is elicited

in the system, and finishing at iteration 100 with all the ratings from learning set

added into the system by different strategies, which models users come back to the

system at each iteration. Therefore the same results are obtained from these two

specific points for all the strategies.

From Figure 4.1 and Figure 4.2 it can be observed that the Random strategy

decreases RMSE gradually for both datasets. For the Movielens 100K dataset,

the performance of all the strategies fluctuates significantly in the early stages (as

shown in Figure 4.1). From iteration 16 to 66, the Log(Frequency)*Entropy and

Sqrt(Frequency)*Variance strategies obtain the best performances, while Frequency,

Entropy0 and Coverage generate poor outcomes. After that the best strategies are

overtaken by the Coverage and Entropy0 strategies.

For the Netflix dataset, the performance of most strategies remain relatively

steady at the initial stages (as shown in Figure 4.2). This happens because the

Netflix dataset is much sparser than the Movielens 100K dataset. In the beginning,

89

0 10 20 30 40 50 60 70 80 90 100
the number of iterations

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12
R

M
S

E
Random
Frequency
Variance
Entropy
Entropy0
Log(Frequency)*Entropy
Sqrt(Frequency)*Variance
Coverage
HELF

Figure 4.1: System RMSE evolution based on the learning process on Movielens 100K

0 10 20 30 40 50 60 70 80 90 100
the number of iterations

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

R
M

S
E

Random
Frequency
Variance
Entropy
Entropy0
Log(Frequency)*Entropy
Sqrt(Frequency)*Variance
Coverage
HELF

Figure 4.2: System RMSE evolution based on the learning process on Netflix

90

since queried items and users are few, only a limited number of ratings are elicited,

which produces little effect on the performance of the whole system. The perfor-

mance of the Frequency, Coverage and Entropy0 strategies drop rapidly. While the

RMSE of other strategies remain steady in the first 15 iterations, then start to de-

crease continuously. All the strategies achieve better performance than randomized

selection strategy after iteration 45, then generate similar results after iteration 66.

Entropy0 is considered to be the best strategy for the Netflix dataset.

4.4.2.2 Number of Elicited Ratings - Iteration

The number of elicited ratings varies depending on the type of the elicitation strat-

egy. Through proper strategies more ratings can be obtained by estimating what

items some users have actually experienced and are able to give ratings. A larg-

er number of elicited ratings mean that the target users are willing to answer the

queried items while a small number of elicited ratings may lead to the frustrating

feelings of the users who are not able to rate. Therefore, the number of ratings

elicited in each iteration for different strategies are reported based on the proposed

framework.

Figure 4.3 and Figure 4.4 show the number of ratings that are elicited from

the learning set of the Movielens 100K and Netflix datasets, respectively. As men-

tioned before, in the first several iterations only a small number of ratings are

queried. As a result, the number of elicited ratings increases slowly for both datasets

in the beginning. At the final point all the ratings in the learning sets are elicited.

For the Movielens dataset, the best performing strategy are Frequency, En-

tropy0 and Coverage before the first 30 iterations, since these strategies tend to

select the most popular items with highly co-rated users and active users with high-

ly co-rated items. Then Log(Frequency)*Entropy obtains the largest number of

elicited ratings by combining the frequency and informativeness factors. For the

Netflix dataset, experiments based on Frequency and Entropy0 can acquire more

91

0 10 20 30 40 50 60 70 80 90 100
the number of iterations

0

1

2

3

4

5

6

th
e
 n

u
m

b
e
r

o
f
e
lic

ite
d
 r

a
tin

g
s

×104

Random
Frequency
Variance
Entropy
Entropy0
Log(Frequency)*Entropy
Sqrt(Frequency)*Variance
Coverage
HELF

Figure 4.3: Elicited ratings evolution on Movielens 100K

0 10 20 30 40 50 60 70 80 90 100
the number of iterations

0

1

2

3

4

5

6

7

th
e

 n
u

m
b

e
r

o
f

e
lic

ite
d

 r
a

tin
g

s

×104

Random
Frequency
Variance
Entropy
Entropy0
Log(Frequency)*Entropy
Sqrt(Frequency)*Variance
Coverage
HELF

Figure 4.4: Elicited ratings evolution on Netflix

92

ratings than other strategies by filtering unpopular items and inactive users.

4.4.2.3 RMSE - Number of Elicited Ratings

Since different number of ratings are elicited based on different strategies in each

iteration, it is not appropriate to evaluate each strategy only based on the evolution

of experiments. In most active learning works, the quality of the elicited ratings is

the priority to be concerned since labeling work is costly. In this work the perfor-

mance of all the strategies in terms of prediction error (RMSE) versus the number

of elicited ratings for the Movielens 100K and Netflix datasets are also reported in

Figure 4.5 and Figure 4.6, respectively, in order to find the ratings that minimize

the largest RMSE through certain elicitation strategies.

For the Movielens 100K, the ratings acquired by the Variance, Entropy,

HELF, Log(Frequency)*Entropy and Sqrt(Frequency)*Variance strategies result in

lower RMSE than the Random strategy in most cases. The Frequency, Entropy0

and Coverage strategies generate poor performances than the Random strategy

when the number of elicited ratings is less than 20,000. Beyond the point with more

ratings being elicited, the Entropy0 and Coverage strtegies perform best among all

the strategies.

For the Netflix, all the strategies reduce RMSE gradually with ratings added

into the training set, thus generating similar results to randomized selection strategy.

Most strategies in the early stages still achieve better performance than the Random

strategy, in which the Variance strategy performs best.

The major difference between these two datasets is the sparsity: the Movie-

lens 100K dataset contains 6.3% of the possible ratings, and the Netflix dataset

only contains 3.1% ratings. Since applying strategies has less effects on the spars-

er dataset, the performances are similar to the Random strategy for the Netflix

dataset.

93

0 1 2 3 4 5 6
the number of elicited ratings ×104

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12
R

M
S

E
Random
Frequency
Variance
Entropy
Entropy0
Log(Frequency)*Entropy
Sqrt(Frequency)*Variance
Coverage
HELF

Figure 4.5: System RMSE evolution versus the number of elicited ratings on Movielens
100K

0 1 2 3 4 5 6 7
the number of elicited ratings ×104

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

R
M

S
E

Random
Frequency
Variance
Entropy
Entropy0
Log(Frequency)*Entropy
Sqrt(Frequency)*Variance
Coverage
HELF

Figure 4.6: System RMSE evolution versus the number of elicited ratings on Netflix

94

4.4.3 Comparison with Traditional Active Learning

In the proposed framework, the system queries ratings by incorporating the user

selection strategies into the traditional item selection strategies. Hence the ratings

are elicited for certain items only by certain users based on different strategies

iteratively. Recall that the traditional active learning [117] [124] [131] is a set of

techniques that elicited ratings for each user. Therefore it can be regarded as a

special case when the user selection criteria are loose to all the users. In this section

experiments are also conducted by setting the user strategies as all the users for

comparison. Specifically, the number of selected items is from 1% to 100% with a

1% step in each iteration. The number of selected users is 100% in each iteration,

meaning that all the users are queried for selected items based on different strategies.

In the experiments of the proposed framework, the ratings are elicited by

querying only a set of users about certain items (both from 1% to 100%)s. The

number of the elicitations in each iteration depends on the number of mappings of

the learning set. Therefore, it is not appropriate to compare the number of elicited

ratings or the system performance in each iteration of these two approaches. Since

the quality of elicitations (i.e. ratings that lower the largest RMSE) is the priority

concern in most recommender systems, experiments are conducted by comparing

the system performance (RMSE) against the number of elicited ratings for both

algorithms (combined selection vs item selection).

Figure 4.7 shows the system performance in terms of RMSE is relating

to the elicited ratings for different strategies (Frequency, Variance, Entropy, En-

tropy0, Log(Frequency)*Entropy, Sqrt(Frequency)*Variance, Coverage and HELF)

using the Movielens 100K dataset. Specifically, the proposed method produces

worse performances than the traditional active learning [131] (only apply the item

selection strategy) at the initial stages in terms of Frequency, Entropy0 and Cover-

age. This occurs because these strategies tend to select items with a large number of

ratings. Incorporating this property into the user selection strategy will accelerate

95

0 1 2 3 4 5 6
the number of elicited ratings ×104

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

R
M

S
E

Based on Frequency

Traditional Active Learning
Proposed Method

0 1 2 3 4 5 6
the number of elicited ratings ×104

0.95

1

1.05

1.1

R
M

S
E

Based on Variance

Traditional Active Learning
Proposed Method

0 1 2 3 4 5 6
the number of elicited ratings ×104

0.95

1

1.05

1.1

R
M

S
E

Based on Entropy

Traditional Active Learning
Proposed Method

0 1 2 3 4 5 6
the number of elicited ratings ×104

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

R
M

S
E

Based on Entropy0

Traditional Active Learning
Proposed Method

0 1 2 3 4 5 6
the number of elicited ratings ×104

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

R
M

S
E

Based on Log(Frequency)*Entropy

Traditional Active Learning
Proposed Method

0 1 2 3 4 5 6
the number of elicited ratings ×104

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

R
M

S
E

Based on Sqrt(Frequency)*Variance

Traditional Active Learning
Proposed Method

0 1 2 3 4 5 6
the number of elicited ratings ×104

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

R
M

S
E

Based on Coverage

Traditional Active Learning
Proposed Method

0 1 2 3 4 5 6
the number of elicited ratings ×104

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

R
M

S
E

Based on HELF

Traditional Active Learning
Proposed Method

Figure 4.7: System RMSE comparison on Movielens 100K

96

0 1 2 3 4 5 6 7
the number of elicited ratings ×104

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

R
M

S
E

Based on Frequency

Traditional Active Learning
Proposed Method

0 1 2 3 4 5 6 7
the number of elicited ratings ×104

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

R
M

S
E

Based on Variance

Traditional Active Learning
Proposed Method

0 1 2 3 4 5 6 7
the number of elicited ratings ×104

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

R
M

S
E

Based on Entropy

Traditional Active Learning
Proposed Method

0 1 2 3 4 5 6 7
the number of elicited ratings ×104

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

R
M

S
E

Based on Entropy0

Traditional Active Learning
Proposed Method

0 1 2 3 4 5 6 7
the number of elicited ratings ×104

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

R
M

S
E

Based on Log(Frequency)*Entropy

Traditional Active Learning
Proposed Method

0 1 2 3 4 5 6 7
the number of elicited ratings ×104

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

R
M

S
E

Based on Sqrt(Frequency)*Variance

Traditional Active Learning
Proposed Method

0 1 2 3 4 5 6 7
the number of elicited ratings ×104

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

R
M

S
E

Based on Coverage

Traditional Active Learning
Proposed Method

0 1 2 3 4 5 6 7
the number of elicited ratings ×104

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

R
M

S
E

Based on HELF

Traditional Active Learning
Proposed Method

Figure 4.8: System RMSE comparison on Netflix

97

the selection bias, which may negatively affect the system performance. For the

Variance, Entropy, Log(Frequency)*Entropy, Sqrt(Frequency)*Variance and HELF

strategies, the proposed method outperforms the traditional approach by incorpo-

rating more informative and diverse ratings through specific user selection.

The experiments on the Netflix dataset are shown in Figure 4.8. Compared

with the Movielens 100K dataset using the Frequency, Entropy0 and Coverage s-

trategies deteriorate the system performance, the Netflix dataset reduces the effect

of selection bias with extreme sparsity. Although adding user selection criterion

has little effects on the Netflix dataset since it is much sparser than the Movielen-

s dataset, it is apparent that all the strategies based on the proposed framework

achieve better performance in the early stages than the ones based on only item

selection strategies.

4.5 Summary

Sparsity is a common problem in relating to recommender systems, and the pre-

diction algorithms would fail to give proper suggestions to users without sufficient

data. To address this issue, active learning methods are widely used by eliciting

ratings from users. In this chapter, a novel generalized active learning framework

is proposed which effectively elicits ratings from users for the purpose of improving

the performance of the whole system. In addition, it saves computational cost by

eliciting multiple ratings simultaneously through batch learning, when compared

with traditional active learning algorithms.

The proposed framework is evaluated based on the various strategies in terms

of the system performance evolution, the number of acquired ratings and the qual-

ity of elicitation. The evaluation has shown that different strategies can improve

different aspects of the recommender system in different stages for different datasets.

Finally, the framework has been expanded to conventional active learning

98

with specific settings (no limitation for users), corresponding experiments including

comparisons with the proposed framework are also conducted. The experimental

results have shown that the proposed framework could achieve better performance

based on certain strategies by taking extra information (users’ ratings) into consid-

eration.

However, this method (without specific settings) cannot deal with the cold

start problem where the database keeps growing as new users or items continue

to be added, since past ratings regarding users and items are used as a source of

information.

99

Chapter 5

Active Learning in

Cross-Domain Collaborative

Filtering for Sparsity Reduction

5.1 Problem Statement and Motivation

Collaborative filtering is an effective recommender system approach that predicts a

user’s preferences (ratings) on an item based on the previous preferences of other

users. The performance of collaborative filtering suffers from the sparsity problem

since each user in the system typically rates very few times and hence the rating

matrix is extremely sparse. Even the best algorithms will fail to generate prop-

er recommendations without sufficient knowledge. In practice, borrowing useful

knowledge from another rating matrix in a different domain may help producing

better recommendations. Fox example, the products in the Movie domain and the

Book domain may have common in genre, therefore it would be useful to make movie

recommendations for a user by exploiting his/her preferences on books from the cor-

responding genre, and vice versa. Therefore, rather than exploiting preferences from

each single domain independently, users’ preferences knowledge could be transferred

100

and shared among related domains. This is referred to as cross-domain recommen-

dation [133]. The goal of cross-domain recommendation is to utilize the knowledge

derived from the auxiliary domain(s) with sufficient ratings to alleviate the data

sparsity in the target domain. A special case of cross-domain recommendation is

multi-domain recommendation [24] that utilizes the shared knowledge across mul-

tiple domains when all domains suffer from the data sparsity problem, to alleviate

the data sparsity in all domains.

Another common way to tackle the data sparsity problem is active learning

[19] [117], in order to acquire high quality data by querying users to rate a given set

of items. The goal is to get the maximized error reduction with the least queries for

users since obtaining information from them is costly. To achieve this purpose, the

system requests the user to rate specific items based on certain criteria, a.k.a. active

learning strategies. In Chapter 4, an active learning framework is proposed, which

incorporates the traditional user-focused active learning with item-focused active

learning, to improve the performance of the whole system. However, this proposed

work and existing research on active learning [120] [131] only applies and evaluates

elicitation strategies on a single-domain scenario.

In this chapter, a novel multi-domain active learning framework is proposed,

which combines active learning with the cross-domain collaborative filtering algo-

rithm in the multi-domain scenarios. A variety of elicitation strategies are evaluated

on the proposed multi-domain active learning framework which elicits ratings based

on the criteria with regard to both items and users, for the purpose of improving the

performance of the whole system, and in which Rating-Matrix Generative Model (R-

MGM) is employed as the cross-domain algorithm that collectively learns different

systems simultaneously. The experiments are carried out among Movielens, Netflix

and Book-Crossing datasets. The results show that the system performance can be

improved further when combining cross-domain collaborative filtering with active

learning algorithms.

101

5.2 Related Work

The proposed work is related to the emerging topic of cross-domain collaborative

filtering. Most existing cross-domain collaborative filtering algorithms require the

overlap between users or items, and try to transfer or aggregate knowledge by merg-

ing user preferences [114], or by mediating user modeling data [138] [139], or by

combining recommendations [141], or by linking domains [143] [144], or by shar-

ing latent features [139] [151]. In contrast, another group of algorithms focused on

transferring rating patterns, such as CBT [152] and RMGM [155] where no overlap

between users or items is needed. CBT is an adaptive method that allows knowl-

edge transferring from the auxiliary domain to the target domain, by building the

codebook as a bridge. Unlike CBT that builds the codebook on a dense auxiliary

domain data, RMGM aggregates all the rating matrices in different domains to ex-

tract the shared rating patterns. RMGM can be seen as the probabilistic version

of CBT for multi-task learning. Therefore, RMGM is employed in this work as the

cross-domain collaborative filtering algorithm for evaluating different active learning

strategies in multi-domain scenario.

Since the elicitation process is applied in the proposed framework, the pro-

posed work is also related to active learning. Specifically, this work evaluates differ-

ent active learning strategies proposed by [20] [117] [120]. In the review work of [121],

Elahi et al. summarized all the elicitation strategies and classified them as person-

alized or non-personalized. Elahi et al. [131] proposed that the rating elicitations

of users not only improve the prediction of the target user but also help the system

to give suggestions for other users. In chapter 4 a generalized system-driven active

learning framework is proposed by incorporating the user-focused with item-focused

active learning strategies. However, all the previous work focused on querying rat-

ings from a single-domain, while in this proposed work a more complicated scenario

is considered by introducing more domains.

102

The work of combining active learning and cross-domain collaborative filter-

ing is quite limited. In the work of [163], Zhao et al. extended previous transfer

learning approaches in a partial entity-corresponding manner and proposed several

entity selection strategies to actively construct entity-correspondences across differ-

ent recommender systems. In their method, the proposed rating elicitation strategies

are based a specific model where partial-correspondence is needed. Although the

cross-domain entity-correspondences are unknown, the mappings between domains

need to be identified at a cost. While in the proposed method a selection of active

learning strategies are evaluated based on the RMGM model where no correspon-

dence is needed. Another major difference is that their algorithm is based on the

cross-domain scenario while this work tries to solve the multi-domain recommen-

dation problem. Zhang et al. [164] proposed an active learning strategy for multi-

domain recommendation based on the global generalization error. For each rating

in the learning set, they estimate the global generalization error as the aggregation

of the generalization error in domain-specific knowledge and the generalization er-

ror in the domain-independent knowledge. Only the ratings with the least global

generalization error are elicited. Their work is based on the assumption that the

ratings in the learning set are known, which may not hold. While in the proposed

framework such assumption is not made, i.e. the ratings requested are not the same

as the ratings acquired. In addition, their active learning strategy elicit only one

rating per request, while this work assumes that the system makes many rating

requests at the same time. Last but not least, they compare the proposed approach

only with the random strategy, while this work studies the performance of several

strategies.

103

5.3 Rating-Matrix Generative Model (RMGM)

This section reviews the RMGM model, which is a cross-domain collaborative

filtering algorithm that allows knowledge-sharing across multiple rating matrices

[155]. Given a set of rating matrices in related domains R = {R(1), ..., R(D)}

(R(t) ∈ Rmt×nt), in which the user set is denoted as Id = {i(d)1 , ..., i
(d)
nd }, the item

set is denoted as Jd = {j(d)1 , ..., j
(d)
md} and the rating data is denoted as Rd =

{(i(d)1 , j
(d)
1 , r

(d)
1), ..., (i

(d)
sd , j

(d)
sd , r

(d)
sd)} in the d-th domain. The task of is to learn a

RMGM for the given related tasks on the pooled rating data and predict missing

values in all domains.

RMGM assumes that users/items can simultaneously belong to multiple

clusters since users may have multiple personalities and items may have multi-

ple attributes. RMGM establishes a cluster-level rating-pattern representation as

a ’bridge’ to connect all the domains, based on the assumption that latent correla-

tions may exist between preferences of group of users for group of items (such as

users’ interests for item genre). Suppose there are K user clusters {c(1)U , ..., c
(K)
U }

and L item clusters {c(1)V , ..., c
(L)
V } in the cluster-level rating patterns, the marginal

distributions for user i and item j are:

PU (i) =
∑
k

P (c
(k)
U)P (i|c(k)U) (5.1)

PV(j) =
∑
l

P (c
(l)
V)P (j|c(l)V) (5.2)

Then the ratings can be drawn from the user and the item mixture models

(User-Item Joint Mixture Model):

(i
(d)
t , j

(d)
t) ∼

∑
kl

P (c
(k)
U)P (c

(l)
V)P (i|c(k)U)P (j|c(l)V) (5.3)

In addition, the ratings also can be drawn from the conditional distributions

104

given the latent cluster variables (Cluster-Level Rating Model):

r
(d)
t ∼ P (r|c(k)U , c

(l)
V) (5.4)

Combining Equation 5.3 and 5.4 gives Rating Matrix Generative Model (RMGM).

For training the RMGM, five sets of parameters in RMGM need to be

learnt: P (c
(k)
U), P (c

(l)
V), P (i|c(k)U), P (j|c(l)V), and P (r|c(k)U , c

(l)
V) (for k = 1, ...,K; l =

1, ..., L; i ∈ ∪dUd; j ∈ ∪dVd, r ∈ R).

Expectation Maximization (EM) algorithm is adopted for RMGM training.

Specifically, in the E-step: the joint posterior probability P (c
(k)
U , c

(l)
V |i

(d)
t , j

(d)
t , r

(d)
t) is

computed using the five sets of parameters. In the M-step: the five sets of parameters

for D given tasks are updated based on P (c
(k)
U , c

(l)
V |i

(d)
t , j

(d)
t , r

(d)
t). By alternating

E-step and M-step, an RMGM model which fits the given multiple tasks can be

obtained.

To predict missing values for an existing user, the rating function can be

generated by:

fR(i
(d)
t , j

(d)
t) =

∑
r

rP (r|i(d)t , j
(d)
t)

=
∑
r

r
∑
kl

P (r|c(k)U , c
(l)
V)P (c

(k)
U , c

(l)
V |i

(d)
t , j

(d)
t)

=
∑
r

r
∑
kl

P (r|c(k)U , c
(l)
V)P (c

(k)
U |i

(d)
t)P (c

(l)
V |j

(d)
t)

(5.5)

where P (c
(k)
U |i

(d)
t) and P (c

(l)
V |j

(d)
t) can be computed using the learned parameters

based on Bayes rule.

To predict the ratings for a new user, a quadratic optimization problem can

be solved to estimate the user-cluster membership pi(d) ∈ RK for i(d) based on the

105

given ratings ri(d) :

min
p
i(d)

∥∥[BPJd]Tpi(d) − ri(d)
∥∥2
W

i(d)
, s.t.Pi(d)1 = 1 (5.6)

where Bkl =
∑

r rP (r|c(k)U , c
(l)
V) , [PJd]lt = P (c

(l)
V |j

(d)
t), [Wi(d)]tt = 1 if [ri(d)]t is given,

[Wi(d)]tt = 0 otherwise. After obtaining the optimal user-cluster membership p̃i(d)

for i(d), the ratings of user i(d) on item j
(d)
t can be predicted by:

fR(i
(d)
t , j

(d)
t) = p̃T

i(d)
Bp

j
(d)
t

(5.7)

where p
j
(d)
t

is the t-th column in PJd . Alternatively, the ratings of all the existing

users on a new item can be predicted in the similar way. Overall, all the missing

ratings among all related domains can be obtained by RMGM.

5.4 Active Learning for Multi-Domain Recommenda-

tions

Traditional active learning [120] [128] [129] is a set of techniques that intelligently

elicit ratings for users when a new user comes in. These researches only evaluate

each user independently and only consider the benefits of the elicitations to new

users, but pay less attention to the effects of the system. In Chapter 4 a novel

system-driven active learning framework is proposed for improving the performance

of the whole system. A multi-domain algorithm utilizes the shared knowledge across

multiple domains to alleviate the data sparsity in all domains, in order to improve the

performance of the whole systems in all domains. Therefore, both active learning and

multi-domain collaborative filtering algorithm aim at improving the performance of

the systems when the active learning is considered in multi-domain scenarios.

Based on this assumption, a novel multi-domain active learning framework is

proposed by incorporating active learning with multi-domain collaborative filtering

106

Algorithm 5.1 Multi-Domain Active Learning Framework

Input: Training set κ which is collected from D domains that have been assigned
values; learning set φ (×D) that are known by the users in D domains; test set
τ which consists of a number of ratings in D domains that are supposed to be
predicted by the system; Predefined iteration time K;

Output: Evaluation (often measured by RMSE, MAE, etc.) of the test set τ from
D domains;
In each iteration:
Step 1: Select a set of ratings χ1 ∈ τ (×D) based on a predefined item selection
criterion (active learning strategy) where χ1 = {x(1), ...,x(D)} ;
Step 2: Select a set of ratings χ2 ∈ τ (×D) based on a predefined user selection
criterion (active learning strategy) where χ2 = {y(1), ...,y(D)};
Step 3: Only the ratings that are both selected from Step 1 and Step 2 are
considered as elicitations, in this case χ3 = χ1 ∩ χ2, therefore χ3 = {x(1) ∩
x(1), ...,x(D) ∩ x(D)});
Step 4: Add the selected rating (or ratings) from Step 3 into the training set κ,
therefore κ = {κ, χ3};
Step 6: Remove the selected ratings χ3 from the learning set φ (×D);
Step 7: Train the RMGM based on the updated training set κ;
Step 8: Evaluate the predictions in test set τ based on the trained prediction
model.
Step 9: Repeat Step 1 to Step 8 for K times;

as shown in Algorithm 5.1. Specifically, in multi-domain scenarios, the model is

learnt by aggregating data from all domains, which is referred as the training set.

One of the advantages of the RMGM is that no overlap between items or users

is needed, meaning that no connection of users or items need to be built between

domains. As a result, each elicited rating contributes not only to the domain

it belongs to, but also have an effect on other ones. Thus, active learning can

be utilized for the single-domain, or for multi-domains, i.e. the ratings could be

elicited from the learning set that contains ratings from a single dataset, or from all

the datasets. As mentioned in the proposed active learning framework (in Chapter

4), in each iteration, only users who fulfill the user selection strategy are queried

for ratings only on the items which satisfy the item selection strategy. As a result,

the intersections of the elicited ratings that are both selected based on the item

selection criterion and user selection criterion are elicited from the learning set to

107

the training set (Step 1 to Step 6). The task of RMGM is to alleviate the sparsity in

all domains. Therefore, the model is tested on the dataset (test set) which consists

of ratings from all the datasets.

In the next section, comprehensive evaluations are given for demonstrating

the effectiveness of the proposed framework.

5.5 Evaluations of the Proposed Framework

5.5.1 Datasets and Experimental Setup

As similar to the work of [155], three real-world collaborative filtering datasets are

used for performance evaluation: Movielens, Netflix and Book-Crossing.

Active learning strategies are evaluated on proposed framework in which the

shared model (RMGM) is built on the union of the rating data from these three

dataset. All the known ratings are partitioned randomly into three sets for all three

domains:

- Training set: contains 20% of the ratings, which are considered as known

by the system. The ratings in this dataset are used for training the matrix

factorization model in each iteration in the active learning process.

- Learning set: contains 60% of the ratings, which are regarded as known by

the users but not known by the system. Therefore, the ratings in this dataset

are elicited incrementally to the training set if the system queries.

- Test set: contains 20% of the ratings that are used to evaluate the elicitation

strategies.

In the experiments the number of queried items and users are set to be from

0% to 100% with 1% increase (simply setting items equal users in percentage) in

each iteration based on different strategies. Therefore, the number of iterations is

101 from the stage of training the model with no elicitation to the stage with all

108

the elicitations. Then all the ratings in the learning set are elicited incrementally to

the training set, which is utilized for building the RMGM. Each RMGM follows the

same preprocessing step of [155]: the number of latent user groups shared across

domains is 20, the number of latent item groups shared across domains is 20, while

the EM algorithm iteration number is 50.

At last, the performance of system is evaluated by comparing the difference

between the predictions from the model (RMGM) and the ground truth in test set,

usually measured by their RMSE:

RMSE =

√√√√ ∑
(i,j∈TestSet)

(rij − r̃ij)
2

T
(5.8)

where rij is the rating that the ith user gives to the jth item, r̃ij is the predicted

rating accordingly, and T is the total number of test samples in all domains.

These settings are based on the assumption that all three recommender sys-

tems were first built by small datasets (20%). Afterwards they keep obtaining ratings

by querying different users about different items based on corresponding strategies.

By iteratively acquiring knowledge from elicitations (from 20% to 80%), the systems

could generate more and more precise recommendations and have effect on other

ones.

5.5.2 Evaluation Strategies

A variety of active learning strategies (a.k.a. elicitation criteria) are evaluated based

on the multi-domain active learning framework: Random, Frequency, Variance, En-

tropy, Entropy0, Log(Frequency)*Entropy, Sqrt(Frequency)*Variance, Coverage and

HELF. The details of these strategies can be found in Section 4.3.2.

In addition, four cases are studied by utilizing active learning in different

source domain(s): elicit ratings from each single-domain Movielens, Netflix and

Book-Crossing or multiple domains Movielens+Netflix+Book-Crossing.

109

5.5.3 Performance Analyses

In the proposed active learning framework, ratings are elicited by asking a set of

users about certain items iteratively through batch learning (readjust the model

after eliciting several ratings). Elicitations must take into consideration that users

are willing or not to answer such queries. For example, if an user has not watched

queried movies, he or she is not able to provide the rating for this movie. Therefore,

only the ratings known by the user (in the learning set) are elicited. The number of

acquired ratings represents the ability of active learning strategy to estimate what

item the user has actually experienced and is therefore able to rate. However, this

measure is based on the knowledge of each single-domain, which is not considered

in this work.

This section presents the results of the experiments based on two aspects:

system RMSE evolution in the learning process and the quality of elicited ratings.

5.5.3.1 RMSE - Iteration

Similar to the work of Chapter 4, ratings are elicited by asking a set of users about

certain items iteratively through batch learning based on the proposed framework.

In multi-domain scenario, active learning can be applied in each single-domain or

through multiple domains. The performance of all the strategies are first presented

in terms of prediction error (RMSE) in multi-domain scenario versus the proportion

of queried items and users in each single-domain and multiple domains, which models

the learning process.

Figure 5.1 to 5.4 depict how the RMSE of multi-domain recommender system

(Netflix+Movielens+Book-Crossing) varies as rating elicitations are acquired from

Movielens, Netflix, Book-Crossing, and all three datasets, respectively.

110

0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
the proportion of queried items and users in all domains

1.14

1.15

1.16

1.17

1.18

1.19

1.2

1.21

1.22

1.23

R
M

S
E

Random
Frequency
Variance
Entropy
Entropy0
Log(Frequency)*Entropy
Sqrt(Frequency)*Variance
Coverage
HELF

Figure 5.1: System RMSE evolution on Netflix+Movielens+Book-Crossing with elicitations
from Movielens

0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
the proportion of queried items and users in all domains

1.15

1.16

1.17

1.18

1.19

1.2

1.21

1.22

R
M

S
E

Random
Frequency
Variance
Entropy
Entropy0
Log(Frequency)*Entropy
Sqrt(Frequency)*Variance
Coverage
HELF

Figure 5.2: System RMSE evolution on Netflix+Movielens+Book-Crossing with elicitations
from Netflix

111

0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
the proportion of queried items and users in all domains

1.08

1.1

1.12

1.14

1.16

1.18

1.2

1.22

1.24

R
M

S
E

Random
Frequency
Variance
Entropy
Entropy0
Log(Frequency)*Entropy
Sqrt(Frequency)*Variance
Coverage
HELF

Figure 5.3: System RMSE evolution on Netflix+Movielens+Book-Crossing with elicitations
from Book-Crossing

0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
the proportion of queried items and users in all domains

0.95

1

1.05

1.1

1.15

1.2

1.25

R
M

S
E

Random
Frequency
Variance
Entropy
Entropy0
Log(Frequency)*Entropy
Sqrt(Frequency)*Variance
Coverage
HELF

Figure 5.4: System RMSE evolution on Netflix+Movielens+Book-Crossing with elicitations
from all three datasets

112

Specifically, the performing difference between strategies is very limited dur-

ing the learning process for the case of utilizing active learning only on the Movie-

lens dataset (as shown in Figure 5.1). The Sqrt(Frequency)*Variance strategy is

slightly better than other strategies, while the Frequency, Entropy0 and Coverage

strategies generate poorer prediction accuracy than others. For the experiments

in which active learning is applied on the Netflix and Book-Crossing dataset (Fig-

ure 5.2 and Figure 5.3, respectively), the difference between strategies is obvious:

the Variance,Entropy, Log(Frequency)*Entropy, Sqrt(Frequency)*Variance strate-

gies produce lower RMSE than the Random strategy, while the Frequency, Entropy0

and Coverage strategies are on the opposite.

Since the tendencies of different strategies in each single-domain (Movielens,

Netflix and Book-Crossing) are similar, requesting ratings from all three datasets

will lead to the same results (as shown in Figure 5.4).

Overall, it is apparent that the performance of multi-domain recommender

system is improved by rating elicitations through active learning techniques (lower

the RMSE from the starting point to the end point).

5.5.3.2 RMSE - Number of Elicited Ratings

In real-life scenarios, the users are often reluctant to give ratings when the system

queries frequently, which is against the experimental assumptions. In addition, the

labeling work is costly since it requires human effort, sometimes even lower the

users satisfaction, the quality of the elicited ratings is the priority to be concerned.

Thus, the performance of all the strategies in terms of prediction error (RMSE) in

multi-domain scenario versus the number of elicited ratings in each single-domain

and multiple domains are reported.

As shown from Figure 5.5 to Figure 5.7, the ratings acquired from each single-

domain by the Frequency, Entropy0 and Coverage strategies generate poor perfor-

mance than the Random strategy. Ratings elicited based on the Variance,Entropy,

113

0 0.5 1 1.5 2 2.5 3 3.5
number of elicited ratings ×104

1.14

1.15

1.16

1.17

1.18

1.19

1.2

1.21

1.22

1.23

R
M

S
E

Random
Frequency
Variance
Entropy
Entropy0
Log(Frequency)*Entropy
Sqrt(Frequency)*Variance
Coverage
HELF

Figure 5.5: System RMSE evolution on Netflix+Movielens+Book-Crossing versus the num-
ber of elicited ratings from Movielens

0 2000 4000 6000 8000 10000 12000 14000 16000
number of elicited ratings

1.15

1.16

1.17

1.18

1.19

1.2

1.21

1.22

R
M

S
E

Random
Frequency
Variance
Entropy
Entropy0
Log(Frequency)*Entropy
Sqrt(Frequency)*Variance
Coverage
HELF

Figure 5.6: System RMSE evolution on Netflix+Movielens+Book-Crossing versus the num-
ber of elicited ratings from Netflix

114

0 500 1000 1500 2000 2500 3000
number of elicited ratings

1.08

1.1

1.12

1.14

1.16

1.18

1.2

1.22

1.24

R
M

S
E

Random
Frequency
Variance
Entropy
Entropy0
Log(Frequency)*Entropy
Sqrt(Frequency)*Variance
Coverage
HELF

Figure 5.7: System RMSE evolution on Netflix+Movielens+Book-Crossing versus the num-
ber of elicited ratings from Book-Crossing

0 1 2 3 4 5 6
number of elicited ratings ×104

0.95

1

1.05

1.1

1.15

1.2

1.25

R
M

S
E

Random
Frequency
Variance
Entropy
Entropy0
Log(Frequency)*Entropy
Sqrt(Frequency)*Variance
Coverage
HELF

Figure 5.8: System RMSE evolution on Netflix+Movielens+Book-Crossing versus the num-
ber of elicited ratings from all three datasets

115

Log(Frequency)*Entropy, Sqrt(Frequency)*Variance strategies could obtain lower

RMSE. Aggregating all the elicitation from single-domain, the similar results are

obtained (as shown in Figure 5.8).

The Frequency, Entropy0 and Coverage strategies tend to select users and

items with a large number of ratings, which may contain bias that deteriorates

the cluster-level rating-pattern in RMGM by misleading the user and item in-

to inaccurate clusters. However, the Variance,Entropy, Log(Frequency)*Entropy,

Sqrt(Frequency)*Variance strategies produce promising results by incorporating in-

formative and diverse ratings, which are considered to be suitable for the case of

multi-domain recommender systems in the framework of RMGM.

5.6 Summary

This chapter introduces a new multi-domain active learning framework which incor-

porates the proposed active learning framework with the cross-domain collaborative

filtering algorithm (RMGM) for the multi-domain recommendations, in order to

alleviate the sparsity problem in all domains. Furthermore, several widely used

active learning strategies are applied and evaluated on the proposed framework

with various elicitation sources (from each single-domain and multi-domains). The

experimental results has shown that the elicitations from different source domain

(domains) generate similar results. That means the performance of multi-domain

system is insensitive to the choice of elicitation sources, but rely on the characteris-

tics of the elicitations. More importantly, it shows that incorporating active learning

techniques can further improve the multi-domain recommender systems, especial-

ly for the Variance,Entropy, Log(Frequency)*Entropy, Sqrt(Frequency)*Variance s-

trategies.

116

Chapter 6

Conclusion

6.1 Thesis Summary

The lack of information is an acute challenge in most recommender systems, espe-

cially for the collaborative filtering algorithms which utilize user-item rating matrix

(matrices) as the only source of information. In this thesis, the sparsity prob-

lem of collaborative filtering recommender systems have been addressed in three

directions: automatically ’add’ ratings learnt by the system with collaborative fil-

tering algorithms; manually add ratings by requesting users through active learning

techniques; exploit knowledges from other domains with cross-domain collaborative

filtering methods for reducing the sparsity of the target domain(s).

6.2 Contribution

The contribution of this thesis is summarized as follow.

- In Chapter 3, a new matrix factorization model called Enhanced SVD (ESVD)

is proposed, which combines the classic matrix factorization algorithms with

ratings completion inspired by active learning. Then it shows that this gener-

al framework can be incorporated with different SVD-based algorithms such

117

as SVD++ by proposing the ESVD++ method. In addition, the connection

between the prediction accuracy and the density of matrix is built to further

explore its potentials. Based on this theory, the Multi-layer ESVD (MESVD)

is introduced, which learns the model iteratively to further improve the predic-

tion accuracy. This MESVD approach can achieve better performance than

ESVD but in sacrifice of training time. To handle the imbalanced datasets

that contain far more users than items or more items than users, the Item-wise

ESVD (IESVD) and User-wise ESVD (UESVD) are presented, respectively.

Experimental results suggest their effectiveness in terms of accuracy when

compared with traditional matrix factorization methods. Furthermore, this

ratings completion strategy tackles the problem of active learning of which

the requesting process is costly and unrealistic.

- In Chapter 4, a novel generalized framework for applying active learning in

recommender systems is proposed. In the proposed framework, the ratings

are elicited simultaneously based on the criteria with regard to both items

and users, for the purpose of improving the performance of the whole system.

The evaluations have shown that different strategies can improve different as-

pects of the recommender system in different stages for different datasets. The

experimental results have shown that the proposed framework could achieve

better performance based on certain strategies by taking extra information

(users’ ratings) into consideration, when compared with the conventional ac-

tive learning.

- In Chapter 5, a novel multi-domain active learning framework is proposed,

which incorporates the former proposed active learning framework (in Chap-

ter 4) with the cross-domain collaborative filtering algorithm (RMGM) for the

multi-domain recommendations, in order to alleviate the sparsity problem in

all domains. Several widely used active learning strategies are applied and e-

118

valuated on the proposed framework with various elicitation sources (from each

single-domain and multi-domains). The Variance,Entropy, Log(Frequency)*Entropy,

Sqrt(Frequency)*Variance strategies are proved to be effective for tackling the

active learning task in the RMGM model based on the dataset (Movielen-

s+Netflix+Book-Crossing) from three different domains. The experimental

results also show that incorporating active learning techniques can further

improve the multi-domain recommender systems.

6.3 Future Work

In this thesis, some works have been done for addressing the sparsity problem

of the collaborative filtering recommender systems, while more works are yet to be

done in order to further improve them. Here some possible new lines of investigation

for future research are listed.

- In Chapter 3, only the SVD-based algorithms are implemented on the extract-

ed sub-matrix, which can be seen as an independent recommender system.

Based on the same idea, other collaborative filtering algorithms can be test-

ed according to the characteristics of the extracted sub-matrix for the better

prediction accuracy of the pre-estimations. A possibility is to employ memory-

based algorithms for the pre-estimations in the sub-matrix since memory-based

algorithms achieve good performance when the rating matrix is dense.

- In Chapter 4, the experiments are conducted based on the assumption that

users would only give ratings when the system queries, without considering

the ratings that users voluntarily rate. Moreover, in this work only the pure

strategies that are applicable to both items and users are studied, while mixed

strategies including item-specific and user-specific strategies still remain fur-

ther explorations. Last but not least, sequentially applying different strategies

119

with different prediction algorithms in different stages is also a possibility for

generating better performance.

- In Chapter 5, active learning strategies are utilized for eliciting ratings from

the Movie domain and Book domain, and then an initial conclusion is obtained:

the performance of multi-domain system is less insensitive to the choice of elic-

itation sources, but more rely on the characteristics of the elicitations. How-

ever, sources from other domains still worth further exploration since Movie

domain and Book domain have a lot in common. In addition, the combination

of Movielens+Netflix+Book-Crossing is used for training the RMGM model

and evaluating the proposed multi-domain active learning method, which can

only be considered as one dataset. In the future the proposed algorithm will

be tested on more datasets from various domains. Last but not least, only the

active learning in multi-domain scenarios is considered in where the shared

knowledge across multiple domains is utilized to alleviate the sparsity in all

domains. In the future the feasibility of applying the proposed active learning

in cross-domain scenarios will be studied in where the knowledge derived from

the source domain is utilized to alleviate the sparsity in the target domain.

120

Bibliography

[1] J. Bennett, S. Lanning et al., “The netflix prize,” in Proceedings of KDD cup

and workshop, vol. 2007. New York, NY, USA, 2007, p. 35.

[2] A. S. Das, M. Datar, A. Garg, and S. Rajaram, “Google news personalization:

scalable online collaborative filtering,” in Proceedings of the 16th international

conference on World Wide Web. ACM, 2007, pp. 271–280.

[3] G. Linden, B. Smith, and J. York, “Amazon.com recommendations: Item-to-

item collaborative filtering,” vol. 7, no. 1. IEEE, 2003, pp. 76–80.

[4] E.-A. Baatarjav, S. Phithakkitnukoon, and R. Dantu, “Group recommenda-

tion system for facebook,” in On the Move to Meaningful Internet Systems:

OTM 2008 Workshops. Springer, 2008, pp. 211–219.

[5] X. Amatriain, A. Jaimes, N. Oliver, and J. M. Pujol, “Data mining methods

for recommender systems,” in Recommender Systems Handbook. Springer,

2011, pp. 39–71.

[6] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl, “Evaluating

collaborative filtering recommender systems,” ACM Transactions on Informa-

tion Systems (TOIS), vol. 22, no. 1, pp. 5–53, 2004.

[7] P. Melville, R. J. Mooney, and R. Nagarajan, “Content-boosted collaborative

filtering for improved recommendations,” in Aaai/iaai, 2002, pp. 187–192.

121

[8] J. Schafer, D. Frankowski, J. Herlocker, and S. Sen, “Collaborative filtering

recommender systems,” The adaptive web, pp. 291–324, 2007.

[9] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, “Using collaborative filter-

ing to weave an information tapestry,” Communications of the ACM, vol. 35,

no. 12, pp. 61–70, 1992.

[10] P. Lops, M. De Gemmis, and G. Semeraro, “Content-based recommender

systems: State of the art and trends,” in Recommender systems handbook.

Springer, 2011, pp. 73–105.

[11] K. Yoshii, M. Goto, K. Komatani, T. Ogata, and H. G. Okuno, “Hybrid col-

laborative and content-based music recommendation using probabilistic model

with latent user preferences.” in ISMIR, vol. 6, 2006, p. 7th.

[12] S. Trewin, “Knowledge-based recommender systems,” Encyclopedia of library

and information science, vol. 69, no. Supplement 32, p. 180, 2000.

[13] D. Bridge, M. H. Göker, L. McGinty, and B. Smyth, “Case-based recommender

systems,” The Knowledge Engineering Review, vol. 20, no. 03, pp. 315–320,

2005.

[14] R. Burke, “The wasabi personal shopper: a case-based recommender system,”

in AAAI/IAAI, 1999, pp. 844–849.

[15] A. Felfernig, G. Friedrich, D. Jannach, and M. Zanker, “Developing constraint-

based recommenders,” in Recommender systems handbook. Springer, 2011,

pp. 187–215.

[16] A. Felfernig and A. Kiener, “Knowledge-based interactive selling of financial

services with fsadvisor,” in Proceedings of the National Conference on Artifi-

cial Intelligence, vol. 20, no. 3. Menlo Park, CA; Cambridge, MA; London;

AAAI Press; MIT Press; 1999, 2005, p. 1475.

122

[17] A. Garćıa-Crespo, J. Chamizo, I. Rivera, M. Mencke, R. Colomo-Palacios, and

J. M. Gómez-Berb́ıs, “Speta: Social pervasive e-tourism advisor,” Telematics

and Informatics, vol. 26, no. 3, pp. 306–315, 2009.

[18] R. Burke, “Hybrid recommender systems: Survey and experiments,” User

modeling and user-adapted interaction, vol. 12, no. 4, pp. 331–370, 2002.

[19] N. Rubens, M. Elahi, M. Sugiyama, and D. Kaplan, “Active learning in rec-

ommender systems,” in Recommender systems handbook. Springer, 2015, pp.

809–846.

[20] A. M. Rashid, I. Albert, D. Cosley, S. K. Lam, S. M. McNee, J. A. Kon-

stan, and J. Riedl, “Getting to know you: learning new user preferences in

recommender systems,” in Proceedings of the 7th international conference on

Intelligent user interfaces. ACM, 2002, pp. 127–134.

[21] G. Carenini, J. Smith, and D. Poole, “Towards more conversational and col-

laborative recommender systems,” in Proceedings of the 8th international con-

ference on Intelligent user interfaces. ACM, 2003, pp. 12–18.

[22] M. Elahi, F. Ricci, and N. Rubens, “Active learning in collaborative filtering

recommender systems,” in International Conference on Electronic Commerce

and Web Technologies. Springer, 2014, pp. 113–124.

[23] I. Cantador, I. Fernández-Tob́ıas, S. Berkovsky, and P. Cremonesi,

“Cross-domain recommender systems,” in Recommender Systems Handbook.

Springer, 2015, pp. 919–959.

[24] Y. Zhang, B. Cao, and D.-Y. Yeung, “Multi-domain collaborative filtering,”

in Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial

Intelligence. AUAI Press, 2010, pp. 725–732.

123

[25] B. N. Miller, I. Albert, S. K. Lam, J. A. Konstan, and J. Riedl, “Movielens

unplugged: experiences with an occasionally connected recommender system,”

in Proceedings of the 8th international conference on Intelligent user interfaces,

2003, pp. 263–266.

[26] P. McJones, “Eachmovie collaborative filtering data set,” DEC Systems Re-

search Center, vol. 249, 1997.

[27] C.-N. Ziegler and D. Freiburg, “Book-crossing dataset,” 2004.

[28] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins, “Eigentaste: A constant

time collaborative filtering algorithm,” information retrieval, vol. 4, no. 2, pp.

133–151, 2001.

[29] G. Dror, N. Koenigstein, Y. Koren, and M. Weimer, “The yahoo! music

dataset and kdd-cup’11.” in KDD Cup, 2012, pp. 8–18.

[30] J. S. Breese, D. Heckerman, and C. Kadie, “Empirical analysis of predictive

algorithms for collaborative filtering,” in Proceedings of the Fourteenth confer-

ence on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers

Inc., 1998, pp. 43–52.

[31] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Analysis of recommendation

algorithms for e-commerce,” in Proceedings of the 2nd ACM conference on

Electronic commerce. ACM, 2000, pp. 158–167.

[32] C. D. Manning, P. Raghavan, H. Schütze et al., Introduction to information

retrieval. Cambridge university press Cambridge, 2008, vol. 1, no. 1.

[33] G. Shani and A. Gunawardana, “Evaluating recommendation systems,” in

Recommender systems handbook. Springer, 2011, pp. 257–297.

124

[34] G. Adomavicius and A. Tuzhilin, “Toward the next generation of recommender

systems: A survey of the state-of-the-art and possible extensions,” IEEE trans-

actions on knowledge and data engineering, vol. 17, no. 6, pp. 734–749, 2005.

[35] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning.

Springer series in statistics New York, 2001, vol. 1.

[36] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for rec-

ommender systems,” Computer, no. 8, pp. 30–37, 2009.

[37] W. Hill, L. Stead, M. Rosenstein, and G. Furnas, “Recommending and eval-

uating choices in a virtual community of use,” in Proceedings of the SIGCHI

conference on Human factors in computing systems. ACM Press/Addison-

Wesley Publishing Co., 1995, pp. 194–201.

[38] U. Shardanand and P. Maes, “Social information filtering: algorithms for au-

tomating word of mouth,” in Proceedings of the SIGCHI conference on Human

factors in computing systems. ACM Press/Addison-Wesley Publishing Co.,

1995, pp. 210–217.

[39] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R. Gordon, and

J. Riedl, “Grouplens: applying collaborative filtering to usenet news,” Com-

munications of the ACM, vol. 40, no. 3, pp. 77–87, 1997.

[40] J. Delgado and N. Ishii, “Memory-based weighted majority prediction,” in

SIGIR Workshop Recomm. Syst. Citeseer, 1999.

[41] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl, “Grouplens:

an open architecture for collaborative filtering of netnews,” in Proceedings of

the 1994 ACM conference on Computer supported cooperative work. ACM,

1994, pp. 175–186.

125

[42] U. Shardanand, “Social information filtering for music recommendation,”

Ph.D. dissertation, Citeseer, 1994.

[43] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl, “An algorithmic

framework for performing collaborative filtering,” in Proceedings of the 22nd

annual international ACM SIGIR conference on Research and development in

information retrieval. ACM, 1999, pp. 230–237.

[44] J. Herlocker, J. A. Konstan, and J. Riedl, “An empirical analysis of design

choices in neighborhood-based collaborative filtering algorithms,” Information

retrieval, vol. 5, no. 4, pp. 287–310, 2002.

[45] P. Massa and B. Bhattacharjee, “Using trust in recommender systems: an

experimental analysis,” in International Conference on Trust Management.

Springer, 2004, pp. 221–235.

[46] P. Massa and P. Avesani, “Trust-aware recommender systems,” in Proceedings

of the 2007 ACM conference on Recommender systems. ACM, 2007, pp. 17–

24.

[47] M. Clements, P. Serdyukov, A. P. De Vries, and M. J. Reinders, “Using flickr

geotags to predict user travel behaviour,” in Proceedings of the 33rd interna-

tional ACM SIGIR conference on Research and development in information

retrieval. ACM, 2010, pp. 851–852.

[48] I. Guy, N. Zwerdling, I. Ronen, D. Carmel, and E. Uziel, “Social media recom-

mendation based on people and tags,” in Proceedings of the 33rd international

ACM SIGIR conference on Research and development in information retrieval.

ACM, 2010, pp. 194–201.

[49] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collaborative

filtering recommendation algorithms,” in Proceedings of the 10th international

conference on World Wide Web. ACM, 2001, pp. 285–295.

126

[50] R. M. Bell and Y. Koren, “Scalable collaborative filtering with jointly derived

neighborhood interpolation weights,” in Data Mining, Seventh IEEE Interna-

tional Conference on. IEEE, 2007, pp. 43–52.

[51] Y. Koren, “Factorization meets the neighborhood: a multifaceted collabora-

tive filtering model,” in Proceedings of the 14th ACM SIGKDD international

conference on Knowledge discovery and data mining. ACM, 2008, pp. 426–

434.

[52] M. Jamali and M. Ester, “Trustwalker: a random walk model for combining

trust-based and item-based recommendation,” in Proceedings of the 15th ACM

SIGKDD international conference on Knowledge discovery and data mining.

ACM, 2009, pp. 397–406.

[53] K. H. Tso and L. Schmidt-Thieme, “Evaluation of attribute-aware recom-

mender system algorithms on data with varying characteristics,” in Pacific-

Asia Conference on Knowledge Discovery and Data Mining. Springer, 2006,

pp. 831–840.

[54] C. S. Firan, W. Nejdl, and R. Paiu, “The benefit of using tag-based profiles,”

in Web Conference, 2007. LA-WEB 2007. Latin American. IEEE, 2007, pp.

32–41.

[55] K. H. Tso-Sutter, L. B. Marinho, and L. Schmidt-Thieme, “Tag-aware recom-

mender systems by fusion of collaborative filtering algorithms,” in Proceedings

of the 2008 ACM symposium on Applied computing. ACM, 2008, pp. 1995–

1999.

[56] S. Sen, J. Vig, and J. Riedl, “Tagommenders: connecting users to items

through tags,” in Proceedings of the 18th international conference on World

wide web. ACM, 2009, pp. 671–680.

127

[57] H. Liang, Y. Xu, Y. Li, R. Nayak, and X. Tao, “Connecting users and items

with weighted tags for personalized item recommendations,” in Proceedings

of the 21st ACM conference on Hypertext and hypermedia. ACM, 2010, pp.

51–60.

[58] Y. Takeuchi and M. Sugimoto, “Cityvoyager: an outdoor recommendation

system based on user location history,” in International Conference on Ubiq-

uitous Intelligence and Computing. Springer, 2006, pp. 625–636.

[59] T. Horozov, N. Narasimhan, and V. Vasudevan, “Using location for person-

alized poi recommendations in mobile environments,” in Applications and the

internet, 2006. SAINT 2006. International symposium on. IEEE, 2006, pp.

6–pp.

[60] D. Billsus and M. J. Pazzani, “Learning collaborative information filters.” in

Icml, vol. 98, 1998, pp. 46–54.

[61] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Application of dimension-

ality reduction in recommender system-a case study,” DTIC Document, Tech.

Rep., 2000.

[62] L. H. Ungar and D. P. Foster, “Clustering methods for collaborative filtering,”

in AAAI workshop on recommendation systems, vol. 1, 1998, pp. 114–129.

[63] A. K.-B. Merialdo, “Clustering for collaborative filtering applications,” In-

telligent Image Processing, Data Analysis & Information Retrieval, vol. 3, p.

199, 1999.

[64] C. C. Aggarwal, J. L. Wolf, K.-L. Wu, and P. S. Yu, “Horting hatches an egg:

A new graph-theoretic approach to collaborative filtering,” in Proceedings of

the fifth ACM SIGKDD international conference on Knowledge discovery and

data mining. ACM, 1999, pp. 201–212.

128

[65] Canny, “Collaborative filtering with privacy via factor analysis,” in Proceed-

ings of the 25th annual international ACM SIGIR conference on Research and

development in information retrieval. ACM, 2002, pp. 238–245.

[66] T. K. Landauer, P. W. Foltz, and D. Laham, “An introduction to latent

semantic analysis,” Discourse processes, vol. 25, no. 2-3, pp. 259–284, 1998.

[67] T. Hofmann and J. Puzicha, “Latent class models for collaborative filtering,”

in IJCAI, vol. 99, no. 1999, 1999.

[68] T. Hofmann, “Probabilistic latent semantic analysis,” in Proceedings of the

Fifteenth conference on Uncertainty in artificial intelligence. Morgan Kauf-

mann Publishers Inc., 1999, pp. 289–296.

[69] ——, “Latent semantic models for collaborative filtering,” ACM Transactions

on Information Systems (TOIS), vol. 22, no. 1, pp. 89–115, 2004.

[70] A. Popescul, D. M. Pennock, and S. Lawrence, “Probabilistic models for u-

nified collaborative and content-based recommendation in sparse-data envi-

ronments,” in Proceedings of the Seventeenth conference on Uncertainty in

artificial intelligence. Morgan Kaufmann Publishers Inc., 2001, pp. 437–444.

[71] X. Wang, J.-T. Sun, Z. Chen, and C. Zhai, “Latent semantic analysis for

multiple-type interrelated data objects,” in Proceedings of the 29th annual

international ACM SIGIR conference on Research and development in infor-

mation retrieval. ACM, 2006, pp. 236–243.

[72] R. Wetzker, W. Umbrath, and A. Said, “A hybrid approach to item recom-

mendation in folksonomies,” in Proceedings of the WSDM’09 Workshop on

Exploiting Semantic Annotations in Information Retrieval. ACM, 2009, pp.

25–29.

129

[73] T. Rattenbury and M. Naaman, “Methods for extracting place semantics from

flickr tags,” ACM Transactions on the Web (TWEB), vol. 3, no. 1, p. 1, 2009.

[74] Z. Yin, L. Cao, J. Han, C. Zhai, and T. Huang, “Geographical topic discovery

and comparison,” in Proceedings of the 20th international conference on World

wide web. ACM, 2011, pp. 247–256.

[75] L. Hong, A. Ahmed, S. Gurumurthy, A. J. Smola, and K. Tsioutsiouliklis,

“Discovering geographical topics in the twitter stream,” in Proceedings of the

21st international conference on World Wide Web. ACM, 2012, pp. 769–778.

[76] S. Funk, “Netflix update: Try this at home,” 2006.

[77] A. Paterek, “Improving regularized singular value decomposition for collab-

orative filtering,” in Proceedings of KDD cup and workshop, vol. 2007, 2007,

pp. 5–8.

[78] R. Salakhutdinov, A. Mnih, and G. Hinton, “Restricted boltzmann machines

for collaborative filtering,” in Proceedings of the 24th international conference

on Machine learning. ACM, 2007, pp. 791–798.

[79] A. Gunawardana and C. Meek, “A unified approach to building hybrid rec-

ommender systems,” in Proceedings of the third ACM conference on Recom-

mender systems. ACM, 2009, pp. 117–124.

[80] Y. Koren, “The bellkor solution to the netflix grand prize,” Netflix prize doc-

umentation, vol. 81, pp. 1–10, 2009.

[81] Y. Ding and X. Li, “Time weight collaborative filtering,” in Proceedings of the

14th ACM international conference on Information and knowledge manage-

ment. ACM, 2005, pp. 485–492.

[82] Y. Koren, “Collaborative filtering with temporal dynamics,” Communications

of the ACM, vol. 53, no. 4, pp. 89–97, 2010.

130

[83] N. N. Liu, M. Zhao, E. Xiang, and Q. Yang, “Online evolutionary collabora-

tive filtering,” in Proceedings of the fourth ACM conference on Recommender

systems. ACM, 2010, pp. 95–102.

[84] A. P. Singh and G. J. Gordon, “Relational learning via collective matrix fac-

torization,” in Proceedings of the 14th ACM SIGKDD international conference

on Knowledge discovery and data mining. ACM, 2008, pp. 650–658.

[85] R. Salakhutdinov and A. Mnih, “Probabilistic matrix factorization.” in Nips,

vol. 1, no. 1, 2007, pp. 2–1.

[86] H. Ma, H. Yang, M. R. Lyu, and I. King, “Sorec: social recommendation using

probabilistic matrix factorization,” in Proceedings of the 17th ACM conference

on Information and knowledge management. ACM, 2008, pp. 931–940.

[87] H. Ma, M. R. Lyu, and I. King, “Learning to recommend with trust and

distrust relationships,” in Proceedings of the third ACM conference on Recom-

mender systems. ACM, 2009, pp. 189–196.

[88] H. Ma, I. King, and M. R. Lyu, “Learning to recommend with social trust

ensemble,” in Proceedings of the 32nd international ACM SIGIR conference on

Research and development in information retrieval. ACM, 2009, pp. 203–210.

[89] ——, “Learning to recommend with explicit and implicit social relations,”

ACM Transactions on Intelligent Systems and Technology (TIST), vol. 2,

no. 3, p. 29, 2011.

[90] H. Ma, T. C. Zhou, M. R. Lyu, and I. King, “Improving recommender sys-

tems by incorporating social contextual information,” ACM Transactions on

Information Systems (TOIS), vol. 29, no. 2, p. 9, 2011.

131

[91] H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King, “Recommender systems

with social regularization,” in Proceedings of the fourth ACM international

conference on Web search and data mining. ACM, 2011, pp. 287–296.

[92] Y. Zhen, W.-J. Li, and D.-Y. Yeung, “Tagicofi: tag informed collaborative fil-

tering,” in Proceedings of the third ACM conference on Recommender systems.

ACM, 2009, pp. 69–76.

[93] Y. Shi, M. Larson, and A. Hanjalic, “Mining mood-specific movie similarity

with matrix factorization for context-aware recommendation,” in Proceedings

of the workshop on context-aware movie recommendation. ACM, 2010, pp.

34–40.

[94] Y. Shi, P. Serdyukov, A. Hanjalic, and M. Larson, “Personalized landmark

recommendation based on geotags from photo sharing sites.” ICWSM, vol. 11,

pp. 622–625, 2011.

[95] V. W. Zheng, Y. Zheng, X. Xie, and Q. Yang, “Collaborative location and

activity recommendations with gps history data,” in Proceedings of the 19th

international conference on World wide web. ACM, 2010, pp. 1029–1038.

[96] D. Agarwal and B.-C. Chen, “Regression-based latent factor models,” in Pro-

ceedings of the 15th ACM SIGKDD international conference on Knowledge

discovery and data mining. ACM, 2009, pp. 19–28.

[97] M. Jamali and M. Ester, “A matrix factorization technique with trust prop-

agation for recommendation in social networks,” in Proceedings of the fourth

ACM conference on Recommender systems. ACM, 2010, pp. 135–142.

[98] D. Agarwal and B.-C. Chen, “flda: matrix factorization through latent dirich-

let allocation,” in Proceedings of the third ACM international conference on

Web search and data mining. ACM, 2010, pp. 91–100.

132

[99] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” Journal

of machine Learning research, vol. 3, no. Jan, pp. 993–1022, 2003.

[100] D. Agarwal, B.-C. Chen, and B. Long, “Localized factor models for multi-

context recommendation,” in Proceedings of the 17th ACM SIGKDD interna-

tional conference on Knowledge discovery and data mining. ACM, 2011, pp.

609–617.

[101] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”

SIAM review, vol. 51, no. 3, pp. 455–500, 2009.

[102] Y. Xu, L. Zhang, and W. Liu, “Cubic analysis of social bookmarking for

personalized recommendation,” in Asia-Pacific Web Conference. Springer,

2006, pp. 733–738.

[103] P. Symeonidis, A. Nanopoulos, and Y. Manolopoulos, “Tag recommendations

based on tensor dimensionality reduction,” in Proceedings of the 2008 ACM

conference on Recommender systems. ACM, 2008, pp. 43–50.

[104] ——, “A unified framework for providing recommendations in social tagging

systems based on ternary semantic analysis,” IEEE Transactions on Knowl-

edge and Data Engineering, vol. 22, no. 2, pp. 179–192, 2010.

[105] S. Rendle, L. Balby Marinho, A. Nanopoulos, and L. Schmidt-Thieme, “Learn-

ing optimal ranking with tensor factorization for tag recommendation,” in

Proceedings of the 15th ACM SIGKDD international conference on Knowl-

edge discovery and data mining. ACM, 2009, pp. 727–736.

[106] L. Xiong, X. Chen, T.-K. Huang, J. Schneider, and J. G. Carbonell, “Tem-

poral collaborative filtering with bayesian probabilistic tensor factorization,”

in Proceedings of the 2010 SIAM International Conference on Data Mining.

SIAM, 2010, pp. 211–222.

133

[107] S. Moghaddam, M. Jamali, and M. Ester, “Etf: extended tensor factorization

model for personalizing prediction of review helpfulness,” in Proceedings of the

fifth ACM international conference on Web search and data mining. ACM,

2012, pp. 163–172.

[108] G. Adomavicius, B. Mobasher, F. Ricci, and A. Tuzhilin, “Context-aware

recommender systems.” AI Magazine, vol. 32, no. 3, 2011.

[109] S. Rendle, “Factorization machines,” in Data Mining (ICDM), 2010 IEEE

10th International Conference on. IEEE, 2010, pp. 995–1000.

[110] S. Rendle, Z. Gantner, C. Freudenthaler, and L. Schmidt-Thieme, “Fast

context-aware recommendations with factorization machines,” in Proceedings

of the 34th international ACM SIGIR conference on Research and development

in Information Retrieval. ACM, 2011, pp. 635–644.

[111] S. Rendle, “Factorization machines with libfm,” ACM Transactions on Intel-

ligent Systems and Technology (TIST), vol. 3, no. 3, p. 57, 2012.

[112] S. Rendle and L. Schmidt-Thieme, “Pairwise interaction tensor factorization

for personalized tag recommendation,” in Proceedings of the third ACM in-

ternational conference on Web search and data mining. ACM, 2010, pp.

81–90.

[113] T. V. Nguyen, A. Karatzoglou, and L. Baltrunas, “Gaussian process factor-

ization machines for context-aware recommendations,” in Proceedings of the

37th international ACM SIGIR conference on Research & development in in-

formation retrieval. ACM, 2014, pp. 63–72.

[114] B. Loni, Y. Shi, M. Larson, and A. Hanjalic, “Cross-domain collaborative

filtering with factorization machines,” in European Conference on Information

Retrieval. Springer, 2014, pp. 656–661.

134

[115] A. K.-B. Merialdo, “Improving collaborative filtering for new-users by smart

object selection,” 2001.

[116] C. Boutilier, R. S. Zemel, and B. Marlin, “Active collaborative filtering,” in

Proceedings of the Nineteenth conference on Uncertainty in Artificial Intelli-

gence. Morgan Kaufmann Publishers Inc., 2002, pp. 98–106.

[117] A. M. Rashid, G. Karypis, and J. Riedl, “Learning preferences of new users

in recommender systems: an information theoretic approach,” ACM SIGKDD

Explorations Newsletter, vol. 10, no. 2, pp. 90–100, 2008.

[118] N. Rubens and M. Sugiyama, “Influence-based collaborative active learning,”

in Proceedings of the 2007 ACM conference on Recommender systems. ACM,

2007, pp. 145–148.

[119] C. E. Mello, M.-A. Aufaure, and G. Zimbrao, “Active learning driven by

rating impact analysis,” in Proceedings of the fourth ACM conference on Rec-

ommender systems. ACM, 2010, pp. 341–344.

[120] N. Golbandi, Y. Koren, and R. Lempel, “On bootstrapping recommender

systems,” in Proceedings of the 19th ACM international conference on Infor-

mation and knowledge management. ACM, 2010, pp. 1805–1808.

[121] M. Elahi, V. Repsys, and F. Ricci, “Rating elicitation strategies for collabora-

tive filtering,” in International Conference on Electronic Commerce and Web

Technologies. Springer, 2011, pp. 160–171.

[122] M. Elahi, M. Braunhofer, F. Ricci, and M. Tkalcic, “Personality-based active

learning for collaborative filtering recommender systems,” in Congress of the

Italian Association for Artificial Intelligence. Springer, 2013, pp. 360–371.

135

[123] B. M. Marlin, R. S. Zemel, S. T. Roweis, and M. Slaney, “Recommender

systems, missing data and statistical model estimation.” in IJCAI, 2011, pp.

2686–2691.

[124] N. Golbandi, Y. Koren, and R. Lempel, “Adaptive bootstrapping of recom-

mender systems using decision trees,” in Proceedings of the fourth ACM in-

ternational conference on Web search and data mining. ACM, 2011, pp.

595–604.

[125] K. Zhou, S.-H. Yang, and H. Zha, “Functional matrix factorizations for cold-

start recommendation,” in Proceedings of the 34th international ACM SIGIR

conference on Research and development in Information Retrieval. ACM,

2011, pp. 315–324.

[126] N. N. Liu, X. Meng, C. Liu, and Q. Yang, “Wisdom of the better few: cold

start recommendation via representative based rating elicitation,” in Proceed-

ings of the fifth ACM conference on Recommender systems. ACM, 2011, pp.

37–44.

[127] S. Tong and D. Koller, “Active learning for parameter estimation in bayesian

networks,” in NIPS, vol. 13, 2000, pp. 647–653.

[128] R. Jin and L. Si, “A bayesian approach toward active learning for collaborative

filtering,” in Proceedings of the 20th conference on Uncertainty in artificial

intelligence. AUAI Press, 2004, pp. 278–285.

[129] A. S. Harpale and Y. Yang, “Personalized active learning for collaborative

filtering,” in Proceedings of the 31st annual international ACM SIGIR confer-

ence on Research and development in information retrieval. ACM, 2008, pp.

91–98.

[130] R. Karimi, C. Freudenthaler, A. Nanopoulos, and L. Schmidt-Thieme, “Non-

myopic active learning for recommender systems based on matrix factoriza-

136

tion,” in Information Reuse and Integration (IRI), 2011 IEEE International

Conference on. IEEE, 2011, pp. 299–303.

[131] M. Elahi, F. Ricci, and N. Rubens, “Active learning strategies for rating elic-

itation in collaborative filtering: a system-wide perspective,” ACM Transac-

tions on Intelligent Systems and Technology (TIST), vol. 5, no. 1, p. 13, 2013.

[132] I. Fernández-Tob́ıas, I. Cantador, M. Kaminskas, and F. Ricci, “A generic

semantic-based framework for cross-domain recommendation,” in Proceedings

of the 2nd International Workshop on Information Heterogeneity and Fusion

in Recommender Systems. ACM, 2011, pp. 25–32.

[133] B. Li, “Cross-domain collaborative filtering: A brief survey,” in Tools with

Artificial Intelligence (ICTAI), 2011 23rd IEEE International Conference on.

IEEE, 2011, pp. 1085–1086.

[134] I. Fernández-Tob́ıas, I. Cantador, M. Kaminskas, and F. Ricci, “Cross-domain

recommender systems: A survey of the state of the art,” in Spanish Conference

on Information Retrieval, 2012.

[135] P. Winoto and T. Tang, “If you like the devil wears prada the book, will

you also enjoy the devil wears prada the movie? a study of cross-domain

recommendations,” New Generation Computing, vol. 26, no. 3, pp. 209–225,

2008.

[136] M. Nakatsuji, Y. Fujiwara, A. Tanaka, T. Uchiyama, and T. Ishida, “Recom-

mendations over domain specific user graphs,” in Proceedings of the 2010 con-

ference on ECAI 2010: 19th European Conference on Artificial Intelligence.

IOS Press, 2010, pp. 607–612.

[137] S. Berkovsky, T. Kuflik, and F. Ricci, “Cross-domain mediation in collabora-

tive filtering,” in International Conference on User Modeling. Springer, 2007,

pp. 355–359.

137

[138] B. Shapira, L. Rokach, and S. Freilikhman, “Facebook single and cross do-

main data for recommendation systems,” User Modeling and User-Adapted

Interaction, pp. 1–37, 2013.

[139] W. Pan, E. W. Xiang, and Q. Yang, “Transfer learning in collaborative filter-

ing with uncertain ratings.” in AAAI, vol. 12, 2012, pp. 662–668.

[140] S. Berkovsky, T. Kuflik, and F. Ricci, “Distributed collaborative filtering with

domain specialization,” in Proceedings of the 2007 ACM conference on Rec-

ommender systems. ACM, 2007, pp. 33–40.

[141] S. Givon and V. Lavrenko, “Predicting social-tags for cold start book recom-

mendations,” in Proceedings of the third ACM conference on Recommender

systems. ACM, 2009, pp. 333–336.

[142] B. Cao, N. N. Liu, and Q. Yang, “Transfer learning for collective link predic-

tion in multiple heterogenous domains,” in Proceedings of the 27th interna-

tional conference on machine learning (ICML-10), 2010, pp. 159–166.

[143] L. Getoor and C. P. Diehl, “Link mining: a survey,” ACM SIGKDD Explo-

rations Newsletter, vol. 7, no. 2, pp. 3–12, 2005.

[144] Y. Shi, M. Larson, and A. Hanjalic, “Tags as bridges between domains: Im-

proving recommendation with tag-induced cross-domain collaborative filter-

ing,” in International Conference on User Modeling, Adaptation, and Person-

alization. Springer, 2011, pp. 305–316.

[145] N. Mirbakhsh and C. X. Ling, “Improving top-n recommendation for cold-

start users via cross-domain information,” ACM Transactions on Knowledge

Discovery from Data (TKDD), vol. 9, no. 4, p. 33, 2015.

[146] W. Pan, E. W. Xiang, N. N. Liu, and Q. Yang, “Transfer learning in collabo-

rative filtering for sparsity reduction.” in AAAI, vol. 10, 2010, pp. 230–235.

138

[147] C. Ding, T. Li, W. Peng, and H. Park, “Orthogonal nonnegative matrix t-

factorizations for clustering,” in Proceedings of the 12th ACM SIGKDD inter-

national conference on Knowledge discovery and data mining. ACM, 2006,

pp. 126–135.

[148] L. Hu, J. Cao, G. Xu, L. Cao, Z. Gu, and C. Zhu, “Personalized recom-

mendation via cross-domain triadic factorization,” in Proceedings of the 22nd

international conference on World Wide Web. ACM, 2013, pp. 595–606.

[149] M. Enrich, M. Braunhofer, and F. Ricci, “Cold-start management with cross-

domain collaborative filtering and tags,” in International Conference on Elec-

tronic Commerce and Web Technologies. Springer, 2013, pp. 101–112.

[150] I. Fernández-Tob́ıas and I. Cantador, “Exploiting social tags in matrix factor-

ization models for cross-domain collaborative filtering.” in CBRecSys@ RecSys,

2014, pp. 34–41.

[151] T. Iwata and K. Takeuchi, “Cross-domain recommendation without shared

users or items by sharing latent vector distributions.” in AISTATS, 2015.

[152] B. Li, Q. Yang, and X. Xue, “Can movies and books collaborate? cross-

domain collaborative filtering for sparsity reduction.” in IJCAI, vol. 9, 2009,

pp. 2052–2057.

[153] O. Moreno, B. Shapira, L. Rokach, and G. Shani, “Talmud: transfer learning

for multiple domains,” in Proceedings of the 21st ACM international confer-

ence on Information and knowledge management. ACM, 2012, pp. 425–434.

[154] S. Gao, H. Luo, D. Chen, S. Li, P. Gallinari, and J. Guo, “Cross-domain rec-

ommendation via cluster-level latent factor model,” in Joint European Confer-

ence on Machine Learning and Knowledge Discovery in Databases. Springer,

2013, pp. 161–176.

139

[155] B. Li, Q. Yang, and X. Xue, “Transfer learning for collaborative filtering via

a rating-matrix generative model,” in Proceedings of the 26th annual interna-

tional conference on machine learning. ACM, 2009, pp. 617–624.

[156] B. Li, X. Zhu, R. Li, C. Zhang, X. Xue, and X. Wu, “Cross-domain collabo-

rative filtering over time,” in Proceedings of the Twenty-Second international

joint conference on Artificial Intelligence-Volume Volume Three. AAAI Press,

2011, pp. 2293–2298.

[157] S. Ren, S. Gao, J. Liao, and J. Guo, “Improving cross-domain recommendation

through probabilistic cluster-level latent factor model.” in AAAI, 2015, pp.

4200–4201.

[158] X. Su and T. M. Khoshgoftaar, “A survey of collaborative filtering techniques,”

Advances in artificial intelligence, vol. 2009, p. 4, 2009.

[159] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis, “Large-scale matrix

factorization with distributed stochastic gradient descent,” in Proceedings of

the 17th ACM SIGKDD international conference on Knowledge discovery and

data mining. ACM, 2011, pp. 69–77.

[160] A. I. Schein, A. Popescul, L. H. Ungar, and D. M. Pennock, “Methods and

metrics for cold-start recommendations,” in Proceedings of the 25th annual

international ACM SIGIR conference on Research and development in infor-

mation retrieval. ACM, 2002, pp. 253–260.

[161] C. Desrosiers and G. Karypis, “A comprehensive survey of neighborhood-based

recommendation methods,” in Recommender systems handbook. Springer,

2011, pp. 107–144.

[162] R. Karimi, C. Freudenthaler, A. Nanopoulos, and L. Schmidt-Thieme, “Ex-

ploiting the characteristics of matrix factorization for active learning in rec-

140

ommender systems,” in Proceedings of the sixth ACM conference on Recom-

mender systems. ACM, 2012, pp. 317–320.

[163] L. Zhao, S. J. Pan, E. W. Xiang, E. Zhong, Z. Lu, and Q. Yang, “Active

transfer learning for cross-system recommendation.” in AAAI. Citeseer, 2013.

[164] Z. Zhang, X. Jin, L. Li, G. Ding, and Q. Yang, “Multi-domain active learning

for recommendation.” in AAAI, 2016, pp. 2358–2364.

141

