
The Library
On some generalized Fermat equations of the form x2+y2n=zp$x^2+y^{2n} = z^p$
Tools
Michaud‐Jacobs, Philippe (2022) On some generalized Fermat equations of the form x2+y2n=zp$x^2+y^{2n} = z^p$. Mathematika, 68 (2). pp. 344-361. doi:10.1112/mtk.12127 ISSN 0025-5793.
|
PDF
WRAP-some-generalized-fermat-equations-form-Michaud‐Jacobs-2022.pdf - Published Version - Requires a PDF viewer. Available under License Creative Commons Attribution 4.0. Download (172Kb) | Preview |
Official URL: http://dx.doi.org/10.1112/mtk.12127
Abstract
The primary aim of this paper is to study the generalized Fermat equation
Item Type: | Journal Article | ||||||
---|---|---|---|---|---|---|---|
Subjects: | Q Science > QA Mathematics | ||||||
Divisions: | Faculty of Science, Engineering and Medicine > Science > Mathematics | ||||||
Library of Congress Subject Headings (LCSH): | Fermat numbers, Hilbert modular surfaces , Galois theory , Curves, Elliptic , Diophantine equations | ||||||
Journal or Publication Title: | Mathematika | ||||||
Publisher: | London Mathematical Society | ||||||
ISSN: | 0025-5793 | ||||||
Official Date: | 12 April 2022 | ||||||
Dates: |
|
||||||
Volume: | 68 | ||||||
Number: | 2 | ||||||
Page Range: | pp. 344-361 | ||||||
DOI: | 10.1112/mtk.12127 | ||||||
Status: | Peer Reviewed | ||||||
Publication Status: | Published | ||||||
Access rights to Published version: | Open Access (Creative Commons) | ||||||
Date of first compliant deposit: | 22 April 2022 | ||||||
Date of first compliant Open Access: | 22 April 2022 | ||||||
RIOXX Funder/Project Grant: |
|
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |
Downloads
Downloads per month over past year