
The Library
Browse by Warwick Author
![]() | Up a level |
Number of items: 20.
2022
Bruner, Robert, Greenlees, John and Rognes, John (2022) The local cohomology spectral sequence for topological modular forms. Mathematische Zeitschrift, 302 (1). pp. 129-180. doi:10.1007/s00209-022-03033-4
Benson, David and Greenlees, John (2022) The singularity and cosingularity categories of C ∗ B G for groups with cyclic Sylow p-subgroups. Algebras and Representation Theory . doi:10.1007/s10468-022-10129-2 (In Press)
2021
Benson, Dave and Greenlees, John (2021) Massey products in the homology of the loop space of a p-completed classifying space : finite groups with cyclic Sylow p-subgroups. Proceedings of the Edinburgh Mathematical Society, 64 (4). pp. 908-915. doi:10.1017/S0013091521000651
Barnes, David, Greenlees, John and Kędziorek, Magdalena (2021) An algebraic model for rational naïve-commutative ring SO(2)-spectra and equivariant elliptic cohomology. Mathematische Zeitschrift, 297 . pp. 1205-1235. doi:10.1007/s00209-020-02554-0
2020
Barnes, David, Greenlees, John and Kedziorek, Magdalena (2020) An algebraic model for rational toral G-spectra. Algebraic & Geometric Topology, 19 (7). pp. 3541-3599. doi:10.2140/agt.2019.19.3541
Balchin, Scott and Greenlees, John (2020) Adelic models of tensor-triangulated categories. Advances in Mathematics, 375 . 107339. doi:10.1016/j.aim.2020.107339
Greenlees, John and Stevenson, Greg (2020) Morita theory and singularity categories. Advances in Mathematics, 365 . 107055. doi:10.1016/j.aim.2020.107055
Barthel, Tobias, Greenlees, John and Hausmann, Markus (2020) On the Balmer spectrum for compact Lie groups. Compositio Mathematica, 156 (1). pp. 39-76. doi:10.1112/S0010437X19007656
2019
Greenlees, John (2019) The Balmer spectrum of rational equivariant cohomoloy theories. Journal of Pure and Applied Algebra, 223 (7). pp. 2845-2871. doi:10.1016/j.jpaa.2018.10.001
David, Barnes, Greenlees, John and Kȩdziorek, Magdalena (2019) An algebraic model for rational naïve-commutative $G$-equivariant ring spectra for $\textrm{finite} \: G$. Homology, Homotopy and Applications, 21 (1). pp. 73-93. doi:10.4310/HHA.2019.v21.n1.a4
2018
Greenlees, John and Shipley, B. (2018) An algebraic model for rational torus-equivariant spectra. Journal of Topology, 11 (3). pp. 666-719. doi:10.1112/topo.12060
Greenlees, John and Shipley, Brooke (2018) An algebraic model for rational torus-equivariant spectra. Journal of Topology, 11 (3). pp. 666-719. doi:10.1112/topo.12060
Greenlees, John P. C. and Meier, Lennart (2018) Correction to the article Gorenstein duality for real spectra. Algebraic & Geometric Topology, 18 (5). pp. 3129-3131. doi:10.2140/agt.2018.18.3129
2017
Greenlees, John and Meier, Lennart (2017) Gorenstein duality for real spectra. Algebraic & Geometric Topology, 17 (6). pp. 3547-3619. doi:10.2140/agt.2017.17.3547
Barnes, D., Greenlees, John, Kedziorek, M. and Shipley, B. E. (2017) Rational SO(2)-equivariant spectra. Algebraic & Geometric Topology, 17 (2). pp. 983-1020. doi:10.2140/agt.2017.17.983
2016
Greenlees, John (2016) Rational torus-equivariant stable homotopy III : comparison of models. Journal of Pure and Applied Algebra, 220 (11). pp. 3573-3609. doi:10.1016/j.jpaa.2016.05.001
Greenlees, John (2016) Rational equivariant cohomology theories with toral support. Algebraic and Geometric Topology, 16 . pp. 1953-2019. doi:10.2140/agt.2016.16.1953
Greenlees, John (2016) Ausoni–Bökstedt duality for topological Hochschild homology. Journal of Pure and Applied Algebra, 220 (4). pp. 1382-1402. doi:10.1016/j.jpaa.2015.09.007
2014
Greenlees, John and Shipley, B. E. (2014) Homotopy theory of modules over diagrams of rings. Proceedings of the AMS Series B, 1 . pp. 89-104. doi:10.1090/S2330-1511-2014-00012-2
Greenlees, John and Shipley, B. E. (2014) Fixed point adjunctions for module spectra. Algebraic and Geometric Topology, 14 (3). pp. 1779-1799. doi:10.2140/agt.2014.14.1779
This list was generated on Sat Jan 28 19:42:24 2023 GMT.