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Structural identifiability is an often overlooked, but essential, prerequisite to the experiment design 

stage. The application of structural identifiability analysis to models of myelosuppression is used to 

demonstrate the importance of its considerations. It is shown that, under certain assumptions, these 

models are structural identifiable and so drug and system specific parameters can truly be separated. 

Further it is shown via a meta-analysis of the literature that because of this the reported system 

parameter estimates for the “Friberg” or “Uppsala” model are consistent in the literature.  

 

Introduction 
The promises of model informed drug discovery and development [1] are the reduced time lines and 

number of experiments required. This is because mathematical models can incorporate current 

learning about a compound or class of compounds. This can include previous learning about disease 

state, progression and drug induced toxicities. Learning is usually encapsulated in the form of model 

structures and parameters identified from previous modelling studies. Thus models can be used to 

integrate information from many sources. Predictions generated from these models inform the path 

of drug discovery and development because they focus on what is known and not known.  

This is especially so for systems pharmacology models whereby different components of the model 

represent specific discrete aspects of pharmacokinetic-pharmacodynamic (PKPD) relationships and 

therefore separate out “drug specific” and “system specific” parameters. This mapping of parameters 

and their meaning allows learning from diverse sources to be integrated and predictions about an 

untested scenario to be made. For example, the pharmacodynamic profile of a compound previously 

untested in a particular disease can be generated by bringing together pharmacokinetic and potency 

information together with pharmacodynamic information for another compound that has been tested 

in that disease: pharmacokinetics and potency are “drug specific” while the disease aspects are 

“disease specific”.  Thus the aim of systems approaches is to learn and translate to new situations.  

To do this with confidence we need to ensure that we are separating out drug versus system 

parameters. Otherwise the approach outlined in the preceding paragraph will fail. If a model is not 

identifiable: i.e. multiple parameter values describe the data, and are therefore dependent upon the 

set of parameter values chosen, very different predictions may be generated when integrating 

subsystem models from different sources. 

Structural identifiability [2] is an often overlooked, but essential, prerequisite to the experiment design 

and parameter estimation steps early in the validation process for parametric knowledge-based 

models, i.e. where the structure is based on assumptions or knowledge of the real system.  The 

property of identifiability arises in the validation process because experiments for data collection give 

rise to an input-output structure for the model, which defines how external inputs (perturbations) 
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arise in the model and what functions of the model variables can be directly measured.  Structural 

identifiability considers the uniqueness of the unknown parameters with respect to this input-output 

structure, and is fundamental since estimates for unidentifiable parameters are effectively 

meaningless.  Moreover, the presence of unidentifiable parameters can result in errors in predictions 

or inferences made from the model.  Structural identifiability is widely applied in many application 

areas, such as pharmacokinetics, pharmacodynamics and disease modelling, and can increase the 

confidence of in silico modelling approaches to better utilise experimental data. 

A lack of structural identifiability can (depending on the quality of numerical techniques and their 

implementations employed) manifest itself in a lack of sensitivity of model outputs to the parameters 

(and thus lack of sensitivity of fits).  But similar insensitivity can be manifest from the choice of sampling 

times, measurement errors and model/system uncertainties, and this is sometimes referred to in the 

literature as practical identifiability. 

It must be remembered that identifiability is with respect to the input-output behaviour of the model, 

which relates to what can be perturbed and measured.  In addition it is generally not a trivial matter 

to ascertain the effect of parameters on the output except via a formal structural identifiability 

analysis.  Sometimes intuition about identifiable parameters is proved correct, but other times almost 

surprising results arise.  One of the motivations for this paper is to show that intuition should not 

replace a formal mathematical analysis that is a precursor to aspects of parameter estimation 

accuracy. 

Numerous techniques exist for performing a structural identifiability analysis on linear (see [3] and the 

references therein) and nonlinear continuous-time parametric models (for example, the Taylor series 

approach [4], similarity transformation based approaches [5, 6], computational and differential algebra 

techniques [7, 8] and methods based on polynomial realisation [9]).  Significant computational 

problems can arise in structural identifiability analyses because of the symbolic nature of a genuine 

structural analysis, even for relatively simple models.  As a result it can often be extremely difficult to 

perform a structural identifiability analysis, and typically in order to overcome these problems some 

authors resort to a numerical analysis using a suitable sensitivity matrix.  However, such an analysis is 

heavily dependent on notional values for the parameters (that are to be estimated), and involves 

applying a sampling rate to the output.  The results are therefore affected by a number of factors that 

one would wish to understand the individual effect of – for example, is a model over-parameterised 

regardless of the number and timing of samples taken? 

There exist a number of computational tools for performing a structural identifiability analysis (see 

[10] for a comparison of three key ones), one of which is based on the Exact Arithmetic Rank method 

and implemented in the mathematical computational system Mathematica [11].  The method uses the 

ideas introduced by Sedoglavic [12] to replace symbolic computations with random integer ones, and 

thus overcomes the significant computational problems of fully symbolic approaches.  However, being 

based on a rank condition the method “only” returns local identifiability results and does not 

characterise the identifiability of combinations of unidentifiable parameters. 

An important application of mathematical modelling is to the prediction of drug toxicity [13]. If dose 

and regimen specific toxicity can be predicted from non-clinical data before going into patients, or 

from current patient data in Phase 1 and Phase 2then, coupled with models of the effectiveness of the 

drug, the therapeutic index (TI) can be rapidly optimised in silico. But only, as we have argued above, 

if the various parts of the system have been well characterised.  

For treatments of cancer, one important dose limiting toxicity (DLT) is myelosuppression. In this article, 

we demonstrate the application of structural identifiability analysis to a range of myelosuppression 
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models. For one of these models evidence has been published that the model can predict the potency 

of the drug against human bone marrow using data in the rat and in vitro [14]. This is suggestive that 

the model is correctly separating out drug-specific and system (species) specific parameters. We 

demonstrate that under specific scenarios the parameters in this model are uniquely identifiable. A 

meta-analysis of application of this model demonstrates that the system specific parameters estimated 

in patients are consistent across chemotherapies and patients with varying types of solid malignancies. 

Some modifications of this model have been proposed that provide improvements under specific 

circumstances. We investigate the structural identifiability of these models as well. 

 

Methods 

Mathematical models of myelosuppression 
The first model, often referred to as the “Friberg” or “Uppsala” model [15] describes the time and drug 

exposure dependence of neutropenia in patients. It was first developed based upon data generated in 

patients after dosing with various chemotherapies. A central claim of the research was that parameters 

were consistent across data sets. In its most general form it is a five state model with separate rate 

constants for proliferation, maturation and lifespan in the periphery: 
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where the rate constant ktr is derived from the mean transit time (MTT): 

 
MTT

ktr

4
 , 

and Edrug is usually a linear function of drug concentration. 

Despite its success in terms of describing and predicting the regimen dependence of neutropenia (and 

thrombocytopenia) and also providing a translational bridge between the clinical and non-clinical 

studies [14], the model does have deficiencies. Specifically there are issues when considering 

combinations of treatments with acute dosing or the long term effects of chemotherapy. Since then 

several modifications have been proposed to overcome these challenges. 

The first extension, by Bender et al [19], describes an apparent downward drift of the baseline by 

having a concentration dependent reduction in the baseline over time. This is the addition of a second 

process that operates on a time scale longer than that described by MTT. The first equation is 

subsequently modified as: 
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Therefore this model has two additional parameters to estimate: namely Circ0 and kdeplete. 

In Mangas-Sanjuan et al [23] the model is adapted to explain the schedule dependence of the effects 

of diflomotecan on neutrophil counts. To attain this the Prol compartment was divided up into 3 

separate compartments representing cycling and non-cycling cells in the bone marrow. Therefore 

dProl/dt is replaced with: 
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In Quartino et al [24], the role of granulocyte-colony stimulating factor (GCSF) in the homeostasis of 

peripheral neutrophil counts is considered explicitly. In the model peripheral neutrophils utilise GCSF 

(kANC) and so provide a clearance route. GCSF will accumulate when absolute neutrophil count (ANC) 

reduces and consequently stimulate proliferation of progenitor cells. We consider the following case: 
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Figure 1 displays schematic representations of these models.  In each of the above models it is 

generally assumed that the underlying system (represented by the model) is in equilibrium (or at 

baseline) prior to treatment.  This requirement is typically built into the models by ensuring that the 

constant baseline steady state exists and that the model variables start at these baseline levels. 

For the Friberg [15] and Bender et al [19] models the baseline considerations result in the assumption 

of kprol = kcirc = ktr, resulting in a baseline initial condition of Circ0 for all compartments.  For the Mangas-

Sanjuan et al [23] extension (as discussed in their paper) the assumption that kprol = Fprol kcirc = Fprol ktr is 
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made, resulting in a baseline initial condition of Circ0 for all of the transit compartments and Circ.  The 

remaining initial conditions are: 

  0 0
1 2(0) , (0) (0) 1 prol

prol prol

Circ Circ
Prol Qc Qc F

F F
     (5) 

In the final extension, by Quartino et al [24], it is similarly assumed that kprol = kcirc = ktr, and  

  0 0e ANCink k k Circ GCSF   (6) 

with a baseline initial condition of Circ0 for all compartments, except the GCSF one that has a baseline 

of GCSF0. 

Structural Identifiability  
For each of the models identifiability was analysed for the control (drug-free) and full models 

separately.  The control case is only practical in situations where the underlying system is not in steady 

state at a constant baseline – since in the latter case the only identifiable parameter would be Circ0 – 

and is included here for completeness.  Similarly, the most general analysis for the full model is 

included in which the baseline considerations are not imposed. 

Two parameter vectors are said to be indistinguishable with respect to a given experiment, if they give 

rise to identical outputs (the measured variables) for all admissible inputs, that is, they have identical 

input-output structures.  Let S(p) denote the set of all allowable parameter vectors that are 

indistinguishable from p.  A model is defined to be structurally globally identifiable (SGI) if for generic 

p the set S(p) = {p}.  If, for generic p, S(p) ≠ {p} and is countable then the model is structurally locally 

identifiable (SLI).  If S(p) is uncountable for generic p then the model is structurally unidentifiable (SU). 

With respect to the previous definitions, an individual parameter pi, is globally identifiable if, for 

generic p, all vectors q in S(p) satisfy qi = pi.  It is locally identifiable if there are only a countable number 

of distinct values (including pi) that any such qi can take.  Otherwise the parameter pi is said to be 

unidentifiable, and there are an uncountable number of vectors q in the set S(p) such that qi ≠ pi and 

all of the qi are different. 

The approach taken is based on that presented in [25], which is based on consideration of the input-

output equation for each model.  Based on the computational algebraic methods of Forsman [26] an 

input-output equation of the following form is generated: 

 ( )( , , ) ( , , ) 0nA y u p y B y u p   (5) 

where A and B are multivariate polynomials in the input u, and its derivatives, and the output y, and 

its derivatives up to order n – 1, where n is the number of variables in the model.  The coefficients of 

these polynomials are rational functions of the parameters in the parameter vector p.  Therefore, any 

parameter vector p  that gives rise to the same output as p for every admissible input u satisfies the 

following equation: 

 ( , , ) ( , , ) ( , , ) ( , , ) 0A y u p B y u p B y u p A y u p  . (6) 

Since this is a differential polynomial of order less than n in y we see that the monomial terms (products 

of u and y, and their derivatives) are linearly independent since the initial conditions (for the state 

variables) are generic (parameters).  Therefore identifiability is determined by equating the 

coefficients of the monomials, which are rational functions of p and p , to zero. 
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When the initial conditions for the model are not general but rather specific ones then care has to be 

taken with the above approach.  Saccomani et al. [7] showed that when the initial conditions are 

specified it is possible that the output y(t) can evolve in such a way as to invalidate the assumption of 

linearly independent monomials in (6).  However, if the system is accessible [36] with respect to the 

input u then the assumption is valid. 

Once the identifiability of the model is assessed from the input-output equation (5) we conclude the 

analysis by assessing the implication that the initial conditions for y and its derivatives up to order 

n – 1, which are also rational functions of p (including the general initial conditions for the model 

variables), must also be unique for the experimental conditions. 

The drug concentration in the central compartment is treated as an input to the models considered in 

this paper in order to reduce the computational burden of determining the input-output equation (5).  

Since we wish to assess the identifiability of the combined pharmacodynamic and response models we 

assume that the pharmacokinetic model is known and represented by a controllable compartment 

model.  This ensures that, at least theoretically, all input profiles can be achieved. 

A challenge to the identifiability approach results from the unknown exponent γ; since we wish to 

determine identifiability of this parameter, which appears in an essentially non-algebraic way, we 

define the following “dummy” variables as needed: 
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. 

For the latter model the feedback of GCSF(t) to affect the transit rate coefficients leads to 

computational problems when β ≠ 0.  This illustrates the computational problems associated with fully 

symbolic approaches, and to overcome this problem we apply the Mathematica package 

IdentifiabilityAnalysis [11] for performing an identifiability analysis based on the Exact Arithmetic 

Rank (EAR) method. 

The advantage of the approach in [25] is that when a model proves to be unidentifiable the approach 

provides globally identifiable combinations of the unidentifiable parameters.  The disadvantage of the 

approach lies in it being entirely symbolic and requiring a Gröbner basis construction.  

IdentifiabilityAnalysis has the advantage of being computationally more feasible to apply, even for 

large scale systems (see the comparison paper by Raue et al [10]), but only provides the unidentifiable 

parameters and not any globally identifiable combinations of them. 

Meta-analysis of reported parameter values 
A search was performed to find papers that had used the Friberg model to analyse longitudinal 

peripheral neutrophil counts. Population average (theta) and inter-individual variability (omega) were 

extracted from each publication. Publications were identified as those that cited the first publication 

of the Friberg paper [15] and reported a nonlinear mixed effect analysis of blood neutrophil count 

changes after anti-cancer treatments. 
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The consistency of the estimates was visualised using a Galbraith plot [27]. In this plot the reported 

parameter estimate divided by the reported standard error (SE) is plotted on the ordinate versus 1/SE. 

This plot served two purposes: Firstly, if estimates are consistent given their precision, points will lie 

on a straight line. Secondly, the estimates with greater precision will aggregate away from the origin 

and so the slope of the regression will be the mean of the parameter estimates weighted by their 

precision. Thus this process was applied to the population mean and inter-individual variability 

estimates from the identified modelling reports. 

Where percent SE was reported, SE was calculated as SE=%SE × estimate, and where 95% confidence 

intervals were reported, SE was calculated assuming a large sample size and dividing the range of the 

confidence interval by 1.96. 

Results  

Structural identifiability analysis 

Model 

Model with PKPD, no 

constraints 

Model with PKPD, constrained for 

equilibrium 

General initial 

conditions (ICs) 
General ICs Baseline ICs 

Friberg et al (2002) [15] SU: kprol Circ0 SGI  SGI 

Bender et al (2012) [19] SU: kprol Circ0, kprol/Circ1 SU: Circ0 Circ1 SGI 

Mangas-Sanjuan et al (2015) [23] SU: kprol Circ0 SGI SGI 

Quartino et al (2015) [24] 

(β = 0) 
SU: kin/GCSF0 SU: kin/GCSF0 

SU: (only GCSF0 

unidentifiable) 

Quartino et al (2015) [24] 

(Full Model; EAR approacha) 
SUa: kin/GCSF0 SUa: kin/GCSF0 

SUa: (only GCSF0 

unidentifiable) 

Table 1:  Key identifiability results for all models.  All model parameters (including initial conditions) 

are globally identifiable unless a parameter combination is provided; in this case the individual 

parameters are unidentifiable but the combination given is globally identifiable. aEAR approach can 

only guarantee local results, so combinations here are at least locally identifiable. 

A summary of the identifiability results is presented in Table 1.  The accessibility of each model was 

tested to verify that specified initial conditions would not affect the results of the identifiability 

analyses. 

Friberg et al (2002) 

In the drug-free case cP(t) = 0 for all t.  The vector of unknown parameters is given by the following: 

  
T

1 3(0) (0) (0(0) (0))tr circprolk k Transit Circk Prol Transit z p , 

where the baseline parameter, circ0, is identifiable if and only if z(0) is.  Considering two cases: 

 The model is structurally unidentifiable (SU).  All parameters and initial conditions are globally 

identifiable except the following (which are unidentifiable): kprol and circ0.  The product of these 
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two parameters is globally identifiable and so if either of these is known a priori then the model 

is structurally globally identifiable (SGI). 

 If we make the simplification that kprol = ktr then the model is SGI. 

In the presence of drug, and assuming linear PD effect (Edrug = kE cP(t)), the vector of unknown 

parameters is given by the following: 

  
T

1 3(0) (0) (0)(0) (0)tr cirl c Eprok k Transit Cirk k Prol Transit zc p . 

Again considering two cases: 

 The general version of the model is SU.  All parameters and initial conditions are globally 

identifiable except the following (which are unidentifiable): kprol and Circ0.  The product of these 

two parameters is globally identifiable and so if either of these is known then the model is SGI. 

 Baseline initial conditions: If we assume that kprol = kcirc = ktr (to enable steady state conditions) 

then the model is SGI.  This is also the case when assuming baseline initial conditions. 

It is worth noting that being able to run control and drug experiments, and then appealing to a parallel 

experiments approach [28] does not change the identifiability result; from a structural (but almost 

certainly not from a numerical or practical) perspective one set of experiments is enough for 

identifiability when kprol = ktr. 

Bender et al (2012) 

The drug-free version of this model is basically the Friberg model and so is SGI provided kprol = ktr, and 

SU otherwise. 

In the presence of drug, and assuming linear PD effect (Edrug = kE cP(t)), the vector of unknown 

parameters is given by the following: 

  
T

1 (0) (0)tr circ E depleprol tek k Pk k k ci rol zrc p . 

Again considering two cases: 

 The general version of the model is SU.  All parameters and initial conditions are globally 

identifiable except the following (which are unidentifiable): kprol, Circ0 and Circ1.  The product of 

kprol and Circ0 and the ratio of kprol and Circ1 are globally identifiable.  Therefore if any of these 

parameters is known a priori then the model is SGI. 

 Baseline initial conditions: If we assume that kprol = kcirc = ktr then the model is still SU, with all 

parameters and initial conditions globally identifiable except Circ0 and Circ1.  The product of Circ0 

and Circ1 is globally identifiable.  Assuming baseline initial conditions the model is SGI. 

Mangas-Sanjuan et al (2015) 

In the drug-free case (cP(t) = 0 for all t) the vector of unknown parameters is given by the following: 

  
T

(0) (0)prol tr circ cyclprol ek F k kk Prol z p . 

Considering two cases: 

 The model is SU.  All parameters and initial conditions are globally identifiable except the 

following (which are unidentifiable): kprol and circ0.  The product of these two parameters is 

globally identifiable and so if either of these is known then the model is SGI. 

 If we assume that kprol = Fprol ktr then the model is SGI. 
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In the presence of drug, and assuming linear PD effect (Edrug = kE cP(t)), the vector of unknown 

parameters is given by the following: 

   
T

(0) (0)prol tr circ cyclep Erol k k Prk lk F k o z p . 

We again consider two cases: 

 The general version of the model is SU.  All parameters and initial conditions are globally 

identifiable except kprol and circ0, but their product is globally identifiable and so if either of these 

is known then the model is SGI. 

 Baseline initial conditions:  If we assume that kprol = Fprol ktr = Fprol kcirc then the model is SGI.  This 

is also the case when assuming baseline initial conditions. 

Quartino et al (2015) 

Due to computational problems it was only possible to perform a symbolic structural identifiability 

analysis for the special case with β = 0.  The model was found to be unidentifiable for all cases 

previously considered.  Therefore a further, natural assumption was made that GCSF(0) = GCSF0. 

In the drug-free case (cP(t) = 0 for all t) the vector of unknown parameters is given by the following: 

  
T

1 2(0) (0 0)) (tr circ in e ANpr l Co k Prol z zk k k k k   p . 

The model is SU.  All parameters and initial conditions are at least locally (globally when β = 0) 

identifiable except kin and GCSF0, which are unidentifiable.  For the special case with β = 0 the ratio of 

these two parameters is globally identifiable (thus if either is known a priori then the model is SGI).  

Making the assumption that kprol = kcirc = ktr, does not affect the identifiability of the model until it is 

also assumed that kin = (ke + kANC Circ0) GCSF0, and then only GCSF0 is unidentifiable.  Thus if this were 

measured or otherwise known then the model would be SGI. 

In the presence of drug, and assuming linear PD effect (Edrug = kEffect cP(t)), the vector of unknown 

parameters is given by the following: 

   
T

1 2(0) (0 (0) )tr circ in e ANC Efo fectpr lk k k kk Prok l zk z  p . 

The same identifiability result applies in that the model is SU with all parameters and initial conditions 

at least locally identifiable except kin and GCSF0, which are unidentifiable.  For the special case with 

β = 0 the ratio of these two parameters is globally identifiable (thus if either is known a priori then the 

model is SGI).  Making the assumption that kprol = kcirc = ktr, does not affect the identifiability of the 

model until it is also assumed that kin = (ke + kANC Circ0) GCSF0, and then only GCSF0 is unidentifiable.  

From a structural identifiability analysis perspective this is an unusual result in that a single parameter 

is unidentifiable and there are no identifiable parameter combinations that involve it.  If GCSF were 

measured (actually only measurement of the initial condition is necessary) or GCSF0 otherwise known 

then the model would be SGI. 

For the cases when β ≠ 0, by using the identifiability of all parameters except kin and GCSF0, 

consideration of the initial values of the measured variable Circ(t) and its derivatives shows that the 

ratio kin/GCSF0 is at least locally identifiable.  In fact, this suggests a straightforward reparameterisation 

of the model that is at least structurally locally identifiable, namely that we define GCSF* = GCSF/GCSF0 

and replace kin by kin’ = kin/GCSF0.  In this case intuition matches the results of the formal identifiability 

analysis. 



10 
 

Meta-analysis of population PKPD parameters for Friberg et al model 
Estimates for 18 data sets (9 publications reporting estimates for 11 different chemotherapies) were 

identified (Table 2). All publications reported estimates of inter-individual variability (IIV) on MTT and 

Circ0 however only two reported IIV on γ and so this was not evaluated. Galbraith plots for each 

parameter (Figure 2) exhibit strong linear relationships demonstrating concordance across the 

published parameters. The resulting meta-analysis parameter values are shown in Table 3.  Whilst one 

might expect baseline circulating neutrophils to be relatively similar, what is surprising is the 

consistency of the estimates of MTT. These drugs have very different molecular targets and so it would 

appear this model is inferring truly drug independent parameters. 

 

Conclusions 
 

Structural identifiability is a model-based, data independent, concept that allows researchers to 

ascertain a priori whether a unique set of parameter estimates are to be expected. This assures a 

one-to-one mapping of biological behaviour onto parameter estimates via experimental 

observations. 

In this paper, we have demonstrated the utility of applying structural identifiability analysis to four 

models of drug induced myelosuppression with the model of Friberg et al as a starting point. The 

implicit assumption of these models is that the drug is a perturbation on the system and does not 

directly impact on processes involved in the homeostasis of haematopoiesis. If this holds true these 

models should allow insight, conditional on the model assumptions, into the biology behind the drug 

induced toxicity. Any insight will be obscured if there are not unique parameter values that describe 

the observed behaviour. Furthermore, in this case consistency will not be achieved because different 

analyses will have chosen different optimal parameter estimates. 

Promisingly, all four models are identifiable under certain simplifying assumptions. These 

simplifications, including kprol = ktr were previously arrived at by considering the steady states of the 

models and some empirical observations of parameter estimation performance. Here we have 

demonstrated the impact these assumptions have on structural identifiability. Some issues still exist 

with current analysis techniques due to the complexity of mathematical expressions relating 

parameters to the input-output behaviour of the system. Surprisingly it seems that structures distal 

from the observation such as distinct proliferating and quiescent cells are identifiable. Inspecting this 

structure it appears to the authors that this structure could be appropriate for modelling the cell cycle 

specific effects of treatments as well. Explicitly modelling GCSF accumulation as the mechanism of 

feedback is also identifiable under the assumption that production and degradation of GCSF at steady 

state are equal. 

With this knowledge in hand we have investigated how consistent parameter estimates reported in 

the literature are. For the Friberg model applied to data from patients receiving chemotherapy we 

observe consistent parameter values. This is an example of where systems pharmacology can achieve 

its promise – with a potency estimate derived from nonclinical studies [14] these human system 

parameters can be used to predict myelosuppression in the clinic. This is particularly useful for planning 

dose escalation studies for phase 1 studies prior to dosing patients. 

There are of course other mathematical models of myelosuppression reported in the literature and 

consideration of the identifiability of these models should come next. Some of these consider multiple 

blood cell lineages and may be applicable to parameter estimation from clinical data [29; 30; 31]. Some 
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of these models are relatively complex to the point that parameter identification is unfeasible. 

However structural identifiability and its related concept of structural indistinguishability [32] should 

still be considered. This is because model validation for more complex models is usually simulation 

based: demonstrating the model describes experimental data. This does not prove the model is a 

unique explanation and so structural identifiability and indistinguishability analysis would allow the 

alternative explanations, in terms of model structure and parameter values, to be revealed. We have 

only considered a close family of models here but have shown that even with relatively complex model 

structures that are distal from the point of observation, such as separating out proliferating and non-

proliferating cells, structural identifiability is assured. We also have not considered the impact of 

placing a nonlinear mixed effects structure on the model, however early attempts at a methodology 

for this statistical aspect are encouraging [33]. 

The symbolic analysis can be computationally intensive. In an attempt to avoid this researchers have 

published on other analysis approaches, for example [34; 35]. Unfortunately, these are numerical 

based approaches and so do not provide a general proof of structural identifiability in the way it is 

reported here. 

We have demonstrated that structural identifiability is an important pre-requisite, not just for 

parameter estimation, but to ensure that system (disease and biology specific) parameters can truly 

be untangled from drug effect. 
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Figure 1 Schematics of models: from top to bottom these are Friberg et al [14], Bender et al 

[19], Mangas-Sanjuan et al [23] and Quartino et al [24] 
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Figure 2 Galbraith plots for Friberg et al model parameters



15 
 



16 
 

Table 2 List of papers used in meta analysis 

DRUG Reference 
(Year) 

MTT SE MTT IIV 
MTT 

SE IIV 
MTT 

Gamma SE gamma IIV 
gamma 

IIV 
gamma 
Sigma 

Circ0 Circ0 
Sigma 

IIV Circ0 IIV Circ0 
Sigma 

Docetaxel 15 (2002) 88.7 2.2175 16 3.84 0.161 0.005957 
 

0 5.05 0.09595 42 2.94 

Paclitaxel 15 (2002) 127 2.667 18 5.4 0.23 0.00644 
 

0 5.2 0.1872 35 3.85 

Etoposide 15 (2002) 135 4.995 14 3.22 0.174 0.011484 
 

0 5.45 0.39785 42 8.4 

DMDC 15 (2002) 123 1230 49 11.27 0.16 0.0208 
 

0 5.43 0.21177 39 6.24 

CPT-11 15 (2002) 113 7.797 29 11.89 0.132 0.012936 
 

0 5.51 0.18734 29 5.51 

Vinflunine 15 (2002) 122 4.514 21 4.41 0.162 0.010854 
 

0 4.72 0.12744 41 7.38 

Diflometecan 14 (2010 117.84 5.892 25.9 5.439 0.113 0.00904 
 

0 5.37 0.10203 40 7.6 

Indusalam 14 (2010) 165.6 1.656 23.5 2.115 0.152 0.00304 
 

0 
 

0 
 

0 

Topotecan 16 (2006) 133 6.122449 33 6.122449 0.119 0.003061 
 

0 5.11 0.183673 46 8.163265306 

Docetaxel 17 (2006) 83.9 1.0068 14 1.82 0.144 0.003744 15 3.3 5.3 0.2438 37 4.07 

Paclitaxel 17 (2006) 126 5.292 17 7.31 0.223 0.02899 
 

0 5.4 0.3888 35 8.05 

Etoposide 17 (2006) 140 5.04 17 3.57 0.172 0.010148 
 

0 5.26 0.32612 41 8.2 

Topotecan 17 (2006) 137 10.549 35 6.65 0.101 0.011716 
 

0 5.02 0.18072 43 8.6 

Docetaxel 18 (2007) 113 4.62 33.3 5 0.196 0.013 
 

0 5.19 1.51 104 62.9 

Pemetrexed 16 (2004) 107 2.9853 10.4 3.7648 0.1902 0.017137 38.7 20.8593 5.19 0.283893 32.9 9.9029 

Pemetrexed 20 (2010) 87.8 6.8484 
 

0 0.129 0.018202 
 

0 6.29 0.557923 31.9 8.5811 

Carboplatin 21 (2007) 141 5.217 
 

0 0.26 0.0195 
 

0 
 

0 
 

0 

Carboplatin 22 (2010) 150 8.163265 20.7 4.846939 0.146 0.010204 
 

0 4.54 0.255102 36.2 3.979591837 

 
 

Table 3 Result of parameter meta-analysis 

Parameter Description Units Population mean IIV 

MTT Mean transit time from precursor cells to circulating Hours 109 19.0% 

Gamma Strength of feedback - 0.148 - 

Circ0 Baseline neutrophil count 109/l 5.15 38.1% 
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