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SUMMARY

In this thesis we examine the derivation of asymptotic 
expansion approximations to the cumulative d istribution functions 
of asymptotically chi-square test statistics under the null 
hypothesis being tested and the use of such approximations in the 
investigation of the properties of testing procedures. We are 
particularly concerned with how the structure of various test 
statistics may simplify the derivation of asymptotic expansion 
approximations to their cumulative distribution functions and also 
how these approximations can be used 1n conjunction w ith  other 
small sample techniques to investigate the properties o f testing 
procedures. In Chapter 1 we b rie fly  review the construction of 
test sta tistics based on the Wald testing principle and in Chapter 2 
we review the various approaches to fin ite  sample theory which have 
been adopted 1n econometrics Including asymptotic expansion methods. 
In Chapter 3 we derive asymptotic expansion approximations to the 
jo in t cumulative distribution functions of asymptotically chi-square 
test sta tistics making e xp lic it use of certain aspects of the 
structure of such test sta tis tic s . In Chapters 4, 5 and 6 we apply 
these asymptotic expansion approximations under the n u ll hypothesis, 
in conjunction with other small sample techniques, to a number of 
specific testing problems. The test statistics considered 1n 
Chapters 4 and 6 are Wald test statistics and those considered in 
Chapter 5 are predictive fa ilure  test s ta tis tics . The asymptotic 
expansion approximations to the cumulative d is trib ution  functions 
of the test sta tistics under the null hypothesis are evaluated 
numerically; the Implementation of the algorithm for obtaining 
asymptotic expansion approximations to the cumulative distribution 
functions of test sta tistics 1s discussed in an Appendix on Computing 
F in a lly , in Chapter 7 we draw overall conclusions from the earlier 
chapters of the thesis and discuss b rie fly  directions fo r  possible 
future research.



CHAPTER 1: Introduction

1.1 Hypothesis Testing in Econometrics

The modelling of relationships between economic variables in 

applied econometric studies presents a number of problems. These 

include the choice of model specification in the lig h t of the data, 

the assessment of the v a lid ity  of theories about the nature of 

the economy, and the forecasting of the future behaviour of 

economic variables of interest. In addressing these problems, 

applied econometric studies often draw heavily upon the machinery 

of s ta tis tica l hypothesis testing. Thus tests are used to 

determine the adequacy of a given model and of possible s im p li­

fications of i t ,  the v a lid ity  of actual hypotheses of in te re s t in 

economics, and the accuracy of forecasts based upon the resultin g  

estimated model.

Most research into the sta tis tica l methodology of econometric 

testing procedures has been focussed on the construction o f tests 

for given hypotheses in given situations. Three general princip les 

have been formulated for the construction of tests: the Wald 

prin cip le  which is discussed in more detail in Section 1 .2 , the 

technical summary at the end of this chapter; the Likelihood 

Ratio princip le; and the Lagrange M ultiplier principle. These 

provide bases for the construction of tests in a wide range of 

circumstances.

The use of tests based on these principles has been ju s t if ie d  

prim arily on the basis of th eir large sample asymptotic properties, i 

from the lim iting (or asymptotic) distributions of the test



statistics Involved as the number of available observations tends 

to in f in ity . This emphasis on the asymptotic properties of tests 

has arisen because of the relative  d iff ic u lty  of deriving and 

computing the exact f in ite  sample distributions of the test 

statistics involved and the relative  ease of deriving and computing 

the asymptotic distributions of these test statistics as approx­

imations to th e ir exact f in ite  sample distributions. The choice 

in a given situation between alternative tests with identical 

asymptotic properties has then been based in general on comparisons 

of their ease of computation in that situation together with 

knowledge about specific tests from past experience and Monte 

Carlo studies; e .g . Summers (1965) on the behaviour of various 

simultaneous equations estimators.

In this thesis we are concerned with extending the analysis 

of the properties of testing procedures beyond the derivation and 

computation of the asymptotic distributions of the test sta tistics 

Involved. The main approach we adopt 1s that of using asymptotic 

expansion approximations to the cumulative distribution functions 

(c d f 's ) of the test sta tistics involved. The approximation 

error from this type of approximation to the cdf tends to zero more 

rapidly than that from the asymptotic cdf approximation as the 

number of observations increases. Therefore this type of 

approximation can be regarded as a refinement of the asymptotic 

cdf. Such approximations to the cdf's of estimators and test 

sta tistics have been developed far some cases In econometrics; 

see Sargan (1976) and Rothenberg (1984b) on the derivation and use 

of such approximations in econometrics .
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In Chapter 2 we review the available f in ite  sample results 

in econometrics together with various approaches to approximate 

f in ite  sample theory Including the use of asymptotic expansions.

In Chapter 3 we develop a new algorithm for obtaining asymptotic 

expansion approximations to the cdf's of asymptotically ch i- 

square test statistics under the null hypotheses being tested.

This method u tilise s certain  aspects of the structure of test 

statistics based on the Wald, Likelihood Ratio and Lagrange 

M ultiplier testing prin cip les. We then extend this algorithm 

so as to obtain such approximations under local hypothesis 

sequences. This enables us to obtain more refined approximations 

to the properties of testing procedures than are available 

simply from the asymptotic cdf approximation. In the Appendix 

on Computing we b rie fly  discuss a computer program, ESSACS, 

which we have written to implement the algorithm of Chapter 3 

for the null hypothesis case and its  use 1n the evaluation studies 

of Chapters 4 to 6.

In Chapters 4 to 6 we consider the application of asymptotic 

expansion approximations to the cdf's of test sta tistics in a 

number of cases. The example we consider 1n Chapter 4 concerns 

the choice between a lternative  tests of a given hypothesis.

F irs t ly  we review the background to the problem of choosing a test, 

and then we examine 1n more detail a specific case Involving 

choosing between Wald tests based on various formulations of a 

non-Hnear restrictio n  1n a simple Classical Linear Regression 

(CLR) model. We show that the main features of the qualitative
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behaviour of the tests across the parameter space, as found by 

previous Monte Carlo studies, can be explained by their lim iting 

behaviour for various parameter sequences with the sample 

size fixed. Me also conduct a numerical evaluation study using 

the ESSACS program which broadly supports the e arlie r conclusions 

about the behaviour of the tests across the parameter space.

In Chapter 5 we consider the use of predictive fa ilure  tests. 

After reviewing the background to predictive fa ilure  tests, we 

examine in more detail the behaviour of forecast errors and 

predictive fa ilure  tests 1n the f irs t-o rd e r  autoregression 

(AR(1)) model. We show that there is  a term in the covariance 

matrix of the forecast errors which in the CLR model Is equal 

to zero but 1n the AR(1) model is  generally non-zero. This suggests 

that the conventional predictive fa ilu re  tests which use an 

estimate of the covariance matrix of the forecast errors based on the 

CLR formula are inappropriate in the AR(1) model and 1n more 

general dynamic models. We also conduct a numerical evaluation 

study using the ESSACS program. The results of this study Indicate 

that the conventional predictive fa ilu re  tests s t i l l  perform 

reasonably well 1n spite of the e a rlie r  argument.

In Chapter 6 we consider the use of sequential testing 

procedures. F irs t ly , we review the background to sequential 

testing procedures and 1n p articu lar the use of Wald tests In such 

procedures. Then we examine 1n more detail a specific sequential 

testing procedure for a sequence of two nested hypotheses In 

the autoregressive-distributed lag model with one lag on the



endogenous variable and on a single exogenous variable (AD(1, 1) 

model). In the Appendix to Chapter 6 we prove a theorem on the 

construction of invariant Wald tests. We apply this theorem to show 

that the Wald tests we use for the testing sequence being considered 

in the AD(1,1) model have certain invariance properties. Then 

we perform a numerical evaluation study using the ESSACS program 

to investigate the properties of the sequential testing procedure 

under the null hypothesis. The results of this study indicate 

that the dynamic structure of the exogenous data is very important 

and, in particu lar, that the more powerful are the dynamics of 

the exogenous data the stronger is  the interaction between the 

two tests in the sequence.

F ina lly, 1n Chapter 7 we draw overall conclusions from the 

e a rlie r chapters about the use and usefulness of asymptotic 

expansion approximations to the cdf's  of test sta tis tics  in the 

analysis of the properties of testing procedures and discuss 

possible directions for future research in this area.

1.2 The Wald Testing Principle

In econometrics one of the most commonly used bases for 

constructing testing procedures is the Wald testing princip le;

Wald (1943). Suppose that Y 1s a random variable (possibly a 

vector) which 1s distributed with a density function f (y ;e )  where 

the parameter e 1s a k-vector belonging to <S> . I f  we wish 

to test the null hypothesis HQ: <t>(e) -  0, where <j>(.) 1s a 

p-vector, then providing that ♦ ( . )  1s appropriately differentiable 

and that the fam ily of density functions f ( y ; . )  meets appropriate
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regularity conditions (see Wilks (1962)) we can construct the 

following test sta tis tic  for HQ :

U = T t ( 9 ) ' [ F n F T ’ i (8 )

where: T is an Indexing parameter;

e 1s a consistent asymptotically normal 

estimator of e such that [e -e }^N [0,n ] 

as T + • ; F ■ [  a$/3e'] at 0 ; and 

ft 1s a consistent estimator of ft which 1s 

symmetric positive defin ite .

This 1s the Wald test s ta tis tic  for HQ : $ (e) = 0 using e and ft . and 

under the null hypothesis 1t Is asymptotically distributed as a 

central chi-square variate with p degrees of freedom provided 

that F 1s of fu ll rank 1n a neighbourhood of the true parameter 

value 0 . Under the local alternative hypothesis sequence 

H^: 0j  * 0Q ♦ T - " 2* where 4>(0Q) 3 0 then W is asymptotically 

distributed as a non-central chi-square variate with p degrees
2

of freedom and non-central1ty parameter y :

X2 -  ♦'F;CF0nF(J ] " , F* .

where F„ is F evaluated at 0« .0 0

The underlying approach of the Wald s ta tis tic  Is to measure the 

extent to which the estimated parameter values f a ll to meet the 

hypothesised restrictions. The simplest choice of a measure would 

be * (e) which Is only equal to zero 1f the estimates meet the 

restrictions. However, $ (e) 1s generally a vector and can be
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positive , negative or zero. A measure of distance should be 

a non-negative scalar. The easiest way to obtain a non-negative 

scalar from <j>(.) is to construct a quadratic form in <j>(.) using 

a positive definite matrix. The matrix used here is an estimate 

of the asymptotic covariance matrix of T ' <t*(e). As a consequence, 

the Wald s ta tis tic  has the property that 1t can be decomposed as the 

inner product of a vector which is asymptotically distributed as 

a standard normal vector under the null hypothesis. Thus we define:

t '/2„ T1 /2 CFnF, 3_ 1 /2 * ( e )

- 1/2
so that W = Tn'n where [F n F '] ' is some appropriate square root 

of [F f lF ']”  ̂ such as the lower triangular Cholesky decomposition. 

Under the local alternative hypothesis sequence HA above,

T ^ n  is asymptotically distributed as normal with mean 
-1 /2[F qBF^] Fqip and an identity covariance matrix.

The Wald test can be regarded as a generalisation of the 

F -te st for linear regression coefficient restrictions in the 

Classical Linear Regression (CLR) model which takes the form:

y ■ X8 ♦ u ,

where y is a T-vector of endogenous random variables, X is  a 

(T*K) matrix of known constants, 6 1s a K-vector of unknown
2 2parameters, and u 1s distributed N[0,o I ]  where o is unknown. 

The test sta tis tic  for the hypothesis H j: Re - r - 0 ,where R 

is a (qxK) matrix of known constants and r  Is a q-vector of 

known constants, 1s:

(R 6 -r)'[R (X 'X )~ 1Rl 3~1(R 6-r)/q
“2 o

F -



where 6 » (X ,X)*1(X*y) and a2 -  y ‘ [  I -  X (X 'X )'1X' ]y  / (T -K ) are 

the Ordinary Least Squares (OLS) estimators of B and a2\ B is 

distributed as a jo in tly  normal vector with mean B and covariance 

matrix o ^(X 'X )“ ^, and (T-K)a^/o^ is distributed independently of B 

as a central chi-square variate with (T -K ) degrees of freedom. The 

s ta tis tic  F is distributed as a non-central F-d1stributed variate with 

(q ,T -K ) degrees of freedom and non-centrality parameter:

? (R B -r), [R (X , X)_1R, ] " 1(R B-r)
«  ---------------------------------------------------------------------------

2o

2 2 
provided that rank(R) = q. I f  6 converges to a fin ite  lim it  y >

then qF is asymptotically distributed as a non-central chi-square
2

variate with q degrees of freedom and non-centrality parameter u .

The Wald testing principle  1s particu larly  appropriate for 

constructing tests of hypotheses within a maintained model because 

i t  only requires unrestricted estimation of the maintained model.

In contrast other testing principles such as the Lagrange M ultip lie r 

or Likelihood Ratio testing principles usually require estimation 

of the maintained model subject to the hypothesised restrictions.

Thus the Wald testing principle is In general much more convenient 

computationally for constructing tests of different hypotheses 

within the same maintained model than are the Likelihood Ratio or 

Lagrange M ultip lie r testing principles.

In contrast, the Wald testing principle is not very convenient 

for constructing diagnostic tests of a given maintained model, i .e . 

tests of the given maintained model against various more

-  8 -
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general models. This 1s because 1t usually requires that each 

of the more general models considered 1s separately estimated so 

that there 1s typ ica lly  a heavy computational burden for each 

diagnostic test constructed using the Wald principle. There Is 

a wide variety of diagnostic tests based on various principles 

such as the Lagrange M ultiplier princip le, the analysis of 

residuals and the analysis of forecast errors. The Lagrange 

M ultiplier principle 1s particularly convenient for constructing 

diagnostic tests since 1t only requires estimation of the 

maintained model.

*
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CHAPTER 2: A Review of Exact and Approximate Finite  Sample Theory

2.1 Introduction

Many approaches have been adopted to obtain the exact and 

approximate cumulative d istribution functions (c d f 's ) of econometric 

estimators and test sta tis tic s . This chapter outlines the main 

approaches that have been used, the circumstances in which they have 

been used and results which have been obtained with them. Particular 

attention is paid in this chapter to Edgeworth (and related) expansions 

of cdf's since this is the main approximation method which is used in 

the subsequent chapters of this thesis. In Section 2.2 we review the 

exact fin ite  sample results which are available for econometric 

sta tis tics  and the models for which these results are applicable.

In Section 2.3 we discuss the firs t-o rd e r (or basic) asymptotic 

properties of econometric s ta tis tic s  and the problems which arise 

from using these asymptotic results to provide approximations to the 

f in ite  sample properties of such econometric sta tis tic s . Then in 

Section 2.4 we examine Edgeworth expansions in more detail and outline 

the main methods which have been used to obtain these expansions in 

econometrics. Lastly , 1n Section 2.5 we b rie fly  discuss a number of 

other approximation methods including saddlcpolnt approximations and 

Monte Carlo techniques which have also been used in econometrics.
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There are three major areas in econometrics for which an extensive 

fin ite  sample theory has been developed. F irs t ly , there is the 

Classical Linear Regression (CLR) model which 1s very widely used in 

s ta tis tic s . Secondly, there is the sta tic  Simultaneous Equations 

Model (SEM) which has been the main focus of exact fin ite  sample 

theory in econometrics. F in a lly , there are a number of very simple 

dynamic models where the statistics of interest can be expressed as 

ratios of quadratic forms in normal variates and here the cdf's of 

the s ta tis tics  of interest can often be found by numerical inversion 

of the characteristic function although some exact theoretical 

results are also available.

In a ll three areas the models considered are linear in both 

variables and parameters, and the disturbances are normally distributed. 

Johnson and Kotz (1969, 1970a, 1970b, 1972) provide an extensive survey 

of the distributions typ ic a lly  encountered in s ta tis tics  and the exact 

and approximate properties of the variates with these distributions. 

Anderson (1958) and Mardia, Kent and Bibby (1979) discuss the 

d istributions Involved in multivariate analysis. These are of interest 

1n econometrics since they form the main basis of the exact fin ite  

sample theory developed in econometrics.

The properties of the standard sta tis tic s  used in  the CLR model, 

e .g . Ordinary Least Squares (OLS) and Maximum Likelihood (ML) estimators 

and t  and F tests, are very well-known and an excellent discussion of 

them can be found in Rao (1973). The CLR model 1s of interest in 

econometrics because 1t is both widely used and also forms the main 

framework for the analysis of single equation models with dynamics

2.2 Exact Finite Sample Theory
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and non-linearities and for the lim ited information approach to the 

analysis of individual equations from SEM's or Dynamic Simultaneous 

Equations Models (DSEM's). However, the introduction of simultaneity 

or dynamics or non-linearities does serve to complicate the analysis 

of such models and the properties of the sta tistics used very 

considerably. Even simple modifications of the CLR model lead to 

highly complex distribution theory; see P hillips (1984b) on the exact 

distribution of the James-Steln rule estimator in the CLR.

2.2.1 Exact Finite  Sample Theory in  the SEM

The theory of estimation in the SEM 1s one of the main contributions 

that econometrics has made to s ta tis tica l analysis and has been the 

subject of considerable research in econometrics. Consequently, a 

great deal of attention has been given to the problem of obtaining 

exact f in ite  sample results for the various estimators used 1n the SEM.

In the early 1960's some results were obtained for the exact distributions 

of structural form estimators but these were for very small and highly 

specific models; e .g . see Bergstrom (1962) on the distribution of the 

estimated Marginal Propensity to Consume 1n a very simple, two-equation 

Keynesian model. Later in the 1960's these sorts of results were 

extended to more general models with arbitrary numbers of exogenous 

variables but s t i l l  with specific numbers of endogenous variables.

Thus Richardson (1968) and Sawa (1969) obtained the exact distribution 

of the Two Stage Least Squares (2SLS) estimator of the coefficient on 

the right hand side endogenous variable 1n a two-equation model and 

Mariano and Sawa (1972) obtained that of the Limited Information Maximum
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Likelihood (LIML) estimator. Basmann (19/4) provides a useful survey 

of the results available 1n the early 1970's. Throughout the 1970's 

and continuing Into the 1980's these results have been further extended 

to yet more general models with arb itrary numbers of endogenous and 

exogenous variables; e .g . see P h illips  (1980a, 1983b) on the exact 

distributions of Instrumental Variable (IV ) estimators and P h illips  

(1985b) on the exact distributions of LIML estimators.

However, attention has not only been given to the limited 

Information approach to the estimation of structural coefficients 

1n the SEM. McDonald (1972) obtained the exact distribution of the 

2SLS estimator of the disturbance variance in a structural equation 

and Basmann and Richardson (1973) obtained that of the corresponding 

LIML estimator. These variance estimators are usually expressed as 

quadratic forms in the estimated structural coefficients (with the 

quadratic form matrices being stochastic) and are closely related to 

the test sta tistics which have been constructed for the over-Identifying 

restrictions usually imposed in econometrics for estimation. The 

exact distributions of such test s ta tis tics  have been examined by 

Basmann (1965) for a particular case which Involved 2SLS estimates 

and by Rhodes (1981) for the general case Involving LIML estimates.

The exact distributions of test sta tis tic s  for linear restrictions 

on the structural coefficients of a single equation from an SEM have 

also been Investigated. The simplest case 1s when the hypothesis 

completely specifies the vector of coefficients on the righ t hand side 

endogenous variables. The restrictions can then be reformulated as a 

set of linear restrictions on the coefficients of a reduced form equation
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for an appropriately redefined endogenous variable. Thus they can be 

tested straightforwardly using F-tests as in the CLR. This case was 

analysed by Anderson and Rubin (1949). However, most hypotheses in 

the SEM cannot be expressed in this form and in particular this frame­

work does not allow for the testing of the significance of the 

coefficient on a single right hand side endogenous variable when 

there is more than one such variable. This problem was considered 

by Richardson and Rohr (1971) who obtained the exact d istribution of 

a structural t -s ta t is t ic . The model they used only had one right hand 

side endogenous variable which permitted the properties of the 

s ta tis tic  to be compared with those of the corresponding Anderson 

and Rubin s ta tis tic .

The techniques used for obtaining exact fin ite  sample results in 

the SEM generally follow a number of steps. F ir s t ly , the model and 

the s ta tis tic  of interest (which may be a vector) are standardised in 

certain ways so as to sim plify the covariance structure of the disturb­

ances and of the exogenous variables. The advantage of doing th is when 

i t  is possible is  that i t  reduces the number of parameters and functions 

of the exogenous variables which need to be considered during the remainder 

of the derivation. Essentially these standardisation transformations 

reduce the dimensionality of the problem and c la rify  the important 

elements of the problem. The standardised s ta tis tic  is then usually 

expressed as a function of a number of underlying variates which 

typ ica lly  have some known and well-behaved distribution such as the 

non-central Wishart d istribution . These standardisation transformations 

are discussed in more detail by Mariano (1982) and by P h illip s  (1983a).
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The exact d istribution of the standardised sta tis tic  is then obtained 

by an appropriate one-to-one transformation of the underlying variates 

into a vector which consists of the standardised s ta tis tic  and a set 

of other elements which are then integrated out. I t  is the last two 

steps of choosing an appropriate one-to-one transformation and then 

integrating out the remainder that constitute the hardest part of the 

process. Very few exact results have been obtained for the cdf's of 

full-inform ation and sub-system estimates and test sta tis tics  because 

the functional forms of the statistics are generally more complicated 

than th e ir limited information single equation counterparts. This 

creates greater mathematical d iff ic u ltie s  in Integrating out the 

remainder terms using probability density functions (p df's )

The distributional results obtained in exact fin ite  sample theory 

for the SEM almost always have extremely complicated functional forms. 

This arises because the mathematical methods which have proved 

successful for the extraction of exact cdf's 1n the SEM usually 

Involve the manipulation of In fin ite  series functions of matrices such 

as zonal polynomials. These functions are very complex in form and 

sometimes do not have a general closed functional form and they are 

often extremely slow to converge when computed numerically. Therefore 

they usually provide very l i t t le  aid for understanding the consequences 

for the properties of the sta tis tics  of interest of changing parameter 

values and using different exogenous variables.

There are also some results available on the existence of moments 

and on the values of moments which do exist fo r estimators 1n the SEM. 

I f  the means and variances of different estimators exist then these can 

be used to compare these estimators on the basis of th eir location and
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dispersion properties. I f  such moments fa il to e xist, as is the case 

with Fu ll Information Maximum Likelihood (FIML) estimators, see Sargan 

(1970), then this indicates that the distributions of such estimators 

are re la tiv e ly  th ick -ta iled  and that as a result the probability of 

finding extreme ou tliers is higher for such estimators than for 

estimators with f in ite  means and variances. This has prompted the 

creation of new estimators which w ill have these moments. Thus Fuller 

(1977) suggested a modified LIML estimator which 1s obtained from the 

standard LIML estimator but w ill always have mean and variance even i f  

the LIML estimator does not. Greenberg and Webster (1983), Mariano 

(1982) and P hillips (1983a) a ll carry out extensive surveys of the results 

which are available on the moments and cdf's of structural form estimators 

in  the SEM. The a rtic les  by Mariano and by Phillips also survey the 

properties of a number of reduced form estimators, test c rite r ia  and 

other statistics of interest.

2 .2 .2  Exact Finite  Sample Theory in Dynamic Single Equation Models

The main type of dynamic single equation model for which an exact 

f in it e  sample theory has been developed is the firs t-o rd e r autoregression 

model. The earliest exact result obtained 1n such a model appears to be 

the d istribution of Fisher's g -statist1c under the null hypothesis of 

independently Id en tica lly  distributed (11d) normal random variables; 

see Fisher (1929) fo r the derivation. Later, von Neumann (1941) 

obtained the d istribution  of the von-Neumann ratio as a test fo r f i r s t -  

order autocorrelation. Anderson (1942) obtained the d istribution  of 

the sample firs t-o rd e r c ircular autocorrelation coefficient in a 

c irc u la r  autoregression. Anderson's method was extended by Watson
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(1956) to obtain the distribution of several sample c ircu la r auto­

correlations and by Hannan (1970) to obtain the distribution of the 

Durbin-Watson test s ta tis tic  for f irs t-o rd e r serial correlation under 

the null hypothesis of 1id normal disturbances.

These results have a ll been obtained for the c irc u la r auto­

regression model which has certain symmetries involving the f i r s t  and 

last elements which the non-circular autoregression model lacks. As 

a consequence very few analytic results have been obtained for the 

non-circular autoregression model. However, provided that the 

disturbances are normally distributed and that the s ta tis tic  of interest 

is a quadratic form or ratio of quadratic forms then 1t 1s s t i l l  possible 

to evaluate the exact cdf of the s ta tis tic  numerically to an a rb itrary 

degree of precision by using the Gil-Pelaez formula from Gil-Pelaez (1951) 

which forms the basis for Imhof's routine from Imhof (1961). This 

technique involves the numerical inversion of the characteristic 

function of a quadratic form in normal variables and has been used to 

obtain the exact d istribution of the OLS estimate of the autoregressive 

coefficient in a firs t-o rd e r autoregression AR(1) model by P h illips  (1977a). 

Sim ilar numerical methods also based on inverting the characteristic 

function or a c losely related function have been used by Sawa (1978) 

to obtain the moments of sample autocorrelation coefficients in the 

AR(1) model and by De Grooijer (1980) to obtain then in the firs t-o rd e r 

autoregressive moving-average (ARMA) model.
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2.3  F irst Order Asymptotic Theory

Asymptotic results in econometrics are concerned with the lim iting 

behaviour of probability statements involving the sta tis tics  of interest 

as some parameter value tends either to a constant or to in f in ity . The 

parameter chosen is often the sample size with the lim iting behaviour 

being as this tends to in f in it y  but in the SEM other parameters are 

sometimes chosen such as the concentration parameter with the lim iting 

behaviour usually being as this tends to in f in ity . I t  is  however possible 

to consider lim itin g  behaviour as any parameter tends to some lim it  and 

thus sometimes the lim itin g  behaviour is  as the disturbance variance 

tends to zero in a p articu lar way; see Section 2.5.1.

The main forms of stochastic convergence considered in econometrics, 

i . e .  the lim iting behaviour of the probability statements involving the 

sta tis tics  of interest, are convergence in probability and convergence in 

d istrib ution . I f  a s ta t is tic  converges in  probability to some lim it, 

which may be a random variable although i t  is  often a constant, then 

the probability that the s ta tis tic  lies more than an arb itrary distance 

away from the lim it  can be made a rb itra r ily  small by requiring that the 

value of the lim itin g  parameter lies su ffic ie n tly  close to but not at 

i t s  lim it. In the case o f a parameter such as the sample size tending 

to in fin ity  then th is is  interpreted as requiring that the value of 

the lim iting parameter be sufficiently large but not in fin ite .

Convergence 1n p ro bability  is  usually associated with estimators and 

when an estimator converges in probability to the parameter value being 

estimated then the estimator is referred to as being (weakly) consistent.
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A s ta tis tic  converges in d is trib ution  i f  its  cdf converges (at 

all c on tin uity  points) to the cdf of some random variable. Estimators 

frequently converge in distribution to normal cdf's provided that they 

are appropriately standardised to have non-degenerate c d f 's ; i f  this 

is so then they are usually referred to as asymptotically normal 

s ta t is tic s . Provided that the same standardisation has been applied 

to a set o f different but s t i l l  asymptotically normal estimators of 

the same parameter, then comparisons can be made of the estimators on 

the basis of the means and variances o f th eir asymptotic cdf's even 

though in  f in ite  samples the estimators may have no means or variances 

as is the case with FIML estimates. Test statistics frequently have 

lim itin g  central chi-square cdf's under the null hypothesis and thus 

asymptotic c ritica l values can be constructed for them which w ill give 

asymptotically correct significance le v e ls . Under fixed alternatives, 

test s ta tis tic s  often have explosive o r occasionally degenerate lim iting  

cdf's so that their power tends to u n ity  or occasionally to zero. These 

are not very useful properties for making comparisons of different tests. 

However, fo r local alternative sequences where the parameter values 

for which power is evaluated tend at an appropriate rate towards the 

null hypothesis then the cdf's of the test sta tistics being considered 

often converge 1n distribution to the cdf's  of non-central chi-square 

variates. The tests can then be compared on the basis of their d iffering 

power properties under such local alternative sequences. These stochastic 

convergence results of convergence in probability and distribution are 

very well-known, and can be found in ,  fo r  example. White (1984), and we 

w ill re fe r to them subsequently as f irs t-o rd e r  or basic asymptotic 

results .
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There are a number of useful relationships between these two types 

of stochastic convergence. F ir s t ly , 1f a s ta t is t ic  converges in 

probability then i t  also converges in d is trib u tio n  to the cdf of its 

probability l im it  (pl1n) whether this is a random variable or a 

constant. Secondly, 1f the difference between two sta tistics converges 

in probability to zero then the two sta tis tics  are referred to as 

asymptotically equivalent and they have the same asymptotic cdf. 

Classifying sta tis tic s  into asymptotic equivalence classes 1s very 

useful in making asymptotic comparisons of the properties of the 

different s ta t is tic s . For example, as the sample size tends to in fin ity  

the 2SLS and LIML estimators in the SEM are in general asymptotically 

equivalent w ith asymptotically normal c d f's . S im ila rly , the Three 

Stage Least Squares (3SLS) and FIML estimators are also in general 

asymptotically equivalent with asymptotically normal cd f's . In contrast 

to this the 2SLS and 3SLS estimates are not in general asymptotically 

equivalent; the asymptotic cdf of the 3SLS estimator is  generally less 

dispersed than that of the 2SLS estimator in a correctly specified SEM. 

This property is  usually referred to by saying that the 3SLS estimator 

is asymptotically more e ffic ie n t than the 2SLS estimator. However, 

f irs t-o rd e r asymptotic theory provides no basis for choosing between 

asymptotically equivalent sta tis tic s .

The main advantage that first-o rd e r asymptotic theory has over 

exact f in ite  sample theory is  the ease of derivation and implementation 

of the la tte r  as compared to the former. In f irs t-o rd e r large sample 

asymptotics the estimators used typ ically  behave in the lim it  like 

normal vectors and the test statistics lik e  quadratic forms in fin ite  

dimensional normal vectors. This behaviour is  the same as the exact
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fin ite  sample behaviour of OLS estimates in the CLR model with known 

variance. This s im ila rity  between firs t-o rd e r asymptotics and exact 

CLR theory together with the ease of derivation of the first-o rd e r 

large sample asymptotics has led to them being the main justifica tio n  

of the majority o f statistical techniques currently used in econometrics.

Some authors have attempted to construct a theory of sta tistical 

inference based so le ly on asymptotic results. For example, Pfanzagl 

(1982) has argued that sta tis tica l theories have two functions. The 

f ir s t  is to analyse the performance of s ta tis tic a l procedures and the 

second is  to provide methods for the construction of optimal procedures. 

Although non-asymptotic theory can perform these functions in certain 

cases its  success is  e rratic  rather than systemmatic and i t  cannot be 

regarded as being in general satisfactory. Pfanzagl also argues that 

asymptotic theory can treat a wider class of models than has been used 

to date because existing models have been devised so as to be tractable 

mathematically using non-asymptotic theory or so as to be simple extensions 

of models which are tractable mathematically. Th is  viewpoint seems very 

ambitious and we would qualify this by arguing that w hilst asymptotic 

theory does provide a framework for the analysis and construction of 

statistical inference procedures in a very wide class of models, i t  is 

s t i l l  desirable to examine how well such procedures perform in particular 

models of in te re st.

Unfortunately, considerable evidence has accumulated that suggests 

that firs t -o rd e r  large sample asymptotic results can provide highly 

inaccurate approximations to actual fin ite  sample behaviour for quite 

plausible parameter values even with f a ir ly  large sample sizes. This
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possible to compute the exact fin ite  sample cdf's and moments of 

certain estimators and test statistics (using the techniques discussed 

e a rlie r ). Evans and Savin (1982a) examined a f in ite  sample relationship 

between the Wald, Lagrange M ultiplier and Likelihood Ratio test sta tistics 

for certain models. They found that using the asymptotic equivalence of 

these statistics and t h e ir  lim iting chi-square cdf as an approximation to 

the cdf's of each of them can lead to considerable probabilities of 

conflict between the sta tis tic s  and inaccurate size and power computations. 

Anderson and Sawa (1973) evaluated the exact cdf of the 2SLS estimator 

in a simple SEM and found that for low values of the concentration 

parameter the asymptotic distribution can be quite inaccurate. Phillips 

(1977a) computed the exact cdf of the ordinary least squares (OLS) 

estimator of the autoregressive parameter in a firs t -o rd e r  non-circular 

autoregression and found that for values of the autoregressive parameter 

close to the unit c ir c le  the asymptotic cdf of the OLS estimator was a 

poor approximation to i t s  actual cdf for moderate sample sizes.

Secondly, some evidence is also available from Monte Carlo studies. 

Orcutt and Winokur (1969) obtained results for the d istribution  of the 

OLS autoregression coeffic ient which were later confirmed by the exact 

results of P h illips (1977a). Mizon and Hendry (1980) found that in 

certain more general dynamic models test sta tis tics  such as Sargan's 

COMFAC test can have f in ite  sample power properties which d iffer 

substantially from t h e ir  asymptotic power properties. F in a lly ,

Summers (1965) examined the sampling distributions of LIML, 2SLS, OLS 

and FIML estimators in  a two equation over-identified model. Summers
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found that i f  the predetermined variables in the structural equations 

were highly correlated then in  terms of mean square error OLS could 

perform better than LIML and 2SLS better than FIML. I t  should be noted 

that when some estimators lack any integral moments (as is  true fo r FIML 

in this case) then the use o f  mean square e rro r comparisons becomes 

problematical.

2.4 Edgeworth Expansions

The underlying problem w ith first-o rd e r large sample asymptotic 

approximations is  that they are only ju s tifie d  as the sample size gets 

large. Thus the f irs t-o rd e r  asymptotic approximation to the cdf of a 

s ta tis tic  can be completely va lid  and yet can be completely useless for 

sample sizes sim ilar to those normally encountered. Obtaining bounds 

on asymptotic approximation errors is s t i l l  extremely d if f ic u lt  even 

for very simple s ta tis tic s . The best known result in this area is  the 

Berry-Esseen theorem which provides a bound on the error involved in 

approximating the cdf of a standardised mean of iid  variates using a 

normal cdf. The bound is  in  terms of the variance and th ird  absolute 

moment of the variates, the sample size and a universal constant; see 

Berry (1941) and Esseen (1945).

One approach which has been adopted to attempt to overcome the 

problems associated with f irs t -o rd e r  asymptotic approximations is  the 

use of approximations which have errors of a smaller order of magnitude 

in the lim itin g  parameter. The most frequently encountered of such 

approximations are asymptotic expansion approximations which are 

specifically designed to have this property. These are obtained by 

truncating the asymptotic expansion of the cdf of a s ta tis tic  Q-p:
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Pr{QT < z> -  r  T"J/2a , (z )  , (1 )
T j«0 j

(fo r large sample asymptotics where T  -*■ » )  after K+l terms giving:

Pr{QT * z }  = z T"J/2a , ( z )  + o (T _K/2) • (2 )
1 j -0  J

(see Equations (2 1 ), (22) in Section 2.A ). Then aQ(z ) is the lim iting 

cdf of Qy which has an error of 0 (T - ^ ) or o (T° ). The IT  ^ 2a j ( z ) ; j  z 1) 

terms are the higher-order terms in  T “  ̂ and including them gives a higher-
-K/2order asymptotic approximation with an error of o(T ) .  For su ffic ie n tly  

large sample sizes the Inclusion o f  the higher-order terms w ill reduce 

the approximation error in absolute value. The notation used here 

concerning asymptotic expansions is  defined in the Appendix to this 

chapter.

Such asymptotic expansions as Equation ( 1 ) are often called

Edgeworth expansions though the terminology is sometimes restricted to 

cases where Qy has a lim iting normal cdf and the la ^ ; j  z 1) can be 

expressed as polynomials in z m u ltip lie d  by a normal pdf following 

Edgeworth (1905), Wallace (1958) and Johnson and Kotz (1970a) who discuss 

the derivation and use of Edgeworth expansions in s ta tis tic s . The f ir s t  

published paper using Edgeworth expansions in econometrics appears to 

have been Sargan and Mikhail (1971) but since then there have been many 

papers in econometrics using Edgeworth expansions. P h illip s  (1980b), 

Rothenberg (1984b) and Taylor (1983) a ll provide useful surveys on the 

derivation and use of Edgeworth expansions in econometrics.
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2.4.1 Obtaining Edgeworth Expansions

There are two main methods used to obtain Edgeworth 

expansions in econometrics. The f i r s t  is  the calculation of 

probabilities method used by Anderson (1974), Sargan (1975), Sargan 

(1980b) and Sargan and Mikhail (1971). The second 1s the characteristic 

function method which was o rig in a lly  used by Edgeworth (1905) and has 

been used more recently by Sargan (1976).

The calculation of probabilities method at its  simplest rests on 

transforming a probability statement about the s ta tis tic  into one about 

a variate with a known distribution which is the same as the asymptotic 

distribution of the sta tis tic  of in te re st. Thus i f  Q-j- ■ Q j(x) where x 

is distributed as standard normal, then:

Pr{QT * r> * Pr{QT (x ) * r> -  * (Q ^ ( r ) ) .

(where *(•) is the standard normal c d f) provided that QT (•) exists. 

However, the existence of Q j^ (» ) is  not necessary since i f : «

qt  «  T*H(T"*x) with H(0) -  0 , H*(0) -  1 ,

then a ll that 1s required is that H ( - )  has a unique Inverse function 

near x ■ 0; see Wallace (1958). A more general technique can be used 

when the stochastic expansion of the s ta tis tic  1s:

QT ■ x + T ' !A (x .y ) ♦ T _1B (x ,y )  + op(T _1) , (3)
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where x is exactly standard normal and y is  a vector which is distributed 

independent of x. Then following Rothenberg (1984b):

Pr(QT < r l -  EyCPr{x ♦ T_ iA (x ,y ) * T _1 B (x ,y) < r | y * o (T"’ )

= Ey[ t { r  -  T ^ A f r .y )  -  T * 'B (r ,y )  .  T " 'A (r .y )A ’ ( r ,y ) } J  

♦ o ( T - ' ) .  ( « )

where A '( r ,y )  1s the derivative of A (x ,y ) with respect to x at x=r.

Then expanding *(•) in a Taylor series, taking expectations and 

rearranging terms:

PriQT «  r )  -  * [r  -  T"*EyA (r ,y ) -  T " 'E yB (r .y ) ♦ EyA (r ,y )A '(r ,y )T * ' 

-  i r W y A t r . y ) ]  * o ( T " ' ) .  (5)

This method can be extended to asymptotically non-normally distributed 

sta tis tics  such as asymptotically chi-square test c rite ria . Suppose 

x is distributed exactly Nq( 0 , I ) ,  that y is  independent of x and that 

can be expanded:

gT .  (x 'x )  ♦ T "SA (x ,y ) ♦ T“ *B(x,y) ♦ op(T_1) .  (6)

Then x can be transformed to polar co-ordinates (6 ,n ) where x = 6n 

with 6>.0 and ó2 »  x 'x  so n'n = 1 so that the expansion 1n terms of 

(fi.n .y ) is :

qT .  i !  * T**A*(«,nty ) * T "1B * (« .n .y ) ♦ op(T -1 ) .  (7)

Then Q̂ . can be conditioned upon n and y and the method proceeds as before 

except that i t  uses the chi-square cdf. A detailed exposition of this 

approach is given by Sargan (1980b) for the asymptotically central ch i- 

square case. Rothenberg (1977, 1984a) examined the asymptotically
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non-central chi-square case. Cavanagh (1981) gave a general algorithm 

for deriving Edgeworth expansion approximations by this method.

The characteristic function method uses the one-to-one relationship 

between cdf's and the corresponding characteristic functions (c f 's )  which 

are th e ir  Fourier transforms; thus this method can be regarded as an 

extension of the orthodox proofs of the Central L im it Theorem. The cf 

of Qt  is  defined as ii«y(t) = E[exp{itQT >] and the cumulant generating 

function (cgf) of Qy by Ky(t) -  loge<py(t). Then the application of an 

inverse Fourier transform to the cf of Qy gives:

+0°
p d f(Q y ) «  / ( 2w ) expi- 1 tQ y ♦ K y ( t ) ) d t .  ( 8 )

In the case of an asymptotically standard normal s ta tis tic , K y(t) is 

approximated by a low order polynomial in ( i t )  with an error of o (T " K̂ 2) 

where the leading term is  J (1 t )2. The approximate cgf is obtained f ir s t li  

by approximating Qy with a stochastic expansion to o (T " K/2) in a vector x

g iving  Qy, and then secondly by approximating the cumulants of Qy to 
-K/2o (T ) using the coefficients of the stochastic expansion and the 

cumulants of x; see McCullagh (1984) and Sargan (1976) for alternative 

techniques. Provided the approximated cumulants behave like the 

cumulants of a standardised mean of 11d variates (mean zero, variance 

u n ity ) then the exponential of the approximated cgf ( i .e .  the approximat« 

c f) can be expanded as e x p i j( it )2) ,  which Is the c f  of a N(0,1) variate, 

m ultip lie d  by a low order polynomial in ( i t ) .
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Equation ( 8 ) can then be expanded in terms of the normal pdf

and its  derivatives using:

D % (z) = ♦ (* )  -  T (2 -.)'1(-U )"exp {- ftz  «■ i ( H ) 2)d t, (9)3Z - «

where $ (z) is  the standard normal pdf. Then using Dn<|»(z)=(-1 )nHn(z)<j»(z). 

where Hn(z )  is  the n'th Hermite polynomial, Equation ( 8 ) can be

expanded in terms of the normal pdf times a polynomial in  z ,  and 

integrating th is  gives the asymptotic expansion approximation to the 

cdf of Qt - A more detailed discussion of Hermite polynomials can be 

found in Abramowitz and Stegun (1965).

The characteristic function method is not limited to asymptotically 

standard normal sta tis tics ; i t  can easily be extended to general 

asymptotically normal statistics and to asymptotically multivariate 

normal s ta t is tic s . Chambers (1967) gave various algorithms which can 

be used in t h is  context and McCullagh (1984) methods fo r computing m ulti­

variate cumulants and approximating multivariate characteristic  functions. 

In addition, the characteristic function method can be adapted to 

asymptotically non-normal sta tis tics . Thus Mauleon-Torres (1983) 

applied i t  to  asymptotically chi-square test c rite ria  which can be 

expanded:

QT  -  a2 ♦ E T ' d/2« 4(a ,n .y ) + «»„(T"*72) (a > 0 ).  (10)
1 j - i  J K

where n'n ■ 1 , an * x and (x ,y ) is asymptotically N (0 ,I )  and uncorrelated 

in f in ite  samples. Mauleon-Torres obtained an Edgeworth expansion for 

the pdf of (x ,y ) :
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f (x ,y ) -  D > (x ,y)][l ♦ £ T"j/2f 1(x ,y )] t c ( r w ! ), (11)
J-1 J

where $(•) is the multivariate standard normal distribution. From this 

Mauleon-Torres obtained the cf of QT given n and y and then took 

expectations w ith  respect to n and y . However, this approach does not 

seem well suited to asymptotically non-central chi-squared s ta tis tic s  

since then 6 and n w ill no longer be asymptotically independent.

In general the most efficient approach to obtaining Edgeworth 

expansions need not be either exclusively a calculation of p robabilities 

approach or a characteristic function approach. Sometimes when exact 

distributional results are available i t  is  more efficient to derive the 

expansion d ire c t ly  from the known distribution function as in P h illip s  

(1983b). D ifferent approaches may have different advantages in  a given 

situation so th a t one method may be computationally more e ff ic ie n t  but 

another may lead to formulae which are easier to interpret. For further 

discussion of characteristic functions see Greenberg and Webster (1983), 

Lukács (1960) and Lukács and Laha (1964).

2 .4.2 The V a lid ity  of Edgeworth Expansions

Our discussion of Edgeworth expansions has so far been purely in 

terms of formal manipulations used to obtain such expansions w ith  no 

consideration being taken of the conditions which are required fo r the 

v a lid ity  of the formal manipulations and of the resulting expansions. 

Several theorems have been proved on the v a lid ity  of Edgeworth expansions 

under various conditions by Fe lle r (1971), Magdallnos (1983), Mauleon- 

Torres (1983), P h illip s  (1977b), Sargan (1976, 1980), Sargan
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and Mikhail (1971) and Sargan and Satchel 1 (1986). These theorems 

usually prove the v a l id it y  of the Edgeworth expansion for statistics 

which can be expressed as functions of more basic sta tis tic s . There 

are typ ica lly  two sets o f  conditions: the f ir s t  set are on these 

functions and serve to determine the asymptotic distributions of the 

statistics of inte rest. The second are on the underlying s ta tis tics  and 

ensure that these have a valid Edgeworth expansion. The two sets of 

conditions combined also ensure that well behaved stochastic expansions 

can be made of the s ta tis tic s  of interest.

The conditions of these theorems usually fa il in two main cases. 

F irs t ly , when discrete distributions are involved the characteristic 

functions of the s ta tis tic s  are often badly behaved in the ta ils . 

Secondly, when there are ARMA error structures the sta tistics of 

interest are often functions of a vector of sta tistics whose number o f 

elements increases with the sample size. As yet there are no theorems 

available to cover the second case although there are some for the 

f ir s t  case; see Bhattacharya and Rao (1976) for theorems relating to 

la ttice  d istributions.

In th is thesis we are mainly concerned with deriving and applying 

Edgeworth expansion approximations. The va lid ity  of such expansion 

approximations is  n either a necessary nor sufficient condition fo r such 

approximations to be useful 1n cases where the lim itin g  cdf 1s 

deemed an unsatisfactory approximation. Thus 1n this thesis we w il l  

pay re lative ly l i t t l e  attention to questions of v a lid ity . In general, 

i f  the Edgeworth expansion is not valid  there is an a priori argument 

to suggest that i t  is  not lik e ly  to be very useful because i t  presumably
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fa ils  to pick up various features of the model. However, in 

econometrics i t  does appear that a very wide range of statistics of 

interest have valid Edgeworth expansions under the usual assumptions 

about econometric models; see Sargan and Satchel1 (1986) for a proof 

that the f irs t  and second order sample moments in the DSEM meet the 

required conditions for underlying sta tis tics .

2 .4 .3 . The Uses and Performance of Edgeworth Expansion Approximations

Edgeworth expansion approximations can be used in a number of ways 

in econometrics. F ir s t ly ,  they can be used to examine the properties 

of particular sta tis tica l procedures; secondly, they can be used to 

compare alternative procedures; and th ird ly , they can be used to suggest 

new procedures. An example of the f ir s t  use is provided by Laitinen 

(1978) and Meisner (1979) who argued that in systems of demand equations 

the test statistics commonly used to test symmetry and homogeneity 

have true sizes which exceed th eir nominal sizes and that this p artia lly  

explains the frequent rejection of these hypotheses in such systems. As 

regards the second use Edgeworth expansions have now been quite 

extensively used to compare alternative procedures theoretically.

Thus Akahira and Takeuchi (1981) found that the Maximum Likelihood 

estimator with a modification to ensure that 1t is median unbiased 

to order o (T“^) 1s the most efficient estimator to order ofT’ 1) 

among the class of estimators which are median unbiased to o(T ^) 

for a wide range of models. Rothenberg (1984b) reviewed these results 

and those on the higher order comparison of test sta tis tics . Such 

modified statistics also provide an example of the use of Edgeworth 

expansions in generating new statistical procedures.



Pfanzagl (1980) examined the possib ility of constructing a 

general s ta tis tica l theory for parametric models based on asymptotic 

expansions. Certainly asymptotic expansions do seem to be closely 

related to certain important underlying properties of statistical 

models such as curvature and also to statistical concepts such as 

conditionality and and 1 la r i t y ;  these relationships are examined 

further in Amari (1982) and Ryall (1981).

As well as there being a number of studies which have derived, 

validated and used Edgeworth expansions there have also been studies 

which have attempted to assess the performance of Edgeworth expansion 

approximations. P h illips (1977a) compared Edgeworth expansion 

approximations (with errors o (T ” ^ )  ando(T- ^ ) )  for the OLS estimator 

of the autoregressive coefficient in a pure f irs t-o rd e r autoregression 

with the exact distribution computed by Imhof's routine and with the 

asymptotic normal d is trib ution . Phillips found that as the sample 

size increased the higher-order approximations performed relatively 

better but that their performance worsened as the absolute value of 

the autoregressive parameter approached unity. This effect from 

increasing the strength of the dynamics in the model also appeared 

in Tanaka (1984) who Included an intercept and used Monte Carlo 

simulations and also in Tse (1982) who Included exogenous regressors 

and used both the exact d is trib u tio n  and Monte Carlo simulations.

Sargan and Tse (1979) considered the marginal distributions of 

2SLS estimators in a simple s ta t ic  simultaneous equations model and 

in a simple dynamic simultaneous equations model. The static model 

is essentially the dynamic model with the lagged dependent variables
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replaced by non-stochastic exogenous regressors with a covariance 

structure such that the asymptotic c d f 's  of the 2SLS estimators are 

the same in both models. They found that the normal approximation 

performed worse in  the dynamic model than in the static  model but 

that the Edgeworth expansion approximation performed well in both 

models.

One worrying feature of Edgeworth expansion approximations in 

general is th e ir performance in the t a i ls  of the distributions being 

approximated. This is not very surprising  since the Edgeworth 

expansion uses information from around the origin when taking the 

stochastic expansion of the s ta t is t ic  and approximating the cumulants.

For points further into the ta ils  a la rge r sample size w ill be needed 

typ ica lly  to achieve a given accuracy. Furthermore, there are no 

restrictions im p lic it in the Edgeworth expansion to ensure that Edgeworth 

expansion approximations such as Equation ( 2 ) are true c d f's , so i t  

is  quite possible for the approximate cdf to take values less than zero 

and greater than one, and for the approximate pdf to be negative. I t  is 

not uncommon for such phenomena to occur in the ta ils  of the expansion 

in actual studies, e .g . P h illips  (1977a).

One way to ensure that the approximate cdf lie s  in the interval 

[0 ,1 ] 1s to use the Edgeworth-B form given 1n Equation (2 5  ) 1n place 

of the Edgeworth-A form given 1n Equation (2 6  ) ;  see the Appendix to 

th is chapter for a discussion of how to obtain the Edgeworth-B form from 

the Edgeworth-A form. This does n o t, however, prevent the approximate 

pdf from being negative 1n certain regions so that neither form 

is  e ntirely satisfactory. The use o f  the Edgeworth-B
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form can be regarded as an application of the Cornish-Fisher method

whereby the sta tis tic  is transformed to have the same lim iting cdf
-K/2but with a smaller order of magnitude e rr o r , e.g. o (T  ) rather 

than o ( l ) ;  see Cornish and Fisher (1937). Since the Cornish-Fisher 

sta tis tic  is a proper random variable i t  should completely avoid 

the problems of cdf's outside [0,1] or p d f's  which are negative.

However, i t  may not give very much information about what the cdf 

of Qy looks like .

The performance of Edgeworth expansion approximations has also 

been investigated for a number of test s ta tis tic s . Evans and Savin 

(1982a)used Edgeworth based size corrections to the Wald, LM and LR 

test c rite ria  in the CLR and found that these account for almost all 

the differences between the fin ite  sample and asymptotic distributions 

both under the null hypothesis and at various alternative points. 

Mauleon-Torres (1983) considered asymptotically chi-square tests 

in two models using both the Edgeworth-A and Edgeworth-B form 

approximations to the cdf's  of the s ta tis tic s  and also the Edgeworth-B 

form for the cdf's of the positive square roots of the statistics.

The f ir s t  model Mauleon-Torres used was a dynamic linear regression 

model with a first-o rd e r lag on the endogenous variable which 1s 

sim ilar to that used by Tse (1982). Mauleon-Torres considered x2 and 

F tests for linear restrictions on the regression coefficients including 

the firs t-o rd e r lag parameter. The Edgeworth approximations performed 

better than the asymptotic cdf but the performance of a ll the approxi­

mations worsened as the disturbance variance Increased, as the f i r s t -  

order lag parameter approached unity and as the coefficients on the



exogenous variables decreased; changing these parameters in these 

ways strengthened the internally generated dynamics of the model. 

Mauleon-Torres found that the Edgeworth-B form tended to perform 

better than the Edgeworth-A form but explained th is  by noting that 

a ll the approximations tended to over-evaluate the probabilities 

for the acceptance region; note that in this case the Edgeworth-B 

approximation was necessarily smaller than the Edgeworth-A form.

The second model Mauleon-Torres (1983) used was a dynamic 

simultaneous equations model with two endogenous variables, two 

exogenous variables, and one lag. Mauleon-Torres imposed various 

exclusion restrictions and then tested for over-identification  on 

the f i r s t  structural equation using both Wald and pseudo-LM tests 

of the implied restrictions on the reduced form. The actual LM 

sta tis tic  requires complicated estimation under the restrictions 

whereas the pseudo-LM sta tis tic  avoids th is . Mauleon-Torres found 

that the Edgeworth expansion approximations generally performed 

better than the lim itin g  cdf and that th eir performance did not 

deteriorate seriously under the influence of strong dynamics or 

simultaneity. In a ll cases Mauleon-Torres used Monte Carlo simulations 

to estimate true probabilities and only considered distributions under 

the null hypothesis.

There are a number of areas where Edgeworth expansion approximations 

have been neither used nor assessed; in p a rticu la r they have not been 

used for analysing sequential testing procedures. Since such procedures 

are widely used 1n econometrics, see Sargan (1980a) for sequential Wald 

testing, i t  would be desirable to know how well th e ir  lim iting properties
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approximate th e ir  f in ite  sample properties. The main reason why 

Edgeworth expansion approximations have not been applied to such 

procedures appears to be the lack of Edgeworth expansion derivations 

for jo in tly  distributed test sta tis tic s . This is in contrast to 

asymptotically normal estimators where Edgeworth expansions of their 

jo in t distributions have been considered; see for example Tanaka (1984) 

on Maximum Likelihood estimators in autoregressive moving average models.

2.5 Alternative Approximation Methods

2.5.1 Asymptotic Expansions in Parameters other than the Sample Size

As noted in Section 2 .A .2 in the Appendix to th is chapter, asymptotic 

expansions can be made in parameters other than the sample size. The 

most commonly encountered alternative parameter sequences are small-o 

asymptotics and large-y asymptotics. In small-a asymptotics the 

disturbance variance matrix of the reduced form of an SEM is expressed 

as o2n and then a is allowed to tend to zero with a ll the other 

parameters fixed.

This approach was introduced by Kadane (1970, 1974) who obtained 

the asymptotic distribution as o -► 0 of a number of tests of over­

identifying restrictio ns. Kadane (1971) then developed asymptotic 

expansions in a for the distributions and moments of k -c la ss estimators. 

Large-y asymptotics are concerned with le ttin g  the concentration 

parameter, y2, tend to in f in ity . Anderson (1974) used large-y 

asymptotics to approximate the d istribution of a LIML estimator in 

the SEM.
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The results of large-u, small-o and large sample size asymptotics 

are very sim ilar. This is  particularly true with large sample size 

and large u asymptotics but this result is not surprising since ,for 

example, with 2SLS the sample size only affects the cdf through 

the concentration parameter; see Richardson (1968). There are some 

differences, however, with small-o asymptotics, e .g. tests of over­

identifying restrictions have asymptotic F not x2 d is trib ution s. This 

again is not to ta lly  surprising since this is what would be obtained 

with small-o asymptotics in the CLR. Anderson (1977) provides a 

summary of some of the results for alternative asymptotics 1n the 

SEM.

Small-o and large-y asymptotics have sometimes been c rit ic is e d  on 

the grounds that they involve purely a rt if ic ia l parameter sequences 

whereas large sample size asymptotics involve a naturally occurring 

parameter sequence. However, as Taylor (1983) noted, th is objection 

is not rea lly  relevant. With asymptotic results the important questions 

are whether they are useful and whether they are easy to obtain.

2.5.2 Nagar Moments

Information about econometric estimators 1s often summarised 1n 

terms of th e ir moments. Thus the mean indicates the location of the 

estimator, the variance its  dispersion, the third moment its  skewness, 

and the fourth moment its  kurtosls or the thickness of its  ta i ls  

(th is  requires some comparison with the variance). Nagar (1959) 

attempted to develop asymptotic expansion approximations for the 

moments of k-class estimators and such approximations have since 

been generally referred to in econometrics as Nagar moments.
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The most common method for evaluating Nagar moments is  to form a 

stochastic expansion of the s ta tis tic  In a vector of underlying 

s ta tis tics  with known moments and then to obtain stochastic expansions 

for the powers of the sta tis tic  (fo r moments around zero). The 

expectation operator with respect to the underlying vector can then 

be applied and the resulting asymptotic expansions truncated to the 

desired order of magnitude. Thus the techniques required for the 

derivation of Nagar moments are very sim ilar to those required f o r  the 

derivation of Edgeworth expansions.

Like Edgeworth expansions Nagar moments have been used in a 

number of ways in econometrics. F irs t ly , they have been used to 

compare different estimators. Taylor (1983) summarised the results 

which have been obtained for the bias and mean square e rror (MSE) of 

OLS, 2SLS and LIML estimates in the SEM using both small-a asymptotics 

as in Kadane (1971), and large-y asymptotics as in Mariano (1973). 

Secondly, the Nagar mean and variance have been substituted into the 

normal cdf to attempt to obtain a better approximation than the usual 

lim itin g  normal cdf. Sargan and Mikhail (1971) considered th is f o r  

IV estimates and found that the resulting approximation was only 

better than the lim itin g  normal for cases where the degree of o v e r- 

identification was large and did not perform as well as the Edgeworth 

expansion approximations. This la tte r result is  not surprising since 

no adjustments are being made for skewness and kurtosis in the Nagar 

normal distribution whereas they are in the Edgeworth expansion 

approximation.
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There are two main problems with Nagar moments. F irs t ly , the 

s ta tis tic  of interest may not have fin ite  moments of the desired 

degree. This highlights the point that Nagar moments should be 

interpreted as approximations to the moments of approximations to 

the s ta tis tic s  of interest. Only under certain conditions discussed 

by Sargan (1974) can they be interpreted as actual approximations to 

the moments of the sta tistics of interest. Secondly, the moments of 

the d istribution  of a s ta tis tic  are not always the most informative 

guides to i t s  features of interest. Magdallnos (1983) suggested an 

alternative measure of concentration to that of MSE and found that 

asymptotic expansions of th is measure were very easy to use in making 

comparisons between alternative estimators 1n the SEM. With test 

s ta tis tics  the moments are very ra re ly , i f  ever, used to characterise 

the properties of the test.

2.5.3 Saddlepoint Approximations

Closely related to Edgeworth expansion approximations are saddlepoint 

approximations for pdf's and c d f's , introduced by Daniels (1954).

Like Edgeworth expansion approximations these are derived from 

Equation (8 ).

The Edgeworth expansion forms an expansion of KT ( t )  around t=0 and then 

integrates the resulting expansion of [e x p{-1tQ y}ex p {K y(t)}]. However, 

even 1f Qy has asymptotically mean zero expanding around t=0 may not be 

very informative when Qy 1s far from zero 1n f in ite  samples. I f  Ky(t) 

is  an analytic  function then so also is  exp{-1tQy + Ky(t)> and the



above integral can be regarded as a contour integral of an analytic 

function along the real axis. Such a contour can be distorted without 

changing the value of the integral providing that the contour has the 

same end points and lie s  in the same simply connected domain. The 

saddlepoint approximation distorts the contour so that i t  passes 

through the saddlepoint of the integrand which is  the complex point t* 

such th a t:

The integrand is then expanded around t=t* and integrated term-by-term. 

The saddlepoint t* e x p lic it ly  depends on QT so that the point around 

which the expansion is taken is  keyed to QT ; i f  QT is asymptotically

( iQ-j.) instead.

The saddlepoint approximation has two main advantages compared 

to the Edgeworth expansion. F ir s t ly , 1t is  keyed much closer to the 

ta ils  when QT lie s  in the ta ils  and so i t  may provide a more accurate 

approximation to the ta ils  of the pdf of Qj. Secondly, the series 

expansion obtained is  typ ica lly  1n powers of T -1 rather than T~*.

Thus the leading term is correct to order 0 (T_1) .  Furthermore, as 

was pointed out by Daniels (1956), i f  the leading term 1s renormalised

by an appropriate constant (which w ill depend on T ) so that 1t integrates
-3/2to unity then the renormalised leading term is  correct to 0 (T y ) .

(12)

standard normal then t*  = 1QT + 0 (T “*) so we often  expand around
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However, the saddlepoint approximation also has a number of 

disadvantages compared to the Edgeworth expansion. F ir s t ly , since 

K y(t) has to be expanded at many different points i t  would appear 

that constructing the saddlepoint approximation requires quite 

detailed knowledge of the cumulant generating function. This 

disadvantage is  not as serious as i t  might appear since i f  Ky(t) is 

analytic everywhere in the real plane, then an appropriate expansion 

of K y (t) to 0 (T ‘ K/2) can be constructed at any point t  using only 

the cumulants; see Durbin (1979) for details. Secondly, and more 

seriously, i f  Qj does not have f in ite  moments of a ll orders then 

K j(t )  is  not analytic. In th is case further arguments have to be 

put forward to support the distortion of the contour and the approxi­

mation of the integrand by its  expansion around a point not on the 

real axis.

The saddlepoint approximation has also been obtained using the 

conjugate or exponential family approach by Barndorff-Nielsen and 

Cox (1979). Durbin (1980) gave a related method for estimators which 

are su fficient sta tis tics  together with a proof of the v a lid ity  of 

th is method under certain conditions. The Durbin approach is p articularly 

simple and is  based on the following argument. I f  t ( y )  is a sufficient 

estimator of e where y is  distributed f (y ;e ) then;

f (y ;e 0) -  g (t ;e 0 )h (y ) .  (13)

where h (y ) does not depend on e , and eQ are assumed to be the true 

parameter values. Substituting in f ( y ; t )  gives:
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9<f.80> ■ f j y l ^ >9(t,t> (14)

and we then substitute g ( t ; t )  for g ( t ; t )  to obtain g (t ;e Q) where 

g ( t ; t )  is  the lim itin g  pdf of the estimator t  at the parameter values 

t .  As can be seen from an Edgeworth expansion g ( t ; t )  is  correct to 

0 (T_1) so the in tu itive  argument is that g (t ;e Q) ,  constructed by 

m ultiplying the likelihood ratio  by the lim itin g  pdf, w ill also be 

correct to 0 (T - ^ ).

The theorem proved in Durbin (1980) has two parts and provides 

certain conditions under which the above argument is va lid . The 

f i r s t  part of the proof is  a proof of the v a lid ity  of an Edgeworth 

expansion for a vector of s ta tis tics  under certain conditions including 

the existence of cumulants up to a certain order. These conditions 

are sim ilar but not the same as the conditions on the vector of 

underlying s ta tis tics  required for the theorem in Sargan and Satchel 1 

(1986). Thus Durbin's Edgeworth theorem may have applications elsewhere 

in econometrics. The second part of the proof is a validation of the 

saddlepoint approximation fo r the statistics of interest which are 

functions of the underlying sta tis tic s . This second stage requires 

the sta tis tics  of interest to be sufficient sta tis tics  and to have 

second moments. Since these la tte r conditions are frequently not 

met in econometrics this lim its  the usefulness of this saddlepoint 

approximation in econometrics.

Saddlepoint approximations have been used in econometrics by 

Holly and P h illips  (1979) fo r k-class estimators 1n the SEM and by 

P h illips (1978) 1n the non-circular AR(1) model. The results in 

Holly and P h illips  (1979) indicate that the saddlepoint approximation
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can be better than the Edgeworth expansion approximation but that when 

the concentration parameter is  small then they both perform quite badly. 

The saddlepoint approximation for the density function does have the 

advantage that i t  is positive everywhere whereas this cannot be 

guaranteed for the Edgeworth expansion approximation.

2.5.4 Large Deviation Expansions

Both the Edgeworth expansion approximation and the saddlepoint 

approximation are concerned with approximating the cdf at fixed points 

as the sample size gets large. However, these approximations,and in 

particular the Edgeworth expansion, tend to be unsatisfactory in the 

ta ils  of the distribution being approximated. An alternative approach 

referred to as large deviation expansion approximation permits the 

evaluation point to increase as the sample size increases. This 

approach has not yet been extensively investigated in econometrics.

The main results refer to standardized sums of i id  variates; see 

Petrov (1968), although P h illips  (1977c) did consider more general 

sta tis tics . Field  and Hampel (1982) developed an interesting 

integration of Edgeworth, saddlepoint and large deviation methods 

based on the logarithmic derivative of the density which provides 

accurate approximations even for very small sample sizes in the models 

they consider.
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2.5.5 Curve F ittin g  Techniques and Transformation Methods

Curve f it t in g  techniques are the most general methods for 

approximating distributions in econometrics and can often use information 

obtained from other approximation techniques. Curve f it t in g  consists of 

picking a family of functions with roughly the right properties and 

then finding the member of the family which f its  best in some sense.

The simplest approach is to pick a family of distributions and f i t  the 

low order moments of the s ta tis tic . Henshaw (1966) approximated the 

distribution of the Durbin-Watson s ta tis tic  using a linear transformed 

Beta distribution with the same f i r s t  four moments. The Beta 

distribution is an obvious choice because i t  1s unimodal and is  

restricted in a specified range, and indeed the Henshaw approximation 

appears to work very w ell.

P hillips (1982) proposed a more sophisticated technique using 

Pad6 approximations. Many of the exact distributions which have 

been derived in econometrics consist of a leading term multiplied 

by an in fin ite  series expansion where for certain parameter values 

the series expansion is unity. P h illips suggested retaining the 

leading term, or using a simpler function with similar properties, 

and replacing the series expansion with a fin ite  rational function.

The overall approximation can be fitted  so that at various points i t ,  

and its  low order derivatives, take the same values as the function 

of interest; P h illips  suggested using the origin  and the point at 

In f in ity . The approximation can then be manipulated by s lig h t 

perturbation to be s tr ic t ly  positive everywhere. As P h illips (1982) 

indicated this technique can produce very accurate and easily computable
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approximations when other approaches such as Edgeworth expansion 

and saddlepoint approximations perform very badly.

Closely related to curve f it t in g  techniques are transformation 

methods. These transform the sta tis tic  so that i t  f its  some known 

distribution better without losing information about the s ta tis tic .

Thus i f  x has a t  distribution with K degrees of freedom the simplest 

approximation is  to treat x as a standard normal variate. This is 

unsatisfactory for K < 30 but z = x (l-2 K ~ ^)^ , suggested by Weir (1960), 

is more accurate although i t  too deteriorates for K < 20 or when x is 

very large. There are a very wide range of such transformations 

available both for variates of known d istrib ution s, such as the 

t  d istribution above, and also for s ta tis tics  of unknown d istribution ; 

e.g. the z transformation from Fisher (1915) for the sample correlation 

coefficient from a bivariate normal d is trib ution .

Curve f it t in g  techniques and transformation methods are very 

versatile and can give rise to extremely accurate approximations. 

However, th is  ve rsa tility  can be a disadvantage in that without 

considerable prior information i t  is not clear what family of curves 

or transformations should be used. In econometrics such approximation 

methods seem lik e ly  to be of more use currently in the SEM where 

considerable information 1s available concerning the properties of 

estimators and test sta tis tics  than in dynamic models where much 

less information 1s typ ica lly  available. This does not prevent such 

approximations from being of use since often the theoretical and 

other information 1s very d if f ic u lt  to use d ire ctly  due to computational 

d iff ic u ltie s  and the existence of simple and accurate approximations is 

clearly desirable.
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2.5.6 Monte Carlo Methods

The remaining major technique used in econometrics 1s that of 

Monte Carlo simulation. The principle behind the Monte Carlo approach 

1s that of generating random or pseudo-random numbers and then using 

these as the disturbances 1n a model of known structure to analyse the 

properties of the s ta tis tics  of interest. Typ ically  properties of the 

sta tis tics  w ill be investigated at several points in the parameter 

space to reduce the sp ecific ity  of the results. The results of Monte 

Carlo studies are subject to sampling error and so the number of 

replications, i .e .  the number of simulations at a given point in 

parameter space, has to be determined carefully to reduce sampling 

errors to acceptable levels. Various techniques for reducing sampling 

e rror without needing to increase the number of replications are 

available; these Include the use of antithetic variates and control 

variates. The information produced by Monte Carlo simulations is 

often not very useful without further manipulation because i t  consists 

mainly of parameter values and estimated c d f's , p d f's , moments and 

rejection p robabilities. One method for summarising such information 

1s that of response surfaces in which the Monte Carlo estimated values 

are regressed on simple functions of the parameters where these functions 

are chosen to be reasonably compatible with the known theoretical and 

empirical properties of the sta tis tics  of Interest; see M1zon and Hendry 

(1980) for further discussion.

Hendry (1984) provided a useful survey of Monte Carlo methods and 

th eir uses in econometrics, and Challen and Hagar (1983) provided a 

useful survey of Monte Carlo studies which have been made in econometrics.
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Such studies often provide the only benchmark against which other 

approximation methods can be compared. Even when the exact 

distributions of the sta tis tics  of interest are available, i t  is 

sometimes easier to use Monte Carlo studies; see Anderson, Kunitomo 

and Sawa (1982) on the LIML estimator. Monte Carlo studies are 

also often used on their own to assess and compare econometric 

statistics as in K iviet (1985) on model selection test procedures.
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2 .A Appendix to Chapter 2

2.A.1 Orders of Magnitude Notation

Consider two sequences of real numbers {g-j-} and {hy> as T  + «  where 

hy > 0 for a ll T .  Then:

( i )  gT is defined as being of smaller order of magnitude than hT 

or g-j- * o [hy] i f  and only i f  for a ll e > 0 there exists T (e ) 

such th a t :

|(gT/hT )| < e for a ll T % T (e )

or lim (gT/hT ) ■ 0 . (15)
T—  1 1

(11) gT is defined as being at most of order of magnitude hy or 

gT =* 0[hT]  i f  and only 1f there exist M and T* such that:

|gT | * MhT for a ll T  % T* . 0 6 )

Now suppose that {gT > is a stochastic sequence of real numbers but 

{hT }  is  s t i l l  a sequence of fixed positive real numbers. Then:

(111) gT Is defined as being of smaller order of magnitude in probability 

than hy or gy * Op[hy] ^  an<* on^  ^  f°r  e.6 > ® there 

exist T ( e >6) such that:

Pr{|gy/hy| > 6} < e for a ll T >. T (e ,6 )

or 11m Pr(|gT/hy| > 6) »  0 for a ll 6 > 0
( l .e .  pi 1m|gy/hy| ■ 0 ). (17)
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(1v) gT is defined as being at most of order of magnitude in probability 

h - i f  and only i f  for a ll e > 0 there exist M(e) and T (e ) such that:

I f  gy = <x + o p[hy] then i f  gy is  an estimator of a, gT is  called a 

consistent estimator of a. I f  gy = 0^(1) then gT is referred to as 

stochastically bounded. I t  should be noted that:

These definitions follow those of Greenberg and Webster (1983).

2.A .2 Asymptotic Expansions

Suppose that ign(x)>  is a sequence of functions of x where gn+1(x ) = o[gn(x ) j  

as x +  « .  Then i f  f (x ) is  a function of x and:

then f (x ) has the asymptotic expansion £ a .g .(x ) 1n the asymptotic
j -0  3 3

sequence ign( x ) }  and this 1s usually w ritten:

f (x )  * f  a .g .(x ) . 
j -0  J 3

I t  can be noted that Equation (1 3  ) 1s equivalent to :

Prf|gT/hT | > M(e)> < c for a ll T a T(e ). (18)

9t  * ° [hT]  *  gT = 0[hT] and 

9t  - O p N  * 9T ’ °p[hT]

( 19 )

( 20 )
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In econometrics and statistics we are often Interested in asymptotic 

expansions of c d f's , p d f's , cf's  etc. In terms of the above definitions 

such asymptotic expansions are really entire families of asymptotic 

expansions since we usually have two variables of interest: the 

evaluation point; and the lim iting variable (e .g . the sample s ize ).

These asymptotic expansions take the form:

The sample size is  not the only lim itin g  parameter used in 

econometrics: sometimes small-a or large-u asymptotics are considered. 

Sm all-o asymptotics refer to behaviour as o2 + 0 where o2 is the 

disturbance variance, see Kadane (1971); large-u asymptotics refer 

to v*2 ■+• 0 where u2 1s the concentration parameter in the SEM, see 

Mariano (1973). Orders of magnitude and asymptotic expansion notation 

can easily be extended to small-o (o r large-w)asymptotics by considering 

the behaviour of o2-sequences as o2 -*■ 0 (or u2-sequences as m2 -*■ • ).

Stochastic expansions of sta tis tics  are very sim ilar to asymptotic 

expansions except th a t,f irs tly ,th e y  are usually made in a vectors of 

variates with some known distribution properties, and, secondly, the 

e rro r on the truncated expansion is usually stochastic so:

fT (x ) -  ? a1(2 )g1(T ). 
' J -0  3 J

(21)

With T=the sample size then ( T ) 1s usually chosen to be T - ^  so:

(22 )

( 23 )
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is often encountered. By suitably manipulating s i t  is sometimes 

possible to express f (s ) in a very simple form. For example, i f  

Qt  is asymptotically standard normal 1t 1s often possible to transform 

s to (x ,y ) where x is exactly standard normal and y is  a vector 

independent o f x such th a t:

Or • x + j I 1T 'J/2gj (x ,y ) + o p( T ' W ). (24)

These definitions follow De Bruijn (1981) and Wallace (1958).

2 .A .3 Transformation from the Edgeworth-B to the Edgeworth-A Form

-3/2For s im p lic ity  we w ill consider expansions to 0 (T  ) :  these

exhibit the main phenomena to be noted without being too complicated 

and are often those used in applications. The Edgeworth-B form 

approximation is :

Pr{QT < X) = « [x  + T 'Sb ,(x ) + f ’ b jfx )] + 0(T‘ 3/2) (25)

where b ^ (» )  and bg(•) are usually low order polynomials and ♦(•) is 

the cdf of a standard normal. Following Sargan (1976) the technique 

is to form an expansion of $(x*) around x where x*-x * T ’ ^Cb^(x)+T~*b2(x )] 

-  0 (T_ i ) .  Thus:

PrtO,. < x) ■ * (x ) + ( x* -x) * ' ( x)+ (x* - x)2 (J )* " (x)^ )(T "3/2)

where is  the f irs t  derivative of the cdf *(• ) evaluated at x,

i .e . the pdf $(•) at x , and * "(x ) 1s the second derivative of the 

cdf *(•) evaluated at x . Substituting in for (x* -  x ) gives:
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Pr{QT i  x )  = l (x )  + T’ ^ i x M x )  + T _1b2(x )» (x )  

-S T '1(b) (x ))2 x »(x ) + 0 (T -3/2)

* ®(x) + T ' ! b ,(x )* (x )

♦ J f ’ p b jf x ) -  x b ,(x )b ,(x )]* (x ) + 0 (T '3/2)

'  » (x ) + T‘ U , (x )b (x )  + T ' 'a 2(x )* (x ) + 0 (T '3/2) (26)

which 1s the Edgeworth-A form. I t  1s s im ila rly  possible to proceed from 

the Edgeworth-A form to the Edgeworth-B form. Mauleon-Torres (1983) 

examines the appropriate derivation fo r when QT is  asymptotically ch i- 

square rather than standard normal.
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CHAPTER 3: An Approach for Obtaining Asymptotic Expansions for the CDF’ s 
of Asymptotically Chi-Square Econometric Test Criteria

3.1 Introduction

This chapter presents a theoretical method for deriving asymptotic 

expansion approximations to the cumulative distribution functions (cd f's ) 

of asymptotically chi-square test c rite ria . The method is  developed 

in it ia l ly  in Section 3.2 under the null hypothesis. I t  is  then extended: 

f i r s t ly ,  in Section 3.3 , f o r  approximate inner product c r ite r ia ; secondly, 

in Section 3.4, for m ultiple test c rite ria ; and la s tly , in Section 3.5, 

for test c rite ria  under local alternative hypothesis sequences.

The exact inner product class of asymptotically chi-square test 

c rite ria  is of interest in it s e lf  since i t  covers many commonly used 

econometric test s ta tis tic s . This is because econometricians have 

predominantly thought of testin g  parameter restrictions by measuring 

distances 1n parameter space or in parameter-related spaces using inner 

product type metrics. The Wald test is a very direct example of th is , 

as also is the Hausman te s t . The Lagrange M ultiplier test also fa lls  

into this category: here the space related to the parameters is that of 

the f irs t  derivatives of the log-likelihood function. Exact inner 

product tests are often easy to compute because most (often a l l )  of the 

information is  generated as a side product from standard regression 

packages.

Not a ll econometric tests fa ll into this class: the most obvious 

counter-example is  the Likelihood Ratio test. Except in special cases, 

when the log-likel1hood is  an exact quadratic form, th is  test criterion 

does not belong to the exact inner product class. Furthermore, the
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Likelihood Ratio is computationally much harder to implement than a 

large sample equivalent, such as the Wald test, in most situations. 

However, in econometric applications the Likelihood Ratio is  usually 

an approximate inner product s ta tis tic  and so its  d istribution  can be 

examined using the method presented in this chapter.

3.2 The Exact Inner Product Case under the Null Hypothesis 

The class of test c r it e r ia  covered here take the fomr:

2 h 
s = e x3 

j-1  J

* XjXj in tensor summation notation 

where x 5n( 0 , I ^ ) ,

that is  where the vector x has a lim iting jo in t ly  independent, standard 

normal distribution. The f i r s t  step in the method used here is  to 

decompose the sta tis tic  into th is form thereby e x p lic itly  obtaining \ 

as a vector of s ta tis tics . The second step is  to obtain an Edgeworth 

expansion for the jo in t p ro ba b ility  density function (pdf) of x. This 

is discussed 1n Chambers (1 96 7), McCullagh (1984) and Sargan and Satchell 

(1986). The method which is  used here is based on McCullagh (1984) and 

clearly shows the relationship  of the multivariate Edgewo“th expansion 

to the univariate Edgeworth expansion 1n Sargan (1976), (corrected 

formulae 1n Tse (1981)).

3.2.1 Multivariate Edgeworth Expansions

We assume that the decomposition vector x can be expressed:

A ■ T * U (p ) -  +(u)>

where p -  E (p ), and
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where the vector p has cumulants of a ll orders up to K+2 where K ^  2. 

This condition is c learly met i f  p contains only quadratic and linear 

forms in jo in tly  normally distributed  variates. We also assume that, 

defining:

then the f ir s t  cumulant of x is  zero (which follows by construction),

this 1s easily met providing a l l  the derivatives of * at p -  u 

converge to constants as T-*» (and the f i r s t  derivative to a non-zero 

constant). To prove the v a l id ity  of the m ultivariate Edgeworth expansion 

requires rather more complicated conditions on $ ( . )  and p; see Chambers 

(1967), Phillips (1977b), and Sargan and Satchell (1986) fo r theorems 

and more extensive discussion.

x * T*(p-u)

and the cumulants of order j  ( j = 2 , . . .  K+2) are 0 (T ~ ^ ”^ ^ ) .  Equation 

(1 ) can be re-written so that x Is a function of x:

x »  g (x )

and we then require some conditions of the derivatives of

and a ll higher order derivatives are 0(T ^ ) .  Since



-  56 -

Then x r can be expanded as a polynomial in  x with an error of 

O tT '3' 2) :

v  -  (gJXj) ♦ J(9jV jV  ♦ s<«jrktW t >  * °<t ‘ 3/2>

* (G„ + of ♦ |of + ¿of + 0(T_3/2))X  -  Pr*

using a generalized operator notation as in  McCullagh (1984). Since 

there is no constant term 1n the expansion (a t  x = 0, xr  * 0) then we 

can drop the GQ term.

We now need some notation for the cumulants of x . Following 

McCullagh (1984, p.462) we define generalized cumulants as follows:

•c1 « E(xi ) j  K1J -  E ix ^ j ) ;  -  cov(Xj.Xj);

* E(xi XjXk) ;  k *^k = cov(x^ ,X jX k)

1 ,J,k  A j  1 ,k A k 1, j  ^= K j  + K K + te K etc .

As can be seen these generalized cumulants include both moments and 

cumulants as special cases. The important information about a generalized 

cumulant is given by its  superscripts and the way in which these are 

divided up by commas. The commas induce a partition on the set of x 

variables indicated by the superscripts. Even though two superscripts 

may be the same they should be treated as d is tin ct for the purposes of 

expanding the generalized cumulant as a sum of products of ordinary 

cumulants. The terms in such an expansion meet two requirements. The 

f i r s t  is that they are products of ordinary cumulants such that each 

superscript in the generalized cumulant appears exactly once in the 

product. The second is that no terms are included that can be factorized 

non-tr1vially so as to induce a partition on the superscripts which is a 

weak coarsening of the partition induced by the commas.
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An example is given by ki . j  ,k i the third  order jo in t cumulant of x.

K1 ,J .la  ,  „ U . k . t  + „ I .J .k .*  +

-  K1 .J .k .t [2j  + . l . k . J . i j q

The square brackets notation 1s a convenient way to save space: the 

number 1n square brackets gives the number of terms of the form of the 

expression immediately preceding the square brackets. This has to be 

understood in context so in the above:

1 »j,k  i r, ,  i , j , k  i  A i , j , t  k
ie w * [ZJ K * + * * •

McCullagh (1984, Section 3, pp. 463-4) gives a more detailed mathematical 

exposition of this rule for expanding generalized cumulants.

Lastly, we need a rule for finding the cumulant generating function 

of x given the polynomial expansion of x in  x and the cumulants of x . 

Denoting the entire structure of cumulants of x by k we have:

Kx(ç ) -  exp(çr Pr )ic

where the exponent is formally expanded in terms of the operators GQ,G^, 

G2,G3 etc. Thus

Kx( 0  -  *r ( Gi + i G2 + 5^3 + •••)*

♦ i€r€s(<G1G1> + |<G1G2 + 6 ^ } +  è{G2G2>+ . . . ) «

+ ï 5r î s£t ((G l Gl Gl 1 + *G1G1G2 Î31 + »Gl G2G2[ 3l ♦ ••■)«

+ 2jW t « u < GlGlGlGl+ iGiGiGiG2W  + •••)«♦ (2)
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McCullagh (1984, Equations (9 ) ,  (1 0 ), p.465). The action of an operator 

on k is to be seen so (McCullagh (1984),Equations (7 ) ,  (8 ) ,  pp. 464 -5 )):

I k »  0 ; Gqk * gr ; G^k * g^K1; G2k * f ljj ic ^ ; G3k =

The action of compound operators introduces commas so:

s , g, k -  »  g i j 9 ^ 1J’k: g, g2k -  s ^ k<1,Jk.

With this we can expand Equation (2) as:

Kx(e ) ■■ er (gTKJ ♦ i9 jk« Jk + ••■)

♦ W f t i’k ♦ ♦ 1̂ ' . . . )

j  ,k,iun . . . )

(3 )

McCullagh (1984, Equation (1 1 ), p.465). With the order of magnitude 

properties of the derivatives of g and the cumulants o f  x there are 

only 11 terms in Equation(3 ) •jhich are not 0(T"3,/2) :

1
r ■ •V»
2
rs - *9K ‘J,k=
3

ars ■

4
rs -

, _ r s jk,tm . 
‘ 9jk 9^  ■

5
rs ■

6
rst - ¿»W*J-k,‘>
7

arst - Jgr g V  KJ>k>un- ,9J 9k9tm
8

arstu - 1 - r .s . t .u  J .k .t .m , 
^ j gkgt gm ;

9
arstu - l_r_s_t_u J ,k ,t,m p . 

T29j 9k9k9mp J 1
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:■ (è ï«4 ■ 0 (T ‘ ‘ ) ; a2 - (i)o* = 0 (1 ) ;  a3 = ( i )a 5 • o a ' 1) ;
4a * U ) “,  <» 0 (T '2) o —t ' ) ;  a5 = ( J ) « 7 + 0(T~2) - 0 ( T 'V .

a6 - <5>“1 =0 (T '* )i a7 -  m « 3 ♦ 0(T*3/2) -  0 (T- * )i

a8 - (W>°2 -  0 (T_1) 9
; a * ( i ) « 10 + 0 (T"2) »  0 (T_1)

a’ ° . '  <5>°6 ♦ 0 (T '2) -  o ( t " ' l l  » ”  -  <è)«8 ♦ 0 (T ‘ 2) -  0 (T_1) i

where the {a } and o2 are Sargan's Edgeworth coefficients (see Sargan 

(1976), p .425).

We now assume that the covariance matrix assumption discussed 

in Appendix 3 .A .2 holds so that a^$ ■ J6rs + 0(T_1) .  Substituting 

the terms from (5) into (3 )  gives:

V * >  • - l ( 5 r«r ) ♦ 1 (b r 5r> + ,2 <br*V«S> ♦ ' 3<br s t W t >

■f * ( brstuçrçsçt çu) + 0 (T ‘ 3/2)

where br ■ * J - 0 (T '1 ) ;

brs ■ < 4 - “ « )  ♦ + ais + ars .  0 ( T - ' ) ;

brst + ’ O (T - i ) ;

brstu + aretu .  a'° ♦ a11 + arstu arstu »  0 (T " ' ) ;  and (6 )

where « rs » fi r .  
\p r  j*

s , the I
s

Kronecker delta.
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From the cumulant generating function expansion we can easily obtain 

the characteristic function expansion by ©x( ç) = exp{Kx(ç ) }  so 

substituting in the expansion (6 ) for Kx(ç ) gives:

8x( ï )  = exp{-i(crcr ) ♦ i (b rî r ) + 1Z(brser es) + 13(bretSr«s«t )

*  l4<brstuErE. Et Eu> ♦ °<t ' 3/2»

■ [e »P (-i«r« r )].[> + 1(brer) ♦ i 2(brs«res)*13(brsterts«t )

* ,4 (br » tu M s «t 'u ) *  i ,2<brbsM s> + ,4 (brbstuErEsEtEU>

^ ) ]  * 0 ( T - 3' 2) .

I t  1s convenient to gather the terms together so that:

8X(5) -  [ « p ( -J £ r£r ) ] [ l  + 1(cr Er ) ♦ 12(crs£ri s) + ^ ( C r j t V s V

* ’ “ « W r W u »  + lS ( cr.tuvwEr  -  E«>] + °<T "3/Z>

cr * br - 0(T- * );

crs ’ brs + *brbs ' 0(T_1) i

crst * brst ■ “ I1' 1)

crstu * brstu + brbstu * °<T'

crstuvw “*brstbuvw * 0(T_1) •

The expansion for the jo in t probability density function of the \ can 

now be obtained by an Inverse Fourier transform, term-by-term, on the 

expansion for the jo in t characteristic function of the x . The Inverse 

transform 1s:
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+00 +0O
p .d .f . (X ) -  (2ir)”n f . . . /  e x p {-U r Xr }ex(C)der . .  dch . (8)

In the transform the integrand can be expanded as:

exp<-Hr *r >ex( i )  .  [e x p {-U r J r >] [e x p {-Jtr5r )]  [1 + i ( c r Cr )

♦ l2<cr s W  * ,3<er « t W t >  + l4(cr.tu'r*.{ t'u>

* ' ‘ ( « « t u w ' r  -  S , ) l  ♦ °<T ‘ 3 / i>- <9)

I f  we now define:

Dr [e x p {-U r xr >] * [e x p {-U r » r >] = (-1 )C r [e x p {-U r xr ) ] ;

“ rs ^ x p t-U j.X r* ] * M ) 2« pes [e x p {-U r xr >] ; etc.

then we have that on re-ordering the terms of (9 ):

e x p l-U r xr ) » x ( t )  -  [1 ♦ < - l )c rDr  * l-\)*cn Dn  ♦ l-\)3cntOn t

+ crstuDrstu + crstuvwDrstuv.P '^3 xpi_itr V ^ *

[exp(-J5r Er ) ]  ♦ 0 (T ‘ 3/2). (10)

We now assume that the integration of (10) with respect to X produces 

an expansion for pdf(x) (8 ) which is  s t i l l  correct to 0 ( T ~ ^ ) .  This 

requires conditions on the characteristic function of the p as given in 

Sargan and Satchell (1986). Then we can interchange the operations of 

integration with respect to x and differentiation with respect to 5 

giving:
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p-d.f. ( A ) = (2 x fh [1 ♦ ( - l ) c rDr t  (* 1)2crsDrs 

* crstuDrstu * Crstuvw°rstuvw^ 

t  . . .  !  exp{-U rxr> exp{-Hr« r )4e1 . . .  dch + 0(T"3/2 

■ [1 ♦ ( - l ) c rDr *  < - l)2Cr,Dps * ( - l ) 3cpJtDrJt

* i ” 1) c rstuDrstu *  crstu*wDrstuvvP 1 exP( "JArAr )

The derivatives of the normal density function with respect to the 

random variable are closely related to the Hermitepolynomials: see 

McCullagh (1984), Kendall and Stuart (1969),01ver (1974). The 

notation used here differs s lig h tly  from that of McCullagh (1984). 

I f  we define the jo in t  pdf of asymptotically independent standard 

normal variates as i(x ) * (2w)’ h/,2exp{-£xr xr } then differentiating 

th is with respect to x gives:

Then i f  we substitute these expressions for the derivatives of the 

jo in t ly  independent standard normal pdf into (11) we find that:

( 11)

Dr#(X) - (- l)H r (x ) i (x ) ;

^ ♦ ( A )  - t - l ) 2Hr>(A»1(A)i etc.

Pdf ( a) - [1 ♦ crHr(x ) ♦ crsHrs(A) + C ^ H ^ fA )  

+ crStuHrstu<‘ > ♦ crstuv»Hrstu»w(x ) ] , (x ), (A ) i l (A ) t  0 (T '3/2) (12)

where, following McCullagh (1984);
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Hr<z > '  zr  ; Hr t (z )  ■ 2r zs -  tn : Hr s t ( l )  ■ zr zszt -  z r sst [3 ]l 

Hrstu<z > '  z rzszt zu~ zr V t u  M  + 4rs6tu M  •

Hrstu*w( z > '  zr  ••• z«  '  W t zu*w t ' 5l

♦ zr V t u 6vw t45l  * 5rs5tu5vw l 15l l <13>

which are McCullagh's multivariate Hermite polynomials. Collecting the 

terms in (12) together using the formulae from (13) we find:

pdf( X) > [ (2 * ) 'h/2e x p {-( i )x r xr > ][ l  + d0 ♦ dr xr  ♦ drsxr xs

* dr s t W t  * drstuxr xsxt xu * drstuvwxr xsxt xuxv \ J  

+ 0 (T_3/Z)

where: d0 -  - c ^  ♦ cn U t „ \ u [3] -  P 5J ’  °<T ' '> !

dr  * cr  " crs t4st M  * 0 (T ‘ ‘ )S

drs '  crs * crstu6tu M  * crstuvw4tuSvw t45l  * 0<T ' ' > 1 

drst ■ crst *

drstu ’  crstu -  c rstuvw4vw M  * W ' ' "

drstuvw = crstu«w '  0 (T ' 1>- (14)

This completes the second step which was to obtain an expansion to 

0 ( i “3/2) the j 0-jn£ probability density function of X.
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3.2.2 The Jo int Characteristic Function of the Squares

The th ird  step in this method of expanding the density function of 

s 2= EX2 is to obtain the jo in t characteristic function of the squares 

{X2} to 0 (T  ^ 2) . Putting x2 = ( x j , . . . ,  x£)' then :

c . f . ( x ! ) = r x(t> -  E je x p U  t r  x*>]

= T... T exp{1 t .x * ) p .d . f . (x )  dx, . . .  dxh . (15)

The integrand in (15) can be expanded as:

expii t j  x^}pdf(x ) = [expii t j  x^>] [(2^^)’ h/,2 e x p {-jx r xr )]

• I ' * " « *  V p *  dr s V s  * drstxrx, xt  * drstuxr •••XU

+ dr s tu «xr -  XJ  * °<T' 3/2>-

The jo in t  characteristic function of the {x 2} ,  rx( t ) ,  can now be expanded
-3/2as a sum of integrals with error 0 (T  ) .  The f ir s t  integral is :

[1 ♦ dQ ] /  . . .  r  e x p (itj x 2 )(2 «)"h/2exp{-jx j xj )dx1 . . .  dxh

-  0  +  d0 )

The remaining integrals take the general form:

+ - + - n n nt  n n n
(d ) f ... f exp{itjX j)1  (x ) V  V V V V V dxl *•* dxh (16)

where nr , . . . .  nw i  0 and nr  + . . .  + nw = 1 ,2 ,3 ,4 ,6 . These integrals can 

be expanded out by using the jo in t characteristic function of n independent 

central chi-square variates, each with one degree of freedom:
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/ . . . /  [exp{ i  t  ̂ z2 }J  [  (2ir)"n/^exp{-SZjZj}]dz) . . .  dzn

■ j i i r n - 2 ' t j ) ' 1] .  ( ” )

Substituting th is formula into the integrals (16) we obtain expressions 

of the form:

(<*)[, 5 r . s . t ,  f/ [exp Ct2' ) ” * « P < - i2| )K *< i*a)'|
V

• r n 0 - 2 i t bf*1 
b Ji r ,s  , t ,  °

U , V ,w J

■ <">r ;  r  s t  < 7 [ « p { i v i ) ] m . » x > v l . r b j  r  s t  <1- 21tb>‘ ‘

L U.v.w J L u»v,w

where: 1(Xa) = (2ir)- *exp{-JX2}.

To expand out the terms involving { Xfl> we use the derivative of the 

/exp(itz2) i (z )d z  with respect to t  i .e .  the derivative of the characteristic 

function of a one degree of freedom central chi-square variate with respect 

to the characteristic function parameter:

~  {/ [exp {1t z2) ] i ( z ) d z }

= /|^ { [e x p iit z2}J ) i (z )d z

* / ( iz )  [e xptit z2)] if (z )d z . (18)

Repeating the differentiation p times gives

¿. {/ [e x p {U z 2)]1 (z )d z }
st P

-  /(Iz"* ) p [exp{1tz2}J 1 (z)dz.



67

However from (17) we have chat:

/[exp{1tz2}]<fr(z)dz = ( l -2 1 t ) '* .

So substituting this into (18) gives

{/[exp(1tz2ï ]o (z )d z )  = < (l -2 1 t )_ i>

-  ( - 2 1 ) ( - J ) ( l - 2 i t ) ' 3/Z

-  1 ( l - 2 l t ) '3/2

■ /(1z! )[exp(1tz2>J*(z)dz -  1 (1 -2 U )"3/2 

so /[exp(1tz2) ] * (z )z 2dz = ( l -2 1 t )~ 3̂ 2 .

In general the even power terms in the expansion are treated by considering 

expressions of the form:

/ (ix | )pexp[1tax2]o (x a )dxa -  i l  (1 -2 U , ) - * )

3ta

.  ( ( l -2 1 t ,  ) ' (U 2p)/2>; p -  0 ,1 ,2 ...  • (19)
2p(p ):  a

The general form for the derivatives can be verified using proof by 

induction. From (19) we obtain:

1  exp[lts X2lx |p* (x J )dxi  • i i E U  ( l-2 1 tar (,+2p)/2. (20)

This covers the even power terms in the expansion but leaves the odd 

power terms such as:

/ exp[1tax2]x a» (x a)dxa 4 I exp[1tax2]x | «(x a)dxa.
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These terms cannot be obtained by differentiating the integral expression 

for the characteristic function of a squared N (0 ,1 ). However, this is 

not a problem since on inspection such integrals with odd powers are 

zero because th eir integrands are odd functions, and the In ta jra l of an odd 

function over the entire real lin e  Is zero provided the integral exists.

In this case the integrals c lea rly  exist because |exp{itz2}| = 1 and so 

the integrals are in absolute value less than or equal to the moments of 

a standard normal variable.

We can now evaluate the general term in the expansion of the jo int 

characteristic function of the squares of the asymptotically independent 

standard normals:

+°o +oo n n
r ... f exp[ltjX2] 1(A)xr r . . .x w"  dx

where nr , . . . »  nw % 0 and np + . . .  + nw * n ■ 0 ,1 ,2 ,3 ,4 ,6 . We note f irs t

that J = 0 unless nr , . . . .  nw are a ll even, l .e .  nr  * 2kp etc. which

implies n * 0 ,2,4 ,6  = 2k. Thus without loss of generality we can drop

( V  n^, n^) and work solely with (nr , ns* n^) ■ (2kr , 2ks , 2kr ) where

k , k , k , >, 0 and k„ + k„ + k. = k = 0 ,1 ,2 ,3 . Thus we have for a ll non- r  s t  r  s t

+ - Zk Zk Zkt
/ e xp [itjX 2] i ( x ) x r  r xs sxt  1 dx

-  r  n ( 1- 2 1 0 ' * ]  ■ r  n , 11- 211, x - 0 +2ka)/2 ( 2k , ) !
L b l ' r . s . t  b J a - r . s . t  a "1C

2 <ka ) : J
*  J ( k r .  k s ,  k t ) . (21)

We can rewrite this more generally as:
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" <- T— - (l -2 1 t i )* <1'l'2kj )/2>
J-1 2 J(kj>:

h
where now k. % 0 Is defined for a ll j * l , h and Z k. «  k ■ 0 ,1,2 ,3 .

J j= l J
Before substituting the J (k r , ks> kt ) into the integrals of the form (16)

and so obtaining an expansion for the jo in t  characteristic function of

the {X2} ,  1t is  desirable to introduce some new notation.

90 - d0 “ ° ( T_1) i  ar - <*rP - 0<T"')t

9rs '  drrss + drsrs * drssr * dsrrs + dsrsr + dssrr

’  drrss C6] " 0<T_1>1 ('■**)

g = d = o (T_1) i ’ r r  r r r r  v '  ’

9rst * drrsstt + drrstst + *• •* drrs s tt  M  '  0<T ) i (r<s<t)

9rss "  drrssss + drsrsss + ' •' drrsss$ C15I -  °<T_1 ) i  (r «s )

q = d ♦ d + . arrs rrrrss  rrrsrs -  ■ drrrrs s  M  * 0 (T" ' ) :  (r<s)

g = d «  OiT’ 1) .  ’ r r r  r r r r r r  ' •

As before the square brackets indicate summation across different 

permutations of the subscripts. Substituting these into (15) and 

using (21) we obtain:

r x( t ) -  O +9o)J (k r*0. ks«0 , kt -0 )

♦ £gr  d(kr- l .  ks-0 .  kt -0 )

♦ risers J <kr "1- k2-1 ■ kt'°>

♦ £9r r  J (k r  -  2. ks-0 , kt -0 )

♦ rls < t9rst J <kr_1• V • kt ’ ’ >

♦ r M r r s  J <kr ' 2 - V 1 • kt « »

♦ r<s9rssJ i kr "1 • ks"2- kf° >

♦ f9r r r  J (k r -3 , ks-0 ,  kt -0 ) ♦ 0 ( T '3/2) . (22)
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This concludes the third  step which was to obtain an expansion to

fourth step is to obtain the expansion for characteristic function of 

the sum of the squares. An inverse Fourier transform can then be

applied to the la tter expansion to obtain an expansion for the probability
2 h 2

density function of the sum of the squares, s

3.2.3 The Characteristic Function of the Sum of Squares

The characteristic function of the sum of the squares, o ( t ) ,  can 

be obtained from the characteristic function of the squares, 

r x( t ) ,  by setting t^ * t  for j » l ,  . . .  , h:

° (t )  -  E [e x p (m r *r ) ]  -  r x(M )

where V  = (1» •••» D  an h-vector of l 's .  The expansion obtained for 

r x( t ) ,  is in terms of expressions of the general form:

0 (t ”3/2) f or the j 01-nt  characteristic function of the {X >. The

J = / *•* f e xp [it * ] i(x )x
2

b ^ r ,s ,t
n n

a*r,s ,t

Setting t^ = t  for a ll j » l , . . . ,h  in (23) gives

t n —jj-------------
• ■ r.s .l 2 a( k j ) .

(24)

There are now seven d is tin ct possible expressions of the form:

J* = / . . .  / exp[1t\jXj]1 (x)x (r<s<t).
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These are:

J*(kr -0 , ks-o . kt -0 )

J*(kr = l . ks*0. kt -0 )

J* (kr-2 , ks-o . kt -0 )

J*(kr -3 .

Oa«/» kt -0 )

J* (kr-1 . ks- i . kt -0 )

J* (kr-2 . k ,-1- kt -0 )

J*(kr -1 . k ,-1- kt - l )

( l - 2 1 t ) 'h/2;

( l - 2 U f< ht2>/2.( J 2 i L )  .  (1 -2 1 tf< ht2>/2;

( l - 2 1 t ) 't ht4^ 2 ) .  3(1—21t)~^h+4)/2
2Z(2 ) :

( l - 2 1 t ) '(h+6)/2 l i i L L )  .  1 5 (l-2 U )'(h+6)/2; 
23(3 ):

( l -2 1 t ) -< h**)/2 ( - t i l l - )  ( t i l t - ,
2 ( i ) :  2 ' ( i ) :

( l - 2 1 t ) '<h+,>/2;

d - 2 i t r < ht« ) /2 <-<4 > !.h  - t i l ? -  >
22(2 )!  2‘ (1>:

3 ( l - » 1 t f (h+6)/2;

-2 i t ) ~ (h+4)/2{ 4?IL,  ( 4 i i : _ ,
, , , ,  2 <’ >> 2 (1)1 2 (1)1

Sp taking (2 2 ), setting t^ = t  fo r a ll j = l ...........h and substituting in

the above J* expressions (25) gives an expansion to 0 (T"3/2) for o ( t ) :

» ( t )  * rx(t  1) -  (l ♦ 90) ( l - 2i t f h/2 ♦ (¡;gr ) ( l - 2U ) ‘ (h+2>/2 

+ C<rMrs> + 3(f grr )](l-2 1 t)-<h+4>/2 ♦ [ ( r5s<tgrst)

*  3< r i s W  + 3<riSW  *  15 (P m . ) ]  <l-21t)->h+fi>/2 

+ 0 (T*3/2).

This can be w ritten  more simply as:

o (t )  - ( I t  a0)(l-2 1 t )"h/2 + al ( l -2 1 t ) '(h+2)/2 + a2(l-2 1 t ) ‘ (ht4)/2 

+ a3(l-2 1 t )" th+6)/2 ♦ 0 (T '3' 2)
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Pr[s2 < r 2]  «(1 + a0 )C g(r2) + a] eg+2( r 2) + a2 cg+4( r 2) 

+ »3 + °<T ' 3/2)

where £(*(•) 1s the c .d .f . of a central chi-square variate with h degrees 

of freedom:

r !x(h / 2 )-le-x/2 

0 2(n/‘: , r(h/2 ) dX
(28)

-3/2An alternative expression also correct to 0(T ) though not numerically

identical is :

Pris2 s r 2} = t j [ ( l  + a*>(r-2} ♦ a^ ( r V  

+ a* ( r 2) ’ :  a 0(T*3/2)

see Sargan (1980b). Both of these expressions can be implemented 

easily by computer.

A feature worth noting is  that these expressions do not include 

any 0 (T"^) terms. This contrasts with the expansions for the pdf 

and cdf of the \ which do Include 0 (T - ^) terms. In the scalar case, 

s2 ■ A2,the difference between testing using A and using s2 is that 

with the former tests of both one- and two-sided hypotheses (e .g . e > 0 

or e /* 0) are possible, whereas with the la tte r only tests of two-sided 

hypotheses (e .g . e h 0) are possible. More generally, using s2 only 

permits spherically symmetric c rit ic a l regions In A to be used. The 

information from the 0 (T - ^) terms 1n the expansion of the p .d .f . of A 

1s lost because the 0 (T ’ *) terms are associated with odd powers of (A ) 

and these Integrate to zero over spherically symmetric c ritica l regions 

in A.
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3.3 The Approximate Inner Product Case 

3.3.1 The Expansion of the S tatis tic

Although the class of exact inner product, asymptotically ch i- 

square test sta tistics is very extensive, i t  does not Include a ll the 

asymptotically chi-square test s ta tis tic s  used in econometrics. In 

p articu lar, 1t omits most test s ta tis tic s  constructed on the Likelihood 

Ratio (L FQ principle. Although the LR test sta tis tic  for a given 

hypothesis in a given model may be well approximated by a quadratic 

form in asymptotically independent standard normal variates, there is 

in general no reason why the L R s ta t is t ic  should exactly equal a quadratic 

form.

The method developed in Section 3.2.2 for the exact sum of squares 

case can be modified to deal with approximate inner product s ta tis tics .

The f i r s t  step is  to make a stochastic expansion of the s ta tis tic  In a 

vector of n asymptotically independent standard normal variates (where 

n i  h the number of restrictions being tested):

The expansion uses tensor summation notation except for the leading term

’jk t V k V

(29)

( j « l Xj )  ^  eas*er t0 keeP e x p lic it  summation form. The error

is Op(T- ^ )  i .e .  i t  is  of order of magnitude T~^ ^ in probability. This
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permits the sta tis tic  to be a function of other random variates than the 

x, namely w, but where these w variates do not affect the s ta tis tic  except
-V  ?

to order T . The main advantage of this is that the joint distribution 

of X and w does not have to be approximated.

We assume that the s ta tis tic  can be expanded in the form of Equation (29). 

The work of Barndorff-Nielsen and Cox (1984) on LR sta tis tics , Mauleon- 

Torres (1983) and Sargan (1980b) seems to indicate that this is frequently 

the case. I f  (29) were not valid (e .g . there is  a fifth derivative 

term of 0(T~^) ) then the method given would have to be extended

somewhat but would remain essentially the same.

A particular problem with expanding a test s ta tis tic  into the form 

of (29) arises 1n dynamic models such as :

yt  ■ « t - i  + V t  * V t - i  + “t  (30>

where test statistics often Involve terms such as:

T T - l  T
m, ■ E y V T and Z y?/T »  Z y* JJ  = m~ .

1 t - l  Z t -0  r  t - l  t_T £

The d iff ic u lty  here arises because although 1n f in ite  samples m̂ and mg 

when suitably standardized are not perfectly correlated, asymptotically 

they are. Thus 1t 1s not immediately clear how the vector X should be 

defined. This does not appear to have been considered in the existing 

lite ra tu re , e.g. Mauleon-Torres (1983). Whilst 1t 1s usually va lid  to 

expand the s ta tis tic  1n terms of standardized m̂ and mg variates, 1t 1s 

not possible to transform the standardized m-| and mg by a linear trans­

formation into x-j and Xg, two asymptotically independent standard
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normal variates since even asymptotically

T{m1 -  m2> * yj - y*

is not distributed normally. The problem of asymptotic singularity cannot 

be resolved by a simple transformation since some of the elements of the 

transformation matrix must tend to in fin ity  as T does and there is no 

guarantee that the transformed variables w ill be distributed 

asymptotically jo in t ly  normally.

In this case we can solve the problem by standardizing (zy| ,'T ), Jj 

and yQ to have zero means and unit variances and then constructing A 

using these instead of the appropriately standardized (Zy£/T) and (zy|_^/T). 

Under fa ir ly  general conditions, the standardized ( yt / T ) ,  Yj and yQ w ill 

be asymptotically jo in tly  normally distributed with a zero mean vector 

and a non-singular covariance matrix. The sta tis tic  w ill now be a function 

of T but this 1s allowed for in the form of Equation (2 9 ). In adition the 

standardization of yT depends upon x̂ . which usually w ill not converge so 

that ( T ^ 2bQ) ,  ( T ^ b j )  etc. w ill not converge as T tends to in fin ity . 

However this 1s not a problem provided that these terms are a ll of 0(1) 

and that Equation (29) provides a sequence of approximations with an 

approximation error of 0p(T “3^2) and provided that the characteristic 

function of A is appropriately well-behaved.
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3.3.2 The Characteristic Function of the Statistic

The f i r s t  step in obtaining an expansion for the characteristic 

function of the sta tis tic  is to expand [e xp{its2} ]  using (29). This 

is where the approximate inner product case starts to d iffe r from the 

exact inner product case of Section 3.2. This expansion gives:

exptlts2} - exp{it £ x2)PT(x, I t )  ♦ 0 (T"3/2) 
j -1  J ' p

where PT(x , i t )  = 1 ♦ ( i t ) (b Q) + ( I t K b ^ )  ♦ ( i t ) (b , ;.XjXk)

+ <U > < V xjV « >  * « " » ' W j V . V
♦ (1 t)2 (c0> + (1 t )2(CjXj) ♦ (1t)2(cjk XJXfe)

♦ ("»‘¡Cjk.Y" v ♦ ••• y
♦ ( " » ’ «Jkbnp1)  Xp> + ( “ » ’ « J k b W j  ••• V

where c0 ■ jb2 * 0{T -3} ;

Cj ■ bobj  ■ “ I1' ’ »  

cjk  ■ b0bj k ♦ » a  ■

cJkx * bobjkx + bJ bkt ' 0 (T ' ' ) i

cjkim '  bJ bklm + ‘ bJkbi™ '  °<T »  

cjktmp * bjk btmp ■ 0 (T ‘ ' > 1 

cjklmpq ‘  JbJk lbmpq ” 0 (T ) - (31)

The expansion for the characteristic function of the s ta tis tic  is then 

obtained by taking the expectation of (31) to 0 (T”^ )  using a m ulti­

variate Edgeworth expansion for the pdf of X, as obtained in Section 3.2.1
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f T (X) • 1(X) Qt (X) ♦ 0 (T_3/2) 

where 1 ( X) -  (2ir) n^2exp{-|XjX^>

Qt <x> ■ 1 + do ♦ < V j > * < V j Xk> + djk . xj xkxt>

* (djktmxj  V  + (djktrapqxj  "•  V  

with dQ »  0(T"’ ) ;

dj -  0 (T -* )i  

dJk ■ °<T ' ' > ‘ 

djk l  *

dJ k « , - ° ( T' 1) !

W 0<T‘ '>* <32>

(from Equation (1 4 )). The characteristic function of s2 1s then given 

by:

o ( t )  - E[exp{1ts^>]

-  /e x p {itst}fT (x)dx + 0 (T "3/2)

-  /expiit £ X?)i(X)PT (x .  it)Q T (x)dx + 0 (T‘ 3/2) .  (33)
j-1  3 ' '

For (3 3 ) to be valid we require further conditions on the jo in t behaviour 

of the x and w; see Sargan (1980). To proceed we need to expand 

[PT (* > . 1 t)][Q T (x )] to 0 ( T '3/2) giving [ ^ ( X ,  i t ) ] :

RT (x . i t )  • 1 ♦ (e0) .  (®j Xj ) ♦ ( « jk XjXk) ♦ (®jkkXj . . .  xt )

+ (eJklmxJ ■ "  V  * (ejktmpxJ "•  V  + (ejktnipqxj  ■ "  V ’
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where e„ = (d „) + (1 t )(b „ ) + (1 t )2(c ) = 0 (T '5) ;

ej  * <dj>  + (U ) (b j  * bodj> * <n > <cj> '  °<T >

eJk '  <dJk> ♦ ( " W j k  * dJbk> * « " » ‘ « 'jk »  ’  ° «T_,>

Jki dJkt> * « « » ( » j k .  + dJbkt + bodJkt>
+ ( 1t ) 2(cJkt) ■ 0( T - * ) i

♦ <1 t >2‘ W  * ° (T  )'•

‘ jkt*p ■ « « )  ‘ W  *  <n >2<c4k«p> ■ °<T' ’ >‘

*4kU,p, ’  < W >  * <1t> ( dJ k l W  *  ‘ ' ‘ »‘ ('jklmpq» * °<T' V

(34)

We then substitute (3 4 ) into (33) to obtain:

h
o (t )  -  / [ex ptit z x ^ lK k JR -tx .ItJd x  ♦ 0(T" 

J*1 •>

-3/2.

As in Section 3 .2 .2  (The Joint Characteristic Function of the 

Squares) the terms w ith  odd powers in the {X^} vanish since they involve 

integrating odd functions :

o ( t )  • / [e x p {1 t^ A p ]1 (x )a * (A , 1t)dx 0( .-3/2

where: R*(x, i t )  * 1 + »0 * (a jX j) ♦ (aJkxjxk2) ♦ ( » jk txj l k‘ J >

(J S k (  t),

and where: aQ • (a ° ) + (it ) (a ^ ) + ( i t ) 2(aa) «  eQ • 0 (T "h i

aj  '  <*°> + ( « ) ( » ] )  + <u >2<»j> " ej j  '  OCT" * ) l

•jk • <*Jk) * 0*>C-|k> * (1 t )2 (*jk> ■ ' j j k k W  '  0<T' ’ >‘
(J<k).

•jj • < • « »  ♦ <u >(*3j > * <1t>2<*34> ■ ‘ j j j j  ■ “ ( T ' 1»
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‘jkt - <*jM> + <«><•)»*> * < "> 2<*jk*> ■ ejjk k t «M
-  0(T_1) ; (3<k<i)

‘jkk ’ <»Jkk> + « « > « • Jkk) ♦ ( u >2(*!kk> ’ ejjkkkk^3̂
-  0(T_1>; (3<k)

‘jjk ’  <«JJk> + <1t><»jjk> ♦ <n >2< * jV '  eJJjJkkC5l
-  0(T*') (J<k)

‘j j j '  < V
+ * <1t>2( * L > " 0<T'

(a ll  terms are 0 (T - ^ ) except (a*) and (a j)  which are 0 (T~ ^ )).

Superscripts on the ia> refer to the power of ( i t )  to which they 

are attached. The s ta tis tic  is  asymptotically only a function of the 

{X jX J -1 .,  ...* h ) so at th is  point we integrate out the {XkJ(k=h+l, . . . ,n) 

to leave the integral so le ly  in  terms of the ( X j } ( j = l , . . .  ,h ) and ( i t ) .

As in Section 3.2.2 each term in the expansion of o (t )  is m ultip licative ly 

separable. The general term in the expansion o f o (t ) is :

[
h h/9 h 2p.2p 2p

/ e x p {1 t ^ ip (2 ii )" n/‘:e x p {-l^ x 2 > x k x ^ x ^  mdxr

. [ / ( 2 . ) - ( " - h>/2 e xp i-i I  A n l \ 2S : <
L a=n+i lh+l * * *

m ultiplied by a quadratic in  (11 )* 

where: k,£,m = 1 , . . .  ,h

b ,c,d  = h + 1 ,.. . ,n

V W V Pc - Pd  ■ O -1 - 2 - 3
Pk+ P, + Pm* Pb* Pc+ Pd - o .l .2,3. (36)
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The second integral in Equation (36) is  simply the expectation of a 

polynomial from a jo in t ly  independent standard normal distribution. 

Therefore:

/_ n 2p. 2p 2p.
/<2„ ) - (n-h>/2 exp{. j  j  x|Hb \  \  dxn

r  <2bb>; ' ( zpc) :  ' <2pd>:

2(V ( p b): z tpc>(pc) : Z ^ d ’ tp,,)!

from (20). Defining * Xj ( j « l , . . . , h )  we can then re-express (35) as: 

o(t) = /[exp{itYJ-rJ )]1 (f)S T(-i. 1t)d> + 0 (T '3/2) 

where: ST ( r ,  I t )  = 1 + (s0) ♦ ( 9jir?) + <9JkYj 'fk* * (9jkkYf T k1rl > 1

90 - (9 °) + (it ) (9 i>  ♦ (H )2(9§ ) -  <»„> ♦ 3abb+ ,5»bbb>

F . ( » h r *  3»h r r + 3»hhe> *  . F ______ ‘ »b ed ’  "  0 (T ‘ ‘ ) i

9j • (9 j)  ♦ (< t ) (g j )  ♦ ( U ) 2(gJ ) • ( « j )  ♦ ĥ <b( , jb + 3*jbb>

♦ "  (a ) ■ 0 (T**)i ( l i j t h )
h+1ib<c 3bc

=jk ■ (*Sk> * ( " » » jV  ♦ <1t )2(9jk> ■ ( V  * hJ <b(ajkb>

* 0 (T"’ ) ;  (lijsk s h )

9jk t ■ <95k«> * <1t><9jk«> * (1 t )2 (9 5kt > ■ <*jk«> ■
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(a ll terms are 0 (T -1 ) except (g£) and (g j )  which are 0(T“* )).

The general term in th is  expansion for o (t )  is :  

......................... 2p. 2Pk 2P.„ ,  ‘■P* ¿Pt. ¿ P »
/ [ e x p i i t Y j Y j  }]"• ( y  ) Y j  J Y k Y a a dY

multiplied by a quadratic in ( i t )  (where lsjgkgfcsh and p^.p^p^sO and 

Pj + pk+ Pl  "  O»1*2»3)*

This is very sim ilar to the expression (24) which was examined in 

Section 3.2.3 (The Characteristic Function of th e  Sum of the Squares) 

and using (24) the {jeneral term is then equal t o :

multiplied by the quadratic in ( i t ) .  Substituting these expressions 

into the expansion for o (t ) gives:

o(t) -  (1 + s0)(l -2 1 t )‘ h/2 + (* ,)(1 -M t )‘ <h+2)/2

+ (s2) ( l - 2 i t ) ' (h+4,/2 + (s3) ( l -2 1 t ) ' (h+6>/2 + 0(T"3/Z)

where: s0 -  (s°) + <1t)<«>) ♦ (1 t)2(s|) -  g0 -  0(T"*);

s, -  (s°) ♦ ( U ) ( * { )  + (1 t)2(sf) ■ | (g j)  -  0 (T'* );

(a ll terms are 0(T ^ ) except (sQ) and (s j )  which are 0 (T "^ )).
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3.3.3 The Distribution Function of the Statistic

Equation (37) is very sim ilar to (26) except that i s )  terms are 

quadratics in ( i t )  and (s*) and (s j )  are 0 (T~^). The former point 

creates a problem i f  h, the dimension of X (and the degrees of freedom 

of the asymptotic d istribution  of s* ), is not su ffic ie n tly  large. This 

can be seen by considering the term:

distribution with a ll its  probability mass at the o r ig in . A similar 

problem occurs with:

.  ( J ) ( l - 2 i t ) ' (h"2)/2 -  ( J ) ( 1 -2 i t ) " h/2 (38)

I f  h « l , then (l -2 1 t )~ ^ ~ 2^ 2 is not a characteristic function and i f  

h*2 then ( l - 2 i t ) ~ ^ “2^ 2 1S the characteristic function o f  a degenerate

( i t ) 2 ( l - 2 1 t f h/2 -  i ^ j j -t ) ) 2 ( l - 2 1 t ) ' (h"4,/2

- [ » ( ! -  (f T T r e ) ]2 ( l -2 1 t ) ' (h‘ 4>/2 

-  « » H I X I - m j * 1 ♦ ( J ) ( l - 2 U ) " 2 } ( l - 2 i t ) ' (h‘ 4)/2

■ ( J ) ( l - 2 i t ) " (h ' 4)/2 -  ( l ) ( l - 2 1 t ) ' <h' 2)/2

+ ( J ) ( l -2 1 t ) " h/2 (39)



- 83a -

The in a b ility  to express Equation (37) as a linear combination o f the 

characteristic functions of chi-square variates with varying degrees 

of freedom is not in its e lf  a problem. However i t  does mean that i f  

we apply an inverse Fourier transform to Equation (37) we w ill not 

obtain a linear combination of chi-square pdf's with varying degrees 

of freedom as the expansion for the pdf of s2. Therefore we need to 

find some alternative way to perform the inverse Fourier transform 

to that given in Section 3.2.4 where i t  is assumed that the expansion 

for the charactersitic function of s2 consists of a linear combination 

of the characteristic functions of chi-square variates with varying 

degrees of freedom.
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For h=l,2,3 then ( l - 2 i t ) ' ^ " 4^ 2 is not a true characteristic function;

for h=4 i t  is again the characteristic function of a degenerate 

distribution with a ll its  probability mass at the orig in . Mauleon- 

Torres (1983) obtains very sim ilar terms by a different, though related, 

method and attempts to carry out an inverse Fourier transform on them 

using the derivatives of the chi-square density function:

where 6 is a central chi-square with h degrees of freedom so that its 

density function is :

functions of central chi-squares. This s t i l l  leaves a problem 1f 

h « l ,2 ,3 ,4  from the (s £ ), (s£) and (s|) terms in Equation (37) at the 

orig in . This is because when integrating the approximate density 

function (obtained by the inverse Fourier transform as in Equation (4 0)) 

to obtain the approximate cumulative d istribution  function the result 

includes terms such as:

6 >, 0
6 < 0 (40)

f ( i  ;h) .  e"(S /2) ; «  ï  0

Then differentiating both sides of Equation (40) gives:

" (/ [e x p H t« >1( l - 2 1 t f h/Zdt>; 6 t 0 
; 6 0o

* f - (2 w )'1/[;expH t«(2w)_ l/ (ex pH t6  > ] ( l t ) ( l - 2 1 t ) 'h/2d t; 66 i 0
6 < O'.0

Thus the inverse Fourier transforms of terms such as (1t ) (1-21t )  h^2 

and (1 t )2( l - 2 i t ) ”^ 2 can be given in terms of derivatives of the density
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/ [ | y  (f(ó ;h )}Jd ó  * f(6 ;h ) + constant .

When h«l then as 6-+0, f (6 ;h)-*— and so the approximate distribution 

function tends to In fin ity . This 1s for the (s £ ) term when h*l ; when 

h*2 then the (s£) term makes a contribution of ( J ) .  Similar problems 

arise  for the (s^) term when h»1,2 and for the (s 2) term when h »  1 ,2,3 ,4 . 

Thus unless h >. 5 the approximate cumulative d istrib ution  function w ill 

not take the value zero when s2 »  0 and may in fa ct become in fin ite  

when s^ * 0.

The problem lie s  in attempting to approximate the cdf of the 

s ta tis tic  in an inappropriate fashion. In the exact sum of squares case 

the minimum of the s ta tis tic  1s equal to zero so that i t  has support on 

[p ,0» ) .  I t  is not unreasonable to approximate the cdf of a s ta tis tic  

with support on [0 ,» )  using cdf's also with support on [0 ,» ) .  However, 

there is nothing in Equation (29) which forces the sta tis tic  s2. to have 

support only on p ) , » ) .  I t  1s convenient to expand out Equation (29) 

by defining Yj * Aj ( j » l , . . . , h )  and n# * ^ ^ ( a - 1  » . . . ,n -h ):

+ <cSb c d V b V d > + <coTj> ♦ <ci v j  

♦ ^ b c V b V j * + + <ci kv

♦ C w * 1 + (ci ktV j V i > ♦ «=;

-  °p ( T ' 3/2). (4 1 )
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The minimum of s2 given n need neither remain constant nor 

occur at the same value of y as n is varied. I t  is generally 

possible by transforming y to y using a location s h if t  

involving a polynomial 1n n to ensure that a local minimum 

to 0(r 3' 2 ) of s2 given n occurs at y* ■ 0 for any n . This location 

sh ift w ill  be of 0(T~*) so  that y and n have an asymptotically 

jo in t ly  independent standard normal distribution.

However, this transformation does not surmount the 

problem that the minimum of s2 given n depends on n and is 

possibly not equal to zero. I f  the minimum of s2 given n equals 

q and does not depend on n then we can construct s2 »  s2 -  q 

which has a minimum value of zero irrespective of n. When this 

1s not possible then there w ill always be a region o f n with 

p robability 0(1) such that the minimum value of s2 is  0 (T“ * ); 

see Figure 3.1 for an Illustration  of th is .

Th is creates d iff ic u ltie s  with any attempt to approximate 

the cdf of s2 using an Edgeworth expansion. The cdf o f s2 at 

the o rig in  is non-zero but the expansion Is a linear combination 

of the asymptotic cdf and the derivatives of chi-square cdf's 

thus including terms which are non-zero at the o rig in  when 

h«1,2 ,3 ,4 . The response we adopt to this problem 1s to 

approximate the cdf 1n terms of the cdf's  of central chi-square 

variates which have themselves been subjected to location shifts. 

Expanding Equation (37) gives:

o ( t )  - [1*r0] ( 1 - m r h/2 ♦ ( r 1) (1 t ) ( l - 2 U )"h/2

♦  <r2 ) ( 1 t ) 2 ( l - 2 1 t ) _h/z ♦  ( r 3 ) ( l - 2 1 t r <h* 2 )/ 2

♦ ( r 4) ( l - 2 U ) " (h*4,/2 ♦ ( r 5) ( l - 2 U ) " (h*6,/2 ♦ 0 (T"3/2) ,
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Figure 3.1 : Conditional Distribution of a Statistic  with a Minimum

Not Equal to Zero
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where: r0 -  <s°) -  ( i ) ( S » ) - ( l ) ( s f )  ♦ (J ) (s | )  = O (T ' i ) ;

r ,  -  (s£) -  ( J ) ( s f )  -  O (T 'S );

r2 • (s j )  * 0 (T_1) ;

r 3 -  (s ° )* (l )(s * ) ♦ (* )(s f ) -  (S )(s> )

- ( J ) ( s | )  + (J)(s|) ■ 0(T-‘ ) ;

r4 -  ( S j H i H ' i )  ♦ ( i )(*!> -  (JHsJ) -  0(T‘ ’ )i

r5 -  ( s ° ) » ( i ) (s j )  + U ) (s| )  - 0 ( T _1).  (42)

Next consider a variate 6 with a central chi-square distribution 

with h degrees of freedom. Then:

exp{it(6  +q)> = exp{it6 >[1 + ( i t )q  + J (1 t )2q2]  + 0(T 3/̂ 2)

where q = 0 (T - ^ ) .  The characteristic function of (6 +q) is given as:

Efi[e xp{it(6  -+q) J -  Es [exp(it« H I  + (1t)q  ♦ ) ( 1 t )2q2)]  + 0 (T '3/2)

= Eg[e x p {it«2} ]  + q (it )E 6[exptit6 } ]  + Jq ( i t ) 2Efi[exp{it<5 >]

+ 0 (T"3/2)

.  [1 + q(11) + )q 2(U )2] ( l - 2 1 t ) 'h/2 + 0 ( I '3/2) . (43)

-3/2
Using (43) i t  is possible to approximate the terms from (42) to 0 (T  ' )

[ r , ( 1 t )  + r 2(1 t )2l ( l -Z 1 t ) " h/2

* E .[e x p {it (6  + r l)>  -  exp{it(6  -  r l ) )
0 T~ T~

+ sig n (r2)e x p {it (6  +|r2|*) + sign(r2)exp{1t(6 -| r 2|*)}

-  2 sig n (r2)exp{it6  } ]  + 0 (T 3̂ 2) . (44)
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F irs t ly , we note that :

E6[exp{1t(6+q)} -  e x p {1 t(6 -q )}]

■ C 1 * * (1 / 2 ) ( t t ) 2 -  t »  q ( i t )  -  (1/2 )(1t)a ] ( t - 2 1 t ) " h/2»0(T*3/Z)

= 2 q ( i t ) ( 1 - 2 i t ) ‘ h/2.

Thus i f  we put q * (1/2)r^ then we obtain the requisite parts of 

Equation (4 4 ). Secondly, we note that :

E6[e x p {it(ó + p )} ♦ exp{1t(6-p)>  -  2exp(1tó}]

■ [  1+P (it )+ (t/ 2 )? 2( i t ) 2+ 1 -p (it)+ (1 /2 )p 2-2 J (1 -2 it )* ^ /2 ♦ 0 (T"3''2)

* p2(1 t )2(1 -2 it )" l,/2 + 0 (T "3/2) .

If  we put P; =l r 2|1/2 then p »  0 (T " ,/2 ) . ,  I f  we now define sign(a) = t 

1f a > 0, s1gn(a) ■ 0 i f  a »  0, and sign(a) »  -1 i f  a < 0 then :

sign(r2)E4[exp{1t(j.|r2|,/2)).exp{1t(s-|r2|1/2)}-2e*p{ita)]
-  r 2( i t ) 2(1 -2 1t)‘ h/2 ♦ 0 (T "3/2) .

Combining th is together with the expression for r ^ (1t )(1 -21t ) ”h/2 

we obtain Equation (44).
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After substituting (44) into (42) i t  is  then easy to apply an inverse 

Fourier transform to the la tter and so obtain an expansion for the 

probability density function of s2. Th is can be integrated to 

provide an expansion for the cumulative distribution function of s2 :

Pris2 s x> -  (l+r-0 )çg(x) + i 2(x  + y l )  -  e2(x -  j i )

♦ sign ( r 2)[ç g (x  ♦|Pt |*) -  ç£(x) + sjj(x -| r 2|*) -  5g(x)]

♦ n3tgt2 (x ) + r4t 2+4(x ) ♦ r f e c j^ U ) ♦ 0 (T '3/2).

When h=3,4 then (44) can be sim plified:

[r ,(1t)  ♦ r2(1t)2](1 -21t)-h/2 

* - ( i ) ( r , ) ( 1 - 2 1 t ) - ( h/2>/2 ♦ ( j ) ( r 1) ( l - 2 1 t ) 'h/2 

- ( i ) ( r 2) ( U ) ( 1-21t)‘ (h*2)/2 -  ( * ) ( r 2) (l -21t )_(h_2)/2

♦ ( J ) ( r 2) ( l - 2 1 t ) -(h/2)

,-(h-2)/2so that the problem now only arises from ( ¿ ) ( r £ ) ( i t ) ( l -2 i t )

In this case we can approximate the cumulative distribution function 

of s2 by:

Pris2 i  x)  • - [ ( S ) ( r 1M l ) ( r 2)]ej5_2(x )

♦ D+(r0K (S ) ( r , )  + (J )(r2)]£ 2(x ) .  { 2(x + £ )  * tg(x - £ )

+ <r 3)«gt2 (x ) ♦ <r 4)ej5+4<x) ♦ ('•S)CS+6(X> * °<T ' 3/2) -

When h :> 5 we do not need to use location shifts so the expansion for 

the cumulative d istribution function o f s2 is :
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Prts* s x) = ( T ) ( r 2)eJ_4(x ) -  [ ( i X r , )  ♦ ( l ) ( r 2)]$j|.2(x )

♦ C '* (r0) ♦ ( i H r , )  ♦ ( i ) ( r 2) ] { J (x )  ♦ ( r 3)e ^ 2(x )

* ( r 4) ^ » « ( « )  * (--5>«h*6<x> * 0(T"3/2>-

As discussed earlier 1t is possible to transform y to y* (by a 

location sh ift involving polynomial in n) so that min(s2|n) occurs 

at y* = 0. This is equivalent to transforming the {c jj}, {c ^ } ,  ( c ^ )  

and { c ^ }  to zero in (4 1 ). Thus the problem of approximating the 

cumulative distribution of s2 at the orig in  arises only i f  the ic° ), 

tcab} * ^cabc} or tcabcd} are not then e<*ual t0 zer0 resulting 

in terms such as:

[e x p {1 tY jY j)][(1 t )(c ° bnana) ] ,

in the expansion of [e x p iits 2} ] .  These then give rise to terms such 

as [ ( 1 t ) ( l -2 1 t ) “^ ]  in the expansion o ( t )  which then create 

problems i f  h is  not sufficiently large.

However, this problem does not usually occur with LR test 

c rite ria . This can be seen more clearly by examining the relationship 

between the LR test s ta tis tic  and the Lagrange M ultiplier (LM) 

test s ta tis tic . The LM s ta tis tic  for the hypothesis Hq:4>(o) = 0 

1n the model y f (y ;e )  1s (y )x 'F  I (e )” Xr 'x  where e is 

a p-vector of parameters and <j>(.) 1s an h-vector of restrictions 

(h $ p ). Here x are the Lagrange M ultipliers obtained by finding a 

saddlepolnt of:

L (y ;e »x ) -  ln [f (y ;e ) ]  -  x '* (e ) ■ L (y ;e ) -  x '* (e ).

4nd F ’  “ i s
where e are the restricted Maximum Likelihood estimates (obtained
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estimator of the information matrix:

1 ( 0  -

from the saddlepoint solution of L(y;e,x)). 1(e) is a consistent

We can express the LM sta tis tic  as an exact inner product test

crite rio n  by defining u ■ (T  2)[F  1(0) -1 F' ] 2A so that LM = u'p.

The Likelihood Ratio s ta tis tic , LR = 2 [L (y ;0 ) -  L (y ;e ) ] ,  (where 

e are the unrestricted Maximum Likelihood estimates) can then be 

expanded in the form of (41) with y = p. However, when p = 0 then 

X = 0 and under standard assumptions this implies that the 

restricted and unrestricted Maximum Likelihood estimates are equal 

and so the LR sta tis tic  takes the value zero. Since the LR 

s ta tis tic  is always non-negative and at m = 0 i t  1s necessarily 

equal to zero, therefore its  minimum given any value of n must 

also be equal to zero. Thus in Equation (41) we have:

rJ cab cÎbc 0.'•o ua ''ab abc '"abed 

Consequently, the Likelihood Ratio sta tis tic  can be expanded as:

LR ’  * ( co V k >  * (cak' V j V  *

»  « « f S w  * (e2kW , >  ♦ < 'i k“  j v ,  y. )

* 0p(T _3/Z) .  (45)

Then exp{1t(LR)} can be expanded (to  correspond to (3 1 )):

exp{it(LR)> * e xp {1 ty jY j)[l + (1 t ) (c^kYjY|c) ♦ ( i t ) ( c ^ knaYjYk)

♦ ‘  C ‘ H ^ kS Tk V  * U tM e J ^ n .Y jY k Y ,)

♦ (H X c J ^ Y jY k t .T . )  »  ( 1t ) , ( lc J kc “ YjYl[Y,YB)  *
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* <1t>! <c^ “ v ' j W m >  * (1 t>2(ci kca b " a ' W k W

* (H )* (c J kc " P Y j . . .  Yp) ♦ ( I t l ' t c f C V j  "•  V

* (U )* U c J kc*"n,nbYJ . . .  y„ )  * d D M c f c p ^ V j  . . .  Yp)

* . . .  Yq) ]  ♦ op(T_3/2) .

In the above every term Involving (11) Is m ultiplied by at least two 

elements of y and every term involving (1 t )2 is  m ultiplied by at 

least four elements of y . All such terms give rise  to expressions 

of the form:

(1 t)(1 -2 1 t)‘ (h*2*2k,/2 or 

(1 t ) i (1 -2 lt )" <h*4<’2k> where k -  0 ,1 ,2 .............

A ll of these expressions can be expanded in terms of the characteristic 

functions of central chi-square variates with at least h degrees of 

freedom as 1n (26); however, in the resulting expansion of o ( t ) ,  the 

coefficient on (1 -2 1 t)"h/2 is [1 + 0 (T ‘ * )] rather than [1 + 0 (T"1)]  

and that on (1 -21t)"^h+2^/2 is 0 (T"*) rather than 0 (T -1 ) .

Barndorff-Nlelsen and Cox (1984) show that for the LR sta tis tic , 

the chi-square cdf is correct to an e rror of 0 (T - ^) 1n many cases.

In such cases, they show 1n their Equation (2 .7 ) that the only quadratic 

term 1n the y entering Equation (45) 1s the ( y j Yj ) term, 1.e:

LR -  ( y j y j ) ♦ ( e f V k V  * <cakV | W a >  *

♦ 0(T‘ 3/Z)

when the notation of Bamdorff-Nielsen and Cox (1984) 1s translated 

into the terms used here. In the above only the (c^*1*’) are 0(T” * ).
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Expanding [exp{1t(LR )}] then gives:

e xp iit(L R )) -  exp{itT jY j } [ l  .  (1 t )(c ^ klYjYkYt )

♦ » t ) ( « i kV j W «) ♦ . . .  y. )

♦ J ( 1 t ) ( c J ktc” pqYj ••• y„>3 »  0(T‘ 3/z) .

When this is convoluted with the multivariate Edgeworth expansion for 

the jo in t  distribution of (y .n ) then a ll the 0 (T- *) terms involve odd 

powers in (y ,n ) and so integrate to zero. Thus the resulting expansions 

for the probability density function and cumulative distribution function 

for LR consist of the asymptotic distribution term plus terms of 0(T” ^ ).

The d iff ic u lty  with the approach which Mauleon-Torres (1983) 

adopts can be regarded as arising at a more fundamental level from the 

fa ilu re  of sufficient inverse moments to exist fo r chi-square variates 

with low numbers of degrees of freedom. This 1s because the derivative 

of a chi-square pdf with h degrees of freedom can be expressed as a 

rational function multiplied by the chi-square pdf with h degrees of 

freedom and therefore the Inverse moments of chi-square pdf's w ill arise 

naturally from the Fourier transforms of derivarives of ch1-square pdf's. 

The fa ilu re  of such inverse moments to exist Implies that the 

appropriate Fourier transforms of the derivatives of chi-square pdf's 

are not properly defined. However in the case of interest here, this 

does not create a problem except when the support of the sta tis tic  does 

not consist of [0 ,« )  and when h is small.
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3.4 The Jo int Distribution Case

The main case considered here is that of asymptotically independent 

chi-square s ta tis tic s . In this case the asymptotic jo in t  distribution 

is easy to obtain and manipulate since i t  is  the product of the 

asymptotic marginal distributions. The case of asymptotically jo in tly  

dependent chi-square statistics is much more d if f ic u lt  because i t  is 

harder to manipulate the asymptotic jo in t d istribution . Furthermore, 

the asymptotically independent case can be covered using the techniques 

developed in Sections 3.2 and 3.3 whereas the asymptotically jo in tly  

dependent case woulu require new techniques.

3.4.1 The Jo in tly  Independent Case

As in the univariate case there are two sub-cases: f i r s t ly ,  

where the test c rite r ia  are exact inner product s ta t is tic s ; and 

secondly, where they are approximate inner product s ta tis tic s . The 

exact inner products sub-case follows very d ire ctly  from Section 3.2 

and as before provides a leading example of the approximate inner 

products sub-case. In the exact inner products case 1t 1s generally 

possible to decompose the {s|> as s* ■ Yj Yj  where £ ■ 1, . . . »  k and 

where summation is over j  <* 1, . . . »  h^ and where

k
1s asymptotically distributed as N(0»I. ) where h * E h .  Then the

n £*1 1
characteristic function of the is*} 1s:

It
o ( t l , . . . .  t k) -  E[exp{1 E t ^ y M ) ) ] .

£-1 J J



However, this is ju s t:

h 2
E[exp{i E t  ( t  . )  ) ]  

p=l v p

with appropriate subsets of the itp ) set to equal the various elements

of i t * } .  Therefore the methods of Section 3.2.2 can be used to
2

approximate the jo in t  characteristic function of the { ( Yp) > ? * 1 » . . . ,h } ,  

producing an expansion of the form in Equation (22). Rather than setting 

tp * t  (p * l , . . . , h )  as in Section 3.2.3 and so obtaining the approximate 

characteristic function of the sum of squares, we set various sub-groups 

of the ttp } equal to each other. The expansion for the jo in t character­

is tic  function of the sums of squares is  then:

» j i t 1.......... t k) > { pnl (l -2 1 tp)*l,r/2H [ l  ♦ a0]

+ [  E »  ( l -2 1 t r ) ‘ *] + [  E E a (l -2 1 tr ) ' ! ( l - 2 U s )" !J 
r*l r*l s*l

♦ [  E Z Z av>et.( l-2 1 tr ) " J ( l - 2 i t s ) " 5( l -2 i t t ) " i ] }  + 0 (T "3/2)(46 ) 
r*l s-1 t*l

where the (a } are a ll of 0 (T -1 ) ,  expressed 1n a sim ilar form to that
2

of Equation (26). The corresponding expansion for the pdf of {s ^ }  is

then :
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P -d .f.< sf.........»£ ) -  i j|  x i ( .* ,» (1  ♦ b0)

+ ' J l b- [ X Xg»<,i)] XS r^<S->>

+ ,t r « [ j r . s x̂ (,|,] xv ^ (s->x̂ ( , i >>

* ‘ r  b'-'-[15rX\ < s!)| x h .t4 (si)>

k k k
+ ( n  zb +2<sr>*h.+2(sI)xg  +2U |)>

k k
+ iE -

k k
{E E b

k
U  b„

r [ i r X\ (S?)] Xir+i<S"
.)> + 0 ( r 3̂ ) (47)

where the (b ) are a ll of 0 (T_1) and where xg(x) -  [x (h/2)" V (lt/2)]/  

p ( h/*)l,(h / 2 )] . (th«  pdf of a central ch1-square with h degrees of 

freedom). This Equation resembles Equation (27) which gives the 

expansion for the pdf of an exact sum of squares. Lastly, (47) can 

be integrated with respect to the {s*} to obtain the expansion for 

the cdf of the {s*>:
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P ris? g x? ; t »  l , . . . , k }  

k .  k
zi*l)y

k
{ E b „ 1;A <X*)Î -+4(X*))

k k k
+  U  E  Eb

5 r .5 .t 'g. (X‘ )] ' Srt2(Xlr>efi. + 2 (< i)V <K|>

+ i r J b rrs LSlr,sÇ̂ (X*) l 5S- + 4lX fU ^ +2<Xi>

+ lu  brs4 , J r .s cSi (x *) K * 2(x*u s s*4<xi >

« brrr [ j r t«t(Xît )] îSr*6(Xr)> * °(T'
3/2, (48)

where the {b } are the same coefficients as in Equation (47) and ç2(x 2) 

is  the cdf of a central chi-square with h degrees of freedom: this 

equation resembles Equation (28).

By le ttin g  x* «  for t  = g + 1.........k in Equation (48) i t  is

possible to obtain the expansion for the jo in t  cdf of is 2}  ( r  * l , . . . , g ) .  

An expansion for the cdf of t s p  ( j  ■ g + l , . . . , k )  conditional on 

{s 2 $ x2}  ( r  * l , . . . , g )  can then be constructed using Equation (48) 

and the formula:
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where A 1s an n-vector (h -  E  h * n) which Includes all the { A ^ }  
r= l J

and which is asymptotically distributed as N (0 ,In) .  In (49) a ll

the {b> coefficients are 0 (T ”J ) except the (h jkim) which are 0 (T_1)

(as In Equation (2 9 )). Equation (49) resembles Equation (31) and

can be rewritten:

•xp« 4 i * , **r > ■ exp{ i r t i t r ( x jx ;) >[ u ( i t r ) ( c j )  ♦ ( i t p) ( c j x j )  

f ( I t 'M c j V ^ )  ♦ 0 ‘ r ) (c Jr|a»Jy i ) * ( « ' H c J ^ V c V

* <1t r ) ( i t s) ( c " )  ♦ (1 t r ) (1 t s)(c JrsxJ ) + (1 tr )(1 ts) ( c " x j xk)

+ -  ( i t r ) (1t , )(eJ»1 -»j V i V

t  (1tr ) (1 ts)(cJ’ktmpXj . . .  xp) ♦ (U ’-)(1 ti ) ( c " ttpqxj  . . .  xq)]

♦  ° p ( T ' 3 / 2 )
|(

-  [exp{1 E t r (x r x j )]  [PT (x ,1 t )]  + 0 fT‘ 3/2) 
r = l  J  J  '  P

where cP -  bp -  0(T~*) 

cj  ‘  bj  * “ I7’ 1»

b; k -
O (T 'S )

cjk t ■ ‘ JM
-  0 (T - *)

rr
jktm * bJkcm * 0 <T '

co m ¡brbs . * 0 0 1 0 (T -1 )

CJ S
Kr. s 
bobJ ■1 0 (T _1)
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(50)

As before a multivariate Edgeworth expansion for the pdf of the \ can 

be found using the methods in Section 3.2.1 and takes the same form as 

Equation (32). Thus the jo in t characteristic  function of the {s p  

can be obtained by combining Equations (32) and (50) in the same way 

that Equations (31) and (32) are combined to produce Equations (33) 

and (34). Thus:

+ < * jk «p ‘ j  ••• V  ♦ «'jkxm pq'j ••• y  

with e0 -  (e°) + (1 tr )(e£ ) + (1 tr ) ( 1 t s )(e £ s ) and sim ila rly  for

k
■ /exp{ 1 s t r (x J x J )}i (s )P T (x ,1 t)Q T (x)dx + 0(T " 3/z

k
-  /expt £) t r (x J 'x p )i(x )R T (x ,1 t)d x

where RT (X ,U )  -  1 ♦ <eQ) ♦ (e^Xj) + (e ^ X jX ^

. X )nr

<ej>.....<ejktmpq > ;
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and where e° = d = 0(T’ *);  e? » d. = 0 (T '* 1 - 
o o '  j  j  v '  •

ej°k »  djk  * » ( T " 1, ,  « J u  -  djk £ »  O (T - i ) ;

ejkam = djk£m “ °^T )• ejk£mp * 0 ;

ejk£mpq " djkfcmpq " °^T ) ’

* O d '1) ;  e j  - ♦ < dJ * O d'*

ejk "  cJk * v kr -  °<r ■»).

ejk£ “ cJkt * dj ckr t  * «:odjk t  * ° (T '• h i

er
jktm

_r , j  » r  
jktm "jncin +

djk£Cm 0 (T _1;

jktmp ■ V C  * °<T‘

er
jkfcmpq ’  djk tcmpq ■ °<T *' ) i

and a ll the {e 1*5} coefficients are 0 (T - ^ ). (51)

As before the odd powers of \ vanish and we can integrate out directly
l(

those elements of A which do not enter the exp{i z t r (x ^x r)> term.
r*l J ^

Defining those elements of X which do enter th is  term as y {an h-vector) 

then:

“ ( t 1.........t k) »  /expd t  t r (T j f J )H  ( y )St ( y ,1t)dy ♦ 0(T'i/Z)

where ST <Y,1t) -  , ♦ ( t , )  ♦ ( 9j y| ) ♦ ( 9jlcY|Yg) f  9jk lY f t r J >

90 • (9°) ♦ (1 tr ) (g J )  ♦ (1 tr ) (1 t s )(g £ s ) • 0 (T '* ) 

gj -  (g j )  + (1 tr ) (g J )  + (1 tr ) (1 t s) ( g j S) -  0 (T"i)

9jk ■ (9jk> ♦ (1‘ r )(g jk ) * (1tr ) (1 t * ) (g jJ )  -  0 (T_1)

9jk t ■ (9°kt> + ( i * r )(g jrk l) + O tr ) (1 t , )(g™ t ) - O d '1) (52)

with
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where as in Equation (37) a ll the {g> coefficients are 0 (T_1) except 

{g£} and {g ^ } which are 0(T ^ ). The typical term in th is  expansion 

is then:

k r  r  _ 2p. 2p. 2p
/expii I  t l Y j Y j ) )  ( y )yj \  \ (53)

uvw
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with all the is }  coefficients of 0 (T_1) except is£} and {s ^ }  which 

are of 0(T * ). This is the approximate inner products sub-case 

equivalent of Equation (46) in the exact inner products sub-case 

(NB. the (s ) coefficients should not be confused with the is * }  which 

are the s ta tis tic s ). Equation (54) can then be inverted to give the 

expansions for the probability density and cumulative d is trib ution  

functions of the {s | )s ta tis tics .

As in Section 3.3 problems arise i f  any of the {h ^ } are less than 

or equal to four. This problem again arises from the behaviour of the 

s ta tis tic  near zero and w ill not occur with LR sta tis tics . I t  can be 

solved in a sim ila r way to that discussed in Section 3.3 but as there 

are k sta tistics to consider, i t  is naturally more complicated. When 

a ll the s ta tis tics  have locally minimum values of zero or of 0 ( T ~ ^ )  

then the cdf expansion for the {s * } becomes identical to Equation (48) 

except that the tbr >and bQ are of 0 (T - *) and a ll the other {b }  terms are 

of 0 (T  ^ ). In Equation (48) for the exact sums of squares, a l l  the {b } 

coefficients are of 0 (T~^).

I t  seems plausible that in the jo in t ly  independent LR s ta tis tic s  

case the 0(T ^) terms a ll vanish providing that the s ta tis tic s  can all 

be expanded in the same A variables with each sta tis tic  in the form of 

Equation (45) thus extending the single LR sta tis tic  result of 

Barndorff-Nielsen and Cox (1984).
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In this case 1t 1s Impossible to express the statistics as exact 

or approximate Inner products of d is jo int sub-vectors from a vector of 

asymptotically independent standard normal variates. Two alternative 

approaches are available: f i r s t ly ,  the statistics can be expressed 

asymptotically or exactly as idempotent quadratic forms in a common 

set of asymptotically independent standard normal variates X. So in 

the bivariate exact case:

3.4.2 The Jointly Dependent Case

In th is case Section 3.2.1 can be used to obtain a multivariate

o ( t ‘ . t 2 ) -  / e xp [(1 t l )(bjl k»j xk ) ♦  (1 t2 ) (b 2kxJ xk ) ) ( ( x )q T ( l)d x  

♦ 0(T‘ 3/2).

However /e x p{(1t* )(b jkAjXk) + (112) (b|fcXj xfc) >1 ( x)dx

and d ifferentiating with respect to ( t r ) produces

/(1bJkxJ xk)e x p{(1tl ) (b ‘ kxJ xk) + (1 t2)(b 2kXjXk))1 (x )d x .

The d iff ic u lty  here 1s that the polynomial Qj(X) has to be re-expressed 

in terms of sums and products of the (*>j|Cxj xk) terms and i t  1s not clear 

whether th is  can be done, and i f  so how.

{b jkJ and (b jk> are fixed.

Edgeworth expansion for the pdf of \ in the form [1 (x )Q y(x ) + 0 ( T " ^ ^ ) ]  

so:
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The second approach 1s to express each sta tis tic  asymptotically 

or exactly as the inner product of asymptotically standard normal 

vectors but where these vectors are asymptotically jo in t ly  dependently 

normally distributed. I t  is  s t i l l  possible to obtain a multivariate 

Edgeworth expansion for the > although since A 1s an asymptotically 

jo in t ly  dependent normal vector the methods of Section 3.2.1 need to 

be modified s lig h tly . Defining 1(X,n) as the asymptotic distribution 

function of A so 1 (x ,n ) ■ (2ir)"h/2e x p {- ix 'if 1 A }  then in the exact 

bivariate case :

and oT(t r t2 ) « E[exp {(1t^)(xjxj) + (1t2 )(x|x|)>J 

= /exp{(1t|)(xjxj) + (1t2 )(A2x2)}1(x,n)Q*(x)dA.

In this case, however, odd power terms in A such as:

/exp{(1t j ) ( x j x j )  + (1 t2)(x ^ x J )} l (x ,n )x ‘ x|dx

do not in general equal zero. Therefore they do not vanish and 

constructing the non-vanishing terms of Q|(X) from combinations 

derivatives of:

/expii z t_ (A  )2 }i(A ,n )dA  
q*l H ^

hence

of

with respect to the { t ^ }  1s not possible since these only produce even 

power terms 1n X. These two approaches to expressing the sta tis tic  are 

essentially equivalent and the problems which arise from attempting to 

apply the methods of Section 3.2.2 are also essentially equivalent; 1n 

both cases the real problem 1s that we cannot expand the jo in t cdf 1n 

terms of the derivatives of the asymptotic cdf with respect to the i t q}.
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1 * _1 
In this extended case T Ẑ T can be a vector of polynomials in T z .

However, some information must be provided about the lim it  of T*«PT 

as T + «  otherwise i t  is  impossible to obtain a and the asymptotic 

power of the test (there 1s l i t t le  value in considering an approxi­

mation involving terms of 0(T~*) and 0 (T“^) when the 0 (1) terms are 

not known). Given that local alternative sequences are a rtific ia l 

the easiest assumption to make 1s that T*ii»T 1s a constant.

The only way in which tj»* enters the analysis is  through Its 

effects on the m ultivariate Edgeworth expansion for X which can be 

obtained using the methods of Section 3.2.1 but with a slight 

modification. As in Equation (1) we assume that X can be expressed:

1 ■ T * {,(p ) -  <p(u)>

where p = E{p;eQ } .  However, under the local a lternative hypothesis 

sequence E{p;6y} ■ Py t p(py -  p = 0 (T” * )) so we re-express X:

X -  T* {^(p ) -  ♦ (M y)) ♦ Tl U (P y ) -  ♦(p)> -  9 (x ) ♦ a* 

where x = T^(p-Py) and ciy = a + By with 8y= 0(T ^). The methods of 

Section 3.2.1 can be applied to obtain an asymptotic expansion for 

e = (X -ay) = g(x) to obtain:

p .d .f . (e )  -  [(2 ir )’ h/2e xp{-Je 'e ) ][1  ♦ (cQ) ♦ <Cj*j)

+ ic jk ej ek) + ^cJ k ieJ*kei^ + *cJk*mt j t kVm * * ic jkwnp€j eket Emep)

* (c jk«mpqcJ * °<T' 3/2>
with cQ -  « (T " * h  Cj -  0 (T_ I ) ;  cjk  -  0 (T ’ * ); cJ|a -  0 (T_ i )

Jk tm < = jk « p  -  o<T _1> i «=jk « p < , -  «k t - 1 » - (5 5 )



Since o| is non-stochastic and does not depend on x then the Jacobian 

o f  the transformation from e to x 1s unity. Also we have:

expi-Je'e} = e x p {-j [(X -a ) -  8T] ' [ ( X -a )  -  By])

-  e x p i-K x -a )'(X -a ) ♦ By(X-a) -iB-j-By)

-  e x p {-i(X -o )'(X -a )> [l + By( X-a) -  jB-j-By

+ ♦ 0(T‘ 3/Z) .  (56)

Equation (56) can then be used to expand Equation (55) to have a leading 

term which is a jo in t ly  independent standard normal density in (X-a)

( i . e .  the asymptotic density function of (X -a ))  m ultiplied by a 

polynomial in X. Since the Jacobian of the transformation from e to X 

is  unity then th is gives a multivariate Edgeworth expansion for the 

jo in t  pdf of X:

p .d .f. (x ) = [(2 it)”h^2e x p {-J (x -a ) '(x -a )} ]  [1 +{do)

+ (d j i j )  + ( djk xj* k) ♦ <dj k i \ j V t ) + (dj k l « y k V m )

* <W j V , V p >  * <dJktr«pq‘ j XkXt V p iq>] + °<T_3/2>

where {d0>. i d j ) ,  {dj|() ,  (dJ|a) ere 0 (T '* )

‘ dJklm>- (dJklnp>- ‘ - W , 1 • "  <67)

T h is  differs s lig h tly  from Equation (14) 1n the orders of magnitude and 

by the inclusion of a fifth  order term in X; th is arises because \ has 

a lim iting normal d istribution with non-zero mean. With this multivariate 

Edgeworth expansion for the pdf of x we can now proceed to analyse the 

expansion for the cdf of s2. As before the simplest case to consider
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is that o f a single exact sum of squares test s ta tis tic . The 

characteristic  function of the s ta tis tic  is  given as:

a ( t )  * E[exp{its2}]  = /exp{itXjXj}(2Tr) h^2e xp {-J (X jX j)

♦ ♦ <d0> ♦ + <dj k1J 1k) ♦ <djk i xj xkxt >

♦ « W j V t X„> * < W j XkV „ Xp> + <djkM,pqXj XkXi V p Xq>] dX
-------3/2. ,co\0 (T "

The general term is equal to a coefficient multiplied by: 

h
/{ n expiitx2>(2n) *exp(-§X2 +X.a. -Jo? 

j _  1 J  J  J  J  J
? »

p . pb pc pd pe Pf
. x ax. Dx cx .°x ®x.fdx a b c d e f

'  J? a ,b ,c ,d ,e ,f  ^ «XP{  1tx *1 (2*)‘ ‘ •XP{ -* XJ  ♦ « j xj  - l “]> dxJ]

n / e x p {m M (2 . ) ' i e x p ( - i » ^ r xr - i  .  « r Ar  -| « lH  Prd
r= a ,b ,c ,d ,e ,f

where pa . pb . pc. pd . pe . pf  >. 0

pe + pb * pc + pd + pe * pf « *•
(59)

Since the asymptotic distribution of x is  normal with a non-zero mean 

the odd powers terms in x , i .e .  x£ where p = 2k + 1 (k = 0 ,l ,2 ) ,  do not 

vanish on integration. This is sim ilar to the problem in  the jo in t ly  

dependent case where powers of X such as xr X$ (r/s ) do not vanish on 

integratio n. The solution to the problem here is to differentiate 

terms o f the form:
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/exp{1tx 2} ( 2ir)** e x p {-J (xr "ar ) 2><lxr  (60)

with respect to  the ia r )  rather than with respect to t .  Assuming that 

integration w ith respect to Xr  and differentiation with respect to ar 

can be interchanged then:

[e x p { - i (xr - “r ) 2>*j = (Xr -a r )exp{-$(Xr -a r ) } .

This can be used to evaluate terms of the form of Equation (60): 

/exp{1tx2}(2u)"*exp{-H xr -a r ) 2>xrdxr 

= /exp{1tXp(2w )"*exp{-KXr -a r ) 2>ardxr 

♦ /expt1tx2>(2„fS 3§ -  [e x p {-K x r-o r )2>] dxr

" [<V + ( j v  ) ]  r*x*,t<txP (2- >'*expt-* < V ° r > 2)d V

using an operator notation.The characteristic function of a non-central 

chi-square w ith  k degrees of freedom and non-centrality parameter y2 

(when k*l th is  is  the characteristic function of the square of a 

normal variate w ith mean y and variance unity) is  given as:

r ’ ( t ; T ! ) -  n J (2 i . r , e xpH tx*}exp{-l(xs-Y s ) 2>dxs , ^

-(k+2J)/2

J -0

2J - ( y 2/2)
3— - -------------- C1—211)

2J Jl

(from Rao (1973), p.182). Differentiating this characteristic function 

with respect to y gives :
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T -  [ r ? (t ;T 2)] ■ ^  ^  /8>(l -2 lt )~ < k* 3 ) / , >
3Y k 3Y j - 0  2 0 J ,

-  2 J y 2 J - ' . - ( i ,2 / 2 >
l !■ ----------*—
j=o 23 j !

(l -2 1 t )" (kf23)/2}

- (Y e T2Je~(T /2> (i-2it)~(k*23)/?) 
j*o 23 3=

. (Y "  Y21! - ] 1» ' 1̂ 21 (l -2 1t , - (k+2(3-3 )+2)^2>
3*1 23 (3-1)1

"  Y2)p - ( r 2/2) - ( k+2i1/2
-  (Y £ 2— 5-------------  ( l - 2 1 t )  *k+23 >'£}

3=0 2 j 1

-  y [ r L 2(t ;Y 2) -  r2( t iY ) ] .

I t  Is now useful to define the integral

In = /exp{itx2K 2 r ) ‘ ! e xp (- i (x -Y )2)kndx.

Using this expression then 

31
^  -  /exp{itx2} ( 2 r ) " l  ^  [e x p i-l(x -Y )2]  x"dx -  I n+, 

This provides an ite ra tiv e  relationship for the U n>:

*n+l £y + ay 3 *n*

Since IQ a r f ( t ; Y2) repeated application of this result 

for any n; in p a rticu la r for n = l , . . . ,6 ;

■yln . n i 0 .

gives In
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i 0 -  r | (t ;Y 2)

I ]  = Y r| (t ;y 2)

12 * Y r| (t ;Y 2) + r | ( t ;Y2)

13 ■ Y3r } ( t ; Y 2) + 3Yr§(t-,Y2)

14 -  Y -r j i t iY 2) ♦ 6Y2r 2(t ;Y 2) + 3 r J ( t ;Y2)

15 -  Y ^ f ^ t i Y 2) + 10Y3r | ( t ; Y2)  ♦ 15Yrf(t;Y2)

Ig -  Y6r f 3(t ;Y 2) + lS Y ^ P f^ t iv 2)  ♦ 45Y2r5 (t iY 2) + 15r$(t;Y2) .  (61)

I t  can be noted that when y =0 these reduce exactly to the formulae 

obtained by differentiating I n with respect to t  ( n = 0 , l . . , 6 ) .  Thus 

this procedure is consistent w ith  the techniques developed in Sections 

3.2 and 3.3. Using these { I n > integrals we can now evaluate the terms 

from (59) of the form:

h , p . Pf
/{ y x p { i U 2>(2,0 * e x p { - i (* j -° j )2» xa *** xf  dx* vo2)

However, this of course depends on the precise values of (pa* .. . ,pf )•

At this point i t  is  advantageous to make use of the reproductive 

property of non-central chi-square variates. Suppose that 6  ̂ is 

distributed as non-central chi-square with n  ̂ degrees of freedom 

and non-centrality parameter y | and that 6  ̂ is  independent of 6  ̂ and 

is distributed as non-central chi-square with ng degrees of freedom 

and non-centrality parameter y%. Then the variate formed by summing 

the two 62' s is also non-central chi-square- but with degrees

of freedom and non-centrality parameter (y 2 +Y|Msee Rao O 973)»  P -182)-
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Since the characteristic function o f the sum of two independent 

variates is  the product of th eir individual characteristic functions 

with the same characteristic function parameter t. therefore:

r51<tiri )r"2(tlY5) ' rv " 2(tiT i + T5)- (53)

Equation (32) can be expanded using th is  result and

Equation (61) so that:

h _i Pa Pf
/ {^ e x p {1 tA p (2 ir )  ’ e x p i-H V j-O j)2>>^a -• • *f Td\

• f n  r? (t;o? )l I* n {  = < r?+2s (t;a j)> l
'•jjia ,b ,c ,d ,e ,f  1 J J [r= a ,b ,c ,d ,e ,f  s = o  J

where the {g£} depend on (pa........ p ^ ).  This can be expanded as a sum of

products of non-central chi-squared characteristic functions. Each 

product is the product of exactly h non-central chi-square characteristic 

functions with differing degrees o f freedom but such that f ir s t  m ulti­

plicand has non-centrality parameter the second and so on, t i l l  

the h 'th multiplicand has non-centra lity parameter afj. Thus each 

product can be expressed as the characteristic  function of a non­

central chi-square with degrees o f freedom (h+2s) (s = 0 ,. . . ,6 )  and non- 
h

centra lity parameter £ a? = a 'a :
j . i  i

j-1  J J J a t

6
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I t  should be noted that i f  kg / 0 for s 5 4 then Pa + Pj, + ••• Pf 

i  4 so that the terms ^ ^ ( t j a ' a )  for s 5 4 must be multiplied by

Now i t  is  possible to expand out Equation (58) and gathering terms 

together gives:

The expansions for the p .d .f. and c .d .f . o f s 2 then follow immediately. 

Defining xfj(xjA) as the pdf of a non-central chi-square- variate with 

h degrees of freedom and non-centrality parameter a and 5^(x;A) as the 

corresponding cdf then:

with the same ts^} as in (64).

I t  is  possible to extend the analysis to cover an approximate inner 

product sta tis tic  and also the jo in t ly  independent case both for exact 

and approximate sums of squares s ta tis tic s . Similar problems arise 

with an approximate inner product s ta t is tic  as arose in the analysis 

for the null hypothesis case 1n Section 3 .3 . when i t  does not behave 

nicely at the origin and does not have enough degrees of freedom.

These problems can be solved in essentially the same way as in Section

a term of 0(T~^) since i d j ^ ^ } , id.jktmp >. id jklmpq } are a ll of 0 (T"^ ).

6 -3/2,
o (t )  -  r 2 (t ;a ) + ^ oU jrh+2 j(t ;A ) + 0 (T

where a = a.o. = a'a

J ■ 0,1,2,3 
j  -  4,5,6. (64)

6
p.d.f.(s?) = xjfe2;^ ) + * uj*fi+?jfc2;A) + °^T

r-3/2.

6
(x;A) ♦ 0 (T”3/2) (65)c .d .f.fe 2) «  Pris2s x) ■ x2(x;a) ♦ r  u 

j « o

3.3.
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The d iff ic u lty  with applying the techniques of this Section to 

the jo in tly  dependent case discussed In Section 3 .4 .2  is that the 

jo in t characteristic function, pdf and cdf of dependent non-central 

chi-square variates are not as simple in form as the corresponding 

functions for independent chi-square variates. F i r s t ly ,  1t is no 

longer possible to use the reproductive property of ch1-square 

variates under independence given 1n Equation (63) and, secondly, 

the jo in t pdf's and cdf's now involve considerably more complex 

infin ite  summations than 1n the independent case; see Johnson and 

Kotz (1972). The complexity of the jo int pdf and cdf also raises 

doubts about the amenability of the pdf and cdf expansions to 

numerical computation. The jo in tly  dependent case both under the 

null hypothesis and under local alternative sequences remains an 

area for further research.
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3.A Appendix to Chapter 3

3.A.1 Relationship with the Approach in Mauleon-Torres (1983)

The method developed 1n this chapter for obtaining asymptotic 

expansions for the cumulative distribution functions of asymptotically 

chi-square test c rite ria  has some sim ilarities to the method developed 

in Mauleon-Torres (1983) which was reviewed b rie fly  in Chapter 2.

Both methods involve expanding the sta tis tic  of interest In  a vector a of 

asymptotically independent standard normal variates and obtaining 

an Edgeworth expansion for the distribution of this vector a . The 

methods d iffe r in how they proceed from A to A^AQ where \Q is  a sub­

vector of a and where A p Q 1s the only 0( 1) term in the expansion 

of the sta tis tic  of interest. Mauleon-Torres (1983) uses a polar 

co-ordinates transformation in the same way as Sargan (1980b). This, 

however, requires the use of the moments of variates d istributed  on the 

unit hypersphere which 1s somewhat cumbersome. Again as Sargan 

(1980b), Mauleon-Torres' method obtains an expansion for the cumulative 

distribution function of the positive square root of the s ta tis tic  thus 

Involving the use of chi variates.

The method developed here transforms from a to a^aq by equating 

some of the parameters { t r > of the jo in t characteristic function of 

the (A p  to t  and setting the others to zero. This method has a number 

of advantages over that of Mauleon-Torres (1983). F ir s t ly ,  1t simplifies 

in the case of an exact inner product test criterion and shows why there 

are no 0(T“ *) terms in the resulting cdf expansion. Secondly, 1t extends 

very easily to the jo in t ly  Independent asymptotically ch1-square test 

c rite ria  case whereas extending the Mauleon-Torres method to this case would 

be much more cumbersome. Lastly, i t  can be modified, as in Section 3.5,
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f o r  the distribution of test crite ria  under local alternative sequences 

thus enabling power comuptations to be made as well as size computations. 

In th is  case X is no longer asymptotically distributed spherically 

symmetric about the origin. Therefore i t  1s not clear whether a 

transformation to polar co-ordinates w ill render obtaining a cdf 

expansion tractable. Mauleon-Torres (1983) does not consider any of 

these simplifications or extensions of the problem of obtaining an 

asymptotic expansion for the cumulative distribution function of an 

asymptotically chi-square test crite rio n .

3 .A .2  The Covariance Matrix Assumption

In Section 2.1 we assume that when the decomposition vector 

1s written as a function g (x ) of the underlying variables x then 

9j 9KK^*K "  V s  + where gj 1s the derivative of the

r 't h  element of g with respect to the j 't h  element of x evaluated 

at zero (which is the expectation of x ) ,  where I s the second- 

order cumulant of the j 't h  and K'th elements of x, and where 6rs = 1 

i f  r  > s and 0 otherwise. This 1s quite a strong assumption and 1t 

provides the justifica tio n  for the orders of magnitude of the 

terms in , for example, Equation (27) in Section 3.2 which gives the 

approximation to the pdf of an exact Inner product sta tis tic .

The purpose of this appendix is to show that this assumption 1s v a lid  

fo r  Wald tests of non-Hnear restrictions on regression coefficients 

1n dynamic linear regression models with normally distributed 

disturbances using OLS estimators.
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Evaluating this at x = 0 gives:

9J -  CFaF1]** [' M i l  1
, 3pj  1

1

m J
■ [FaF1]"* ]

" 1% I
. ]  •

(67)

where F and n ^ j  equal F and n evaluated at p = u. Therefore we 

have:

■ CFa{M)Fir ‘ FiF1CFa(|l)F '] - ‘ '

Thus provided that:

9(g) = 0 , and

Z -  (1+cT*1 )°(|J)»  (68)

then g^g* k^ ,K -  6^  + 0 (T” * ). I t  is interesting to note
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that the form of the restrictio n  Hq : <i<(e) = 0 does not enter into 

either of the conditions given by Equation (68) .

Me w ill now suppose that the model generating the data is a 

dynamic linear regression model:

y -  Zy * u, (69)

where u % N [0 ,o ^I], where ut+s is  independent of Zt  for 

a ll s ^  0 , and where may contain lagged values of y^.

We then estimate this model by maximum likelihood conditional upon 

the in it ia l values of yt  g iving:

;  . ( ¥ > ’ ( ¥ )  .

5rr  '  °Z(rr) '' - » . “ oW & t -  <™>

Thus p consists of the stochastic elements of T“1W'W where 

W »  (y :Z ) .  Now E(T- 1Z 'y ) -  E C T ' z 'Z J y  since E (Z 'u ) » 0 from 

independence so that y* (p ) »  y .  Also we know that:

(T "1y 'y )  -  y*(T—1Z,Z)y ♦ Zy 'CT^Z'u) ♦ (T "1u 'u );  so that

ECT'1y 'y ] * y ' e( t” 1 z *z ) y ♦ o .

Therefore o2(p ) ■ o* and thus the ML estimates exhibit Fisher 

consistency 1n p.and ■ o ^ [E (T” ^ Z 'Z )]"^ . Suppose we wish to 

test that tji(y) -  0. I t  1s convenient to change the underlying 

variables with which we work from p to p* where p* are the 

stochastic elements of T” ^W*'W* and W* * [u :Z ].  This transformation 

is a linear transformation which is  very convenient since:
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[ ü r ]  ■ [ f p * ]  ‘  <71>

i kTherefore 4 ’ the second-cumul ant of the j 't h  and k'th elements 

of x* = T*(p*-u*), where y* = E(p*), is  given by:

<* = ho*\ e l 3P*i in matrix notation, and the derivatives
V*py v W

of y  with respect to p* are given by:

I jT p * )'] "  [ I p ]  [ # > ]  '  [ I p ]  [ I p‘ ]

Therefore £ is unchanged since:

[ l? r ]  * [ l r ]  '  [ i i p n ]  '*|jrpn' ]  •

The advantage of working with p* is that:

Therefore evaluating the derivatives with respect to p* a tu *  gives:

where the f i r s t  block refers to the derivatives with respect to 

T’ ^Z'u and the second block with respect to the stochastic 

elements of T’ ^Z'Z. Since E(T~^Z'u) »  0 from Independence then 

the second cumulants of T*(T~1Z 'u ) are given by o2E(T- 1Z 'Z ) and

therefore :
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l -  ^ [ E t T - V z ) ] - '  .  q (M)> (7 2)

Therefore both of the conditions given by Equation ( 68) are 

met and therefore the covariance matrix assumption holds.

F in a lly , we often choose to use the OLS based estimate 

s2 = T(T-K)~*o2 where Z is (TxK). I f  we are only Interested 

in hypotheses such as = 0 then this merely re-scales \ by 

a factor [T (T -K )" 1]"* = 1 -  + 0(T~2) and therefore the

covariance matrix assumption s t i l l  holds.
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CHAPTER 4; Alternative Test Statistics and the Use of the Wald Testing 
Principle with Reformulations of Parameter Restrictions

4„1 Introduction

One of the major problems facing an applied econometrician is the 

choice of a test sta tis tic  to test an hypothesis of interest within a 

model which has already been specified and estimated. The d iff ic u lty  

arises because there are typ ica lly  several alternative test sta tistics 

which he or she can use. Ideally the choice would be made in fu ll 

knowledge of the fin ite  sample properties of these alternative test 

sta tis tics  both under the null hypothesis being tested and under any 

alternative hypotheses of interest. Then the size and power functions 

of the test statistics could be compared and a particular test chosen 

with the most desirable properties for the given situation.

In practice such fu ll knowledge of fin ite  sample properties 1s 

not available. Basic asymptotic theory, which is generally available, 

serves to partition the available test statistics into asymptotic 

equivalence classes. However, there are no guarantees that 

asymptotically equivalent test statistics behave equally well 1n 

fin ite  samples. Therefore, 1t is desirable to obtain information 

about test sta tis tics  beyond the basic asymptotic results. In 

Section 4.2 we review and discuss some of the fin ite  sample results 

which are available for making choices between asymptotically 

equivalent test sta tistics for a given hypothesis. The f i r s t  set of 

results relate to the inequality relationship between the Wald (W), 

Likelihood Ratio (LR) and Lagrange M ultiplier (LM) test c rite r ia  for
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linear restrictions in the linear regression model with normally 

distributed errors. This inequality relationship has been discussed 

extensively by Savin (1976), Bemdt and Savin (1977), Breusch (1979) 

and Evans and Savin (1982a, 1982b). The other available results 

relate to the problem of constructing LM test statistics using 

alternative estimates of the information matrix and are due to 

Davidson and MacKinnon (1981a, 1981b, 1983).

In Section 4.3 we consider a problem of current interest, namely 

that of the differing  properties of Wald statistics constructed using 

differing formulations of a given set of parameter restrictio ns. In 

Section 4.4 we examine in detail an example of this problem which has 

been considered by Gregory and Veall (1984, 1985 ) and derive lim iting 

parameter asymptotics for the cdf's of the statistics used in their 

example. Then in Section 4.5 we compute asymptotic expansion 

approximations to these cdf's and compare them with the lim iting  

parameter asymptotics of Section 4.4 and the Monte Carlo results of 

Gregory and Veall (1984, 1985 ) .  F in a lly , 1n Section 4.6 we draw some 

overall conclusions.

4.2 Comparing Alternative Test Statistics

There has been a recent move in econometrics towards ju stify in g  

specific test sta tis tic s  as being generated by applying particular 

testing principles to the given problem. Thus Aldrich (1978) and 

Breusch (1978) show that Durbin's h test for serial correlation 1n 

the presence of a lagged dependent variable, Durbin (1970), can be 

obtained via the LM test principle. This approach has been useful
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1n assigning test sta tis tics  to asymptotic equivalence classes but 

usually leaves a choice between several asymptotically equivalent 

test statistics.

In the linear regression model with normally distributed errors 

a quite strong numerical result has been found relating to Wald, LR 

and LM tests for linear re stric tio n s: W * LR >, LM. This was f i r s t  

found by Savin (1976) and extended by Berndt and Savin (1977). The 

most general form of the result 1s to be found 1n Breusch (1979).

Breusch postulates the following model:

y -  X . e + u  ; u % N[o,n(e)]
(Txk) (k x l )  (Tx l )

where 0 is a vector of k parameters and e a vector of p parameters: no 

elements of 6 enter Into e or vice versa. I f  6 and e are estimated by 

maximum likelihood estimation and then Wald, LR and LM tests are 

constructed for the set of linear parameter restrictions:

Hq : RB -  r  ; q restrictions q $ k 

or 8 €  Bq -  (6 |Re * r )

then numerically the Wald test s ta tis tic  1s greater than or equal to the 

LR test sta tis tic  which 1s greater than or equal to the LM test s ta tis tic . 

Breusch shows this by expressing the test statistics as the differences 

between log-11kelihoods maximised with respect to B with d iffering 

estimates of n(e) substituted in . Thus 1f (B .n) are the unrestricted 

maximum likelihood estimates (MLE) and (B.n) are the restricted MLE then
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w = 2 [l(e ,a ) -  sup L(B ,ii)]

s « 8o

LR • 2[L ( B.a) -  L (B ,n )]

LM * 2[sup L (6 ,(i) -  L ( i .a ) ] .
8

Consequently W * LR since:

sup L (s,n ) $ sup L(B,n) -  L (e ,n ) 
B «B 0 0

and also LR > LM, and hence W * LR * LM, since

sup L(B.n) $ sup L(s.fl) »  L (8 ,n ).
e n,e

Breusch (1979) shows that LR * LM s t i l l  holds for testing non­

linear restrictions on the regression coefficients of the form 

♦(B) * 0. However, 1t 1s no longer generally true that W % LR for 

testing non-Hnear restrictions and the reasons for this w ill be 

examined 1n more depth 1n Section 4.3 . The relationship between the 

three test statistics has also been Investigated for certain models 

with non-normal errors. Ullah and Z1nde-Walsh (1984) examine the 

regression model with m ulti-variate  t-d1str1buted disturbances and 

find that for the appropriately calculated W, LR and LM statistics no 

overall Inequality relationship holds even between the LR and LM 

s ta tis tic s .
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The inequality relationship raises the p ossib ility  that the tests 

can produce con flicting  inferences when used with the same critica l 

values based on th e ir  common asymptotic ch1-square distribution.

Thus with a p a rticu la r set of data i t  1s possible for the Wald test 

to reject when the LR test accepts. However, only certain conflicts 

are possible; thus, 1f the LM test rejects so must the LR and Wald tests. 

This implies that the power functions of the tests can be ranked so, for 

example, the power o f the Wald test 1s necessarily greater than or equal 

to the power of the LR test.

In the case where n(e) * o2I ,  i .e .  where the covariance matrix is 

scalar diagonal, an even stronger result holds with the three test 

statistics being monotonically increasing functions of each other 

(see Evans and Savin (1982a)):

W -  J(a2 -  o2)/o2

LR -  T loge[l+(W/T)] and LM -  W/[1+(W/T)] (1)

where o2 and o2 are the restricted and unrestricted MLE of o2.

Furthermore, the s ta tis tic  F ■ (T-K)W /(qT) has an F (q ,T -k ) distribution 

with a zero non-central 1ty parameter under the null hypothesis and a non­

centrality parameter under the alternative which is a known function of 

the parameters and the exogenous variables. Thus exact c rit ic a l values 

for the W, LR and LM statistics can be computed and when the exact rather 

than asymptotic c r it ic a l values are used there 1s no possib ility of 

conflicting inferences. Thus in th is model the problems raised by the 

inequality relationship can be completely surmounted.
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Evans and Savin (1982a) consider making adjustments to the c ritica l 

values of the three test s ta tis tic s  based not on the exact functional 

relationship and the F -d istribu tion  but on Edgeworth expansions for the 

three test s ta tis tics . Defining n »  ( T -k ) . they In it ia l ly  consider the 

modified tests:

W* * n(o2 -  o2)/o2

LRe -  [n+ (q/2)-l] loge [H (W ,/n)]

LM, -  [(n+q)/n]W ,/|>(W ./n)] . (2)

The modified Wald s ta tis tic  is obtained by substituting n for T In W: this 

corrects for the bias in the estimate o2 of a2. Likewise LM* substitutes 

(n+q) for T in LM which corrects for the bias in the estimate of o2 of a2. 

Although W* and LM* have true sizes which are closer to th eir nominal 

sizes than do W and LM, th e ir true  power functions can s t i l l  d iffer 

substantially from th eir nominal power functions. The modified Likelihood 

Ratio s ta tis tic  LR0, obtained by replacing T with [n+(q/2)-1] in LR is an 

Edgeworth corrected test and its  true and nominal sizes d iffe r by a term 
_2

of 0 (T ) ,  following Anderson (1958, p.208). The approximation of the 

true power function of LRg by It s  nominal power function 1s generally 

very good, even for cases where th is 1s not true for W* and LM*.

Evans and Savin (1982a) then consider making Edgeworth corrections 

to U* and LM* by noting:

H . -  LRe{ l  + [(LRe-q+2)/(2n)]> + 0 (T _3/Z)

LM. -  LRe{l -jL R e-q t2 )/ (2 n)]>  ♦ 0(T*3/Z) (3)
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so that the appropriate c rit ic a l values for W* and LM* are:

z® = z (U [ (z -q + 2)/ (2n ) ]>

z ' H -  z { l - [ ( z -q+2)/ (2 n) j } .

These Edgeworth size-corrected tests have true and nominal sizes which 
_2

d iffe r by a term of 0(T ) .  These are essentially the same corrections 

as those given by Rothenberg (1977). Evans and Savin (1982a) find that 

these Edgeworth corrected tests have true power functions which are very 

well approximated by th e ir nominal power functions. Furthermore, the 

probability of conflict for the Edgeworth corrected tests is  very low. 

The only cases for which the approximation was not very good were when 

the nominal s ize , the degrees of freedom n , and the ratio  of n to q were 

a ll small.

I t  1s arguable that the success of the Edgeworth corrections in 

this case arises for three reasons. F ir s t ly ,  the statistics are all 

monotonically Increasing functions of each other; therefore i t  1s 

possible to reduce the probability of c o n flic t  to zero by setting the 

c rit ic a l values for the original test s ta tis tic s . I f  this were not so 

then even with the correct c ritica l values there would s t i l l  be some 

probability of conflict of inference and th is  would also be true with 

Edgeworth corrected sta tis tic s . Secondly, the Edgeworth corrections 

do not depend on unknown parameters and therefore they can be computed 

exactly rather than having to be estimated. I f  they needed to be 

estimated, then making the corrections would introduce an extra source 

of sampling variation Into the tests and th is  would be lik e ly  to provide 

an extra source of potential conflict of Inference. Lastly , the
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distributions Involved In the example above áre a ll closely related 

to the ch1-square distribution. For example, the F-distr1but1on can 

be obtained as the distribution of the ratio of two independent ch i- 

square variates, each divided by Its degrees of freedom. If  the 

distributions Involved were not so closely related to cM-square 

distributions we might well expect that the Edgeworth corrections 

would not account so well for the size properties of the tests.

Thus the case considered by Evans and Savin (1982a) would seem to 

be one of the most favourable cases for making Edgeworth corrections. 

In general we would not expect the circumstances to be as favourable.

Another problem involving the choice of a test s ta tis tic  from a 

set of asymptotically equivalent test statistics arises with the LM 

test when i t  1s d iff ic u lt  to estimate the information matrix. I f  the 

restricted MLE is e, then the LM test s ta tis tic  takes the form:

where e «  ê * the score vector evaluated at e; and

I  1s a consistent estimate based on o of the information matrix which 

1s given by:

LM « (| ) i ' î ' H (4)

where e are the true parameter values.



- 131

However the obvious estimate obtained by substituting e for eQ giving 

J (e )  may not be at a ll easy to obtain, in which case alternative 

estimates of -T(0Q) may be used which are easier to compute and which 

are asymptotically equivalent to J (e ) .  One p o ssib ility  is  the Hessian 

at e multiplied by (-1 / T ):

Another estimate is the sum of the outer products of the score vectors 

fo r the individual observations evaluated at e:

(advocated by Berndt, H a ll, Hall and Hausman (1974)).

The justifica tio n  for these is  that th eir expectations at e * e are both 

equal to 1(e). A more sophisticated method might be to conduct a Monte 

Carlo experiment to estimate 1(e): this is lik e ly  to be very expensive 

computationally. Other p ossib ilities include any of the above but with 

zeros substituted for any elements of 1(e) which are known to be zero 

from theoretical considerations.

One problem with using A(e) is  that the resulting test statistic

i I  | .T ^ 3636 ' I e = e (5)

1s not Invariant to reparameterizations of the model. Th is can be most 

easily seen 1n the framework of a model with a single parameter, say y~ f(e ) 

and H : e • e . Then



Now consider a one-to-one reparameterization, e -*• ♦ (0 ), so the hypothesis 

being tested becomes H:$(e) = ♦(Oq ) or H:$ »  <frQ where <j>Q -  ♦(0()) .  Then:

.  3L(e)| ,  3 L(e )| ael
3* U 0 39 |0o 3*| *„

1 ~ — 1. 1 _ ~ _1 -
Then LM »  j  s 'A (0) s and LM* »  j  s*'A*(0) s* and i t  1s clear that in 

general LM i LM*. I f  expectations were taken at 0 then no problem would 

arise since E [s (0) ]  * 0 and so:

}<>E[A(«)]*1< ■ }  .

This problem of non-1nvar1ance with respect to reparameterizations also 

appears with Wald tests and is  discussed at greater length In Sections 

4.3 and 4.4 and in Chapter 6.
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Davidson and MacKinnon (1983) argue that B(0) does not provide 

a particularly well behaved LM test either and advocate an alternative 

estimate of J (0 O) for constructing the LM test. This alternative 

estimate was proposed in Davidson and MacKinnon (1981a). In somewhat 

altered notation th e ir model is :

gt  (yt ;e ) -  et  ; et  * IN (O .l ) ;  e is kxl;

where yt  is the t 't h  observation on the dependent variable, 0 is a 

vector of unknown parameters, and gt (* ) is  a suitably continuous 

function which may depend on exogenous variables and/or lagged values 

of y . The assumption that the ie^} have unit variance is made without 

loss of generality.

The contribution to the log-likelihood from the t 't h  observation

is :

Lt (0 ) -  -J lo g2.  -  i rgt(ytie)32 ♦ loglg^(yt ;0)| 

where g^(yt ;e) -  ^  gt <yt ;6 ).

The score vector for the t 'th  observation is then:

* M 0) 39+ a
st<9> ■ — 5e----- 9t(yt;o) Sir * 86 (1°sl9;(8)l>

- g t (y ;« )G t (e) ♦ J t (e ) .  (8)

Davidson and MacKinnon (1981a) show that J (0 O) can be consistently 

estimated by:
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,  T -  -
c (6 ) * + J t (e )J t (e ) ,1 }

which gives an LM test s ta t is tic :

[ ¿ « - « t 8» * + 5t V |] ‘ , [ J 1« i t St + 3t>3 (3)

which can be computed as the explained sum of squares from an a rt if ic ia l 

regression of the form:

z = Wb + u

where z * [g j , . . .  » g ^ ,! , . . .  ,1 ] ' a 2T-vector

W* [ G j ' a (2Txk) matrix.

They refer to this variant of the LM test as the DLR (Double Length 

Regression) variant because this a rtif ic ia l regression has 2T 

'observations'. The LM test s ta tis tic  constructed using B(e) they 

refer to as the OPG (Outer Product of the Gradient) variant. This 

can be constructed as the explained sum of squares from the a rt if ic ia l 

regression:

1 «  Pb + n

where 1 -  [ 1 » . . . » ! ] '  a T-vector

P = [ s , ........ sTl ' a (Txk) matrix.

Davidson and MacKinnon (1983) argue that ideally an estimate of 

the information matrix should only depend on the dependent data through 

e, the restricted MLE. This 1s because the Information matrix Its e lf  

only depends on the exogenous variables and the parameters eQ. The 

less stochastic the estimate of r (e o) is then the more closely w ill
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the true distribution of the LM s ta tis tic  match its  asymptotic chi-square 

distribution. Davidson and MacKinnon argue that B(e) contains many 

more stochastic terms than does C (e ). Therefore in f in ite  samples 

C(e) should provide a more e ffic ien t estimate of J (e o) than does B (e).

Hence the DLR variant of the LM s ta tis tic  ought to be more nearly chi-square 

in finite  samples than the 0P6 variant.

They conduct a Monte Carlo experiment to compare the properties of 

these two variants of the LM test for testing a logarithmic against a 

linear specification using the Box-Cox transformation. Since the test 

has only one degree of freedom, they transform the LM test statistics 

into asymptotic N(0,1) s ta tis tics  by taking th eir square roots and 

multiplying by the sign of the 'estimated' coefficient b 1n the 

appropriate a rt if ic ia l regression. They find that the DLR variant 

has a distribution under the null hypothesis which is  much closer to 

N(0,1) than that of the OPG variant. Further results presented in 

another paper, Davidson and MacKinnon (1981b), suggest that the actual 

power function of the DLR variant is  much closer than that of the OPG 

variant to th e ir  nominal power function.

4.3 Wald S tatistics  for Reformulations of a Set of Parameter Restrictions

In Section 4.2 we noted that typ ic a lly  no inequality relationship 

between W, LR and LM test s ta tis tics  can be found when testing non­

linear parameter restrictio ns. This is  because the Wald test s ta tis tic  

is  not Invariant to reformulations of the parameter restrictio ns. This 

problem has been examined by Gregory and Veall (1984, 1985 , 1906 ) ,

Breusch and Schmidt (1985) and Lafontaine and White (1985) ,
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Gregory and Veall (1984) consider a number of specific examples 

of non-invariant Wald tests. Their f i r s t  example is also reported in 

Gregory and Veall (1985) and concerns testing a non-linear restriction 

in a simple CLR model; this case is examined in further detail in 

Sections 4.4 and 4.5. Their second example is  also reported in 

Gregory and Veall (1986) and concerns testing for common factor (COMFAC) 

restric tio ns in a simple autoregressive distributed lag model. This 

example is examined further in Chapter 6. They considered four 

d iffe re n t formulations of the restriction and from a Monte Carlo study 

they concluded that none of the four Wald tests corresponding to the 

d iffe re n t formulations of the restriction performed uniformly the best 

across a ll the different parameter settings they used.

The third example in Gregory and Veall (1984) concerns testing 

fo r  rational expectations as discussed by Hoffman and Schmidt (1981). 

The la tte r showed that the rational expectations hypothesis could be 

expressed 1n their model as a set of non-linear parameter restrictions. 

They derived these restrictions 1n terms of ratios of products of the 

parameters of the model. They then performed a Monte Carlo study to 

examine the performance of the Wald and LR tests for these restrictions; 

however they reformulated the restrictions to be 1n purely m u ltip li­

ca tive  form before computing the test s ta tis tic s . Gregory and Veall 

(1984) performed a Monte Carlo study to compare the Wald tests from the 

o rig in a l and m ultiplicative forms of the restrictions. They found that 

the test from the m ultiplicative form performed much better 1n terms of 

the accuracy of the asymptotic cdf as an approximation to the actual 

cdf of the test s ta tis tic  under the null hypothesis.
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Gregory and Veall (1984) provide an empirical example of testing 

for rational expectations in a model of the Canadian demand for money. 

They find th at the Wald sta tis tics  corresponding to the different forms 

of the re s tric tio n s  had substantially different numerical values. 

This is  not surprising since the power functions of the tests are 

different and so they do sometimes co n flict. However, 1t does raise 

a worrying p oint which is examined further by Breusch and Schmidt (1985). 

The la tte r demonstrate that for any given null hypothesis and any given 

data set i t  Is  possible to generate any given positive value for 

the Wald s ta t is t ic  by appropriately rewriting the null hypothesis 1n 

an a lgebraically equivalent form provided that the s ta tis tic  does not 

equal zero. Th is  phenomenon arises because both the restrictio n  function 

and its  derivatives need to be evaluated at the unrestricted parameter 

estimates. Thus suppose y <v f (y ;e )  where e is  a K-vector and that the 

null hypothesis under consideration 1s HQ:* (e ) ■ 0 i .e .  a set of q 

parameter re s tric tio ns where q $ K. Then the Wald test s ta tis tic  

corresponding to this particular algebraic formulation of the null 

hypothesis i s :

-  T£*(e)>, {F ^ (e )V (e )F ^ (e ), } " 1{*(e)>  d o )

where e is  a consistent estimate of e without the parameter 

restrictions <f>(e) * 0 imposed;

V (e ) is  a consistent estimate of the asymptotic covariance 

matrix of e; and

F ^ (e ) * H .  L 2 » a (<lxK) matrix of derivatives.<p 90' | 0 = 0
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However, the null hypothesis can be algebraically reformulated as 

H* : iji(e) * 0 with H e )  ■ 0 i f  and only i f  <J>(6) = 0. For example, 

i f  the restrictio n  is  e -r  = 0 (a single parameter case) then an 

equivalent re s tric tio n  is exp (6) -  exp(r) = 0. The Wald s ta tis tic  

corresponding to the reformulation H* of the null hypothesis is :

w* -  T {#<5)>, «F#< e )Y (i)F #( i ) '> " 1{*<5)>

3* |
where F^(e) * Jq , |e ,  'Q 1» «  (q*K) matrix.

In general fo r an a rb it ra r ily  chosen reformulation of the res tric tio n ,

W w ill not equal W.. In the univariate case: 
a $

C ♦ ( e ) ] 2 C * (9 ) ]2
(1 1)

from Figure 4.1 (from Figure 1 1n Breusch and Schmidt (1985) ) :

Figure 4.1: Alternative Fonnulatlons of the Restriction Function
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In the diagram 4>(e) * 1»(®) but F^(0) > F^(©) so that Ŵ  < W .̂ Only 

i f  the reformulation is lin e a r w ill = Ŵ  but this w ill not generally 

be the case. Breusch and Schmidt (1985) make this argument and show 

that a ii(*) can be found given 0 such that Ŵ  has any particular 

desired value provided Ŵ  t 0. They then extend this to the multi -  

parameter case with q $ K. The proviso that ^ 0 is obvious since 

Ŵ  = 0 i f  and only i f  ♦(0) * 0 so that = 0 i f  and only i f  <j»(0) = 0 

and hence i f  and only i f  Ŵ  ■ 0.

Lafontaine and White (1986) consider a particular case of 

reformulating a n u ll hypothesis to examine the resultant Wald 

s ta tis tic . They take an example from Theil (1971, p.102) concerning 

tex tile  data and give the regression equation:

Y -  1.37 ♦ 1.14 X -  0.83Z ; a2 -  0.0001833, T ■ 17 ;
(0.31) (0 .1 6) (0 .0 4) (standard errors)

where Y 1s the log of per-capita consumption of textile s;

X 1s the log of per-capita real income; and 

Z is  the log of the relative price of textile s.

This is a particular case of Y = o * eX + yl + e with E (e ) = 0 and 

E(e e') = o2I .  In th is  context i t  is interesting to test the linear 

parameter restrictio n  Hq : 6*1 which corresponds to the null hypothesis 

that Income e la s tic ity  is  equal to unity. However, the hypothesis 

could be equivalently reformulated as H*:BK*1 for K ft 0 provided 3 > 0 

(K an Integer). Then the Wald sta tis tic  would become:

wK * (eK -  l ) 2/[< ttK*1)2V(»>]
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where V(e) is the estimated variance of 6. All the WK should have the 

same lim iting d istribution which is that of a central chi-square 

variate with one degree of freedom under the null hypothesis.

Lafontaine and White show that WK varies from 0.03 (fo r K=40) to 

1479.65 (fo r K=-40). They conduct a Monte Carlo experiment giving 

estimated c ritica l values ranging from 3 .5  x 10® (fo r K=40) to 4.60 

(fo r K=1) to 7.1 x io® (f o r  K=-40). Th e ir  results indicate that 

quite markedly different inferences can be obtained depending on the 

value of K.

Lafontaine and White propose approximating the power function at 

0* using a non-central x2 distribution with a non-centrality parameter:

following Gallant and H olly  (1980). Lafontaine and White use the 

observed Hessian at e* rather than its  expectation at e*, but 1n th is 

model the two are id e n tica l. Although the Gallant and Holly approxima­

tion does not seem to be very successful 1n approximating the power 

function as estimated by Monte Carlo methods, 1t may s t i l l  prove useful 

in explaining the behaviour observed. The general Wald s ta tis tic  for 

H#: 4( 6) -  0 1s:

Ŵ  -  T i4 (e ) } ' [F ^ ( 0 ) V (0 )F ^ (e )* ] - 1 {4(e)>

and can be interpreted as being numerically equivalent to the Wald 

s ta tis tic  for:

H*:F4(e)e - [F^(o)S - *(¿1] - 0 (12)
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given the data which produced 0. This is a linearization of the 

restriction around the unrestricted parameter estimates. Effectively 

the Gallant and Holly approximation substitutes 0* (the hypothesised 

alternative) for 0 in the above to  obtain H* and then computes the 

power at 0* for the Wald test fo r  H* where 0* replaces 0, assuming
9

that the estimated variance of 0 , namely V (0 ),1s equal to its  actual 

value when 0 = 0*.

Unlike the Evans and Savin (1982a) example, the Lafontaine and 

White statistics are not monotonic functions of each other. Therefore 

the power functions of the various tests are not identical when the 

correct c ritica l values are used. Consequently these test sta tis tics  

even when correct c ritica l values are used are in trin s ic a lly  able to 

produce conflicting inferences. The Wald s ta tis tic  for Hq :B=1 gives 

a uniformly most powerful unbiased test, see S ilvey (1975), but not a 

uniformly most powerful test. When K > 1 the resultant correct-size 

test is  relatively more powerful against alternatives where B < 1 

than is  the test resulting from K = 1 and i t  is  relatively less 

powerful against alternatives where 6 > 1. This behaviour is 

reversed when K < 0. These results are obtained from Monte Carlo 

studies but are not too surprising because when K ji 1 the parameter 

restriction function does not tre a t the parameter space symmetrically 

around B = 1.

The Breusch and Schmidt (1985) and lafontaine and White (1986) 

results raise the worrying point that an unscrupulous investigator 

can achieve a desired inference simply by appropriately formulating 

the null hypothesis. This is c le a rly  an undesirable feature for a
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testing principle and is  not shared by the Likelihood Ratio testing 

principle. The Lagrange M u ltip lie r  testing p rin cip le  can suffer 

from this problem to a lesser extent because of the problems which 

estimation of the information matrix may raise. Th is is much less 

lik e ly  to be a serious problem 1f several hypotheses are tested 

separately since then the investigator 1s unlikely to  have much 

justifica tio n  for switching between different estimation methods for 

the information matrix or between different parameterizations of the 

model.

The Wald testing principle does have the advantage that the 

different possible Wald tests w ill  typ ica lly  have d ifferent power 

functions even when corrected c r it ic a l values are used. Therefore 

a particular formulation of the restrictions could be obtained to 

have high power for various areas of the parameter space. This kind 

of f le x ib ility  is not available when the Likelihood Ratio testing 

principle is  used and is only lik e ly  to be available to a small 

extent when the Lagrange M u ltip lie r testing princip le  used.

4.4 Testing for a Non-Linear Restriction in a Simple Model 
using the Wald Principle

Gregory and Veall (1984) present another example of testing using 

the Wald principle. They propose the model:

yt - P0 + 6lxlt + ®2X2t + et • et * IN(0,o2) ; (13)

Xj and X£ are exogenous

and then consider testing the null hypothesis that the two slope 

coefficients are reciprocals i .e .  B ^  * !• can written
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in various forms of which Gregory and Veal! (1984) consider four:

( ' ) "h : hH(s ) = 0102 " 1 * 0*

( « ) HR1:hR1( 8) - B, -  (l/e2) -  0;

( t i t ) HR2:hR2(S) - &2 -  o / e ,) -  0;

<1v) HR3:hR3(s ) - 1 “ (1/0-,B2) «  0.

In Gregory and Veall (1985) they present some of the results for 

cases ( i )  and (11). Unlike the rational expectations restric tio ns and 

COMFAC restrictions of Gregory and Veall (1984) i t  1s d if f ic u lt  to 

find any particular justifica tio n  for th is  kind of non-linear 

restrictio n. However, this case does provide an extremely simple 

example of non-linearity in a well behaved model. There are no lagged 

variables or other sources of dynamics; sim ila rly  there are no other 

endogenous variables to provide simultaneity problems. The e rro r 

structure 1s assumed to be normal and homoscedastic. In th is  model 

OLS provides a Best Linear Unbiased estimator of the regression 

coefficients and an unbiased variance estimate: therefore computing 

the Wald statistics for the various restric tio n  formulations 1s very 

simple. The model seems slig h tly  more complicated than 1s absolutely 

necessary since there is an Intercept term In the equation. However, 

as 1s shown In the Appendix to this chapter, the Intercept term plays 

no fundamental role In the fixed regressors case. Without the Intercept 

term the model becomes the simplest one which allows us to consider 

non-Hnear restrictions Involving more than one regression coefficient.
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Returning to the comparison of Wald tests fo r the null hypothesis 

i t  is now valuable to examine the actual s ta tis tic s  in some detail. 

Gregory and Veall (1984) used OLS estimates of B and o2 to construct 

the Wald tests. In this example i t  is  well known that OLS and ML 

estimates for B are identical and only d iffer f o r  o2 in the degrees 

of freedom used as a divisor :

■ T(B-|ß2" ! ) 2/{[®2Cl l  + ^®1®2C12 + ®fc22^*°2^

WR1 - T((,i2 - + 2c,j ♦ (c2z/«j)]>

“R2 * T(5,i2 - + 2 c,2 ♦ ¡*c22])

UR3 " T<»1»2 ' ♦ (C22/Bg>]>

S .  (X"X)—’ x'ys

O2 -  (y -  Xe )' (y  -  xe) / (T -K ); (here K -  3) 

V(B) ■ ^ ( X ' X ) " 1;

where X = ' 1 Xj j  xgl ‘ is  a (Tx3) m atrix ;

y * (y1» . . . . y T ) '  1s a T-vector; 

B * (ßQ,ß.| ,B2) ' is  a 3-vector.

The four Wald test statistics then are given as:

T U , » ;  -  l ) 2

(15)
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where C * ’ is the lower right-hand com er (2x2)

c12 c22 block of ( O f 1

Gregory and Veall (1984) examined, using Monte Carlo sim ulations, the 

properties of the test statistics at various parameter settings both 

under the null and for alternative hypotheses. However, i t  is possible 

to explain the qualitative behaviour which they observed by the use of 

various lim iting arguments as 8̂  + * or Bg *•

Assuming that the X matrix 1s taken as fixed then OLS estimation 

in th is  particular example has a number of features which reduce the 

problem somewhat. F ir s t ly , /f(B -  B) is distributed as a normal vector 

with mean zero and covariance matrix o2C. Secondly, (T -K ) (^ 2-)o2 is 

distributed as a central chi-square with (T -K ) degrees of freedom. 

T h ird ly , 6 and o2 are independent; see Sllvey (1975) f o r  details. I t  

is therefore possible to re-write the estimates as :

so that the sta tistics can then be examined in terms o f  u and o2 and 

the actual parameters.

The sta tis tic  WM corresponding to the purely m u ltip licative  

formulation of the hypothesis, H^, can be rewritten as:

82 ■ S2 + “2

with u a. N [0 ,(| )o 2C] where u -  ( u , ,  u2) '

(16)
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which can be decomposed into three parts:

(a) ( o2) ! which is independent of the rest of the s t a t is t ic ;

(b) rt[&2 -  (1 / i , ) ] ;  and

( c) [cl l  ( + ^c12^02^01̂  + c2 2 ^ ’

The behaviour of (a ) does not depend on 6 at a l l .  In contrast, (b) 

can be rewritten:

/f[B2 -  0 / s ,f l  • < ^ [(“2 ♦ B2) -

/T (u , ♦ B1)(u 2 + s2) -1

Cu^u2 + B-|U2 + B2ui  + 0]02 “

/ f  fu2 + (1/B,)u1u2 t (Bj/B^u, + B2 - (1/B,)' 
1 *  ( 1/B, ) U1

La stly , (c ) can be rewritten as:

Ccl l ( V 0l ) a + ^ci 2(62/ ) + c22^

-  f c . r  u2( V i l> + < V B1»12 * 2c. J  u2( 1/B1)^(B2/B1)1+ cj >\  " L  1 *  J " l  J
I f  we define y* * (1/6^) then we can rewrite nM as:

J  u2 + 7*“l u2 + V * ul + B2 * T* 1
nM " ----------------- 1 ♦ v’ u, ------------J

(o2)

■ 'V ,(u, - u2 .T* -B2-°i >-

(17)



Consider f i r s t ly  its behaviour as 8  ̂ -*• -  while maintaining B^Bg * 1 

so that y* 0 and Bg "*■ 0* The distribution of (Oj ,u2) is clearly 

unaffected by changing Bj or Bg. Applying Cramer's theorem in its  

generalised form (see Rao (1973, p.122)) gives:

lim P r i n M $ x} ■ P r i n ^ U j  ,u2 , 11m y * .  lim B2 * o2) $ x) (18)
BV ~  8,—  B,-*-

with B^Bg ■ 1 maintained. Therefore:

lim Pr(nM

where n j

* x> » l i m  Prinjj i  x}

( ^ T ) ( u2)

[ ; 2c22]s
(19)

But ^ (U g ) ~ N(0 ,o2C22) so that nj has a central t-d1stribution with 

(T -K ) ■ (T -3 )  degrees of freedom. Therefore so does nM 1n the lim it 

as Bj • w ith B^g • 1 and thus WM converges 1n distribution to an 

F(1 ,T -3 ) as B1 ♦ ■ with B-jBg * 1. This result holds true as 8  ̂ -*■ • 

with B-|&2 * a for any fixed a j* 0. In tu itiv e ly , the test becomes one 

of B2 * 0 ,  as Bj ♦ • when BjBg * a (fixed a ^ 0 ) ,  and 1s the 

t -s ta t1s t1c fo r testing that B2 * 0 .

A sim ila r argument can be made for the lim it as B2 • ŵ th 

B-jb2 " * (fix ed  a i 0 ). Then qfl * )/ [o2C ^ ]^  which 1s the

t-stat1st1c for testing that B1 ■ 0. Now the lim iting behaviour can 

also be Investigated for B-j -*■ -  with fixed B2 In which case 

n* ■ [ ( » T ) (u 2+ 82 ) ] / [ o2C22]^  so that nM has a lim iting non-central 

t-d1str1but1on with (T -3 ) degrees of freedom and non-central1ty 

parameter 6 ■ B2^f°2c22^  * Therefore wm converges 1n d istribution

to F (1 .T -3 ,C T  Bj/(o2c22) ] )  as -*■ -  with fixed b2- Again nfi 1s the

t -s ta t1s t1c for testing that b2 -  0 so that this lim iting result 1s
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In tu itive ly  reasonable. Also as before a sim ilar result is obtained 

when “  f°r ^ xec* *

This agrees reasonably well with the Monte Carlo results obtained 

by Gregory and Veall (1984, 1985 ) who found that WM behaves more like 

an F ( l ,  T -K ) than a x2( l )  for a ll the parameter settings under the null 

hypothesis which they considered. Gregory and Veall (1984) considered 

experiments both fo r fixed X and for stochastic X matrices. The lim itin g  

arguments given above for 6-j -► «  with =  ̂ can be extended to the 

stochastic X case as follows. Since the lim iting distribution of WM 

given X as B1 + with B-|B2 = a (fixed a / 0 ),  does not depend on X 

then when X is stochastic WM retains the same lim iting  distribution.

The behaviour o f WR1 as Bj -*■ ® with B-jB2 * 1 is somewhat different. 

The s ta tis tic  for th is  f i r s t  ratio formulation of the hypothesis can be 

wri tten:

^ ( 8,83 -  l )e 2

<»2 W2 "’l l
(2 0 )

Again this can be s p l i t  into three parts:

(a ) (g2)* which is  independent of the rest of the s ta tis tic ;

(b)

■ A[\xz + + B-|u£ + u^u|] ; and
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(c ) [ 0' c , ,  + 26|c12 + c ^ ] 1

-  [<S2 ♦ u2) ‘ c , ] ♦ 2(B2 * u2) zc12 ♦ C22] J

»  t“2cn  ♦ 4u|B2c11 + u!<6b! c t i  ♦ 2c12) ♦ u2(46|cn  t « B 2c ,2)

♦ (B jc ,, ♦ 20|C12 + C22) ] 5.

It  is now helpful to consider (ng-i/S-.) rather than nR̂  its e lf . As 

gj -*■ «  then y* * (V S -j) 0 and B2 0 for B ^  * 1 so that applying 

Cramer's theorem gives:

lim  PrinRl/e1) i  x> »  P r((n R1/B^)* $ x>
B,—

(nR l',,/B,)
n  u|

* (»* )I«| en  + 2u1c12 + c22l) i

( 21 )

which has a well-behaved d istribution  with no probability mass at 

zero. Since ( I r i/Bj ) ^as a well behaved lim itin g  distribution as B̂  »  

with Bj B2 “ 1 then nR1 has an exploding distribution i .e .  PrinR1 S t> -*■ 0 

as B-| -*■ » .  As before this argument (with slight modifications) also holds 

when B1 -  with B̂ Bg * a for fixed a t 0 and when B-j -*■ * with b2 fixed. 

However, for fixed B1 and B2 with B-jB2 * 1 then as T «  the sta tis tic  

WR̂  tends to a central ch1-squared distribution with one degree of 

freedom. This agrees very well with the qualitative aspects of the 

Monte Carlo results for WR.j given in Gregory and Veall (1984, 1985 ) .

The behaviour of WR1 as b2 -*■ * with B-|B2-  1 1s like  that of WM as 

B2 • with B^g ■ 1. Thus, rewriting WR1 gives:
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Hr, -  n*, where

^ [ ( B ,6 2 -  l )e 2/ ( e | ) ]__________

( b2/b2) -  ♦ 2 (b|c, 2/ bJ )  + Ccy/e-S)]>*
(22)

Again the a2 term can be temporarily set aside and the sta tis tic  sp lit  

into:

(a) A [ ( s,82 -  1 )B2/B|]

-  /T [0 i2/8|) ♦ U, * 2 (u, u2/b2) + (u|e,/e|) ♦ (u,u|/6|)]

(b ) [c , ,  (B2/B2)* + 2?,2( b|/bJ )  + (c 22/ 6 j) ]*

-& !§ (') 1 /eg) + 4u|(c11/e|) ♦ u|(6c„/B|) *  2ug(c,2/s!()

♦ 4u2( c11/B2> + 4u2( c12/b|) ♦ c , ,  + 2(c12/b|) + (e22/B5)]S.

Defining y *  *  (l/82) s o  that y *  -*■ 0  as B2  bi b2 =  1 then:

/T[y* 2u2 + u1 + 2y* u^u2 + u|el Y* 2 + ui u|y* 21
nRl ■ --------------------------------------------------------------------------------------------

{ o2 [ c11y * '* uJ  + 4C j j Y * 3u |  + 6 c l l Y * 2 uJ + 2 c12y ***u^

♦ 4c,,t*u2 + 4C,2r*3u2 ♦ c,, + 2c,2t*3 ♦ c22y“‘])* . (23)

Applying Cramer's theorem to nR̂  then g ives:

11m PrinR1 * x ) = Pring-j < x>
b2-  -

A  u.
where nSi -  -*------ - which 1s the t -s t a t is t ic  fo r  testing B, = 0.

R1 {•»*„>» 1

(24)

Likewise for B2 -*■ -  with B.,B2 «  a for any fixed a / 0, and as when 82 -

with fixed b1 i 0 then WR1 has a lim itin g  power function which 1s the 

same as that of the t -te s t  sta tis tic  for testing B-j J1 0.
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Symmetry arguments imply that WR2 as Bj -► »  behaves like WR1 as 

82 ■" °0» O - 0* like  wm as 62 and that WR2 as b2 "  behaves like 

WR.| as B1 -*• » .  Lastly, there is the s ta tis tic  WR3 which tends to 

explode i f  e ither B̂  or 82 » .  This can be seen from re-writing the

sta tis tic  so:

WR3 '  nR3 where

n .  _____________  . (25)

^  (Bg/Bj)2 + ^ 2 ( ® 2 ^ l )  * c22^ ^

Then (nR3/B^) has a non-degenerate lim iting d is trib utio n  as B-j -*■ 00 

with B-jBg = a / 0 or with fixed B2 and so nR3 and WR3 have exploding 

distributions as B̂  -*■ » .  By symmetry they also have exploding distributions 

as b2 -*■ » .

The only one of these four test sta tis tics  which is  satisfactory 

is  the f i r s t  since the other three a ll have significanceMevels which 

tend to unity as the parameters move in certain directions within the 

parameter space. This property is  c learly undesirable in any test 

s ta tis tic  since i t  implies that for any c rit ic a l value the probability 

of rejecting the null hypothesis when i t  is true can be made a rb itra rily  

close to one by suitably choosing the parameter values.

A ll of the analysis above is for fixed sample sizes with varying 

parameter values. The usual asymptotic properties as T +  »  for fixed 

parameter values under the null (o r local a ltern ative  sequences) also 

hold true. However, they provide no quantitative Information as to 

what happens with fixed parameter values and fixed sample size T .

Thus they give no indication as to how large w ill be the deviations
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of the actual distributions of WM, WR1, WR2 and WR3 from t h e ir  common 

asymptotic distribution for any given parameter values, exogenous data 

and sample size. This suggests the possib ility of using asymptotic 

expansions to approximate the distributions of the s ta tis tic s  for 

various circumstances.

(26)
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Each s ta tis tic  must be differentiated 213 times (although many of 

the derivatives w ill be zero at the evaluation point) whereas in  the 

fixed X case only 34 differentiations of each sta tis tic  are needed 

(again many derivatives are zero). Computing the cumulants of the 

variates is  therefore much more complex in the stochastic X case.

F ir s t ly , there are considerably more cumulants to be computed; and 

secondly, under stochastic X six of the nine random variates are data 

second order sample moments (sQ0, sQ1, s02, s^ ,  s12, sg2 ) Pereas 

under fixed X there is  only one (Sqq) .  The program used to compute 

asymptotic expansion approximations, discussed 1n the Appendix on 

Computation, requires that the number of observations plus lags a ll 

multiplied by the number of endogenous variables does not exceed eighty. 

This would impose an upper sample size of twenty-five assuming that the 

ix } variables are generated by a firs t-o rd e r vector auto-regressive 

process as 1n Gregory and Veall (1984, 1985 ) .  Of th eir results only 

those for sample size 20 would be comparable; those for sample sizes 

30, 50, 100 and 500 would c learly not be comparable.

In view of the restricted comparability of the stochastic regressors 

case and computational cost that would be Involved, we w ill only consider 

the fixed regressors case. For th is case each sta tis tic  is a function of 

only four data sample moments of which three are data firs t-o rd e r sample 

moments and one Is a data second-order sample moment. This considerably 

reduces the number of derivatives and cumulants which are required as 

noted above. I t  also permits sample sizes of 20, 30 and 50 to be 

considered. However, some compatab111ty 1s lost because the p articu lar 

fixed regressor matrices used become Important 1n determining the 

distributions of the test s ta tis tics .
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In order to compute asymptotic expansion approximations (AEA's) 

for the distributions of WM, WR̂ , WR£ and WRj  we have used the program 

ESSACS which was developed to implement the theoretical approach of 

Chapter 3. The exogenous variables were generated using the same 

data generation process as that in Gregory and Veall (1984, 1985)) 

although the algorithm used was not the same :

xl t ' 0.6 ° -3l h t - i + vi t

x2t  . 0.3 H  h t - i v2t

where

This does not provide exact comparability with Gregory and Veall's 

results since in the fixed regressors case the actual values of the 

exogenous variables are important. We considered sample sizes 

T * 20, 30, 50, and parameter values (B ^B g) * (1*0. 1 .0 ), (2 .0 , 0 .5 ) ,  

(5 .0 , 0 .2 ) ,  (10.0, 0 .1 ) ,  a2 * 1 and 6q ■ 1.0 to retain some comparability 

with Gregory and V e a ll's  results. The results most comparable to those 

of Gregory and Veall are presented In Table 4.1. I t  1s clear that the 

AEA's are reasonably well behaved for the m ultiplicative form. However, 

they are much less well behaved for the ra tio  form except for ( B j ^ )  ■ 

(1 .0 , 1 .0 ). I t  1s clear when the ratio form has true rejection 

probabilities substantially different from the nominal 5% level that 

the AEA rejection probabilities also d iffe r substantially from the 

nominal le vel. However, the deviations are 1n the opposite direction 

to that Indicated by Gregory and V eall's  Monte Carlo results and by 

the arguments presented in Section 4.4 concerned with asymptotics in

the parameters and
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Form of
Parameter Values Restriction T = 20 T -  30 T -  50

$1 -  10.0 , ß2 »  0.1 A -6.77
(29.3)

-4.17
(25.3)

-1.25
(20.6 )

B 6.38
(6.5)

5.92
(6 .2 )

5.55
(6.3)

B1 -  5 .0 , B2 -  0.2 A 0.38
(20.1)

3.82
(15.2)

4.18
(11.9)

B 6.36
(6.4)

5.91
(5 .8 )

5.54
(5.7)

S, »  2 .0 , e2 > 0.5 A 4.00
(8 .6 )

4.57
(8.9)

4.63
(7.8)

B 6.00
(6 .1)

5.72
(5 .3 )

5.40
(7.1)

8, • 1 .0 , S2 .  1.0 A 5.60
(5.3)

5.00
(4 .5 )

4.96
(5.3)

B 6.84
(6.9)

6.33
(4 .7 )

5.82
(6.5)

Table 4.1: Test S ta tis tic  Rejection Probabilities 
at the 5% C ritica l Value for a x2( l )  Distribution

Here A refers to the F irs t  Ratio Form of the restriction  : hR1( . ) .
B refers to the M ultiplicative Form of the restriction  : hM(* ).

The rejection probabilities are presented as %'s and the figures given 

1n brackets refer to the comparable * rejections given by Gregory and 

Veall (1985).
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Form of
Parameter Values Restriction

e1 » 10.0, 62 * 0.1 A

B

B1 ■ 5.0, B2 ■ 0.2 A

B

B-| = 2.0, &2 * 0-5 A

B

B-j * 1.0, B2 « 1.0 A

B

T * 20 T = 30 T = 50

44.41 19.52 7.67
(28.3) (24.4) (20.1)

4.73 4.88 4.96
(4 .8 ) (5 .3) (5 .9 )

15.60 9.03 6.00
(18.9) (14.6) (11.6 )

4.70 4.87 4.95
(4 .3 ) (4 .8) (5 .1 )

4.47 4.53 4.42
(6 .7 ) (8 .2 ) (7 .3 )
4.37 4.69 4.82

(4 .2 ) (4 .3) (5 .8 )

4.03 4.03 4.40
(4 .0 ) (3 .2) (4 .8 )
5.20 5.30 5.23

(5 .1 ) (3 .9) (5 .5 )

Table 4 .2 : Test Statistic  Rejection Probabilities 
at the 5% C ritic a l Values for F ( l , T -3 )  Distributions

The results in brackets refer to the comparable probabilities estimated 

by Monte Carlo methods 1n Gregory and Veal! (1984).

For T ■ 20 : c ^  = 0.5903, Cj2 = -0.1441, c22 = 0.3951.

For T = 30 : cn  «  0.5046, c12 -  -0.1598, c22 -  0.4729.

■ 0.5986, c12 -  -0.1992, c22 -  0.4464.For T -  40 11
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Table 4.2 presents results for the F ( l ,T -3 )  5% c ritica l value. 

Again the results are qualitative ly useful except for the case 

( 61*82) = ( 2-0» ° -5)> and for the cases T  = 50, ( 61.B2) 3 (10.0, 0 .1 ) ,  

(5 .0 , 0 .2 ). One immediately apparent feature is that for the ratio  

form the AEA to the cdf o f the statistic  slopes the wrong way in the 

region of the x20 )  and F ( l ,T -3 )  5% c rit ic a l values. The F ( l ,T -3 )  

c rit ic a l value is higher than the x2( l )  c rit ic a l value so the rejection 

probability associated with the former should be smaller than that 

associated with the la t te r . Table 4.3 presents the complete results 

comparable to those of Gregory and Veall (1984).

I t  is  important not to rely too heavily on the results for any 

given (B-j, 62» T ) combination in drawing conclusions. Gregory and 

Veall (1984) used the same replications fo r each of the different 

sta tis tics  given the ( 61* Bg» T ) values and for each (B-j. B2 » T ) 

combination they generated a particular set of exogenous variables .

4.6 Conclusions

Non-linear parameter restrictions typ ica lly  give rise to test 

s ta tis tics  whose exact f in ite  sample distributions can d iffer quite 

substantially from th eir asymptotic distributions. Furthermore, the 

use of these non-Hnear restrictions can give rise to various 

different Wald test sta tis tic s  which are numerically different and 

have differing f in ite  sample properties. Applying asymptotic 

expansion methods to obtain approximations to the cdf's of such 

alternative Wald sta tis tic s  seems to provide qualitatively useful
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information in the particular example considered by Gregory and 

Veall (1985). However, i t  does not seem to provide very useful 

quantitative information in th is example. In this particular case, 

the asymptotic expansion approximations support the conclusion from 

Gregory and V eall's  Monte Carlo study that the Wald test from the 

m ultiplicative form of the hypothesis behaves better as regards Its 

size properties, i .e . Its  rejection probabilities under the null 

hypothesis, than do the Wald tests for the three suggested ratio 

forms of the hypothesis. However, this conclusion can be obtained 

from the lim itin g  behaviour of the various test sta tis tics  under 

certain parameter sequences with the samole size fixed. The only 

additional information given by the asymptotic expansion 

approximations 1s a very rough Indication of the extent of the 

approximation error from using the asymptotic cdf as an approximation 

to the actual cdf.



- 160 -

The results presented in Section 4.5 appear at f ir s t  sight to be 

dependent on the parameters and exogenous data. However, i t  is possible 

to make various invariance arguments which reduce the dimensionality of 

the parameters determining the distributions of the various test 

sta tis tics  considered. I t  might also appear at f ir s t  sight that the 

model is more complicated than is necessary to consider this problem 

1n that the model contains an intercept. In fact, this is  not a real 

problem since the families of test distributions are identical whether 

there is an intercept or not.

The f i r s t  invariance argument Is that multiplying ®0 »x-|t*x2t*et  

and y t  by the same constant k does not change the distributions of the 

test sta tis tic s :

• k*t • k6o + k*lxl t  * kS2x2t * ktt 

-  « ;  + V l t  + ®2x2t * £t 

where ~ IN (0,k2o2) .

In this transformed model Bf = B-j . * Bg.o2 s k2o2, c ^  * k V p ,

cf2 ■ l<"2c12. c|2 -  k_2c22 so that WjJ ■ WM (and likewise for the other 

Wald test s ta tis tic s ) so that the distributions of the test sta tistics 

are unaltered. The second invariance argument is that transforming 

the model to:

yt  -  B„ + k6 ,k" 1*1t ♦ k’ ’ *2kx2t  + ct

4.A Appendix to Chapter 4
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■ « 0 * 6W t ♦ *2X2t  + et

'l  ■ “ i t  ■ k -‘ x, t , , ß2 "  k"lß2 and x+t  * kx2t) does not

naintains the null hypothesis since 0.J02 ■ 0-|02. further-

■ k' 2‘ n 1 c12 -' C12 ; c22 * kZc22 1

-  ks, •. '4 - k "l 02; Ô2 - ô2 ;

c22 " 6Î C22 ;
”+*+ + 

i 6, 02^2  » ®1®2C12 1

(ß2) 2cn  *  ®£cn  * (G j) cn "  (^ j )  c n  »

( ®2̂  c12= c12’ ^2 ^ c22 = ^®2  ̂ c22*

and therefore Wjjj = WM (and likewise for the other test sta tis tic s ).

These two Invariance arguments mean that of the seven parameters 

(B-j ,62 »°2»cn  *ci2 ,c22*^ two are effectively redundant, e.g. we 

could work with ( c22*6102c12*&l cl 1*°2*T ) instead* Also the AEA's 

are only being obtained for cases where the null hypothesis holds, 

l .e . Therefore another p ossib ility would be to pre-set

el "  62 " °2 " 1 and work w1th ic l l ,c12*c22»T >- Considering things 

in this form 1s useful because Cj j C ^ - c^  * 0 must ho1d Tor ( cn  »ci 2*c22  ̂

to come from a covariance matrix (and also C p  > 0 ,  c22 > 0 )- In addition 

with b1 ■ e2 ■ 1 WM»is  syrm etric 1n (c11 *c22  ̂ since the orderin9 °T the 

{x } variables 1s unimportant, WR1 with (c ^  ■ a , c22 * b) 1s the same as

WR2^CH  " b * c22 "  and WR3 is l1ke WM symmetric 1n ( cn » c22^ So 

attention can be restricted to having c ^  i c22 and c-|ic22-c l2>
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As regards the intercept term this only really enters through 

the degrees of freedom of the variance estimator. So for example 

the f irs t  Wald s ta tis tic  is :

y . [BlB2 ~ ^
^  o2{62d2z + 26,62<1,2 ♦ Bjd,,)

with
[ 5il '  » [ , f Bl l  ° 2 («11 M l1 62J LL 62J U 21

In both the model with the intercept and the model without the intercept 

(d n  ,d i2 ,d22) can be set t0 any desired values such that dn  *d22 > °* 

(d n d22-d^2) > 0. The only difference is  that a2 has (T -3 )  degrees of 

freedom ( i .e .  (T -3 )o 2 '  x2(T -3 ) )  in the intercept model and (T -2 ) degrees 

of freedom in the model with no intercept. However, a ll that is 

necessary is  to increase T to (T + l) in  the intercept model w hilst using 

a new set of exogenous data such that ( d^  »d-|2*d22  ̂ remain unchanged. 

Clearly then, since o2is independent of (6^,82) the d istribution  of WM 

in the intercept model, with sample size  (T + l) and the new exogenous 

data, is the same as the distribution of in the non-intercept model, 

with sample size T and the old exogenous data. Hence the family of 

distributions for the intercept and the non-intercept model are identical 

(and this is also true for WR1, WR2» WR3) -
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CHAPTER 5: Predictive Failure Tests in the AR(1) Model 

5.1 Introduction

Predictive fa ilure  and structural change tests are now frequently 

used 1n applied econometric studies. The properties of such tests have 

been extensively studied 1n static models by Anderson and Mizon (1983) 

and Rugaimukamu (1982) but to date l i t t le  analysis has been made of 

their properties in  dynamic models. In this chapter we Investigate 

the size properties of two of these tests in the AR(1) model using the 

asymptotic expansion techniques developed 1n Chapter 3. We have 

chosen the AR(1) model since 1t is the simplest dynamic model in which 

1t 1s possible to investigate the properties of these tests.

In Section 5.2 we discuss the general background to predictive 

fa ilure  tests. In Section 5.3 we review the results which are available 

on forecast errors and predictive fa ilure  tests within the AR(1) model 

and more general dynamic models. We then consider what these results 

may imply about predictive fa ilure  tests in the AR(1) model. In 

Section 5,4 we examine the size properties of two particular types of 

predictive fa ilure  test using asymptotic expansion approximations and 

also the extent to which these results can be explained using the 

arguments put forward in Section 5,3. F in a lly , In Section 5.5 we 

consider what conclusions can be drawn from this study and also some 

possible directions for future research.
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5.2 The Use of Predictive Failure Tests

5,2,1 Parameter Constancy and Predictive Failure Tests

One of the main objectives of econometric model building 1s to 

proyide accurate forecasts of economic variables of interest. I t  is 

not surprising, therefore, that the accuracy of forecasts from 

econometric models has been used to compare and assess these models. 

Thus, Cooper (1972) and Nelson (1972) compared the accuracy of 

forecasts from large macro-econometric models with that of forecasts 

from simple time series models and found that the forecasts from the 

time series models often outperformed those from the large macro- 

econometric models which supposedly incorporated much more information.

As well as comparing models, 1t 1s also desirable to be able to 

assess how well a model performs within its  own frame of reference, 

and th is  is  generally formalised by the use of predictive failure 

tests, as discussed in Hendry (1980), These tests have been developed 

from tests of parameter constancy and structural change. Suppose that 

we consider the following linear regression model:

'  * 1 X 1 0 • l V
= +

. * 2
0 x 2 6 2 . u 2 .

(or y = X 8 +  u) where y j  1s a Tj-ve cto r of observations on the endogenous 

variable for the j 't h  sub-period ( j -1 ,2 ) ,  Xj 1s a (Tj*K) matrix of non­

stochastic regressors for the j 't h  sub-period, 1s a K-vector of 

regression coefficients for the J 'th  sub-period and E(u) ■ 0,E(uu')*°2I j
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where IT Is a (T*T) identity matrix with T * + Tg, i .e .  the total

number of observations, and u 1s normally distributed.

Then for > K and > K, the hypothesis that the regression 

coefficients are the same in both sub-periods, i .e .  HQ : B-j = 62» can 

be tested by using a standard F -te st:

F = [ (¿ > 1  -  (¿ '¿ ) ]/K 
(e 'e ) / (T-2K)

where e are the unrestricted OLS residuals and e are the residuals from 

the regression subject to HQ. This test s ta tis tic  1s distributed as 

F (K , T-2K) because there are K restrictions and 2K regression coefficients. 

However, 1f Tg < K then the residuals for the second sub-period from the 

unrestricted regression w ill a ll be equal to zero so that (e 'e )/ o2 w ill 

be distributed as a central chi-square variate with (T-j -  K) degrees of 

freedom rather than (T-2K ) degrees of freedom. Furthermore, i t  can be 

shown that [ (e 'e ) - (e 'e ) ]/ o 2 1s distributed as a ch1-square variate with 

T^ degrees of freedom and is independent of (e 'e )/o 2; see Johnston (1984, 

Chapter 10). Therefore, when Tg ( K, the F s ta tis tic :

y C .  [ ( « ' » I /  («'«>1  / T?
(e 'e ) / (T ,-K )

is distributed as an FiTg, T j -  K) variate. Chow (1960) showed

that this s ta tis tic  could be a lternatively expressed as:

ly, - x2s,)'[l2 * Xjtxjx,)"^]'1^  - x2;,)
w  ------------------ —— -----------------------------------------------------------
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where ( i^ .o 2 ) are the OLS estimates of (e-j.o2 ) from the regression 

for the f i r s t  sub-period. In simpler notation this can be written as:

(2 )

where f 2 * (yg -  XgS^)» the prediction errors for the second sub-period 

using the estimates for the f i r s t  sub-period, and V = [Ig  + XgiX^X-j ) ’  X£3 

with Ig being a (Tg x Tg) ide ntity  matrix. Thus Wc which is the Chow (1960) 

test for structural change can be expressed as a predictive failure  test 

when T2 <. K and this form of the test can easily be extended to T2 > K.

The analysis above is for the case of non-stochastic regressors.

I f  the regressors are stochastic but independent of the disturbances 

then under the null hypothesis of no structural change the test sta tis tic  

has the same central F d istribution  as in the non-stochastic regressors 

case. Under the alternative hypothesis the marginal distribution of 

the s ta tis tic  1s in general no longer an F-d1stribution. However, the 

distribution of the test s ta tis tic  conditional upon the regressors is 

s t i l l  an F-d1str1but1on. In models with lagged dependent regressors, 

such as the AR(1) model considered later 1n this chapter, the test 

s ta tis tic  does not even have an F-distribution under the null 

hypothesis; however, the test sta tis tic  when m ultiplied by T2 does 

have an asymptotically chi-square distribution with T2 degrees of 

freedom fo r fixed Tg as T^ ■* ■». This provides the justifica tio n  for 

a sim plified predictive fa ilu re  test:

<*2f 2> (3 )
“ 1

which 1s asymptotically equivalent to T2WC 1f pHm (XjX^)" = 0 as 

Tj • so that pi 1m V-1 -  Ig . This simplified predictive failure  1
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was suggested in Hendry (1974), As is  noted in K iviet (1986), the 

Hendry test s ta t is tic  is  always greater than or equal to T «  x the Chow 

test s ta tis tic . Since the c ritic a l values for an F-distributed 

variate are always greater than the corresponding c rit ic a l values 

for the appropriately scaled chi-square variate (with the same number 

of numerator degrees of freedom), 1t is  clear that the rejection 

probability of the Hendry test using chi-square c rit ic a l values is 

necessarily greater than or equal to that of the Chow test using 

F distribution c r it ic a l values. However, i t  is  not clear on inspection 

for a dynamic model whether the actual significance level of the 

Hendry test is c loser to or further from its nominal significance 

level than is that of the Chow test.

These tests f o r  structural change have e xp lic it null and 

alternative hypotheses but the predictive fa ilure  test interpretation 

suggests that they may be useful for testing against a wider range of 

alternatives than that specified above. Using the la tte r interpretation 

we can see that the two tests w ill tend to reject more frequently the 

further the expectation of the forecast errors, E (f 2) ,  deviates from 

zero. They w ill also tend to reject more frequently the larger the 

variance of the disturbances in the second sub-period is compared to 

that of the disturbances 1n the f i r s t  sub-period. Thus, the two tests 

w ill tend to pick up model m1s-spec1fication provided that the mis- 

speciflcatlon causes either or both of the above effects.

However, as Hendry (1980) points out, 1n a stationary environment 

model ra1s-specif1cation w ill not typ ic a lly  be picked up by these 

predictive fa ilu re  tests. This can be easily explained by noting
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that even when the model is  mis-specified we are s t i l l  estimating a 

conditional d is trib ution , and given the stationarity assumption this 

conditional distribution w ill  not change when we move from the f ir s t  

to the second sub-period. Essentially, in  a stationary environment 

the model mis-specification appears through an increased residual 

variance and thus the model w ill typ ica lly  forecast within the accuracy 

lim its provided by its  estimated variance, and so the test w ill not 

be consistent.

Thus for a predictive  failure test to have a reasonable probability 

of showing model m is-specification, the conditional distribution being 

estimated must not be time invariant (so that the true data generation 

process cannot be s ta tio na ry). This can occur, as suggested by 

Hendry (1980),either because there has been a genuine structural 

change or because the model has been rais-specified and there has been 

a change in the behaviour of the variables which are relevant to the 

mi s-speci f i  cation.

I t  can be noted that i f  the true data generation process is 

dynamic then certain kinds of m1s-specif1cat1on, such as omitted 

variables which are s e r ia lly  correlated, may well give rise to 

residual autocorrelation in  the estimated model; see Hendry and 

M1zon (1978), I f  th is is  also reflected 1n the forecasts, then 1t 

w ill affect the d istributions of predictive fa ilure  tests. In 

particular, m ulti-period predictive fa ilu re  tests w ill  not typ ica lly  

have asymptotically ch1-square distributions even when appropriately 

scaled. Thus, although they may not be consistent tests, they may 

s t i l l  have some power against certain alternatives.
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In summary then, predictive fa ilu re  tests formalise an important 

criterion for assessing econometric models, namely their forecasting 

performance. However, predictive fa ilure  tests can only test the 

performance of a model within Its  own accuracy lim its and thus they 

are not very useful for comparing different models. The non-rejection 

of a model on the basis of a pred ictive  failure test is quite  compatible 

with substantial m is-specification of that model. Nevertheless, it  

seems worthwhile to investigate the size performance of predictive 

fa ilure  tests since only th eir asymptotic sizes are usually available 

and i t  is desirable to know how the tests behave when the model is 

correctly specified.

5.2.2 Predictive Failure Tests in  the AR(1) Model

The main model with which we w il l  be concerned is the pure AR(1) 

model which takes the form:

y i = sy^-i * ei » |B| < 1 ; 1 -  1, 2 , . . . , n ,  (4)

where {e^} are distributed as independent N[0,o^] variates.

The model is  stationary provided that the distribution of y Q is  taken 

to be N[0,o2( l -8 2) -1 ] . In this chapter we use OLS estimates, based on 

observations for 1 = 0, , n together with the observed post-

estimation period data to construct the predictive fa ilure  tests.

In the AR(1 ) model the OLS estimates of (8 ,o2) are:
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n

n
,2

(5)

(n -  1)

The forecast errors used in the predictive  failure tests for the AR(1) 

model are defined as:

where y j| n =6nyn+j_ i , j  ■ 1, 2, . . .  , are often referred to as 

unchained forecasts as opposed to chained forecasts where each forecast 

is based on the previous forecast. In the AR(1) model the chained 

forecasts are:

In the remaining part of this chapter we re-scale the Chow test by Its  

numerator degrees of freedom to give i t  the same asymptotic d istribution  

as the corresponding Hendry test. The Hendry and Chow predictive fa ilu re  

tests at time n for the one-step ahead forecasts In the AR(1) model are then 

defined as:

:n+j * 8yn .J -l  ' V n . j - 1

■ en+j * <s- 8n)yn ^ - l (6)

J -  1
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* <el|n>2/oS

■ <; 1|„>2'  i t ’ * <»X> » ;> •  <7>

In this notation the multi-period Hendry predictive failure test is 

easy to express:

Ft|n * [ j ,  ' j V  '< • <8>

However, the multi-period Chow predictive fa ilure  test is not quite 

so easily expressed in this notation:

F j.n -  V"1 <*2> (9)
o?

where f  ̂ ^
’  '<|n

and V = [V j j ]  where

n
■ A

*1J
.  1 I f 1 »  j  and 0 otherwise.

5.3 Properties of Forecast Errors and Predictive 
Failure Tests

Although there is no general theory of the properties of predictive 

failure tests in the AR(1) model, there is  a considerable amount of work 

which has been done regarding the properties of forecast errors within 

this model. In addition, some Monte Carlo studies have been made 

which include examinations of the properties of predictive failure
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tests in certain more general dynamic models; see Kiviet (1985, 1986). 

These results are of value in forming conjectures about the properties 

o f predictive fa ilure  tests in the AR(1) model which can then be 

examined using asymptotic expansion approximations.

5 .3.1  Properties Relevant to One-Step Ahead Tests

A number of results have been obtained which are particularly 

relevant to analysing the distributions of one-step ahead predictive 

fa ilu re  tests and therefore we w ill start by reviewing these.

( i )  The most useful single result comes from P h illips  (1979)

and concerns the distribution of the one-step ahead chained forecast 

e rro r conditional upon yn. The result also holds for the one-step 

ahead unchained forecast error since the two are identical in the 

one-step ahead case. P hillips (1979) 1n his Equation (12) gives 

( i n  our notation):

Pr <*l|n '  *n+l ‘  x I yn>>
- i(x/o> + l(x/o)[n'l{e/<l-e2>l>{yn/oy } {3-(yn/<jy)2>

-  ♦ 0<if*> ,  (10)

where ay ■ a/( 1-B2)^ and where I ( - )  and 1 ( - )  are the cdf and pdf of 

a standard normal variate. Following Chapter 3, Section 3.2 then we 

can obtain an approximation to the conditional d istribution of the 

square of the one-step ahead forecast error:
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Pr ‘ ( i l | n  '  W 2 ‘  1,2 I V
- [ l - (2 n ) ' ‘ ( y > p ] r f ( x V o 2)

+ (2n)"‘ (y^/»y) r§(x2/°2) + 0(n-2 ) ,

where r£(*) 1s the cdf of a central chi-square variate with k degrees

of freedom. From Section 5A.3 we know this expression is the same
2

to 0(n" ) as the cdf of a central chi-square variate which has been 

multiplied by [1 + n~l (y*/Oy) ] :

P r  « * l | n  '  W *  f  * 2 I V

-  r f ( [ l  .  n iy 2/o2)r » [x 2/o2] )  ♦ 0(n '2) . (11)

In the denominator term of the Chow test an adjustment 

is made to take into  account the sampling variation in Bn . For the 

one-period test th is  adjustment is :

*  ■ 1 ♦ <»S>

• 1 ♦ n-1(y*) (I y}.,/»)" • 02)

n
Conditioning upon yn, then pi 1m (^ y | _ -j/ n ) ■ Oy so that:

V -  1 ♦ i f  l (yjj/o*) + ©pin“ 1)

and thus V" appears to be an appropriate adjustment to standardise 

the square of the forecast error, given yn.
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( I I )  The final term in  the predictive failure tests is the e rro r 

variance estimate o2. This has not been the subject of much 

investigation. Orcutt and Winokur (1969) from a Monte Carlo study 

of the AR(1) model with an Intercept term:

y i * a + eyi _1 + ui ; 1 »  0, +1, +2, , (13)

where u is distributed as N(0, o2I ) ,  found that E (ct̂ ) »  a2 and that 

var(o2) * 2o2/ (n -2 ). As these are the appropriate values for the 

classical linear regression model they concluded that the rescaled 

error variance estimate, (n -2 )o2/o2, had a distribution which was 

adequately approximated by that of a central chi-square variate 

with (n -2 ) degrees of freedom.

( I I I )  Lastly, F u lle r  and Hasza (1980) investigated the performance 

of a regression t-sta t1st1 c for the one-step ahead forecast e rro r 1n 

the Orcutt and Winokur (1969) model. They found that the tw o-tailed 

test based upon this t-stat1st1c (which 1s the signed square root of 

the one-step ahead Chow predictive fa ilure  test for that model) had

a tendency to under-reject when |s| was close to zero and to over­

reject when |e| was close to unity, 1n their Monte Carlo study.

This last Monte C arlo  result does not seem entirely compatible 

with the previous results which tend to suggest that the

marginal distributions o f  the one-step ahead predictive fa ilure  tests 

should not depend, to an error of o (n -1 ) ,  on the value of e. However, 

I t  can be argued that the Fuller and Hasza (1980) and Orcutt and 

Winokur (1969) results are not really applicable to the pure AR(1)
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model since they were obtained 1n an AR(1) model with an intercept 

and i t  is well-known that the OLS estimators of 6 have different 

properties in these two models, e .g. see Sawa (1978) for the exact 

moments of OLS estimators in these models. Also, there is nothing 

in the theoretical results to suggest that the true distributions 

of the predictive fa ilure  tests do not actually depend on g; they 

only seem to suggest that to an error of o (n "1) the distributions 

do not depend on g.

5.3.2. Properties Relevant to Multi-Period Tests

There are no generalizations of the P h illips (1979) result on 

the one-step ahead forecast e rro r available for the jo in t distribution 

of multiple unchained forecast errors or even for the individual r-step  

ahead unchained forecast e rro r . Nonetheless, there are a number of 

results, some of which are related to the P h illips (1979) result, 

which are relevant to m ulti-period predictive failure  tests.

(1 ) P hillips (1979) takes the expectation of Equation (10) with

respect to yn which gives:

PrI y l|n " y n+l * x> * '  ( 2"> ' ( x/o> H * /") .

so that the unconditional d istrib ution  of e  ̂|n Is approximately symmetric 

about zero, 1 .e .:

Pr {e1|n * x ) «  Pr { -e l|n < x> .
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In fact the unconditional d istrib ution  is exactly symmetric about zero, 

as shown by Fuller and Hasza (1980), and we can extend their argument 

to show that the unconditional jo in t  distribution of the forecast 

errors is symmetric about zero:

Pr i e ,|n • 'k|n * V

• Pr f- ' l| n  «  V ' • • • -*k|n f V  for k »  1 • (14)

Th is 1s easily shown 1n the pure AR(1) model. I f  we define z  ̂ « -y^ 

and = -e.j then:

2, * BZ1_1 + » ,  : 1 -  1 , 2 ,  . . .  ; Z0 - N[0,o/(1-S! ) ] ,

where » ,  1s distributed INfO.o“) and (z n+j-  |n) -  - ( y n<J-  yj|n) 

where j  * l , . . . , k .  Both sets of forecast errors, {(* n+j "  *j|n)> 

and f(yn+j“ yj|n>)  ^or  ̂ "  1 »•*•»•<» have the same distribution 

since the processes generating the {y^> and (z^J are identical.

Therefore the forecast errors, i ( y n+j ” jn^• J*l». «*»k), must have 

a symmetric distribution. This symmetry result also holds for the 

standardised forecast errors since transforming from {y^} to {z^ } 

w il l  not change the observed value of o*.

This symmetry in the d istrib ution  of the standardised forecast 

errors 1n the AR(1) model matches the symetry of the standardised forecast 

errors 1n the static model. The main implication of this result for 

asymptotic expansion approximations to the distributions of predictive 

fa ilu re  tests 1s that 1n the expansion of the jo in t cdf of the single­

period Hendry predictive fa ilure  tests (following Chapter 3, Equation 

(4 8 ) ) ,  a ll the (t>r s t ; l* r,s ,t* k ) are necessarily equal to zero so that:
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where 8* * -8 and the U p  are IN [0,A2o2] .  The OLS estimate of &  is  : 

n
1 y 1 y 1 -l

6„* -  M  1 * -Bn .

and so the forecast e rro r for yn+s 1s:

e*. a y *  -  s* y* , * A ( - l ) n+se is|n ■'n+s n ■yn+s-l v '  s|n

giving a squared forecast error of:

( % V 2 * X2('s|n>2 ' <,7>

Thus transforming from {y ^ } to {y p  simply m ultiplies the values of 

the squared forecast errors by A2. I f  we put A * 1 then the density 

of the {e p  Is the same as that of the u p  and so the distribution 

of the forecast errors 1n Equation (16) with A * 1 1s the same as the 

d istribution of the forecast errors 1n Equation (4 ) .  However, provided 

that A * 1 so that x o * o2, the only difference between these two 

models 1s that 1n one model 8 has a plus sign and 1n the other 1t has 

a minus sign. Therefore the distribution of the squared forecast errors 

1s the same for both 8 and -8 given a2.

The transformation from (y p  to {y p  simply m ultiplies the value 

of the OLS estimate of o2 by A2 :

<»;>2 -  TJii TT  ,=,<^*1
■ x2»s •
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Consequently the values of the Hendry tests are unaltered since the 

terms involving A2 cancel out. Therefore the transformation from 

t y j> to £y|} w ill not affect the values of the Hendry tests either and 

so th eir jo in t distribution is  the same for both B and -B  and does not 

depend on o2. The r-period Chow test for Equation (16) is :

Fc* ,  ( f | ) ’ (V * )"1 (f | )  
r l" — t t t ;--------

(18)

where f|  and V* are defined lik e  fg and V in Equation (9 ) but using 

iy | ) in  place of iy..} . However, this is equal to F^|n but where f  ̂

has been pre-multiplied by a diagonal matrix with the i 't h  diagonal 

element equal to A ( - l ) n+\  and where V has been pre- and post-multiplied 

by the same matrix. Therefore F^|n = f£|r since the diagonal matrices 

cancel out and consequently the distribution of the Chow tests is the 

same for both b and - b and does not depend on o2.

( i i i )  A second implication of the Phillips (1979) result is that:

E<«?|n> a * n_1)

for |b | < 1 ; see P hillips (1979). This 1s not s t r ic t ly  justifiable  

from the P hillips (1979) d istribution result but F u lle r and Hasza (1981) 

prove that 1t 1s correct to an error of 0 ( n " ^ ) .  We can extend this 

result to the general single-period s-step ahead unchained forecast 

error for s * 2:

E(i||„) • ° 2(1 + iT 1) ♦ 0(n_3/Z) (19)

using the method and results of Fu ller and Hasza (1981); see Section 5 .A .2 

for further details.
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( i v )  As well as considering the variances of the forecast errors 

in the m ulti-period case we also need to consider the covariances 

between the forecast errors. In the general case of er |n and es |n 

where r  > s then:

er|n es|n * ^en+r en+s  ̂ ^0n B^en+ryn+s-l

" ( V 0)yn+r - l en+s + ^en ” 0) 2yn + r-lyn + s -l' (20)

Taking expectations in Equation (20) then ^ (En+ren+s) * 0 and

E [(6 n“8 )En+ryn+s-l^ = 0 sinCe en+r has mean zer0 and is  indePendent 
of the rest of the second term. The expectation of the la st term is 

the normal covariance term arising from the sampling variation in Bn 

which we would expect by analogy with the non-stochast1c CLR model. 

However, unlike the CLR case, the expectation of the th ird  term is not 

equal to zero because Bn 1s typ ic a lly  a biased estimate of 6 (due to 

the dynamics), and yn+r-1 and en+s are now dependent (again due to the 

dynamics). We can expand the expectation of the th ird  term:

.  E [ ( i n-B)i6r- Syn+S. 1 ♦ 8J entr. , . j ) « n„ ]

* E [ < V » )

= er' s'V E ( e n-B) .

From White (1961) we know that E(en-B) -  -2en‘ ’ + 0(n’ 2) so that: 

E [ < V » > » n + l - l , n « l  *  - 2 o2 b ' " V 1 ♦ ° < " ' 2>- (21)
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We can also expand the expectation of the fina l term:

E [ < V e ) !yn+r- i W i ]

• E[<Bn-B)2{e r‘ sy „ « _ ,  +r"£"’  s3e ) ]
1 n n+s 1 j=0 n + r -l- j  ynts-l

■ Et(Bn-8>2 sr' Syn « - l l

-  , p- « ,2 (* - l )E[ ( ^ . , ) » y t  )

+ Br_s ri-e 2*5' 1*! E[(Bn-B )2] , ! .
( l - s 2)

From White (1961) we also know that:

E[<Bn-B )2] = ( l -6 2)n-1 ♦ 0(n-2 ) ( 22 )

and from Fu lle r and Hasza (1980) that: 

E [(B n-B )2y J ] -  o2n-1 ♦ 0(n"3/2). (23)

Combining these results we obtain:

El< V * > 2yn+r-lyn M -ll <24)

-  B1" 5^ 2*5" 1* + 1 -  B2*5* '1] » ^ " 1 + 0(n"3/Z)

• Br**o2n*2 ♦ 0 (n"3/2) •

Therefore the expectation of the th ird  term 1s approximately twice as 

large as the expectation of the final term. The Chow sampling 

variation adjustment does not take this th ird  term Into consideration 

since 1n the CLR model Its  expectation 1s necessarily zero. The 

relevant element of the Chow adjustment matrix 1s:
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k W - l W t > < 2  y !1-1 1 1
and since ^ ^ y 2_^/n) -1 i s a consistent estimate of the variance of 

n^(Bn"6) i t  is  clear that the adjustment only attempts to take the 

final term into account. This failure  of the Chow sampling variation 

adjustment to properly account for the covariance between forecast 

errors in dynamic models does not appear to have been noted before.

In the AR(1) model with OLS estimates,making an appropriate modification

should not be d iff ic u lt  since the expectation of Bn is known in terms of 
_2

6 to an error of 0(n ) ;  see White (1961). One approach would be to 

estimate the bias and then to make an appropriate adjustment which takes 

the bias into consideration. A more indirect approach would be to use 

a bias adjusted estimator in place of the OLS estimator of 6. The bias 

could be estimated or a bias-adjusted estimator constructed either 

using the formula from White (1961) or by using a variant of the jacknife 

technique adopted by Quenouille (1949)in the AR(1) model with an intercept. 

In more complicated dynamic models with more lags and with exogenous 

variables i t  may be considerably more d iff ic u lt  to make an appropriate 

adjustment.

The additional term in the covariance matrix of the r 'th  and s 'th  

forecast errors is  of order of magnitude 0(n” ) so that i t  1s c learly 

relevant in considering the jo in t  behaviour of the forecast errors.

However as noted in Section 3.2 1n Chapter 3, the off-diagonal terms 

of 0(n-1 ) 1n the covariance matrix of asymptotically normal variates 

w ill  not affect the asymptotic expansion to o(n" ) of the jo int 

distribution of the squares of these variates. Thus these terms w ill
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,1
not affect the jo in t distribution to o(n” ) of the squares of the

forecast e rrors. To examine the relationship between the squares 

of the forecast errors we should look at the covariance of the 

squares:

Therefore the covariance between the squared forecast errors is :

S1nc* en+r ,s  of ' i m '  W - l  and yn+s-l then *”
the covariance terms which Involve cov[ep+ r» ••• 1 are e<lual t0 2®r0 - 

The en+r can be extracted from the other covariances using the 

m ultiplication property of expectations under Independence. Thus for 

example:

W - l  ; r  > 1

(25)
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c0V[ ‘ n + r < V B> W - i *  eS « l

-  E (.n+r) eo*[(6n-s )yn+r. ] .  « ; „ ]  - o.

Therefore, eliminating these terms from Equation (23) gives:

covC«r|n* * I |n l *  L(¿n‘ B)2y^+r_ ,. « £ „ ]
-  icoy[(Sn- , ) X * r - V  * n « < V ( > W l l

♦ c o v [(in- B)»y J +r. , .  (26)

The f i r s t  two terms here arise from the correlation of current y 

with lagged e. Thus, I t  1s only the final term 1n th is expression 

which 1s taken Into account by the sampling variation adjustment in 

the Chow test. We would expect the f i r s t  two terms to depend on 6

which suggests that both the multi-period Chow and Hendry tests have
.1

distributions which depend on e even when terms of o (n  ) are dropped.

(v ) Lastly , there have been some Monte Carlo studies of the properties 

of m ulti-period predictive failure  tests for certain rather more general 

dynamic models with exogenous variables; see K1v1et (1985, 1986).

K1v1et (1986) considered an autoregressive distributed lag model with 

one lag on both the endogenous variable and the exogenous variable:

y i  ’  TJV i  *  V )  +  Bi x i - i  + “ e  m  *  ' •

where 1s distributed IN (0 ,o£). Two different processes were used 

to generate the exogenous variable. The f i r s t  was a pure AR(1) process.
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and the second was a random walk with d r if t ;  various different 

parameter values were used for both types of processes. A number of 

different predictive failure tests are considered in Kiviet (1986).

These include the Chow test, two versions of the Hendry test using 

s lig h tly  different error variance estimates, the Likelihood Ratio (LR) 

test s ta t is tic , and the LR test s ta tis tic  with the Anderson (1958) 

small sample correction. Kiviet (1986) presented averaged results for 

m-period tests for m = 4, 8 and 20 for a number of d iffere ntly  specified 

models where the averaging is over 18 different coefficient and exogenous 

variable process parameter combinations.

The main conclusions were that for the stationary exogenous 

variable processes the Chow test performed very well under the null 

hypothesis whereas the Hendry test had a tendency to over-reject, 

particularly when the sample size was small or when a large number of 

future periods were used to construct the tests. K iviet (1986) also 

found that the Chow test has very low power even when the exogenous 

variables are non-stationary and are omitted in the particular type of 

mis-specification considered. K iviet (1985) considers a generalised 

Chow test based on instrumental variables estimation for a single 

equation taken from a simultaneous equation system but here the 

results are much less clear.

5.4 Asymptotic Expansion Results

The data generation processes and estimation models were both the 

pure AR(1) model as discussed e a rlie r. Five different sample sizes 

were considered, n -  (10,20,30,40,50), the variance of the disturbances 

was set to unity, and five different values of the autoregressive parameter
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were used, 6 = (0 .0 , 0 .2, 0 .5 , 0 .8 , 0 .9 ). Since the sign of 6 is 

unimportant these results are equally valid for 6 = (0 .0 , -0 .2 , -0 .5 , 

-0 .8 , -0 .9 ) .  S im ilarly, since the value of o2 does not matter, these 

results are valid for a ll o2; see Section 5 .3.2 .

Asymptotic expansion approximations for the one-period and two- 

period predictive failure tests were computed using the ESSACS program 

described in the Appendix on Computing. In order to do this i t  was 

necessary to decompose the test statistics as the sums of squares of 

asymptotically independent standard normal variates. For the Hendry 

test this was very simple since we could use the standardised forecast 

errors as discussed in Section 5.3 so that the two-period Hendry test 

s ta tis tic  was just the sum of the Hendry test sta tis tics  for the 

individual periods, = Fi| n + ^ { n '  However» for the Chow tests 

th is  was more d iff ic u lt . Following Section 5.3 we defined 

fg = (°n) ” 1V where was the lower triangular Cholesky 

decomposition of V so  that F ^ n = ( f £ ) ' ( f g ) .  and thus (fg ) were the 

asymptotically independent standard normal variates. This decomposition 

has the advantage that the sub-vector g2 formed by taking the f i r s t  r  

elements of fg gives the decomposition vector for the r-period Chow 

test sta tis tic  so F ^ n = (g2) ' ( g 2) .  Thus we can form an incremental 

s ta tis tic  by F||n .  F||„ -  F‘ |().

Two sorts of results are reported. F irs t ly  we give the numerically 

computed asymptotic expansion approximation coefficients, and secondly 

we give numerically evaluated approximate rejection probabilities at 

various ch1-square and F-distr1bution c rit ic a l values. The f ir s t  type 

of result enables us to consider some of the conjectures based on the
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theoretical arguments from Section 5.3. The second type of result 

enables us to assess the relative  performance of the tests and some 

of the conjectures based on Monte Carlo evidence.

5.4.1 Results for One-Step Ahead Tests

The asymptotic expansion approximations for the marginal cdf's 

of and F ^ n were computed to be:

Pr{F^|„ «. r|> -  P r l F ^  < r ’ > .  o (n '‘ )

-  Cl -  (3/4)n"* l  (II) (III)] r * (r | )  .  (3/4)n-1 r | ( ) ♦ o l r f 1) !

Pr{Fl |n —  r l  n  * 0 / 4 )n " l ] r j { p! )

- (l/2)n ‘ ‘ r|(r|) ♦ (3/4)rf‘ r|(r|) .  o(n_1) . (27)

Various points arise immediately from examining these approximate cd f's .

( I )  There are no r ^ ( r 2) terms in the approximations. This Is 

not surprising since we would expect this from the symmetry of 

the distributions of the vector decompositions of the Hendry and 

Chow predictive fa ilure  tests as demonstrated 1n Section 5.3.

( I I )  The approximations do not depend on 6. This confirms the 

conjecture made in Section 5.3 for F^|n and

( I I I )  The approximate cdf of F^|n 1s the same, to an error of

o(n” ) ,  as the cdf of an F-var1ate with ( l ,n )  degrees of

freedom; see Section 5.A3 for further d eta ils. Furthermore, the

cdf of f !?i „  1s  the same, to an error of o(n" ) ,  as the cdf of I n
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an F-variate  with ( l ,n )  degrees of freedom m ultiplied by 
_i

(1+n ) ;  again see Section 5 .A .3.

From these theoretical results we can see that the one-period predictive

fa ilure  tests behave the same In the AR(1) model as they would, to an 
- l  _ i i

error of o(n ) ,  in the CLR model were X^X-j 'Xj ) X? equal to n ' .

This Is supported by the numerical evaluations given 1n Table 5.1.

In Table 5.1 we report the evaluated approximate rejection

probabilities for F^|n and F^|n» when n=10, using ch1-square and

F-d1str1bution c rit ic a l values for 10*. 5% and 1% significance levels.

Two sets of F-d1stribution c ritica l values were used; f i r s t ly ,  those

for an F-var1ate with 1 and 9 degrees of freedom since these Incorporate

the degrees of freedom adjustment used in practice; and secondly, those

for an F-variate  with 1 and 10 degrees of freedom because F^|n should

be closely approximated in distribution by such a variate. The sh ift

from 1 and (n -1 ) degrees of freedom to 1 and n degrees of freedom is 
»1

only an order o(n ) alteration and thus Is of smaller order of magnitude 

than the terms retained in the asymptotic expansion approximation. Thus 

the choice of degrees of freedom is somewhat a rb itrary although 1t 1s 

c lea rly  important for small n.

The numerical evaluations given 1n Table 5.1 show that the one- 

period Chow test for n»10 appears to behave like an F-variate with 

1 and 10 degrees of freedom at the 5% and 10* significance level 

c rit ic a l values but rather less so at the IX significance level 

c rit ic a l value. I t  appears to have a tendency to under-reject when 

used with the c rit ic a l values for an F-varlate with 1 and 9 degrees 

of freedom. This is noticeably weaker than its  apparent tendency to
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Nominal 
Significance 

Le'^T--------

C rit ic a l Values Hendry Test 

<F?|n>

Chow Test 

<Fi|n>

F(1.10) 3.2850 11.39 9.99

10% F (1 , 9) 3.3603 11.01 9.65

X2 2.7055 14.84 13.14

F(1.10) 4.9646 5.54 4.80

5% F (1 , 9) 5.1174 5.20 4.51

X2 3.8415 8.92 7.77

F(1.10) 10.0440 0.69 0.61

1% F ( l ,  9) 10.5610 0.56 0.50

X2 6.6350 2.79 2.42

Table 5.1: Approximate Rejection Probabilities Expressed as %'s

for f!?. and F?. when n ■ 10 ____ i in_______11n_____________
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over-reject when used with chi-square c rit ic a l values which suggests 

that the choice of degrees of freedom for the F-distribution is less 

important than the choice between a chi-square and an F -d istribution .

The Hendry test appears, when using the F-distribution critica l

values, to over-reject moderately at the 10% significance le ve l, to

over-reject s lig h tly  at the 5% significance level and to under-reject

at the 1% significance le ve l; also > i t  appears to over-reject

more strongly than the Chow test when using the chi-square c ritica l

values. This accords with the result of Section 5.2 that

Pr{F?i > c } * P r{F ii„  > c } for a ll c . The overall conclusion I | n a I | n a a

of the theoretical and evaluation results is that the Chow test 

appears to behave well when used with the F-distribution c rit ic a l 

values and that the Hendry test appears to strongly over-reject when 

used with chi-square c rit ic a l values.

Table 5.1 only reports evaluated approximate rejection probabilities 

for n=10. There are two reasons for th is . F irs t ly , the differences 

between the nominal significance levels and the evaluated approximate 

rejection probabilities for the tests at any given point appear from 

Equation (27) to be constants m ultiplied by n"1. Thus there is no value 

1n reporting the evaluated approximate rejection probabilities for 

n=2 0,...,5 0  at the chi-square c rit ic a l values since these can be 

inferred from Table 5 .1 ; doubling n simply halves the deviation 

of the evaluated approximate rejection probability from the nominal 

significance level. Secondly, the F-d1str1but1on c rit ic a l values are 

essentially only presented to examine the behaviour of the Chow test. 

Since the results seem to Indicate that for n*10 the Chow test behaves 

very well when used with 1 and 10 degrees of freedom, there is l i t t le  

value in reporting results for n »2 0 ,...,5 0 .
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5.4.2 Results for Multi-Period Tests

The coefficients of the asymptotic expansion approximations to 

the jo in t cdf's of(F^|n, F ^ )  and o f^Fi| n* F2|n) are given 1n Table 5 -2 

where the approximations take the form:

P r(z1 «  r f  & z 2  (  r| } -  (1 + b J n 'V f  ( r } ) r f ( r J )

+ b ^ n '1r| (r| )r1! (r j)  + b5n ' ‘ r| (rf)r| (r| )

+ b^1n_1rg (r1)rf(r| ) + b *2n " ‘r | ( r p r 5 ( r j )

♦  bj2n_1r| (rf)r| (r| ) + o f n '1) , (28)

following Equation (15) which again confirms the symmetry argument 

presented 1n Section 5.3. The coefficients of the asymptotic expansion 

approximations to the cdf's of |n and FÎj|n are given in Table 5.3 

where the approximations take the form:

Pr{z î  r|) -  (1 +c‘0n '1)r^ (r| ) + o,n_1r| (r§)

+ c|n’ l r | ( r §) + ° (n_1) .  (29)

The coefficients in Table 5.3 are obtained from those in Table 5.2 by:

c;  ■ bs- ci  ■ bt ♦ b?- cs -  bi i  ♦ bi2 ♦ b?z-

following Chapter 3, Sections 3 .2.3 and 3 .2 .4 . As with the results for 

the Individual single-period predictive fa ilure  tests various points 

are immediately apparent from examining the coefficients.
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Coefficients

Hendry Test (Fo|n) co* cf C2*

Parameter Value

e «  0.0 - i -  2 2»

B -  0.2 -  26/ 50 -  98/50 124/50

B -  0.5 -  5/8 -  7/4 19/8

6 = 0.8 -  41/ 50 -  68/50 109/50

B «  0.9 -181/200 -  238/200 419/200

Chow Test (FS| „) 0 -  2 2

Table 5 .3 : Asymptoti c Expansion Coefficients for the CDF's of
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( I )  The coefficients of the expansion for the 

do depend on 8 as suggested 1n Section 5.3

be found for these coefficients by putting: 

bj * i (1 -8 2) - l * b f, -  b j2 -  3/4, 

bf -  b j «  - j ( l - e 2) - i ,  b|2 = H 1 -6 2) ♦ i .

Consequently, the coefficients of the expansion 

two-period Hendry test are given by:

c j * i ( 1 ~s2) - i » c f  - - ( i - e 2H ,

C| -  i ( l - S 2) + 2.

The dependence on 8 through 82 reflects the lack of dependence of the 

jo int cdf on the sign of 8 as argued in Section 5.3 .

( I I )  The coefficients of the expansions for the jo in t cdf of F^|n and 

F^|n and for the cdf of F^|n do not depend on 6. Thus the c rit ic a l 

values of the tests could be set to achieve rejection probabilities
_i

of a to o(n ) under the null hypothesis irrespective of 6. This 1s 

somewhat surprising because the arguments presented in Section 5.3 

suggested that the Chow tests failed to make a fu ll adjustment for 

the sampling variation in 6n so that their c d f's  should depend on 8.

( I I I )  The expansion coefficients for the jo in t cdf of the single- 

period Hendry tests F^|n and F^|n are symmetric so that, to o(n” ) ,

1n the jo in t d istribution  of the Hendry tests they are interchangeable.

Thus the asymptotic expansion approximation for the cdf of the second-period

jo in t cdf of F̂ | n and 

and an exact f i t  can

(30)

for the cdf of the
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test 1s the same as that of the first-p eriod  test as would be 

suggested by the results of Sections 5.3 and 5 .4.1 . This 1s also

true for and f£T .11n ¿\n

From the approximate rejection probabilities presented In Table 5.4 

we can see that the two-period Chow test seems to perform very well at 

the 10% significance level using F-d1str1bution c rit ic a l values with 

1 and 10 degrees of freedom, less well at the 5% level and moderately 

under-rejects at the 1% le vel. We can also see that the use of chi- 

square c rit ic a l values appears to lead to much greater deviations of 

actual rejection probabilities t o o (n _1) from nominal significance 

levels than does the use of F-d1str1but1on c rit ic a l values. This 

effect is more marked fo r the two-period test than for the one-period 

test which accords with the results of Kiviet (1986), reported in 

Section 5.3 that lengthening the post-estimation period used causes 

the size performance of the test to deteriorate. As with the one- 

period tests the results presented 1n Table 5.4 meet the restriction 

that the rejection probability of the Chow test must be less than that 

of the Hendry test.

As we would expect from the expansion results, the rejection 

probabilities of the two-per1od Hendry test depend on b and we can 

see that raising b lowers the rejection probabilities. However, the 

variation 1n the rejection probabilities for either ch1-square or 

F-d1stribut1on c rit ic a l values arising from varying b 1s  much smaller 

than the difference 1n rejection probabilities for any b arising from 

switching from F-d1str1but1on to ch1-square distribution c rit ic a l 

values. Also the difference between the rejection probabilities for
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the two-period Hendry and Chow tests 1s much less than the difference 

1n rejection probabilities for either the Hendry or the Chow two- 

period tests arising from switching c r it ic a l values.

As with the one-period tests we only present results 1n Table 5.4 

for n«10; the reasons for doing this f o r  the two-period tests are the 

same as for the one-per1od tests.

5.5 Conclusions

The clearest conclusion which we can draw from the theoretical 

results of Section 5.3 and the numerical results of Section 5.4 1s that 

the one-period tests seem to behave substantially the same In the AR(1) 

model as they would 1n the CLR model. I f  we turn to the two-period 

tests then the results of Section 5.3 seem to indicate that neither the 

Hendry nor the Chow test properly take Into account the interdependence 

between the forecast errors arising from the sampling variation . The 

results of Section 5.4 indicate that th is  1s a more serious problem 

with the Hendry test; its  distribution does depend on the unknown auto­

regressive parameter 6 , and the test seems to substantially over-reject 

when used with chi-square c rit ic a l values. However, the results of 

Section 5.4 seem to Indicate that the two-period Chow test performs 

well when used with F-d1s tr1bution c r i t ic a l values 1n spite of the 

results 1n Section 5.3. Whether the good performance 1s due to the 

particular model being considered or whether i t  carries over to more 

general dynamic models is unclear. The major Implication of this 

study for actual practice Is that researchers should be somewhat 

cautious when interpreting the results of Chow predictive fa ilure  tests.



The numerical results of Section 5.4 indicate that the coefficients 

of the asymptotic expansion approximations to  the cdf's of the Hendry 

and Chow tests are relatively simple functions of f? which suggests 

that i t  may be possible to obtain the coefficients analytica lly. I f  

this 1s so, then i t  may be possible to examine in more detail why the 

two-period Chow test appears to perform w ell in the AR(1) model in 

spite of the reservations raised in Section 5.3.

Another direction for future research is  to consider sequential 

predictive failure tests. There are two ways in which this might be 

approached. F irs t ly , we could examine the properties of a k-period 

predictive failure test conditional upon the result of an r-period 

predictive failure  test where k>r. This would require the use of 

asymptotic expansion approximations for the distributions of 

asymptotically jo in tly  dependent chi-square variates which were 

b rie fly  discussed in Chapter 3, Section 3 .4 . Secondly, we could 

examine the properties of individual period predictive fa ilure  tests 

conditional upon the results of previous individual period predictive 

failure tests. This would be a less satisfactory approach for the 

Chow tests than for the Hendry tests since in  constructing the Chow 

tests we wish e x p lic itly  to take account o f sampling variation 1n the 

parameter estimates and its  effect on the forecast errors, and by only 

considering individual period tests we would fa il to take account of 

the effects of sampling variation on the covariances of the forecast 

errors.

We have not considered the power properties of these tests 1n this 

study although, in principle, this should be possible using the techniques 

of Chapter 3 . However, as argued in Section5.2, predictive fa ilure  tests
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are unlikely to have particularly good power properties against 

stationary alternatives since they w ill not in general be consistent 

against such alternatives. Thus the alternatives of interest would 

prim arily be non-stationary; this though would create d ifficu ltie s  

in  the application of asymptotic expansion methods.
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5 .A Appendix to Chapter 5

5.A.1 Implications of Distributional Symmetry for Unconditional 
Forecast Errors

Consider the univariate case and let w be the standardised forecast
-3/2e rro r. Then the pdf of u can be approximated to 0(n ' ) by:

pdf(a)) * [(2ir)“ *exp{-iu>2}] [1 + dQ + d-|<o

♦ dju2 ♦ d j» 3 + d , .1* + dju6]  + 0(n"3/2) ,  (31)

(where dg * using the methods of Chapter 3, Section 3 .2 . Since u

has a symmetric distribution about 0, the pdf of u is the same as that of 

( - « ) :

pdf(-w ) = [(2 tt) ^exp{-Jw2>] [ l  + dQ -  d^u

+ dgw2 -  dgw3 + d̂ u*1 + dgu>6] + 0(n ^ ^ ) .

Equating pdf(u) with pdf(-u>) implies that dj ■ d.j * 0 and thus dg = 0. 

Therefore Equation (31) can be simplified to:

pdf(u) * [(2ir) *exp{-$u>2}]  [1 + dQ + dgu»2 + d^w1*] + 0(n ^ ^ ) ,

and so the pdf and cdf of w2 can be approximated to o(n” ^ ) by:

pdf(u2) * [l+d0J x j(u 2) + d2x|(u2) + 3d4x|(w2) + o (n _1) 

cdf(w2) -  [l+d0] r j ( « 2) ♦ d2r j(w 2) ♦ 3d4r J ( « 2) ♦ o (n ‘ 1) .  (32)

A s im ila r argument can be used for the multivariate case using 

Equations (1 5 ), (2 2 ), (2 6 ), (46), (47) and (48) of Chapter 3 to give 

Equation (15).
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5.A .2 Variances of Unconditional Forecast Errors

To show that Equation (19) holds we expand es |n for s * 2 as:

*sjn ’  * „ «  -  *s|n ■ en+s * < V e> W l  <33>

* cn+s '  + •

Squaring th is  gives:

es|n en+s " 2( 6n-6 ) 6 ynEn+s 

-  Z < V 6 ) [ ^ o  BJ en+ s. 1. J ] en+s 

+ ( ¡ „ -B ^ B 2**'1’/ 2

and then taking expectations gives:

e [¿I| „ ]  ’  ° 2 ♦ » a<*_1>E[<i„-e)*y*l

* s-2 .
+ °2E [(Bn-B )2] [j £0b2'’1 - (34)

From White (1961) and Fu lle r and Hasza (1980) we have Equations (22) 

and (2 3 ):

E [<Bn-e )2l -  ( l -» *)n _1 ♦  0<n‘2).

E [(5 n-B )* y») -  o2n*3 + 0 (n '3/2) .

Substituting these into Equation (34) gives Equation (19):
s _2

E (e .,„ )  -  °2 ♦ o2S2(s' , ) n*1 + o2(1 -b2)(  £ B23)»*1 + 0(n‘ 3/2)
5 I"  J.0

-  o2[l+B2(s' , ) n"1 ♦ n"1 -  B2($‘ , ) l T 1] ♦ 0 (n '3/2)

• o2[ l « i* 1] + 0 (n '3/2) .
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5 .A .3 Asymptotic Expansion of the CDF of a F(1 ,n) Variate in 
Terms of the CDF's of x* Variates

Fisher ( 1 9 2 5 )  gave an Edgeworth expansion for the pdf of a 

t-variate  with n degrees of freedom where i ( t )  «  [ ( 2 " )~*exp{-Jt2>] as:

P „(t) -  1 ( t ) [ l - n ' ' ( i ) ( l  + 2t2 - t " ) l  + o (n ~ '). (35)

Integrating th is gives:

Pr{|t| s  r )  = 2 Ï  1 ( t ) [ l - r f ’ u ) ( l  +  2 t 2-  t ‘ ) ] d t  + o ( n _ 1 ) .

2
and transforming from t  to z = t  gives:

Pr{z ( r2} «  P r {It I * r )
2

-  / e~z/l [ l -n * 'o )  -  n_1(J )z  .  n ' ' ( J ) z 2]dz + o (n '’ )
0 ( 2 - r * ?

- [l-n _1(J ) ] r f ( r 2) - n '1( l ) r | (r * )  + " ' ’ (J lr f lr 2) + » (rT 1) .  (36)

Since t  1s distributed as a t-variate  with n degrees of freedom then z 

is  distributed as an F-variate with ( l ,n )  degrees of freedom so that

Equation (36) gives an expansion for the cdf of an F (l ,n )  variate 1n
2

terms of the cdf's of Xpvariates. Also since:

( n - l f 1 * (¿ ) [ M j ) ] ’ 1 »  n"1 ♦ o (n-1 ) ,

then the cdf of an F (l ,n -1 )  variate 1s the same to o (n ” ^) as that of an 

F (l ,n )  variate.
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Now suppose that x 1s distributed as a chi-square variate with q degrees 

of freedom so that the pdf of x 1s:

x % x(q /2 ) - ie-(x/2)
fq(><) ■ r (q/Z)j(q/Z) '  *q<*> ’

where r ( » )  here 1s the gamma function, not the cdf of a x variate.

I f  we define y  »  [1 ♦( a/n)]x then the pdf of y 1s:

9q(y) - -----------------------------------------
r(q/2) 2(q/2) [ H (a / n ) ]

-  x 5 (y)C l* (q/n)]‘ (,/ 2 ) e (ay)/(2n) ♦ o(n_1)

■ C 1 -  « » q ) / ( 2 n »  ]  xj(y) * (( aq)/ (2n)}  xq.2(y) ♦ o ( n ' ' )

Therefore, 1f z 1s distributed as an F (l ,n )  variate then the cdf of 

(1+n ^)z  can be approximated by:

P r l f l « " 1) !  j  r 2) -  [1 -  n- , ( J ) ] r | ( r 2) (37)

+ n " ' ( l ) r j ( r » )  ♦ o ftf1) ,

where r ^ (•) here 1s the cdf of a chi-square variate with k degrees of 

freedom. Equation (37) also holds 1f z is  an F ( l .n - l )  variate.
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CHAPTER 6: An Asymptotic Expansion Analysis of a Simple Dynamic 

Specification Testing Sequence in the AD(1,1) Model

6.1 Introduction

This chapter is concerned with analysing a simple testing sequence 

1n the Autoregressive Distributed lag model with one lag on the 

endogenous variable and one lag on a single exogenous variable (the 

AD(1,1) model). The f i r s t  test 1n the sequence 1s a Wald test of the 

hypothesis that the lag polynomials have a common factor so that the 

model can be re-written as a simple regression model with autocorrelated 

disturbances; see Hendry and Mizon (1978) and Sargan (1980a). The 

second test 1n the sequence 1s an incremental Wald test of the additional 

hypothesis that there are no endogenous dynamics. The two hypotheses 

together imply that the model can be re-written as a simple regression 

model with white noise disturbances.

In Section 6.2 we consider the background to sequential testing 

procedures. Then in Section 6.3 we examine 1n more detail the 

case mentioned above. In Section 6.4 we perform a numerical 

evaluation study using asymptotic expansion approximations to the 

jo in t cdf's of the test sta tis tic s  for the case mentioned above.

Lastly, 1n Section 6.5 we attempt to draw conclusions from this study.

6.2 Sequential Test Procedures

Sequential testing procedures are frequently adopted in applied 

econometric studies, both when deciding whether to accept or reject 

particular models and when testing various restrictions on the 

parameters of a model. Often there are situations where one set of



- 205 -

restrictions would not be considered unless some other set of 

restrictions had been accepted, so leading to a series of 

monotonlcally nested hypotheses. Such nested hypotheses can be 

tested sequentially using Wald tests. These have been shown 

1n Sargan (1980a) and K1v1et and P h illip s  (1986) to have some 

useful asymptotic properties for testing such hypotheses sequences.

Following Chapter 1, suppose that Y 1s a random variable 

distributed with density function f (y ;e )  where 0 1s a k-vector 

of parameters, d e<8>. and where the density function meets the 

standard regularity conditions for Maximum Likelihood estimation 

to have the usual asymptotic properties; see Wilks (1962). If  

0 1s a consistent estimator of 0 and ft 1s a consistent estimator 

of the asymptotic covariance matrix of a , 1.e. piim ft -  ft where 

T*(0 -  0 ) 1s asymptotically N[0,ft], then we can attempt to 

construct Wald tests for the sequence of nested hypotheses:

I f  we define [<^(0 ) ]  ■ [ ^ ( e * )  , . . . »  ♦ j(e*)']* then the Wald 

s ta tis tic  for Hj 1s:

“j  * T C * V ' » '  [f^ n [♦J ( ê »

H .: ♦ . ( « )  .  0;

H2: *1^e ) * °»  ̂ * °»

♦ ̂ (0 ) » 0 ,  . . . »  $r (o ) * 0; where r  £  k. (1)

where P* -
(2)



From the sequence of test s ta tis tics  {Wj} we can construct a 

sequence of Incremental Wald tests:

j  -  1

j  > 1

(3)

so that 1s a test of Hj given that 1s assumed to hold.

Provided that the matrices {F^> are of f u ll rank In some 

neighbourhood of the true parameter value, such Incremental Wald 

tests have the useful property that 1f the most restrictive  

hypothesis 1s true then the Incremental test statistics are 

asymptotically distributed as Independent, central Ch1-square 

variates with degrees of freedom given by the dimensions of the 

i♦ j(e )> vectors. Thus the overall asymptotic size of a sequence 

of m incremental Wald tests can be controlled given the value of 

m. Furthermore, under a local alternative hypothesis sequence 

converging to the most re stric tive  hypothesis the incremental 

test statistics are asymptotically distributed as Independent, 

non-central Ch1-square variates with the same degrees of freedom 

as before and with non-central1ty parameters depending on the 

particular local alternative hypothesis sequence chosen; see 

Hogg (1961), Sargan (1980a) and K lvlet and P h illip s  (1936).

The power properties of a sequence of Incremental Wald tests 

can then be approximated using this result.

Wald tests are particularly appropriate for testing sequences of 

nested hypotheses within a maintained model because they require 

estimation only of the general model. The Likelihood Ratio and 

Lagrange M ultip lie r tests, although asymptotically equivalent to 

the Wald tests under local alternative hypothesis sequences,
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require estimation of the model subject to the restrictions and 

therefore they generally require more computation than the Wald 

tests. However the Wald tests suffer from the problem of a lack 

of invariance to algebraic reformulations of the restrictions.

This is discussed in Section 6.3 and also in Chapter 4.

Nested hypothesis sequences can arise either from purely 

economic considerations or from mathematical and statistical 

considerations. An example of the former would be where a 

researcher wishing to test for rational expectations might f i r s t  test 

that expectations were constructed using a particular information set 

and then that the expectations were rational with respect to that 

information set. An example of the la tte r is  provided by the COMFAC 

(COMmon FACtor) restrictions in the AD model:

the {xt J . The common factor restriction  of order m, where 

m r ,  can be expressed as:

a (L ) -  p (L )a * (L ); s (L ) -  p(L)e*(L) 

where p (L) is an m'th order lag polynomial, a*(L) is an (r-m )'th  

order lag polynomial and B*(L) 1s a vector of (r -m )'th  order 

lag polynomials. The model can be generalised to have different 

numbers of lags on the endogenous and exogenous variables simply 

by requiring some of the elements of {o j>  and { ei > to be identi­

c a lly  equal to zero. Sargan (1980a) shows that these restrictions

r r

1*0 1'xt-1 * ut (4 )

or o (L )yt  = e (L )'x t  ♦ ut ,
2

where the {u t > are distributed as IN[0,o ]  and are independent of
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(and their extensions to models with unequal lag lengths) can be 

expressed In terms of the determinants of certain matrices and 

provides an algorithm for their practical implementation. Hendry 

and Mizon (1978) illu stra te  how tests for these restric tio n s , 

based on the Sargan approach, can be used in dynamic sp ecifi­

cation searches with an example looking at the demand for money.

I t  1s natural to require that we accept the existence of 

(m+1) coirmon factors only 1f we have already accepted the 

existence of m common factors. Therefore common fa ctor restrictions 

would appear to provide a very natural example of a nested hypothesis 

sequence. However there are two sources of d if f ic u ltie s  with common 

factor restrictio ns. F irs t ly , 1t is possible for there to be 

complex common factors, which necessarily occur 1n complex conjugate 

pairs; therefore 1t has been suggested that i t  would be more sensible 

to test for the existence of a pair of additional common factors and 

i f  th is 1s rejected then test for an additional single common factor. 

Secondly, there may be problems associated with testing for m̂ common 

factors when there are mg common factors present with m̂  < mg.

Sargan (1984) provides some theoretical ju s tific a tio n  for this.

The d iff ic u lty  with the Wald tests here 1s that the matrix of f irs t  

derivatives of the restrictions w ill not be of f u ll rank asymptotically 

so that the test s ta tis tics  w ill not typ ica lly  have the usual chi- 

square distributions asymptotically.
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6.3 The Testing Sequence

The model which we are considering in more detail has only 

one lag on one endogenous and one exogenous variable:

yt  ■ ayt - i  * V t  * V t - i  * Et  (5)

where the tx^} are non-stochast1c and the {e^} are distributed 

IN[0,o2] .  The hypotheses which we are considering are:

H .: a60 ♦ 61 » 0 ;  (6 )

H_: ag + 6 .  = 0 ,  o = 0 .2 0 1

Under H1 the model can be w ritten as :

(7 )

and under Ĥ  the model can be written as :

( 8)

The Wald tests W1 and W2 for and H2 respectively do not suffer 

from either of the problems discussed at the end of Section 6.2 . 

F irs t ly , there 1s only one lag 1n the model so that there 1s no 

p ossib ility of complex common factors. Secondly, the matrix 

of f ir s t  derivatives of the restrictio n  functions is:
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F(«»0 oV01) (9 )

which is c learly of f u ll rank for all (a,6o *Bj).»

Using the invariance theorem proved 1n Appendix 6 .A, we can 

prove that the jo in t d istribution of Wj and W. depends only on 

o . ,(aB0+B j)2/o2 , T and the exogenous data txt >. Therefore 

under the null hypothesis H2 we can set a » eQ * 6̂  * 0 and 

o2 > l without any loss of generality so that in the evaluation 

study in Section 6.4 the only factors affecting the jo in t 

d istribution of Wj and W2 are T and the exogenous data txt ) .

We can invoke the Invariance theorem of Appendix 6 .A by 

defining y* as:

y j  -  x(yt  ♦ yxt ) ,  x + 0 . (10)

Then ty*} is generated by the AD(1,1) model:

where o* -  a . s j -  x ( b o + y ) .  B f  ■ x ( B | - o y ) .

e* ■ X«^» and var (e£) ■ [a*f ■ X2o2. (11)

Therefore we can define two groups of transformation, 6 and G*, 

operating on (y t ) and (a , Bq .B|.<j ) respectively, by the families 

of transformations given in Equations (10) and (11).
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C learly, the transformation on (y ..) given in Equation (10) 

for different values of (A ,y ) form a group where the operation 

is to follow one transformation belonging to 6 , y^ ♦ y*, by 

another transformation belonging to G, y* -► y*+. F irs tly , 

the result of any transformation belonging to G followed by 

another transformation belonging to G 1s also a transformation 

belonging to G, so that this operation of following one 

transformation by another 1s closed. Secondly, this operation 

is associative. Th ird ly , there is a unique identity transfor­

mation given by putting A ■ 1 and y = 0. Fourthly, each 

transformation belonging to G has a unique inverse given by 

“ xY*t ) .  S im ila rly , the Induced transformations 

on (a , 6q, 8j , o2) given in Equation (11) also form a group G*.

The null hypotheses H j: a8Q+6j * 0 and H2 : a0o+8j> 0, o «  0 

are Invariant under the induced group of transformations G* on 

(° ,Bo*B1 *°2) 9*ven by E<luat1on (11) since:

o*8j ♦Bf -  A(a8()+B1)»  a* -  a. (12)

Thus Hj holds for (a , 60»6^.o^) 1f and only 1f 1t holds for 

(a*,B;.8*,o*2) ,  and sim ilarly for H2- I t  1s then reasonable 

to ask whether we can construct Wald test s ta tis tic s  for and 

H2 which are numerically invariant under the group of trans­

formations G acting on (y^> and therefore have joint 

distributions which are Invariant under the Induced group of 

transformations G* acting on (a, 0().B1 ,o2) .  The theorem 1n 

Section 6 .A enables us to construct such test statistics providing 

that four conditions are met.
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F irs t ly , we need to be able to partition  e «  (e j,e £ ) ' so 

that the restrictions only involve 0^ , and g*e ■ (g^e^tg | e ')' 

where g* e G*. Here 91 «  ( a . ^ . B j ) '  and e2 =o2 and this 

condition 1s then clearly met by the hypotheses and the group 

of transformations G*. Secondly, we need to find an estimator 

e ^ y )  of such that for any g e G then 0^(gy) = g*0^(y) for the 

corresponding g* e G*. The estimator which we choose is  the 

OLS estimator given by:

T ?
m1n S (0?;y) * j  ei (13)

1 t-1 z
where et  »  yt  -  «y M  -  bQxt  -  b ^ , 

with respect to 0f * (a ,b0 , b j ) ’ giving 0  ̂ »  (a,B(),61) '  and then 

putting o2 »  ( T -3 ) '1S (8 ,;y ) .  But then:

S(gfe*:gy) -  x2s (e t ;y ), (14)

so that I f  S ( . ; y )  Is minimised at e  ̂ then S (.;g y ) 1s minimised 

at gf0j. Therefore 0 j(g y ) -  gye^(y) as required. We can also 

note that o2(gy) »  X2o2(y ) so that 0(gy) = g*0(y).

T h ird ly , we need to find an estimator Q ^ (y )  of n11( the

asymptotic covariance matrix of T a[6 1(y )  -  0^] so that:

»11,

«(gy)
H t ' 3g* '

30*
i„(y)

30'
1 e,(y) 1 et(y)

(15)
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The covariance matrix estimate which we choose is the standard 

OLS estimate:

â,,(y) - ô2(y) I V J ) 7’ <16)
' ' t=1 ** 1

where zt »  (yt»xt»xt_i)'•

The covariance matrix estimate using the transformed data is : 

ô,,(gy> - ô2(gy ) ( J  z j z * ' ) " '

where z j  • ( y { _ i '

Then a) t (gy) 

and:

X 0 Xy 

0 1 0

0 0 1

[x ’ V ] " 1 f l ^ iy K x ^ C ]" 1 since o2(gy) • x2a2(y )

’ 1 0 0
■

agfe,
0 X 0 =

-Xy 0 x Se1 ê,(y)

L L -1

Fourthly, we need to find  a representation ♦(0^) a 0 of the 

restrictions being tested and a group of matrices G+ such that for 

any g* e G there exists J + e G+ so that:
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•»(gfej) * J +4(e1) for a ll ej* (17)

This 1s met by putting a60+8j * 0 for and aBQ+Bj »  0,o ■ 0 

for H2 since;

a*Bj + Bf x 0 aB0+81
•

a* 0 1 a

Thus a ll the conditions of the theorem are met and so the Wald 

test sta tis tic s  W1 and for H j: a60+Bj * 0 and H2: a80+8j -  0, 

a ■ 0 are numerically Invariant under the group of transformations 

G given by Equation (1 0 ); therefore their jo int distribution 1s 

Invariant under the group of transformations G* given by 

Equation (1 1 ).

I f  we now put y * - bq and x * (o2)~* then o* ■ a, 6* »  0,

B* = (a ^ + e ^ / io 2)* and (o*)2 «  1. Furthermore, we can choose

X to be either the positive or the negative square root of o2 

and therefore the sign of 8f does not matter. Since none of 

the transformations affect T or (x t ) we can therefore parameterize 

the jo in t  distribution of W1 and W2 by a , (a8o+0j)^/o^, T and (x ^ ).

Under H2 , °e0+6j * 0 and “ -  0 so that the jo in t distribution

of Wj and W2 only depends on T and (x t > . The exact functional

form of th is distribution 1n terms of T and ixt )  1s not known.
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However W1 and are functions of txt J through various terms:

2 xt 2- £xt “t - r  £xt - i Z - £yt 2- £¥ t - f £yt - i 2 '  £V f  £yt xt - r  

z y t _ ixt » and Eyt . 1xt _ r  Since both H1 and H2 are concerned

with the dynamic properties of the {y t > i t  seems plausible 

that the d istribution of Wj and W2 w ill depend on the dynamic 

properties of the (x ^ J . Rescaling the tx^} by a constant 1s 

equivalent to rescaling (ae^e^)/(o*)*  by the reciprocal of the 

constant. The crudest summary sta tistics for the dynamic 

structure of the ix t > which are invariant to rescaling the txt > 

are the f i r s t  and second order autocorrelation coefficients 

and therefore 1n the numerical evaluation study in Section 6.4 

we characterise the dynamic structure of the exogenous data 

sets in terms of these coefficients.

Another useful property of W1 and 1s that 1f we put 

X ■ -1 and y ■ 0 in Equation (10) then the signed square-root 

of changes sign w hilst that of does not* The decom­

position vector of tf2 which consists of these signed square-roots 

1s given by:

n(y) * [ f 1( y) o11( y ) F , ( y ) ' ( ,9)

where (y ) denotes the derivative of $(0^) with respect to 

evaluated at 0j ( y ) ,  where [F j (y )f l j j (y )F j (y ) '  ]"*  1s the lower 

triangular Cholesky decomposition of [F 1(y )n 11(y )F 1( y ) ' ] ’ 1 and 

where $(0^) -  [ oBq+Sj > « ] '  . I f  we put x ■ -1 and y ■ 0 then:
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n(gy) -  ( J +) " 1[F l (y )n 11Fl' ( y ) ] " ^ ( J +) " 1( J +)(>[01(y ) ]

= ( J +) ” 1n (y ) = J+n (y ) .  

where J+ = f  -1 0 "1 .

[  0 1 J  (20)

F ir s t ly , since J+ 1s a diagonal orthogonal matrix, so that ( J +)~^ * ( J +) '  

= J +, the lower triangular Cholesky decomposition of:

CF, ( gy )5 ,, (gyJF, (gy) ■ i* 1 -  (J * )" , [F (y )n 1, ( y )F 1( y ) T , (J* )* 1.

is given by :

( J t ) : F 1(y )S 11(y )F ) ( y ) ' ] " , ( J * ) ' 1. (21)

Secondly, we know from e a rlie r that <f>[0^(gy)] = J +[ 6 j ( y ) ] -  

Thus we have:

; n^(gy)

n2(gy)

and T n , (y )2 .  H ,. Tn2(y )2 -  W( 2 ) .

This symmetry result has several consequences following 

Appendix 5.A.1 of Chapter 5. F i r s t ly ,  the distribution of 

n ^(y) is symmetric under the null hypothesis Hg and therefore the 

f i r s t ,  third  and sixth order terms 1n the Edgeworth expansion 

of Its  distribution must a ll be equal to zero. Thus d ^  = 0  

in Equation (14) of Chapter 3 and therefore b ^ j  3 0 in Equation (48)

-n ^ y )

n2(y)
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of Chapter 3 (which is also Equation (27) in this Chapter). 

Secondly, the symmetry result implies that d ^  = 0 and therefore:

where the square brackets indicate summation across different 

permuations of the subscripts. Thus we would anticipate that

particular i f  d222 * 0 (o r equivalently b222 -  0) then 

b122 = 0 a l s o *

Wald tests for H1 have already been Investigated by Gregory 

and Veall (1986) using Monte Carlo methods. As discussed in 

Chapter 4 , they were concerned with the differing  behaviour of 

Wald tests constructed from four a lternative formulations of 

the hypothesis H^:

b122 " (d122d122C91 * d112d222C6;l)3

b,112

Wl12d, , 2[9]>3;

b222 ■ (d22 2 2 , , 5 i ( 2 2 )

H(11> ! V ( ®1/a) ’  01

H( 111): “  * <*l/*o> ■ 0; 

H(1v) ! (a6o/81,'> ’ ■ °- (23)
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Gregory and Veall found that none of the tests performed uniformly 

best over a ll the different parameter combinations which they 

considered because the power functions for a ll the tests varied 

consideraDly over the parameter space. However, the statistics W3 &

W4 corresponding to and H ,.y j respectively seemed to
1 1 1 2  

perform worse in general than the sta tistics W and W corres­

ponding to and in that their rejection probabilities

varied more over the parameter space even under the null 

hypothesis.

This can p artly be explained using the invariance result 

developed in Appendix 6 .A. The hypothesis formulation 

is the same as that which we have used to construct Ŵ which gives 

us an invariant Wald test. I f  we now transform the parameters 

as in Equation (11) and substitute the results into the 

restriction  functions for H ^ j ,  and H j1yj we obtain:

ej ♦  (s*/a *) -  x[e0 ♦  U j/a )];

a* ♦ (e f/ e j) - [a0o/(Bo+YÎ3 ♦ [Bj/(e0 + y >3î

(a*0*/0^) + 1 » [a0o/ (0 j-a y )]  + [0 j/ (0 j“a Y )] .  (24)

The restrictio n  function for undergoes a lin ea r transformation

and therefore meets the fourth condition of the theorem given 1n 

Appendix 6 .A; however, th is is not so for the restrictio n  functions 

for and H ^ y ) .  Thus the Wald test from is invariant

under the group of transformations G* whereas the Wald tests from

H(111) and H(1v) are not.



Gregory and Veall generated the exogenous variable data in their 

model separately for each replication using an AR(1) process with an 

autoregressive coefficient of 0.75 together with a standard normal
2

pseudo-random number generator. They set a = 1 and then considered ten 

different parameter combinations for (a,B0»8 j):

(I)

( I I )

( I I I )

(IV )

(V)

(0.5,0.1, -0.05) i (VI) (0.9,0.1, -0.09);

(0.5,0.5, -0.25) i (VII) (0.9,0.5, -0.45);

(0.5,1.0, -0.5) ; (v i i i ) (0.9,1.0, -0.9) ;

(0.5,0.5, -0.1) i (IX) (0.9,0.5, -0.2) ;

(0.5,0.5, -0.4) i (X) (0.9,0.5, -0 .7 ). (25)

Combinations ( I ) ,  ( I I )  and ( I I I )  set a - 0 .5, (aSQ + B^) = 0 .

Therefore we would expect that , which 1s equal to from 

e a rlie r, would have the same distribution for combinations ( I ) ,

( I I )  and ( I I I ) .  This is indeed supported by visual examination 

of Table 1 in Gregory and Veall (1986) which gives numbers of 

rejections out of 1000 replications. S im ilarly we would expect 

W2 to have the same distribution for combinations ( I ) ,  ( I I )  and

( I I I )  , and this 1s also supported by visual examination of Table 1 

1n Gregory and Veall (1986). However, the Invariance argument does 

not hold for and and visual examination of Table 1 1n Gregory 

and Veall (1986) does Indeed Indicate that th e ir d istributions do 

vary considerably across combinations ( I ) ,  ( I I )  and ( I I I ) .  

Combinations (IV ) and (V) set a » 0 . 5 ,  (aBQ ♦ B^)2 ■ 0.0225; 

combinations (V I ) ,  (V I I )  and (V I I I )  set a ■ 0 .9 , (aBQ ♦ B^)2 * 0; 

and combinations (IX ) and (X) set a » 0 .9, (aB0 ♦ B ^)2 * 0.0625. 

Visual examination of Tables 1 and 2 1n



Gregory and Veall (1986) confirms the presence of the invariance
1 2properties of the distributions of W and W for a ll these 

parameter combinations and the absence of such invariance properties 

for the distributions of Ŵ  and W .̂

When a = 0.5 and (a6Q + B j) = 0 the results 1n Table 1 in Gregory 

and Veall (1986) suggest that W1 tends to over-reject s lig h tly  

using the chi-square distribution c ric tica l values. When a = 0.9 

and (a^j + B j) = 0 then W1 tends to over-reject more strongly using 

chi-square c rit ic a l values. However, Gregory and Veall did not 

consider a = 0 and they generated the {x ^ } separately for each 

replication rather than conditioning on fixed {x ^ };  therefore, 

th e ir results are not d ire ctly  comparable with those of the 

evaluation study in Section 6.4 of this chapter.

Mizon and Hendry (1980) conducted a Monte Carlo study 1n the 

AD(1,1 ) model with an intercept (using our notation):

yt *9 * «yt-i * V t  * 6ixt-i * 't (26)
o

where the are distributed IN(0,o ) ,  and used the Sargan 

algorithm to test for the COMFAC restric tio n . In this model the 

Sargan algorithm 1s equivalent to constructing a Wald test 

using the formulation H ^ j i  aBQ + 8 ^ - 0  but with numerical 

rather than analytical derivatives. Mizon and Hendry generated 

th e ir exogenous variables separately for each replication using 

an AR(1) process with parameter p and with a standard normal 

pseudo-random number generator. Defining y * (oBQ ♦ B j)T * t 

they generated nine separate experiments for each value of
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Y = (0.0, 0 .5 , 1.0, 1 .5 , 2 .0 )with S| ■ 1, 0 = 0 using a Graeco- 

Latin 3*3 design generated from T * (25,55,75), a * (0 .0 , 0.4, 

0 .8 ), g • (0 .3 , 0.6, 0 .9) and o2 -  (0 .1 , 1 .0, 10.0). They found 

that the Wald test had rejection levels close to Its nominal 

rejection levels using chi-square c rit ic a l values. However,
2

for T ■ 75, o = 0 .0 , a * 10.0, p = 0.9 and y * 0, the test 

under-rejected. M1zon and Hendry used only 100 replications for 

each experiment so that the results for any individual experiment 

are not very precise. Also th e ir model does contain an intercept 

term and had exogenous data generated separately for each 

replication. Therefore this result 1s not very informative on 

Its  own and is  not d ire ctly  comparable with the results of the 

evaluation study in Section 6.4 .
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6.4 Expansion Results

In order to examine further the properties of the Wald 

tests for H j: oSQ + * 0 and Hg: o60 + 8̂  = 0, a = 0 from

Section 6.3 we carried out a numerical study using the ESSACS 

program. We considered three different sets of data generated from the 

AR(1) process xt  = P*t_f+Vt  where = ( i -p 2)* and nt  * IN (0,1) 

with p = 0.2, 0.5 and 0.8. The f i r s t  and second sample auto­

correlations for th is series are presented in Table 6 .1. We used 

five  different sample sizes, T  * 10, 20, 30, 40 and 50, 

by taking the f i r s t  11, the f i r s t  21 etc. data points from each 

series. As can be seen from Table 6.1 the series generated with 

p = 0 .2  has very weak inherent dynamics, that for p = 0.5 has 

moderately strong inherent dynamics, and that for p = 0.8 has 

very strong inherent dynamics. These measures of dynamic structure 

are quite crude as discussed in Section 6.3 but do indicate 

that the dynamic properties of the three sets of exogenous data 

vary quite markedly.

In Table 6.2 we report the expansion approximation coeffi­

cients m ultiplied by the sample size for the cdf approximation:

Pr(W1

« ( • Ï W  *
,r ? (s ? )r ? (» ï )  ♦ o(T*’ >.* b222r 1( l 1) r 7<S2‘

(27)
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r l r 2

T  -  10 0 .0 9 9 5 -0 .0 4 7 6

20 0 .0 4 5 4 0 .05 0 1

30 0 .0 3 0 5 0 .0 1 8 8

40 010732 0 .1 3 3 0

50 0 .0 2 9 3 0 .08 2 1

H a O 0 .3 1 7 2 -0 .0 0 1 8

20 0 .3 6 1 2 0 .1 3 6 4

30 0 .3 4 1 1 0 .0 9 7 0

40 0 .4 6 7 5 0 .3 0 2 8

50 0 .3 8 2 2 0 .2 5 6 8

T  -  10 0 .8 0 6 5 0 .0 3 8 6

20 0 .9 4 7 0 0 .4 5 8 4

30 0 .9 9 7 5 0 .6 6 0 6

40 1 .0 2 8 0 0 .7 9 8 0

50 0 .9 4 2 1 0 .7 4 6 1

Table 6 .1 : F irs t and Second Order Order Sample Autocorrelation 
Coefficients for the 3 Exogenous Data Sets

n.b.
T T ,

r i - C ^ ( * t -x ) (xt H -*)]/[J Q(xt- x r ]

- i  Tx ■ (T+1 ) 1 l  xt
t-0 z



n
i. 

.n
i
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where 1s the test for * 0, W ^j is the incremental

test for a * 0, and rj|(s^) is  the cdf of a chi-square variate
2

with k degrees of freedom evaluated as s . From Table 6.2 

we can note a number of points. F irs t ly , b . . j  ■ 0, b^22 a 0» 

b222 * 0 and b22 “ P '4 )T ” 1 1n a ll cases. As noted In Section 6.3 , 

b j^  * 0 follows from the symmetry of the d istrib ution  of 

signed square-root of Wj. Also since numerically b222 ■ 0 then 

b122 * 0 also follows from the symmetry arguments of Section ¿ .3 ; 

however 1t 1s not clear why b222 * 0 or why b22 * (3/4)T’ ^. 

Secondly, bg 1s approximately equal to T , bj 1s approximately 

equal to -T -1 , and b2 is approximately equal to -(3 / 2 )T  . This 

is in contrast to b ^ , b^2 a°d b ^ 2 which a ll vary markedly 

across the d iffe re n t data sets and across the d ifferent sample 

sizes for any given data set. In Table 6.3 we report the main 

quantitative features of the expansion coefficients.

The evaluated approximate rejection probabilities are 

given 1n Tables 6 .4 , 6.5, 6.6 and 6.7, and from these we can 

also make a number of qualitative  observations. In Table 6.4 

we report the approximate rejection probabilities, expressed 

as percentages f o r  Wj, the test s ta tis tic  for : aB0 + Sj * 0. 

These are evaluated at the 10%, 5% and 1% nominal significance 

levels using two sets of c r it ic a l values: f i r s t ly ,  those for 

the ch1-square d istrib ution  with one degree of freedom; and, 

secondly, those f o r  the F-d1str1but1on with (1 ,T -3 )  degrees of 

freedom. For T -  30, 40 and 50, the F-d1str1but1on c rit ic a l
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p -  0 .2 p -  0.5 p -  0.8

b0 - T _1 - t " 1 - T ' 1

bl - t ' 1 - T * 1 a - T " 1

b2 — <3/2) t " 1

bl l “0 .7T_1 •0.3T-1 negative and 
varies

b12 «0 ■0.2T-1

b22 <3/ . ) i ' 1 <3/ . ) l ‘ l

bl l l 0 0 0

b112 “O ■0.2T-1 «0 .7 I-1 
but varies

b122 0 0 0

b222 0 0 0

Table 6.3: Q ualitative  Behaviour of Expansion Coefficients for
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values were interpolated from the F (1 ,T -2 ) and F (1 ,T -4 ) c rit ic a l 

values. However, following the argument of Appendix 5 .A .3 of Chapter 

5, the differences between the approximate rejection probabilities 

using F(1 , T -2 ) and F(1, T -4 ) c rit ic a l values should only be an 

o(T~^) term and therefore the effects of the interpolation should 

not be too serious. I t  1s clear that in a l l  cases the approximate 

rejection probabilities are closer to the nominal significance 

levels for the chi-square distribution c r i t ic a l  values than for 

the F-d1str1bution c rit ic a l values. The te s t based on Wj appears 

to over-reject when used with ch1-square c r i t ic a l  values and to 

under-reject when used with the F -d is trib u tlo n  c rit ic a l values.

The deviations of approximate rejection pro ba b ilities from 

nominal significance levels decrease as T 1s Increased, except 

when T increases from 40 to 50 using the ch1-square distribution 

c rit ic a l values. The probability of re je ction  appears to decrease 

as the Inherent dynamics of the exogenous data are strengthened, 

i .e . by shifting from the data set with p ■ 0.2 to that with p ■ 0.5 

and then to that with p ■ 0 .8 .

In Table 6.5 we report the evaluated approximate rejection 

probabilities for W ^)> the Incremental te s t of o « 0 after testing 

a80 ♦ « 0 .  As with Wj, the test using ch1-square distribution

c rit ic a l values appears to over-reject whereas that with 

F-d1str1but1on c rit ic a l values appears to under-reject; also 

the approximate rejection probabilities are closer to the nominal 

significance levels for the chi-square d is trib u tio n  c rit ic a l 

values than for the F-d1str1but1on c r it ic a l values. The 

deviations of approximate rejection p ro ba b ilities  from 

nominal significance levels decrease as T 1s Increased, except
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when T increases from 10 to  20 and from 30 to 40 using the 

nominal 10% chi-square c r i t ic a l  value and the p = 0.2 data set 

and except when T increases from 20 to 30 using the 10% and 5% 

chi-square critica l values and the p = 0.8 data set. However 

with the p = 0.2 data set the 10% chi-square c ritica l values 

work extremely w ell. Unlike  the results for W ,̂ the approximate 

rejection probabilities f o r  W ^j increase as the inherent dynamics 

of the exogenous data are strengthened and the effect of varying 

the inherent dynamics appears more marked for W ^) than for U j.

In Table 6.6 we report the evaluated approximate rejection 

probabilities for the test s ta tis tic  for Hg: aS0+Bj * 0» a= 0* 

These are evaluated at the 10%, 5% and 1% nominal significance 

levels using two sets of c r it ic a l values: f i r s t ly ,  those for the 

chi-square distribution w ith  two degrees of freedom; and, secondly, 

two times those for the F -d istribu tio n  with (2 , T -3 ) degrees of 

freedom (again interpolated for T = 30, 40, 50). As with Wj and 

W ^ ), the test appears to  over-reject with the ch1-square d is tr i ­

bution c rit ic a l values and to under-reject with the F-distribution 

based c rit ic a l values; also the chi-square distribution c ritica l 

values appear to work b e tte r 1n general. The deviations of 

approximate rejection pro ba b ilities from nominal significance levels 

decrease as T increases, and strengthening the Inherent dynamics of 

the exogenous data appears to increase the probability of rejection. 

However this increase is  much weaker than the decrease observed for

^  or the increase observed for
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Note on Table 6 .7

This table reports evaluated approximate rejection 

probabilities for a test based on with nominal significance 

level a conditional upon lying in the acceptance region fo r  a test 

with nominal significance level 6. Nine different combinations for 

a and 6 are given with a ,6 * 10%, 5% and 1%. Two sets of results 

are given for each data set: f i r s t ly ,  where chi-square d istrib ution  

c rit ic a l values are used throughout the sequence; and, secondly, 

where F-d istribution  c rit ic a l values are used throughout the

sequence.
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In Table 6.7 we report the evaluated approximate rejection 

probabilities for the sequential test based on conditional 

upon lying in the acceptance region for an e a rlie r test in 

the sequence. These exhibit the same qualitative  results as do 

the evaluated approximate rejection probabilities for 

However an additional feature appears when we vary the nominal 

significance level of the in t it ia l test in the sequence. For the 

p ■ 0.2 data set, changing the nominal significance level of the 

in it ia l  test has very l i t t l e  effect on the approximate rejection 

probability of the subsequent test. However for the p * 0.5 

data set, lowering the nominal significance level of the in tia l 

test tends to decrease the approximate rejection probability of 

the subsequent test and for the p = 0.8 data set th is effect 

becomes more marked. This effect can be explained by noting that 

for the p = 0.2 data set both T b12 and T b ^ 2 are c1ose t0 zer0 

whereas for the p ■ 0.5 and the p ■ 0.8 data sets they are noticeably 

greater than zero. I f  T  b ^  s 0 and T b ^ 2 3 0 then wi and w( 2 ) 

would be independent to o (T“ *) and so changing the nominal 

significance level of the in it ia l test would have no effect on the 

approximate rejection probability of the subsequent test. Increasing 

T b ^  and T b ^  increases the dependence to o (T - ^) of the two tests 

so that we would expect the effect noted above to be more pronounced.

We also observe that strengthening the inherent dynamics of the 

exogenous data has a weaker effect on the approximate rejection prob­

a b ility  the higher 1s the nominal significance level of the in it ia l  

test. This seems to be a consequence of the effect noted above:
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strengthening the inherent dynamics of the exogenous data increases 

the approximate rejection probability of the unconditional test 

based on but this is °ffset for the conditional test based on 

W ^) by the increased jo in t dependence of Ŵ and W ^) ancl the decreased 

approximate rejection probability of the test based on W .̂ The 

higher the nominal significance level of the in it ia l test, the 

stronger is  th is offsetting effect. This also helps to explain why 

strengthening the inherent dynamics of the exogenous data appears to 

have a weaker effect on the approximate rejection probabilities of

tests based on W„ than on those of tests based on W. and W, 4.2 1 (2>

6.5 Conclusions

In th is chapter we have studied the properties of testing 

for : aBQ + Bj = 0 ,  the COMFAC res tric tio n , and Hg: aB0 +6^ = 0, 

a = 0, the purely static model res tric tio n , in the AD(1,1) model. 

We have shown in Section 6.3 that the jo in t distribution of the 

Wald sta tis tic s  W1 and W2 for H1 and Hg using OLS estimates is 

determined by T , {x t > ,a  and (aSQ + B^)^/o^; thus under the 

null hypothesis Hg the jo in t distribution is determined solely 

by T and {x t >. In Section 6.4 we have performed a numerical 

study based on asymptotic expansion approximations to the jo in t 

cdf of W1 and W ^  ■ Wg -  M|. This study seems to Indicate that 

the Inherent dynamic structure of the exogenous data 1s very 

important as a determinant of the jo in t distribution of Ŵ 

and W^g) and has systematic effects on the rejection probabilities
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of the tests based on Ŵ and W ^ j. *n Pa rticu l a r» strengthening 

the inherent dynamics of the exogenous data series appears to 

strengthen the dependence between and which makes using 

sequential testing procedures more d if f ic u lt .

There are a number of possible directions for future 

research in this area. F ir s t ly , i t  would be very useful to 

known to which functions of the exogenous data are important 

1n determining the properties of the tests and how these 

affect the properties of the tests. This would help to 

elucidate the d iff ic u ltie s  which are lik e ly  to occur when applying 

such tests with various data sets. Secondly, 1t would be helpful 

to examine the power properties of such tests; these could be 

analysed using the techniques developed 1n Chapter 3. Th ird ly ,

1t would be helpful to examine the consequences of using a lter­

native Wald s ta tis tic s , e .g . those based on Hf: ê , ♦ (e^/a) * 0 

and H|; Bq ♦ (e^/a) ■ 0, a = 0, as 1s b rie fly  discussed 1n 

Section 6.3«

La stly , 1t would be helpful to examine the properties of 

such tests in more general AD models. However, as noted in Section 

6.3, increasing the number of lags would create serious problems 

since i t  may a lter the asymptotic distributions of the test 

s ta tis tics  Involved; thus 1t would require the development of 

asymptotic expansions fo r test sta tis tics  with asymptotic 

distributions which are not chi-square d istributions.
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I t  1s important to note that the tables given in this chapter 

are only tables of approximate probabilities. At best they have 

approximation errors of o (T_1) although we have not demonstrated the 

va lid ity  of the asymptotic expansions in this case. I t  1s therefore 

possible that the changes in behaviour we observe in the approximate 

probabilities arising from varying the exogenous variables do not 

adequately reflect the changes in the true probabilities from varying 

the exogenous variables. Subject to this caveat, the main conclusion of 

this study is that the dynamic properties of the exogenous variables 

seem very important 1n determining the properties of sequential 

testing procedures in dynamic models.
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6 .A Appendix: An Invariance Theorem for Wald Tests

Suppose that, as 1n Chapter 1, Y Is a (vector) random variable 

with d istribution  function F (y ;e ) where e e <QX In certain cases 

1t may be possible to find a group of transformations G, operating 

on Y, and an Induced group of transformation G*, operating on e, 

such that for any g e G there exists a unique g* e G* with the 

following property: that 1f Y -v F (y ;e ) then Z -  gY ~ F(z;g*e) 

where g*e eflDfor any e t ® .

I f  we wish to test Hq : e e(R^ against H^: e e(B^ where 

(fljj and ffy are d is jo in t subsets of <& then providing e c(Tfyj 

I f f  g*e e and e e(T^ I f f  g*e c ®  we can say that this

hypothesis testing problem Is Invariant under the groups of trans­

formations G and G*; see Cox and Hinckley (1974), Lehmann (1959).

In econometrics we are frequently Interested 1n testing functlc 

restrictio ns upon a subset of the parameters and therefore we w ill 

assume that we can partition  e -  (d f .e ^ ) '  and that we can represent 

e e(B})by * (* ]) ■ 0 and e e ( ^  by t ( e , )  4 0. Provided that * ( . )  1s 

a differentiable  function we can consider formulating a Wald test 

of Hq against H^. I t  1s well known that the likelihood ratio  test • 

Invariant under the groups of transformations G and G*; see Cox am 

Hlnkley (1974). I t  Is Interesting to ask whether I t  Is also posslbl 

to construct an Invariant Wald test. The following theorem gives 

su fficien t conditions for this to be possible.

Theorem 1

Under the following conditions there exists an Invariant Wald
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A1)

A2)

A3)

A4)

under the groups of transformations G and G*:

For any g*eG* there exist gf and g| such that 

9*0 * C (g fO j)1» (g|e ) ' ] '  which 1s partitioned 

conformably with ( e j.e ^ ) '»

There exists an estimator e^(y)of such that:

There exists an estimator n ^ i y )  of the asymptotic

There exists a representation + (6 j) ■ 0 of 0e ®  Q 

such that + (+ j) -  0 i f  and only i f  ec ® 0 *

group o f matrix transformations G* such that for a ll 

g*cG* there exists a matrix J*cG* so that 

♦(gf 8 , )  -  J**(e, )  fo r »11 ( a j . a j / i O .

(variant Wald test takes the form:

i  (y )  -  T»te‘ 1( y ) ] , tF 1(y )o 11(y )F1( y ) ' r , * [ » 1( y ) :

and there exists a
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Consider f i r s t ly  fCe^igy)] '  fCg^e^iy)] = J+f[e 1( y ) ] .  

Next consider F ^ (g y ):

d p '
F ^ g y ) -

3 6 ] e ,(g y ) e,-g^e1(y )

34(gfe,) |

a lg ^ e , )* j g f e t= g fe , (y )  

» ♦ ( g ? e ,) |

aej e ,-e , (y )

»9?
e,-e,(y)

s f j 'e c e , ] )  | [  #9*

sej | 6,>a|(y) 30] e ,= e ,(y )

J +
3«

"
’  S9*

36] e,=8( (y ) 36] et - « 1(y )

0 *F,(y) —  * ej | e,-e,<y)J
(28)

Substituting th is  into [F , (g y )  nn ( g y ) F , ( g y ) T  gives:

[F ,(g y ) S (g y l F ^ g y ) ' ] " 1 • [0 * F ,(y ) n , , ( y ) F , ( y ) ' j * ' r 1 

• ( J * T 1C F ,(y ) n11(y )F 1<y)*3_1(J'*')"1
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Substituting this and Equation (28) into W (g y) gives:

W(gy) - T » [ ; ) ( y n ,J*, (J *, ) ’ 1[F1(y )o 11(y )F , ( y ) ' j ‘ , (J * )*1J * « [ » l (y)3

- T *ce, <y)3 • [F, (y )n ,, (y )F , (y ) •3"' ♦ [», (y )3

-  w (y). (29)

Thus W 1s invariant under a ll transformations g c G  operating on 

Y and Its  distribution Is invariant under a ll transformations g*eG* 

operating on e. Q.E.D.

I f  we specify s e then th is  theorem 1s applicable to testing 

functional restrictions on the f u l l  set of parameters.
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CHAPTER 7: Conclusion

Asymptotic expansion approximations to the distributions of test 

sta tis tics  have not been very widely used in econometrics for 

studying the properties of testing procedures in spite of the 

known inadequacies of first-o rd e r asymptotic theory in many 

cases. This appears to be the result mainly of the perceived 

d iff ic u lty  in deriving and computing such approximations. In 

th is thesis we have attempted to demonstrate that these 

approximations can be used to help solve actual problems of 

interest 1n econometrics.

In order to do th is we have developed a method for deriving 

and computing asymptotic expansion approximations to the jo in t 

distributions of asymptotically Independent chi-square sta tis tic s  

which can be exactly or approximately decomposed as the inner 

products of asymptotically standard normal vectors under the null 

hypothesis. We have also extended this method to approximate 

the jo in t d istributions of such sta tis tics  under local a lternative 

hypothesis sequences. In principle this enables us to analyze 

the size and power properties of tests used in testing nested 

hypothesis sequences to a smaller order of magnitude error 

than 1s possible with the asymptotic d is trib ution s. However, 

this method 1s s t i l l  very costly to use 1n practice except for 

very simple cases with moderate sample sizes and we have 

Implemented I t  only for distributions under the null hypothesis. 

Furthermore, this method does not enable us to analyze the
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properties of tests used in testing non-nested hypothesis sequences.

The main conclusion of the numerical evaluation studies 

involving asymptotic expansion approximations to the distributions 

of test statistics 1n actual situations is that such approximations 

are best used 1n conjunction with other approaches to small 

sample theory,e.g. exact invariance theory, parameter sequence 

asymptotics with a fixed sample size and Monte Carlo technqiues.

Asymptotic expansion approximations often seem to provide 

more useful qualitative than quantitative Information. Some­

times they are useful in confirming and explaining previously 

observed phenomena for existing test sta tis tic s . For example,

In Chapter 4 we find that they confirm the observed differences 

1n behaviour, across the parameter space, of alternative Wald tests 

of a given non-Hnear hypothesis. However these results are 

q ualitative ly explainable using parameter sequence asymptotics 

with a fixed sample s ize ; the only additional information which 

asymptotic expansion approximations provide is a rough indication 

of the size of the approximation error from using the asymptotic 

d istribution .

Asymptotic expansion approximations can also suggest the 

presence of problems with existing testing procedures. For 

example, 1n Chapter 5 we find from moment expansions that the 

Chow predictive fa ilure  test contains an Inappropriate adjustment 

for the sampling variation in the parameter estimates 1n dynamic 

models. However the numerically evaluated asymptotic expansion 

approximations to the distributions of the Chow sta tistics
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indicate that this is not a serious problem. In Chapter 6 

we find that asymptotic expansion approximations confirm the 

presumption that the dynamic properties of the exogenous 

variables in an autoregressive distributed lag model strongly 

influence the properties of tests of hypotheses concerning the 

endogenous variable dynamics in such a model.

A number of problems s t i l l  remain when considering the 

application of asymptotic expansion approximations in actual 

practice. F ir s t ly , they are not easy to compute numerically. 

Secondly, they are not as yet applicable to testing procedures 

for non-nested hypothesis sequences. Th ird ly , 1t 1s s t i l l  

unclear as to what features of a given situation determine the 

usefulness of asymptotic expansion approximations 1n that s it ­

uation. F in a lly , 1n most situations encountered in practice 

the model used w ill be m is-specified. Very l i t t le  research has 

been done on the derivation and use of asymptotic expansion 

approximations to the distributions of test sta tis tics  in mis- 

specified models. A ll of these problems suggest directions for 

future research to improve our usage of asymptotic expansion 

approximations in econometrics.
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APPENDIX ON COMPUTING 

A.1 The ESSACS Program

ESSACS 1s an acronym for Exact Sum of Squares Asymptotically 

Chi-square S ta tis tics , and the ESSACS program was written to 

implement the techniques developed In Sections 3.2 and 3.4 of 

Chapter 3 for obtaining asymptotic expansion approximations to 

the jo in t  cdf's of such s ta tis tic s . The algorithm used draws 

extensively In places on the algorithm given 1n Tse (1983) and 

implemented 1n the program EDGE written by Y. K. Tse.

The EDGE algorithm computed the Edgeworth expansion, to an 

e rror of 0(T~3^2) ,  of the cdf of a single asymptotically normal 

s ta t is tic . I t  has two modes of Input: f i r s t ly ,  for a s ta tis tic  

based on data f i r s t  and second order sample moments 1n a DESM; 

and, secondly, for a sta tis tic  based on quadratic and linear forms 

1n a jo in t ly  normal vector y :

p * < * ' V ............ * 'dn, . , ........................... r i y .  (>)

The f i r s t  mode of Input 1s a subcase of the second.

In the f i r s t  mode of Input the vector y 1s assumed to be 

generated by a DSEM which In reduced form Is :

yt  '  * B2t  * U f  t -1 .......... T .  (2)

where y^ 1s an m-vector of endogenous variables so that 

y * (y j_ r . . . .  , y ; ) ' ,  Zt  1s a q-vector of fixed exogenous 

variables, and the Ut  are se ria lly  Independently distributed as 

N[0,n] vectors. The Input data for the model consists of the
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values of m, q and T ,  the elements of the matrices {As }, B and 

the exogenous variables data (Zt }, and, when r>_ 1, starting 

means, E (y g )............ E (y ^ .r )» io r  endogenous variables. The

data f ir s t  and second order sample moments take the forms: 
(T -k ) -b

V  "  t J _ b y f a y t / < T ' k , >

(T -k ) -b
Mzyab * t -1 -b  Zt*»y t / (T*k K  - ‘ i ‘ i > i ‘ * b c k . r

" z z  ■  j , W T -  <3 >
Given (k .b .a t l .J )  to Indicate the (1 , j ) ' t h  element of Mkab 

the program w ill compute the elements of the appropriate 

quadratic form matrix; sim ilarly given (k ,b ,a ) to indicate
if

the vector of linear forms Mzyab the program w ill compute 

the elements of the appropriate linear form vectors. The 

program automatically computes Mzz> the mean of y,Wy, and the 

covariance matrix of y ,ny . In the second mode of Input the 

elements of Uy> and , . . . .  0N must be entered e x p lic it ly .

The EDGE program requires next the functional form of 

the s ta tis tic  $(p) in terms of the elements of p, and the 

derivatives of ♦ (. )  up to the third  order, evaluated at 

M * E (p ). The derivatives can either be expressed as functions 

of u or computed numerically using central differences; see 

Tse (1981). The EDGE program then computes the second-order 

cumulants and the third-order and fourth-order directional 

cumulants of p where the direction Is given by the f i r s t
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derivative of the s ta tis tic  evaluated at u.

The general strategy of the ESSACS algorithm is to write the 

s ta tis tic s  of Interest as the inner products of subvectors of some 

asymptotically standard normal vector. The algorithm proceeds by 

obtaining certain coefficients of the Edgeworth expansion of the pdf of 

th is  asymptotically N [0 ,I ] decomposition vector and then using those 

coefficients to obtain the expansion, to an error of OOt “^ ' 1" ) ,  of the 

cdf of the asymptotically chi-square s ta tis tic s . The decomposition 

vector,X , is written as T m ultiplied by a vector function of some vector 

p of linear and quadratic forms in a jo in t ly  normal vector y . Thus the 

input stage of the ESSACS program parallels d ire ctly  that of the EDGE 

program. The provision or numerical computation of the derivatives and 

the computation of the second-order cumulants and the third-order 

directional cumulants*v p also parallels d ire ctly  that in the EDGE program. 

However the two programs then start to d iffe r substantially.

The asymptotic expansion approximation of the pdf of the 

asymptotically chi-square s ta tis tic s , given by Equation (47) of Chapter 3, 

can be obtained from the asymptotic expansion approximation of the cf 

of {x 2} ,  the squares of the elements of x , given by Equation (22) of 

Chapter 3. This can be obtained from the Edgeworth expansion approximation 

of the pdf of X, given by Equation (14) of Chapter 3. However, only 

certain  coefficients of th is  approximation are needed to compute the 

approximation to the c f of the (X2) .  Also, 1t is unnecessary to store 

separatel” a ll the coefficients with d is tin ct permutations of a given set 

of subscripts; 1t 1s only necessary to store the sum of such coefficients 

across a ll the d istin ct permutations of the given set of subscripts.
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Given any in t ia l  set of coefficients, e .g . {a rs>, we define:

r  = s 

r  < s

(4)

so that in th is  notation the subscripts are given in ascending order 

and we have summed over a ll coefficients with d istin ct permutations 

of a given set of subscripts. We refer to the {a rS> as the summed- 

coefficients corresponding to the original coefficients {a rs >.

The { g > coefficients of the approximation to the c f of thetx2} can 

then be w ritten  in terms of the {d } summed-coefficients of the approxima-

tion to the pdf of x:

9rst ■ drrs s tt’ grs = drrss*

9r ■ dr  , 9q -  V (5)

where r ̂  s ^  t .  The {d } summed-coeffldents are given 1n terns of 

the summed-coeff icients tc> of the approximation to the cf of x, given by

Equation (7 )  of Chapter 3:

drrs s tt crrsstt ’ ( r  < s < t ) :

drrss ‘ ~ l l£JJrrss * crrkkss * cr r s s l l )

-  « £r r r r ,s * £rrssss* * £rrs s ' t r  < »> 1

dr r r r ’  '  6£ <cJ J r r r r * crrrrk k
i — 15c ^ c ; r r r r r r  r r r r

drr “ E(c JJkkrr '  cJ J r r l l * crrllnm > * 45cr r r r r r

3E *Cj J J J r r  * 2cj j r r r r  * c r r l l ! l  * 2crr r r l l*
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-  ^ cj j r r  * crrkk) " 6cr r r r  * cr r ’

d° '  " i<dj J  * 3dJJJJ  * 15dJ J J J J J ) "  djjk k ll

£( *JJkk * 3^ jjj jk k  * ^ jjk k k k 1' <6)

where in each summation the subscripts are in s t r ic t ly  ascending order. 

The {c }  summed-coefficients are given in terms of the summed-coefficients 

ib } of the approximation to the cgf of A, given by Equation (6 ) of 

Chapter 3:

crrsstt

crrrrss

cr r r r r r

c * r r r r

* bt. . + 2b b . . ♦ 2b .b  t  + 2b b . . ;  r s t  rrs s tt  r r t  sst rss r t t

«  b** + 2b b ; c ■ b4- + 2b b ;r rs  r r r  rss * rrssss rss rrs  sss*

a b*” ; c = b + b b ♦ b b ;r r r  rrss rrss r rss rrs s

b + b b ; c = b ♦ (1/2)bt  :r r r r  r  r r r  r r  r r  '  ' ' r  * (7)

where r  < s < t .  The ib ) summed-coefficients are fin a lly  given in terms 

of the summed m ultivariate  Edgeworth coefficients, given by Equation (5 ) 

of Chapter 3 :

br ■ *r 1 brr  ’  t*rr '  * *rr * » r r  * » rr  «

brst '  »rst * »rs t 1
-  - a  -9 - 1 0  -  xi  . ,
b = a + a + a +a ; (8 )rrss rrss rrss rrss rrss *

where r  < s < t  .
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I f  we write the decomposition vector \ as g(x) where x = T^(p -p) 

then we can compute the summed multivariate Edgeworth coefficients 

from the cumulants of x and the derivatives of g with respect to 

x at x = 0. We denote the second-order cumulant of Xj and xK by 

e tc ., and the f i r s t  derivative of gr  with respect to x̂ . 

at x = 0 by gj etc. I t  is  convenient to define a number of 

intermediate expressions for use in computing the required summed 

multivariate Edgeworth coefficients:

(9)

where y j^ , the th ird -o rd e r directional cumulant, is  symmetric 

in (K , t ) ,  is symmetric in (* ,m ), and x£,S 1s symmetric in 

( r ,s ) .  The required summed multivariate Edgeworth coefficients are 

given by:

•Ï * 1 V

>!u - 1

“¡¡» if « * Ï’S '  ’,KtgK

-1

a r ■ * > »  C  * « > < * K

ar r H ’ W * r r  "

~ 6

ar s t  - • rrs  '

~ 6
‘ rs s  ' ( i ) ( x J ’ S9 Î>

„ 7

ar s t  " « C M »  - < < ■ " < >  *

'  7
ar r s



-  256 -

arss

-  7
arr r

arrss “
,K ,t,m j.

-  a
ar r r r

j ,K ,t ,m j.

-  a
arrss <i’ < C rC s> * * < - r >;

-  9
a = r r r r

arrss = * < W , ] i

a10 = r r r r ( « ( O S * r ) .

a11 = rrss (J)C 2 (S ^‘ V ,S m q > * < c s *

a11 = r r r r ■q ) i

where r  < s < t .

1 K rThe method for computing K .YK)l etc. follows to a large extent 

that adopted 1n the EDGE program. From Tse (1983), the jo in t  cgf of 

p 1s given by:

* *



257

y ■V. N[My .iJy]  ; My " 0  y  1 U y  1

O0 -  ( l ) [ lo g e{det((ly’ ) ) -  Myiiy'My]. (11)

I f  we now define:

zr
1

-  1 9 D< i Fr 
J-1 J

-  ny i r  ; qr
'  j i , * i 9J DJ

FJ ■GyDj , ( J -1 --------*N1)  ; mr * V '  1

H1J -  Di V j  * V y ° j . ( i . j - 1 ........ Nr ) i

Gr ■ i>y£r!>y • “ r  - mr  ♦ 2Fruy ;

then we can compute aid a®rs$:

YKi <

2T[tr(FjFk ) *  ayHjkay 3 • (J »k-1...... N,) 1

^ ¿ W k . (J -1 , .. . , N1 & k - N ^ I ,  ..... N)

TDj ny°k • ( J . k - N ^ l ,  .. . , N) 1

T3^ :  t r  (F r (FkFt .  Ft Fk ) ) .

♦ 2»y { (F r ) Hkt ♦ DkGrDt )Uy ]  , (k . l -1 ............ N| )

3/2
T 2[ (mr )'O knyDt * 2uy ( ( F r )'D k ♦ DkFr  WyD^

(k -1 ........... N, S t -N, ♦ 1................N )

?/::20kGr 0 t , (k ,l.. 'i1+1 ,  . . . .  N ) :
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\ t s s  ■ T 28 [2 („r ) ' t rt r Fs(„ s ) ♦ U r ) ' t sF*(ur > * ( . V t ' W )  

♦ 2(ur ) '£ sFr ( » ' )  ♦ 4 tr(F rFr FsFs ) ♦ 2 tr{F r FSFr Fs ) ] ;

. 8 8  . 8 8  
(where r  <. s ). Then arrss * 6arrss ( r  < s ) and ar r r r  = ar r rr

8
since arstu is symmetric in ( r ,s , t ,u ) .  The calculation of 

k *̂ k and y[ i is exactly the same as in Tse (1983) whereas 

that of a®rss is s lig h tly  modified.
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This study is concerned with the behaviour of Wald tests for 

different algebraic formulations of a non-linear hypothesis in 

the CLR with an intercept term and two other regressors:

yt  = V V t t  * V »  * V  * ’  ’ ..............T - ( ,3 )

where the {x^t > are known constants and the {e ^ }  are distributed 

as IN (0 ,a^). This model can be written in the form of 

Equation (2 ) above with m * 1, r  = 0, q = 3 , = O .x ^ .X g ^ )»
2

B * Bq .Sj , e2) and n = a .

Four Wald test sta tis tics  are considered: WM,WR1, WR2

A.2 The Evaluation Study in Chapter 4

*R3* Each can be written as W = Tp where:

WM = (s 1|B2"1 )/ (o Cb|^h  + ®2C12 * B1C22J ,1 ;

^1 * < » 1 ,e2 ♦ 2C12 * CC22/e|)3J*i

to = (e1|S2 -1 )/ {o Z[(C ,,/ 8 Z) * 2C, 2  * ;zc22:>‘

to * l®2X:

from Equation (15) of Chapter 4, with:

l - - <j1ztzt)‘1(j,Vt> !
7 -  ( T - 3 ) * 1«  I  yz )-B '( I  z y ) ]  i  

t-1 1 t-1 Z Z

11 C12

12 C22

1s the lower right-hand corner (2x2) 

T ,
block of ( l ZtZl/T)\ 

t-1 1 z
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Instead of computing the asymptotic expansion approximations to 

the c d f's  of the (W) d ire ctly  i t  is  more convenient to compute 

them for the cdf's of WM, WR1, WR2 and WR3 which are obtained 

by substituting o2 for ¿2 in the (W>, where:

>2 T 2 -  T
a «  ( I  y i/ T ) -  s '(  l Ztyt / T ). 

t-1  z t-1  1 z

is  the ML estimate of o2. Thus we have:

-  (T -3 )T ‘ 1 UM * T ^ ,  etc.

* '2  “2 where the {y }  are obtained by substituting o for o in  the

{ y } .  The tu) can then be expressed as functions of:

■ V ”  - j ,  A n *  ^ o o  ■ and

*zz ■ j ,  W T - ( u )

so that given the values of ^  » 82 and °2 *the DSEM mode

of input of the ESSACS program can be used to compute the 

approximations to the cdf's of the (W } . F in a lly , the 

approximations to the cdf's of the {W} can be computed from 

those of the iW} by transforming the coefficients of the 

la t te r  approximations following Appendix 5 .A .3 of Chapter 5.
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This study is concerned with predictive failure tests in the 

AR(1) model :

A.3 The Evaluation Study in Chapter 5

y -j = Byi -1  + c1* lgl < 1* 1 = 1» 2* •••» n* n+1» n+2‘

where the ( e ^  ere distributed as IN(0,o2) end y0 1s distributed

N[0, o2/( 1 -B 2) 3 . This model can be written 1n the form of
2

Equation (2 ) above with m = r  = 1 , A l = B , f i  = o ,  E(yQ) ■ 0 and 

T = n+2. To construct the tests we also define:

Z1 *

Î
 (0 ,0 ,0 ,0 ,0 ) ',

(O .O . ln ^ )* , ¡ U n -^ ln '* ) ' .  

(0 ,(n +2 )* , 0*(n+2)n"^,0). 

(< n »2 )J , 0, 0, 0 . 0 ),

1 = 1.......... n -  1,

1 «  n,

1 * n + 1,

1 -  n ♦ 2, (16)

so that q * 5 , and B = (0 ,0 ,0 ,0 ,0 ).

Six p redictive  failure tests are considered: F,
H n* r 21 n

-  * S | , -  filn* V  1 ,n  *"d 1 [n  '  F2,n '  V
These are given by Equations (7 ) ,  (8 ) and (9 ) of Chapter 5 and 

are expressed as functions of yn , yn+1 . yn+2* en’ °n and

-  v2 1-1 v1-1

K  - ( 1l 1y? - i>/(1l 1y iyi - i ) * >nd

%  ■ ln- 1>‘ ,C (i?, y 1> '  *n( 1[ 1»1y 1 -in *
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2
are the OLS estimates of e and o . As 1n the evaluation study 

in Chapter 4 i t  is more convenient to obtain asymptotic expansion

approximations to the c d f 's  of the modified statistics (F )
“2 -  2 

where o is replaced by the conditional ML estimate o "  n
than to obtain such approximations to the cdf's of the original

sta tistics (F  }  . Here a2 1s defined by: n *

°n ’  '  ®"(

Thus IF } are given by f Jj n » (n-1 Jn^’ F^j n e tc ., and the

approximations to the c d f 's  of the {F> can be obtained from those 

of the tF> following Appendix 5 .A .3 of Chapter 5. The modified 

statistics can then be expressed by »  T ( WJ ) 2 and Fgin * T(l<||+) 

etc. where the { u} are functions of:



26 3  -

j" * < V

y „ t , ( " * . ) * *  -  pä ;

•ÇyOO ' I  *«<"♦*>'* -  >V

y n * 1 n ' *  *  p 7 ‘

Lyn " '‘  -  P8-

Then and p!)+are given by:

“Ï  ■ <P3P5 * P2P6> (p t P3 -  P2P3>'‘  »

“2* ■ <p3p4 ■ P2PS)(P 1P3 -  p2P3r l - <’ 7>

I f  we now define:

1 ♦ (p|/p3) Í *2 ■ p7p8/p3 1

* 3 * '  * <pj/P3> ¡ *, -  » , ’ * 1

S2 ■ W2<V?W3 * v l > ‘ ‘  » *3 ■ vl ‘ < V 3

'C
“ l and U2+ are given by

'C . - h. 'c+ ~h _ ~h+M, • V r  w2 "  V i  * V 2 • (1 8 )
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This study is concerned with sequential testing in the 

AD(1,1) model:

yt  * oyt - i  + V t  * * ct ’ * = 1.............T> ( ,9 )

where the {x ^ } are non-stochast1c and the { e^> are distributed 
2

IN(0,o ) .  This model can be w ritten in the form of Equation (2) 

above with m » r  ■ 1, q -  2, A -  o,Z^ »  B = ^e0»6i )
2

and n = o . The value of E(yg) is set to zero since in this study 

we set a = 8q = = 0; see Section 6.3 of Chapter 6. If  we

write the model as

A.4 The Evaluation Study in Chapter 6

yt  * T'Mt  ♦ et , t  = 1...........T ,

where y ‘ ■ (a,80.8 j) and ŵ  -  (yt _ i . xt , xt -1 ) then the test 

sta tistics considered can be expressed as:

W, -  T*2[o 2f 'C  f ] " ' i

«2 ’  T [ i ,  .♦23, tS2F1CFp*

where: ^  » (a60 ♦ 8 ^); ♦ 2 * ;

f '  ■ (60,o ,1 ) ; “
80 a l '

1 0 0

(20)





The {  H }can be decomposed as W, -  Ty^ and W2 “ W2 ’  W1 " V p 2 * ^ (2)
are given oy:

“1 ■ Vi ! “2 - Vi * v 2 ( 22 )

where: s( -  v -* ; $2 »  * j(* fv 3 -  v ^ * ) -1  1

*3 ■ * ,J ( V 3 '  , 2>"* ; *nd

Thus û  and u 2 can be expressed as functions of the elements of p 

and
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