
The Library
Browse by Warwick Author
![]() | Up a level |
Number of items: 9.
Australian Research Council (ARC)
Gottwald, Georg A. and Melbourne, Ian (2016) Central limit theorems and suppression of anomalous diffusion for systems with symmetry. Nonlinearity, 29 (10). 2941. doi:10.1088/0951-7715/29/10/2941 ISSN 0951-7715.
Engineering and Physical Sciences Research Council (EPSRC)
Melbourne, Ian and Terhesiu, Dalia (2017) Operator renewal theory for continuous time dynamical systems with finite and infinite measure. Monatshefte fur Mathematik, 182 (2). pp. 377-431. doi:10.1007/s00605-016-0922-0 ISSN 0026-9255.
Gottwald, Georg A. and Melbourne, Ian (2016) Central limit theorems and suppression of anomalous diffusion for systems with symmetry. Nonlinearity, 29 (10). 2941. doi:10.1088/0951-7715/29/10/2941 ISSN 0951-7715.
Melbourne, Ian and Stuart, A. M. (2011) A note on diffusion limits of chaotic skew-product flows. Nonlinearity, Volume 24 (Number 4). pp. 1361-1367. doi:10.1088/0951-7715/24/4/018 ISSN 0951-7715.
European Research Council (ERC)
Kelly, David and Melbourne, Ian (2017) Deterministic homogenization for fast-slow systems with chaotic noise. Journal of Functional Analysis, 272 (10). pp. 4063-4102. doi:10.1016/j.jfa.2017.01.015 ISSN 0022-1236.
Melbourne, Ian and Terhesiu, Dalia (2017) Operator renewal theory for continuous time dynamical systems with finite and infinite measure. Monatshefte fur Mathematik, 182 (2). pp. 377-431. doi:10.1007/s00605-016-0922-0 ISSN 0026-9255.
Gottwald, Georg A. and Melbourne, Ian (2016) Central limit theorems and suppression of anomalous diffusion for systems with symmetry. Nonlinearity, 29 (10). 2941. doi:10.1088/0951-7715/29/10/2941 ISSN 0951-7715.
Melbourne, Ian and Stuart, A. M. (2011) A note on diffusion limits of chaotic skew-product flows. Nonlinearity, Volume 24 (Number 4). pp. 1361-1367. doi:10.1088/0951-7715/24/4/018 ISSN 0951-7715.
Great Britain. Office for Nuclear Regulation (ONR)
Kelly, David and Melbourne, Ian (2017) Deterministic homogenization for fast-slow systems with chaotic noise. Journal of Functional Analysis, 272 (10). pp. 4063-4102. doi:10.1016/j.jfa.2017.01.015 ISSN 0022-1236.
This list was generated on Fri Mar 31 16:26:20 2023 BST.